
 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 1 of 51

The supplemental material is a continuation of the topics covered in the Query Manager
workbook. The supplemental material was created to be used as a reference when creating
queries.

Queries can be difficult to create and manage. This material provides instructions on how to
manage and organize queries to the importance of effective date usage and logical
operators when adding criteria. The expressions section of this material provides step-by-
step instructions on how to add multiplication and date format strings when adding
expressions to specific fields. The section on Outer joins is worth looking at to better
understand the “where” clause.

Topics that are expanded on include (but not limited to):

∗ Effective Data and most common use for effective date logic in queries.
∗ Query organization importance including:

o Copy a query to a User
o Delete queries
o Move queries to a folder
o Rename queries

∗ Grouping criteria and the use of logical operators (and & or)
∗ Expressions and instructions on adding:

o Mathematical
o String Functions
o Numeric Functions
o Date Functions
o Conversion Functions
o Conditional Functions
o Case Functions

∗ Outer Joins and the “where” clause.
∗ Aggregate queries
∗ Troubleshooting

We hope that you find this documentation a helpful tool. However, there is nothing more
helpful than finding a group of people that you can network with to discuss queries and the
problems that you incur. Help is always available by emailing bgat100@bgsu.edu.

We always look forward to suggestion on how to improve this training material as well as
how you use this documentation to assist in improving you process of creating queries.

mailto:bgat100@bgsu.edu�

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 2 of 51

Normally a request for a query will be in the form of a question or a request for certain information. It
will usually not come with the fields, records, and criteria given to you directly. Instead, it will be like a
story problem. You’ll be responsible for translating the request into a query that PeopleSoft
understands.

Finding Records and Fields

What if you don’t already know where to find the information?

• Use the Advanced Search capabilities. You can search by record name, description, and fields
used in a record, among others. For instance, if you know a query is about programs, you can
search for records having “program” in the description or PROGRAM in the name. If this does
not provide enough options or any correct ones, try abbreviations such as PGM and PROG. You
could also search for records having a field with PROG in the name.

• Look at the descriptions. When you search for records, the description of each record is given
along with the name of the record. When you show fields in a record, the description of each
field is displayed.

• Ask the requestor to show you where the underlying data is in PeopleSoft. If he or she can show
you some pages, you can get some field labels that may appear in the descriptions of fields. If
the requestor shows you a field labeled “Contact Person,” then you can search for records that
have fields with descriptions containing “contact” or “person” or names containing “PERS”.

• Use references that others have created. Lori Beeman created several lists of records and their
descriptions as hierarchies, so you not only get the internal names of the records, but see which
records are related to each other as parents and children.

• Ask your coworkers. 

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 3 of 51

Frequently there is a need to keep track of the history of changes to something in a database. The
status of a student will change as he applies to a program, matriculates, possibly adds minors, and
completes that program. There may also be a need to retain information about something, such as its
name, flags, and amounts. In addition, to aid in planning ahead, there may be a need to store
something that will come into effect in the future.

Effective Date, Effective Sequence, and Effective Status

PeopleSoft uses special fields in many records to enable having data effective only at certain times –
Effective Date (EFFDT), Effective Sequence (EFFSEQ), and Status as of Effective Date (EFF_STATUS).

Basics of “Effective” Data

Effective Date is the most commonly used of these three fields; the other two fields will not be in a
record without an EFFDT field. It indicates that the record is effective as of a certain date.

This concept may be easiest to understand using an example. Consider the following rows of
ACAD_PROG_TBL, which contains information about academic programs.

INSTITUTION ACAD_PROG EFFDT EFF_STATUS DESCR ACAD_CAREER ACAD_CALEND
AR_ID

BGSUN ARTSC 8/29/1982 A College of Arts and
Sciences

UGRD USEM

BGSUN ARTSC 9/26/1971 A College of Arts and
Sciences

UGRD UQTR

BGSUN ARTSC 9/24/1968 A College of Liberal Arts UGRD UQTR
BGSUN ARTSC 1/1/1910 A College of Liberal Arts UGRD USEM

The row with the highest EFFDT that is not in the future contains the information current for today. In
the example above, since August 29, 1982, the name of the arts and sciences program has been “College
of Arts and Sciences” and the academic calendar was based on semesters (USEM). From September 26,
1971 through August 28, 1982, the name was the same, but the calendar was based on quarters (UQTR).

If there is an Effective Date field in a record, the Effective Date is always part of the key, and it is the last
part of the key unless there is also an Effective Sequence. The Effective Date applies to all of the key
fields preceding it. In the example, EFFDT applies to the combination of INSTITUTION and ACAD_PROG.
The Effective Date for program ARTSC does not indicate when data for effective for program BUSN,
program MUSIC, etc.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 4 of 51

By convention, the Effective Date used for the first instance of something that is effective dated is
1/1/1900 for base PeopleSoft data and 1/1/1910 for data added by BGSU.

If it is likely for there to be several changes to something on the same day, an Effective Sequence field is
included in the record. This is a number that starts at 0 on a particular day and increases by 1 for each
change to that something (identified by key) on that day. The most current information has the highest
non-future EFFDT and the highest EFFSEQ for that EFFDT.

Again, an example can more clearly demonstrate this concept.

EMPLID EMPL_RCD EFFDT EFFSEQ DEPTID JOBCODE SUPERVISOR_ID HR_STATUS ACTION
9106 0 4/20/2008 0 310200 600001 2164 I TER
9106 0 7/29/2007 1 310200 600001 2164 A DTA
9106 0 7/29/2007 0 071100 600001 1316 A HIR

Employee 9106 was hired on 7/29/2007, into department 071100 under supervisor 1316; this is shown
in the row with EFFDT of 7/29/2007 and EFFSEQ of 0. Later that day, the employee was transferred to
department 310200 with supervisor 2164; this is shown in the row with EFFDT of 7/29/2007 and EFFSEQ
of 1. This assignment was effective until the employee’s termination on 4/20/2008.

There may be cases in which something is deactivated or will be deactivated or is added to the database
before it will become effective. These cases are handled by using a Status as of Effective Date field.
Consider these two examples from ACAD_PLAN_TBL, which contains information on academic plans
(majors).

INSTITUTION ACAD_PLAN EFFDT EFF_STATUS DESCR ACAD_PLAN_TYPE ACAD_PROG DEGREE
BGSUN AERO-BSTC 8/25/2015 I Aerotechnology MAJ TECH BSTC
BGSUN AERO-BSTC 1/1/1910 A Aerotechnology MAJ TECH BSTC

The above rows indicate that the Aerotechnology major, with a Bachelor of Science in Technology
degree (DEGREE = ‘BSTC’) upon graduation, is active (EFF_STATUS = ‘A’) until 8/24/2015. On 8/25/2015,
it will become inactive (EFF_STATUS = ‘I’). This means that AERO-BSTC will be inactive in the future but
is active now.

INSTITUTION ACAD_PLAN EFFDT EFF_STATUS DESCR ACAD_PLAN_TYPE ACAD_PROG DEGREE
BGSUN THEA-BSJ 5/18/2008 I Theatre MAJ ARTSC BSJ
BGSUN THEA-BSJ 1/1/1910 A Theatre MAJ ARTSC BSJ

The second example shows that plan THEA-BSJ – a Bachelor of Science in Journalism (BSJ) for Theatre –
was active until 5/17/2008 and was discontinued on 5/18/2008, placing it in an inactive status. This
means that THEA-BSJ is currently inactive.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 5 of 51

Using Effective Data in Queries

The most common use of effective date logic in queries is to report only active data current at the time
the query is run. This may be referred to as the “maximum non-future effective date.”

Writing effective date logic manually involves adding a subquery on the same record as in the main
query, joining on all key fields except for the date. This can be cumbersome for records with many fields
in the key.

Query Manager makes this unnecessary! When you add a record that has an Effective Date field to a
query, an effective date criterion is automatically added to the query. A message stating this appears as
soon as you add that record. You can see this criterion in the Criteria tab as “Eff Date <= Current Date.”
You can change the criterion to look at the date in a field, expression, or a specific date of your choice.
You can also show rows having the first effective date or last effective date regardless of whether the
effective date is in the future.

If the record also has an Effective Sequence field, the criterion will be “Eff Date <= Current Date (EffSeq =
Last),” indicating that only the last row created on the effective date will be included in the results. You
can edit this criterion to use the first row instead of the last or to show all rows regardless of Effective
Sequence.

If you accidentally delete a criterion on Effective Date, you can add one manually. If you choose EFFDT
as a field in the criterion, you can choose from special Condition Types that apply only to effective dates:

• Eff Date < – effective date is less than the selected date

• Eff Date <= – effective date is less than or equal to the selected date

• Eff Date > – effective date is greater than the selected date

• Eff Date >= – effective date is greater than or equal to the selected date

• First Eff Date – effective date is the earliest for the key

• Last Eff Date – effective date is the latest for the key

The selected date can be the current date, a constant, a value in a field, or the result of an expression.
Recall that effective dates are tied to keys, so “First Eff Date” refers to the row having the earliest
effective date for all rows having the same values in their key fields (except Effective Date and Effective
Sequence).

Query Manager does not automatically add criteria on Status of Effective Date. If you are interested in
only active or only inactive rows, you must manually add the criterion on EFF_STATUS to your query.
There are just two possible values of EFF_STATUS: ‘A’ for active and ‘I’ for inactive.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 6 of 51

As the number of queries that you work with grows, you may want to group them by
purpose, department, or other characteristics. You might also want to send them to other
users, rename them, or delete old ones.

Query Organization

Query Manager enables you to organize your queries in a manner similar to how you may
organize your files with Explorer or My Computer in Windows. However, there are some
important differences.

Files in a file system are uniquely identified by an internal ID. Two or more files can have
the same name, though such files usually must be stored in different folders. Queries are
uniquely identified by name in a storage area; two queries in the same user’s storage space
cannot share the same name even if they are in different folders. Two queries can only
have the same name if they are in two different users’ private storage. No private query
can have the same name as a public query.

Queries may be grouped into folders. This can aid in finding queries in a large institution,
since you can search for only those queries that are in a particular folder. This is similar to
storing files in different folders or directories in a file system. However, unlike with file
systems, you cannot store a folder inside another folder. With Query Manager, there are
only two levels of folders: inside a folder and not inside a folder.

With a file system, you must create new folders and delete unneeded folders manually.
Query Manager implicitly creates a folder when you save or move a query to a folder that
does not already exist. Query Manager also automatically deletes a folder when you
remove the last query from that folder.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 7 of 51

Copy a Query to a User

It may be useful to send a query to another user if that user needs to make minor
modifications before running it, to see how it was built, or to run the query with different
row-level security than that of the first user. Query Manager enables you to copy a query to
another user’s storage space.

To copy a query to another user, do the following:

o From the Query Manager search page, search for the query to be copied.

In the row for the query in the Search Results area, check the Select checkbox. (You
may copy multiple queries by checking the checkbox corresponding to each query to be
copied.)

o From the Action dropdown, choose Copy to User.
o Click the Go button.

o Enter the User ID of the user who will receive the query.
o Click the OK button.

If the copy is successful, you will receive a message confirming this.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 8 of 51

A public query cannot be copied to another user because this would result in a private query
having the same name as a public query. If you want to copy a public query, the receiving
user must edit the query and save it to his or her private storage. (See the Save a Query
with a New Name segment.)

A query cannot be copied to another user if that user has a query with the same name; you
cannot overwrite an existing query by copying one.

If the receiving user does not have access to the records in the copied query,
that query will not appear when the receiving user searches for queries.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 9 of 51

It is possible for you to delete a public query. Be very careful
when selecting queries to delete since you may accidentally
delete a query someone else needs!

Delete a Query

Deleting unneeded queries, such as those that are out of date, or created as a test, can be
done easily through Query Manager. To delete a query, do the following:

o From the Query Manager search page, search for the query to be deleted.

In the row for the query in the Search Results area, check the Select checkbox. (You may
delete multiple queries by checking the checkbox corresponding to each query to be
deleted.)

o From the Action dropdown, choose Delete Selected.
o Click the Go button.

When asked to
confirm the
deletion, click the
Yes button.

If the last query
is deleted from a
folder, that folder
is also deleted.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 10 of 51

Move a Query to a Folder

It can be useful to group queries with a similar purpose or for the same department or
college into a folder. Both Query Viewer and Query Manager allow you to search for queries
by a folder name and filter the results of a search for queries by a folder name. To move a
query to another folder, do the following:

o From the Query Manager search page, search for the query to be moved.

In the row for the query in the Search Results area, check the Select checkbox. (You may
move multiple queries by checking the checkbox corresponding to each query to be moved.)

o From the Action dropdown, choose Move to Folder.
o Click the Go button.

A Move to Folder page appears.

o To move the selected query or
queries to an existing folder, click
the “Select an existing folder
to move to” radio button and
choose a folder from the
dropdown.

o To move the selected query or queries to a new

folder, click the “OR enter a folder name to
move to” radio button and enter a folder name in
the text box. A folder name may be at most 18
characters long.

*Make sure to both click a radio button and choose a
folder

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 11 of 51

o Click the OK button.

*Query Manager will take the action indicated by the radio button. If you enter a new folder
name but do not click the second radio button, the query will be moved to whatever existing
folder is showing in the dropdown!

If the last query in a folder is moved out of that folder, the folder is deleted. If a new folder
name is entered and a query is moved to it, a folder with that name is automatically
created.

To move a query so that it is not in any folder, move it to a folder with a blank name.

Private queries remain private after being moved. Similarly, public queries remain public
after being moved.

It is possible for you to move a public query to
another folder. Be very careful when selecting
queries to move since you may accidentally
move a query someone else needs!

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 12 of 51

WARNING

Rename a Query

On occasion, you may want to change the name of a query to make it easier to identify,
correct a spelling mistake, or reduce confusion with another query. To rename a query, do
the following:

o From the Query Manager search page, search for the query to be renamed.

In the row for the query in the Search Results area, check the Select checkbox. (You may
rename multiple queries by checking the checkbox corresponding to each query to be
renamed.)

o From the Action dropdown, choose Rename Selected.
o Click the Go button.

o Enter a new name for each selected query next to the old name of each query.
o Click the OK button.

Renaming a query does not change who owns the query or the folder in which it is stored.

You cannot rename a query such that it has the same name as a private query in your
storage area or a public query.

 It is possible to rename a public query. Be very careful
when selecting queries to rename since you may
accidentally rename a query someone else needs.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 13 of 51

Save a Query with a New Name

There are instances in which you may want to give a query a new name while keeping the
existing query intact instead of renaming it. These include testing changes to a query and
retaining historical versions of a query. To save a query with a new name, do the following:

o From the Query Manager search page, search for the query to be saved with a new
name.

In the row for the query in
the Search Results area,
click the Edit link.

At the bottom of any tab
page except Run, click the
Save As link.

o Enter a new name in the Query
text box.

o Enter a new description or
folder name or change the Owner
between Private and Public if
desired.

o Click the OK button.

You can overwrite an existing query by saving a query with the same name as an existing
query. If you attempt this, you will be told a query with that name exists and asked if you
want to continue. Click Yes to overwrite or No to abandon the save.

You cannot save a query to your private storage such that the query has the same name as
a public query.

No change is made to the original query.

It is possible for you to overwrite a public query by
saving a query with the same name as another public
query. Be very careful when saving a public query since
you may accidentally overwrite a query someone else
needs.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 14 of 51

• On some occasions, you will need to write a query that returns rows that meet some criteria,
but not all of them. For instance, you may be asked to limit the results to those for which the
program status is either ‘AC’ or ‘LA’. This could be implemented using the criterion
“PROG_STATUS in list ‘AC’, ‘LA’”, but if the criteria involve multiple fields or cannot be
enumerated in a list, you will need to create multiple criteria and link them with the OR
operator.

Grouping Criteria and the OR operator

• When you add criteria to a query, by default they are linked with the AND operator. This means
that in order for a row to be included in the results, criterion 1 and criterion 2 and criterion 3
etc. must all be met. With an OR operator, if criterion 1 is true or criterion 2 is true, then the
row will be included (assuming the other criteria are also met). Note that if both criterion 1 and
criterion 2 are true, the row will still be in the results; it is only required that one of the criteria
be met.

Choosing Logical Operators

• To change the operator linking two criteria, go to the Criteria tab and select the operator from
the Logical column. For the first criterion, you can only select NOT to negate that criterion. For
the other criteria, you can choose AND, AND NOT, OR, and OR NOT. Typically you will use this to
change from AND to OR.

• In the screen shot below, the AND operator links the criterion above (A.EFFDT <= Current Date)
and the criterion in the same row (A.INSTITUTION equal to BGSUN).

• The operators are called “Logical” because they operate on values that are either true or false.
Each criterion has a comparison that produces a true result or a false result. In a row in which
INSTITUTION is “BGSUN,” the criterion A.INSTITUTION equal to BGSUN evaluates to true.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 15 of 51

Grouping Criteria

• There is an important consideration when using both the AND and OR operators in a query. As
in mathematics, there is a defined order of operations. The AND operators are given higher
priority than OR operators. The AND operator is roughly equivalent to multiplication and the OR
operator is roughly equivalent to addition in this sense. You can use parentheses to affect how
the criteria are grouped, usually with the goal of combining the criteria linked with OR
operators.

• Consider an example in which you are asked to list the academic program (ACAD_PROG record)
information about students who are at BGSU (INSTITUTION = ‘BGSUN’) in the Arts and Sciences
program (ACAD_PROG = ‘ARTSC’) and were either admitted in Fall 2006 (ADMIT_TERM = ‘2068’)
or completed the program in Spring 2006 (COMPLETION_TERM = ‘2062’). Note that academic
program data is effective dated.

• Here is a first attempt at building these criteria in our query:

Below is an excerpt from the results returned by the query:

• Row 601 matches what was expected since the program is ARTSC and the admit term is Fall

2006. However, row 602 doesn’t match what was intended; while the completion term is Spring
2006, the program is MAST. This row was included because it meets the COMPLETION_TERM
equal to 2062 criterion. Recall that in a case of criteria linked by an OR operator, either what is
before the OR or after the OR must be true to be included in the results. There are four criteria

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 16 of 51

linked by AND operators before the OR, so either these four criteria in combination must be true
or the one criterion after the OR, have to be met for the row to appear among the results.

• In order to have the query worked as intended – that the results are all in the ARTSC program

and that either the admit term is Fall 2006 or the completion term is Spring 2006 – parentheses
are needed. To add parentheses to a query, go to the Criteria tab and click the Group Criteria
button. The Edit Criteria Grouping page appears.

• In the column between Logical and Expression 1, you enter an opening parenthesis “(“before
the first criterion in the group that you want to create. In the column to the right of Expression
2, you enter a closing parenthesis “)” after the last criterion in the group.

• In this case, we are creating a group containing the criterion on ADMIT_TERM and the criterion
on COMPLETION_TERM. Parentheses are added are indicated in the screen shot below:

• Click OK to confirm the changes to the grouping. The parentheses are displayed on the Criteria
page.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 17 of 51

• This shows that the two criteria on ADMIT_TERM and COMPLETION_TERM are now to be

evaluated first. If either ADMIT_TERM is equal to 2068 or COMPLETION_TERM is equal to 2062,
the result of the OR operation will be true. If neither of these are true, the result of the OR
operation will be false, which will cause the row to be excluded.

• Running the modified query produces results like the following:

• Observe that all of the rows in the result set have either the admit term of Fall 2006 or the
completion term of Spring 2006, and that no matter which of the two terms match the criteria,
the academic program is ARTSC.

• In general, if you are going to use the OR operator in a query, you will likely need to group
criteria together using parentheses.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 18 of 51

Wildcards

Wildcards are symbols that substitute for other characters in search strings. They act much like “wild”
cards that can be used as if they were any other card in a card game.

The primary use of wildcards in queries is to find rows in which a text field contains a string rather than
equals a string. You may want to find instances in which that text has a particular word or a set of
consecutive characters.

In the Edit Criteria – Part 2 segment, you learned about the “like” condition type, which allows you to
find rows in which a text field is “like” a word or phrase, meaning the field contains that word or phrase.
To use like in this manner, you must employ wildcards. (If you have no wildcards in your constant, then
like is the same as equal!)

There are two wildcards that you can use in queries. The percent sign (%) is used to substitute for zero
or more characters. The underscore (_) is used to substitute for any single character.

The use of wildcards is best demonstrated through examples. Consider the following search strings that
use wildcards and some string that would match them.

Search String Value in Field Match? Reason

abc% abc Yes Starts with “abc” and is followed by zero characters
abcd Yes Starts with “abc” and is followed by one character
abcdefgh Yes Starts with “abc” and is followed by many characters
ab No Does not start with “abc”
abz No Does not start with “abc”
aabc No Does not start with “abc” (even though “abc” is in the value)

%def def Yes Begins with no characters and ends with “def”
cdef Yes Begins with one character and ends with “def”
abcdef Yes Begins with many characters and ends with “def”
ef No Does not end with “def”
ref No Does not end with “ref”
deff No Does not end with “def” (even though “def” is in the value)

%ghi% ghi Yes Begins with no characters, followed by “ghi,” followed by no characters
efghi Yes Begins with several characters, followed by “ghi,” followed by no

characters
ghijk Yes Begins with no characters, followed by “ghi,” followed by no characters
efghijk Yes Begins with several characters, followed by “ghi,” followed by no

characters
efgghiijk Yes Begins with “efg,” followed by “ghi,” ending with “ijk”
efgjk No Does not contain “ghi”
efgpijk No Does not contain “ghi”
gh No Does not contain “ghi”

a_c abc Yes “a” followed by one character followed by “c”
a7c Yes “a” followed by one character followed by “c”
ac No No characters between “a” and “c”

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 19 of 51

Search String Value in Field Match? Reason
abbc No Too many characters between “a” and “c”

Criteria and Case-Sensitive Data

Criteria that involve textual data use case-sensitive comparisons. This means that “hello” and “Hello”
are two distinct values that are not considered to be equal. If your query has a criterion that DESCR is
equal to “Psychology department” but the row for this department has a DESCR of “Psychology
Department” (note the capital D), the row will not be included in the results.

By convention, codes such as those used for statuses and types are fully uppercase, to prevent issues of
case sensitivity from arising and from having codes that are the same except for case. (It would be
confusing to have “AC,” “Ac,” and “ac” all as valid options having different meanings for the same field!)
In queries that use criteria involving codes, make sure to enter the code using all uppercase letters. (If
the field is defined in PeopleSoft as allowing only uppercase letters, then your value will be transformed
to uppercase. However, not every field that has codes is defined in this manner.)

Consider exercise 6B, in which you are obtaining a list of item types that have “Fine” in the description.
The current data is set up such that “Fine” is always capitalized. What if this was not the case? How
might you work around this?

One alternative is to have two criteria, one which checks if DESCR contains “Fine” and one which checks
if DESCR contains “fine.”

Note that because of the other criteria in the query, it is necessary to group the two criteria on DESCR in
parentheses, and use the OR operator instead of the AND operator on those criteria. (We want rows in
which either the description contains “Fine” or the description contains “fine.”)

Another alternative is to use an expression to convert DESCR to a known case – either uppercase or
lowercase – and compare that against a constant in the same case.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 20 of 51

In this example, we check if the uppercase version of DESCR, returned by the expression
UPPER(A.DESCR), contains the text “FINE,” which is also in uppercase. Cases of “Fine” and “fine” will be
matched since the comparison will be against their uppercase equivalent, which is “FINE” for both.

Key Fields

An important aspect of relational database structure is that information about an object is separated
into multiple tables, with each table having data about a certain set of characteristics. For instance, in
PeopleSoft, the PERSON record is the basis of personal information, the NAMES record contains the
names of each person, and the ADDRESSES record has the postal and physical addresses of each person.
The data about one person is spread in PERSON, NAMES, ADDRESSES, and other records.

In order to collect the data about a person, the relevant records must be joined together in a query. The
database management system needs to know how to find the data in one record based on data in
another. This is done through the use of key fields.

Primary Keys

A primary key is a field or set of fields that uniquely identifies an object. No other object can have the
same primary key as another. No two cars have the same vehicle identification number (VIN). No two
dollar bills have the same serial number. In PeopleSoft, no two people can have the same employee ID
number, so the primary key of the PERSON record is EMPLID.

A primary key may contain multiple fields. For instance, the primary key of STATE_TBL is the
combination of COUNTRY and STATE. The state abbreviation or code alone cannot uniquely identify a
state or province; the code “MI” represents the province of Misiones in Argentina, the province of
Milano in Italy, the state of Michigan in the United States, and the state of Miranda in Venezuela.
However, all countries have a unique code, and no country has two states with the same code, so the
country and state codes together can uniquely identify a state. The province of Misiones is identified by
country code ARG and state code MI whereas Michigan is identified by country code USA and state code
MI.

When tables have a parent-child relationship, the primary key of the parent is contained within the
primary key of the child. This enables all children rows of a parent row to be found by joining the tables
on the primary key fields. A query for gathering information from both COUNTRY_TBL and STATE_TBL
would join these two tables on COUNTRY; the COUNTRY field is the primary key of COUNTRY_TBL and is
part of the key of STATE_TBL, the child table of COUNTRY_TBL. When using a hierarchy join in Query
Manager, the parent and child records are automatically joined on the fields their primary keys have in
common.

The primary key is generally the first field or fields in the list of fields of a record. In Query Manager, the
primary key is indicated on the Query tab by a key icon.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 21 of 51

Foreign Keys

A foreign key is a field or set of fields that refer to the primary key of another table. These are typically
used for restricting data in a field to only allowable values and to reduce data duplication. For example,
in the ADDRESSES record, there is both a COUNTRY and a STATE field; these in combination are a foreign
key to STATE_TBL. It will not be possible to enter a country/state combination that does not exist in
STATE_TBL into an address.

In order to get information about a state, such as its full name, one would have to join a record to
STATE_TBL using both COUNTRY and STATE. A related record join in Query Manager automatically joins
the foreign key of one record to the primary key of another record.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 22 of 51

Keep in mind that when you are manually joining two records by adding criteria that you will
likely need to add them for every field in the foreign key. In the exercise in which DEPT_TBL
was joined to PERSON_NAME, you had to add a criterion that requires that MANAGER_ID of

DEPT_TBL was the same as EMPLID of PERSON_NAME; EMPLID is the primary key of
PERSON_NAME.

Keys with Effective Dates

The PeopleSoft database design includes the concept of effective data (see Effective Date, Effective
Sequence, and Effective Status elsewhere in this manual), in which information about an object is
recorded at different points in time, and the history about that object can be retrieved.

When effective data fields are in a record, they are considered to be part of the primary key. This is
because the date (and sequence, if used) helps uniquely identify the information about an object at a
point in time.

Consider the following rows of ACAD_PROG, which contains data about the programs in which a student
is participating and has participated.

EMPLID ACAD_

CAREER

STDNT_

CAR_NBR

EFFDT EFFSEQ INSTITUTION ACAD_PROG PROG_STATUS PROG_ACTION

1379 UGRD 0 1/12/2009 0 BGSUN EDUC AC PLNC

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 23 of 51

EMPLID ACAD_

CAREER

STDNT_

CAR_NBR

EFFDT EFFSEQ INSTITUTION ACAD_PROG PROG_STATUS PROG_ACTION

1379 UGRD 0 1/7/2008 0 BGSUN EDUC AC PRGC

1379 UGRD 0 8/20/2007 0 BGSUN ACEN AC ACTV

Student 1379 entered the Academic Enhancement program on 8/20/2007, then switched to Education
& Human Development on 1/7/2008, then changed a plan within that program on 1/12/2009. All three
of the rows are about the same student’s participation, but represent different states of that
participation by date. The EFFDT and EFFSEQ fields help uniquely identify the state of participation – by
using these fields, one can find out which program a student was in at a given point in time.

The full primary key of ACAD_PROG is the combination of EMPLID, ACAD_CAREER, STDNT_CAR_NBR,
EFFDT, and EFFSEQ.

When joining records that have effective data fields, one must be careful to consider whether or not it is
appropriate to join on EFFDT (and EFFSEQ, if present). If a parent has effective data fields and it is being
joined to a child record, then the join must include EFFDT. For example, the service indicator code
record SRVC_IND_CD_TBL has a key of INSTITUTION, SRVC_IND_CD, and EFFDT. The reasons belonging
to service indicators are in SRVC_IN_RSN_TBL and have a key of INSTITUTION, SRVC_IND_CD, EFFDT,
and SRVC_IND_REASON. To join information on codes and reasons together, one must join on
INSTITUTION, SRVC_IND_CD, and EFFDT, to ensure that the reason data is linked to the proper code.

However, when there is not a parent-child relationship, then EFFDT will not be part of the join. Data
about academic plans is in ACAD_PLAN_TBL and the key is INSTITUTION, ACAD_PLAN, and EFFDT. Data
about subplans is in ACAD_SUBPLN_TBL and the key is INSTITUTION, ACAD_PLAN, ACAD_SUB_PLAN,
and EFFDT. The key of ACAD_PLAN_TBL is not contained in the key of ACAD_SUBPLN_TBL; the effective
date in ACAD_PLAN_TBL is about the plan whereas the effective date in ACAD_SUBPLN_TBL is about the
subplan. To join these two records, use INSTITUTION and ACAD_PLAN alone.

Query Manager automatically takes care of these considerations. When performing a hierarchy join, the
EFFDT (and EFFSEQ, if needed) field used as part of the join. When performing a related record join,
EFFDT will be left out of the join. With a manual join (such as between ACAD_PLAN_TBL and
ACAD_SUBPLN_TBL), Query Manager will not detect EFFDT as a possible field for the join criteria that
can be automatically added.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 24 of 51

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 25 of 51

What is a View?

A “view” is a special kind of query. It is a query that acts like a table in queries. Many views are
delivered with PeopleSoft and developers can add their own. (However, this cannot be done through
Query Manager.) Views are created for many purposes:

• Save a commonly-used subquery so that it does not need to be rewritten in several queries

• Reduce the number of fields returned from a table

• Return only current rows so that effective date logic need not be added to the main query

• Join data from many tables together into one convenient result set that can be used as if it were
a table

In Query Manager, tables and views are both considered records, so you will see no difference in how
they are used. By convention, views in PeopleSoft often have names ending with “VW,” though some
have names just containing “VW.” You may find it beneficial to use views when they are available, as
they can simplify your queries by hiding some details like fields, joins, and effective date logic.

Expressions

Recall from the Query Manager class that expressions are calculations, usually performed on fields from
the records in your query, which produce a result. The result can be text, a date, or a number, and may
be displayed and used in criteria as if it were a real field.

Reference fields in expressions by using their actual name, not their description and preceding the name
with their alias and a period. For example, if you have SAL_GRADE_TBL aliased as “A” and want to use
field MID_RT_ANNUAL in your expression, refer to the field as “A.MID_RT_ANNUAL” (without the
quotes). Reference prompts by using a colon followed by the prompt number, such as “:1” (without the
quotes).

One type of calculation that can be performed is mathematical. You can add, subtract, multiply and
divide numeric values. The mathematical operators are:

• + (addition)

• - (subtraction)

• * (multiplication)

• / (division)

Standard mathematical order of operations (multiplication and division are done before addition and
subtraction; computation goes from left to right) is used. Parentheses can be used to group calculations
together and force them to be done out of this order.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 26 of 51

The only operator that applies to strings is concatenation, which is appending one string to the end of
another string. The concatenation operator is the double pipe, ||. (The pipe character can usually be
entered by holding down the Shift key while pressing the backslash \ key, which is normally above the

Enter key.) For example, if A.STR1 contains ‘ABC’ and A.STR2 contains ‘DEFG’, then A.STR1 || A.STR2
results in ‘ABCDEFG’.

There are not operators that perform calculations on two dates. You can add to or subtract from a date.
The numeric value is translated into a number of days. If A.START_DT is 2/13/2009 then the expression
A.START_DT + 7 results in 2/20/2009. If the numeric value is a decimal amount, then the time will also
be affected. If A.START_DT is 2/13/2009 10:00 AM then the expression A.START_DT + 0.5 results in
2/13/2009 10:00 PM.

Expressions can also contain functions, which take some input values and return an output value.
Functions operate similar to how they do in mathematics. The familiar square root operation can be
considered a function; it takes an input value and returns the value that, when multiplied by itself,
produces the original value. Some common mathematical functions are even written similar to how
functions appear in queries; the sine function in trigonometry is written as sin(x), indicating that it
accepts one value.

Functions in expressions are of the form FUNCTION_NAME(arg1, arg2, …, argN), where
FUNCTION_NAME is the name of the function and arg1, arg2, etc. are its arguments, which are the input
values. When using a function in an expression, the name must be spelled exactly as expected, the
argument list must be enclosed in parentheses, all arguments must be separated by commas, and all
required arguments must be given. (There are sometimes optional arguments. In documentation these
are frequently indicated by enclosing the argument in [square brackets].)

*** Note on functions: the functions listed below are for use in Oracle databases version 10 and higher;
BGSU is currently using Oracle 10g. Other databases, such as DB/2, Informix, and Sybase, may support
different functions.

String Functions

Here are some functions that can be used on strings:

CONCAT(str1, str2)

The CONCAT function concatenates str1 and str2, returning str1 followed immediately by str2.
Equivalent to str1 || str2.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 27 of 51

LENGTH(str1)

LENGTH returns the length of str1 in number of characters. For example, LENGTH(‘ABC DEF’) returns 7
(the space is included).

LOWER(str1)

LOWER returns a copy of str1 with all uppercase letters changed to lowercase.

SUBSTR(str1, start[, how_many])

SUBSTR returns the substring – a part of a string – of str1, starting at position start. If how_many is not
provided, all characters from start through the end of the string are returned. If how_many is provided,
the substring beginning at position start and having a length of how_many are returned.

Examples:

• SUBSTR('ABCDEFG', 1, 3) returns 'ABC'

• SUBSTR('ABCDEFG', 3, 4) returns 'CDEF'

• SUBSTR('ABCDEFG', 4) returns 'DEFG'

UPPER(str1)

UPPER returns a copy of str1 with all lowercase letters changed to uppercase.

Numeric Functions

Here are some functions that can be used on numeric values:

ABS(n)

ABS returns the absolute value of n. If n is positive or zero, the result is n. If n is negative, the result is n
without the negative sign. For example, ABS(-5) returns 5.

CEIL(n)

CEIL returns the ceiling of n, which is the smallest integer equal to or greater than n. For example,
CEIL(5.2) is 6, since 5 is not equal to or greater than 5.2, but 6 is greater than 5.2. Note that
CEIL(-4.4) is -4. CEIL is equivalent to rounding up.

FLOOR(n)

FLOOR returns the floor of n, which is the largest integer equal to or less than n. For example,
FLOOR(8.7) is 8, since 9 is not equal to or less than 8.7, but 8 is less than 8.7. Note that

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 28 of 51

FLOOR(-3.2) is -4. FLOOR is equivalent to rounding down.

ROUND(n[, dec])

ROUND returns n rounded to dec decimal places, or to the nearest integer if dec is not provided. If dec
is negative, the value is rounded to dec powers of 10 (-1 to the nearest 10, -2 to the nearest 100, etc.).

Examples:

• ROUND(12.3) returns 12

• ROUND(12.8) returns 13

• ROUND(-12.3) returns -12

• ROUND(-12.8) returns -13

• ROUND(12345.6789, 2) returns 12345.68

• ROUND(12345.6789, 1) returns 12345.7

• ROUND(12345.6789, 0) returns 12346

• ROUND(12345.6789, -1) returns 12350

• ROUND(12345.6789, -2) returns 12300

SQRT(n)

SQRT returns the square root of n. The square root is the number, which multiplied by itself, results in
n.

TRUNC(n[, dec])

TRUNC returns n truncated to dec decimal places. If dec is zero or not provided, all digits after the
decimal are dropped. If dec is negative, ABS(dec) digits to the left of the decimal are replaced by zero,
and all digits after the decimal are dropped.

Examples:

• TRUNC(12.3) returns 12

• TRUNC(12.8) returns 12

• TRUNC(-12.3) returns -12

• TRUNC(-12.8) returns -12

• TRUNC(12345.6789, 2) returns 12345.67

• TRUNC(12345.6789, 1) returns 12345.6

• TRUNC(12345.6789, 0) returns 12345

• TRUNC(12345.6789, -1) returns 12340

• TRUNC(12345.6789, -2) returns 12300

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 29 of 51

Date Functions

Here are some functions that can be used on dates:

ADD_MONTHS(dt, m)

ADD_MONTHS returns the date that is m months in the future of dt.

SYSDATE

SYSDATE returns the current system date and time. Note that it does not take any arguments.

Conversion Functions

Here are some functions that can be used to convert values from one type (date, number, string) to
another:

TO_CHAR(dt[, fmt])

TO_CHAR converts a date or part of a date into a string. If fmt is not provided, the date is returned in
the default format for the system, usually ‘DD-MON-YY’. (In this format, 2/13/2009 would be ’02-FEB-
09’.)

The fmt argument is a string containing codes that instruct TO_CHAR how to format the date. There are
many different format codes and several can be used at one time. Some of the format codes are:

• AM – the AM/PM indicator

• DD – day of the month

• HH – hour of the day (1-12)

• HH24 – hour of the day (0-23)

• MI – minute of the hour (0-59)

• MM – month (1-12, with 1 = January)

• MON – three-character abbreviation of the month

• SS – second of the minute (0-59)

• YY – two-digit year

• YYYY – four-digit year

Punctuation such as dashes, colons, and slashes are included in the result string in the positions given in
the fmt.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 30 of 51

Assume the current date is March 15, 2009 and the time is 4:25 PM. Here are several examples of how
TO_CHAR would display this date:

• TO_CHAR(SYSDATE, 'MM/DD/YYYY') returns 03/15/2009

• TO_CHAR(SYSDATE, 'DD/MM/YYYY') returns 15/03/2009

• TO_CHAR(SYSDATE, 'YYYYMMDD') returns 20090315

• TO_CHAR(SYSDATE, 'HH:MI') returns 04:25

• TO_CHAR(SYSDATE, 'HH24:MI') returns 16:25

• TO_CHAR(SYSDATE, 'MM/DD/YYYY HH24:MI:SS') returns 03/15/2009 16:25:00

• TO_CHAR(SYSDATE, 'MM') returns 03 (this could be used for grouping in order to aggregate
results by month!)

TO_CHAR(n[, fmt])

TO_CHAR can also convert a number to a string. If fmt is not provided, a default format will be used.
This function is typically used to format numbers with commas, periods, currency symbols, and leading
zeroes.

The fmt argument is a string containing codes that instruct TO_CHAR how to format the number. There
are many different format codes and several can be used at one time. Some of the format codes are:

• $ – display a dollar sign

• 0 – display a leading zero

• 9 – display a digit

• , – display a comma

• . – display a period

• FM – disable leading and trailing spaces

Here are some examples of using TO_CHAR to format a number:

• TO_CHAR('1234567.89') returns 1234567.89

• TO_CHAR('1234567.89', '9,999,999') returns 1,234,568 (note the automatic rounding!); there is
a leading space in front of the number to leave room for a negative sign

• TO_CHAR('123', '099999') returns 000123; there is a leading space in front of the number to
leave room for a negative sign

• TO_CHAR('123', 'FM099999') returns 000123; there is no leading space

• TO_CHAR('12345.60', '$999,999.99') returns $12,345.60; there are two leading spaces, one to
leave room for the sign and one because there is no hundred-thousands digit

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 31 of 51

Condition Functions

These are functions that return different values based on a set of conditions that you specify.

DECODE(x, val1, [val2, result2, …, valN, result] [, default])

DECODE is used to produce a result that is based on the result of x. The x, val1, result1, etc. arguments
can be numbers or strings. Up to 127 comparisons (value/result pairs) are allowed if there is not default
value and up to 136 comparisons are allowed if there is a default.

The value of x is compared against val1, val2, etc. through valN, one at a time. When a match occurs, the
corresponding result argument is returned. If x matches val1, DECODE returns result1, if x matches val2,
DECODE returns result2, and so on. If there is no match, the default argument is returned, provided it is
given; otherwise the special value NULL is returned.

Consider the following examples:

• DECODE(A.COLOR, 'R', 'Red', 'G', 'Green', 'B', 'Blue')
o If A.COLOR is “R” then DECODE returns “Red”
o If A.COLOR is “G” then DECODE returns “Green”
o If A.COLOR is “B” then DECODE returns “Blue”
o If A.COLOR is “Y” then DECODE returns NULL

• DECODE(A.DIRECTION, 0, 'North', 90, 'East', 180, 'South', 270, 'West', 'Unknown')
o If A.DIRECTION is 0 then DECODE returns “North”
o If A.DIRECTION is 90 then DECODE returns “East”
o If A.DIRECTION is 180 then DECODE returns “South”
o If A.DIRECTION is 270 then DECODE returns “West”
o If A.DIRECTION is 360 then DECODE returns “Unknown”

You can also use the DECODE function to substitute a value when a field is blank. For date fields, an
empty value is the special value NULL. To replace NULL values from the field A.DATE_FIELD with a
default of date of 5/22/2009, use DECODE(A.DATE_FIELD, NULL, TO_DATE('05/22/2009',
'MM/DD/YYYY'), A.DATE_FIELD). Note the second A.DATE_FIELD as the last argument; this indicates
that the original value of DATE_FIELD whenever DATE_FIELD is not NULL.

For text fields, an empty value is a single space. To replace a single space from the field A.TEXT_FIELD
with the default string “N/A,” use DECODE(A.TEXT_FIELD, ' ', 'N/A', A.TEXT_FIELD). As with the previous
example, the original value of the field is used when the field is not empty.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 32 of 51

CASE Expression

A CASE expression is a powerful tool for producing one of several possible results based on conditions.
It is more flexible than DECODE, which just maps input values to output values. CASE expressions allow
ranges to be mapped to output values and for multiple input fields to influence the output.

CASE expressions have the following format:

CASE
 WHEN condition1 THEN result1
 [WHEN condition2 THEN result2]
 …
 [ELSE default_result]
END

The CASE and END keywords are required. Each possible case is designated by the WHEN keyword,
followed by a condition, the THEN keyword, and the result. The result must be a value or an expression
that evaluates to a single value. The condition can be simple or complex, with many Boolean operators
(such as AND and OR), as long as it evaluates to a result of true or false.

At least one WHEN clause must be given. All other WHEN clauses and the ELSE clause are optional.
However, it is good practice to provide a default case with the ELSE clause in case unexpected values are
encountered.

The conditions are examined in order from the first WHEN clause to the last WHEN clause. If condition1
is true, then the result of the CASE expression is set to result1. If condition1 is false, then condition2 is
examined (if given); if condition2 is true, then the result of the CASE expression is set to result2. Each
condition is examined until one that is true is encountered. If none of the conditions are true, the result
of the CASE expression is set to default_result if an ELSE clause is provided; otherwise, the expression is
set to NULL.

Consider this example of determining if a state is a Great Lakes state:

CASE
 WHEN A.STATE IN ('OH', 'MI', 'IN', 'IL', 'WI', 'MN', 'NY', 'PA') THEN 'Y'
 ELSE 'N'
END

If the STATE field contains one out of several state codes (OH, MI, etc.) then the CASE expression
evaluates to “Y”. Otherwise, it evaluates to “N”.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 33 of 51

Next, consider a version of this expression that takes into account that the Canadian province of Ontario
is considered part of the Great Lakes region:

CASE
 WHEN A.COUNTRY = 'CAN' AND A.STATE = 'ON' THEN 'Y'
 WHEN A.COUNTRY = 'USA' AND A.STATE IN ('OH', 'MI', 'IN', 'IL', 'WI', 'MN', 'NY', 'PA') THEN 'Y'
 ELSE 'N'
END

Each of the conditions includes an AND operator and examines data in two fields, COUNTRY and STATE.
The conditions can include many conditions combined together.

The above could also be expressed as the following:

CASE
 WHEN
 (A.COUNTRY = 'CAN' AND A.STATE = 'ON') OR
 (A.COUNTRY = 'USA' AND A.STATE IN ('OH', 'MI', 'IN', 'IL', 'WI', 'MN', 'NY', 'PA')) THEN 'Y'
 ELSE 'N'
END

Here is an example with many conditions. This CASE expression translates a temperature in Fahrenheit
into a description.

CASE
 WHEN A.TEMPERATURE < 30 THEN 'Very cold'
 WHEN A.TEMPERATURE BETWEEN 30 AND 44 THEN 'Cold'
 WHEN A.TEMPERATURE BETWEEN 45 AND 59 THEN 'Cool'
 WHEN A.TEMPERATURE BETWEEN 60 AND 69 THEN 'Mild'
 WHEN A.TEMPERATURE BETWEEN 70 AND 79 THEN 'Warm'
 WHEN A.TEMPERATURE BETWEEN 80 AND 89 THEN 'Hot'
 ELSE 'Very hot'
END

Assume that the value in A.TEMPERATURE is 53. The first condition, A.TEMPERATURE < 30, is examined
and found to be false. The second condition, A.TEMPERATURE BETWEEN 30 AND 44, is examined and is
also false. The third condition, A.TEMPERATURE BETWEEN 45 AND 59, is true. The result of the
expression is “Cool”.

If the value of A.TEMPERATURE is above 89, none of the conditions in the WHEN clauses will be true, so
the default value “Very hot” will be the result.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 34 of 51

Note that since the order of the clauses is significant, the following CASE expression is equivalent:

CASE
 WHEN A.TEMPERATURE < 30 THEN 'Very cold'
 WHEN A.TEMPERATURE <= 44 THEN 'Cold'
 WHEN A.TEMPERATURE <= 59 THEN 'Cool'
 WHEN A.TEMPERATURE <= 69 THEN 'Mild'
 WHEN A.TEMPERATURE <= 79 THEN 'Warm'
 WHEN A.TEMPERATURE <= 89 THEN 'Hot'
 ELSE 'Very hot'
END

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 35 of 51

Blank and Unknown Values

In many instances, not every field in a row will have a value. This may occur because a value is not
required and one was not available to be entered or the user chose not to enter one. The special
keyword NULL is used in SQL to designate that a field has no value or an unknown value.

However, in PeopleSoft the convention for blank and unknown values is different. If a field is optional,
then a blank field has a different representation based on its data type: date fields use NULL, numeric
fields use zero, and text fields use a single space. This has the disadvantage of being unable to
distinguish between a truly unknown value and a default value; for instance, if the value of a numeric
field is zero, there is no way to know whether the value is actually zero or if the value is not known.

Outer joins introduce further complexity in dealing with blank fields. When two tables are connected in
a left outer join, if there is no match in the right table for the join fields in the left table, then all fields
selected from the right table are given a value of NULL. This occurs because the join takes place at the
database level, outside of PeopleSoft, whereas indicators of unknown values like a single space and zero
are applied within the PeopleSoft application. This means that the results of the outer join might have
cases of both a NULL and a space in the same field in two different rows; the NULL indicates no
matching row was found while a space indicates a match was found but the field value is unknown or
empty.

Consider a case in which EXT_ORG_TBL is outer-joined to ORG_LOCATION on the ORG_LOCATION field.
The EXT_ORG_ID, EFFDT, DESCR, and ORG_LOCATION fields of EXT_ORG_TBL and the DESCR, ADDRESS1,
and ADDRESS2 fields of ORG_LOCATION are displayed. There is a criterion on EFF_STATUS such that it
must be equal to ‘A’. The results will show all defined external organizations, along with the
organization’s locations; if there are no locations, the base information about the organization is still
shown.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 36 of 51

To demonstrate that a text field that is empty from a matched row has a single space but a text field
from an unmatched row has NULL, an expression is built using DECODE and this expression is used as a
field for display.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 37 of 51

The DECODE statement will substitute “<null>” whenever the ADDRESS2 field is NULL (from an
unmatched row) and “<space>” whenever the ADDRESS2 field is a single space (from an empty field of a
matched row).

The screen shot below is an excerpt from the results of the query.

Note how organization 0020000080 has the value “<null>” in the Address 2 Edit field. This indicates that
no rows were found in ORG_LOCATION meeting the outer join conditions A.EXT_ORG_ID =
B.EXT_ORG_ID and A.ORG_LOCATION = B.ORG_LOCATION.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 38 of 51

Organization 0020000081 has the value “<space>” in the Address 2 Edit field. This indicates that there is
a row in ORG_LOCATION meeting the outer join conditions, but that the ADDRESS2 field has no data.

Organizations 0020000082 and 0020000083 have actual values in the Address 2 Edit field because there
is a matching row in ORG_LOCATION and the ADDRESS2 field is not blank.

The following lists summarize the handling of blank and unknown values in PeopleSoft:

• When you see an empty cell in the results of a query
o If the field is a date or a number, the value is the default NULL assigned in an outer join
o If the field is text, the value is either the default NULL assigned in an outer join or the

single space that represents an empty text value

• To substitute alternate values when a field is empty or NULL, create an expression using a
function such as DECODE; see the Expressions section of the Supplemental Material for
examples.

• To write criteria to find blank/unknown values
o For dates, use the Condition Type “is null.”
o For numbers, use the Condition Type “equal to,” select Constant for Expression 2 Type,

and enter the number 0 in the Constant text box. (There is no way to distinguish a true
zero from a missing value.)

o For text, use the Condition Type “equal to,” select Constant for Expression 2 Type, and
enter nothing in the Constant text box. When you see this criterion in the Criteria page,
it will display Expression 2 as ' '.

• To write criteria to find rows from the left table of an outer join that have no match in the right
table, use any field from the right table and the Condition Type “is null.” Place this criterion on
the WHERE clause, not the ON clause, even though it involves the table being outer-joined. This
is because the criterion is intended to find results in which a field has the NULL value, not rows
in the table being outer -joined in which that field has the NULL value.

• The “is null” Condition Type can also be used to find rows in which the result of a DECODE
function is NULL because none of the values in it were matched; see the DECODE function in the
Expressions section of the Supplemental Material for more information.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 39 of 51

Make sure that you use the special Condition Type “is null” rather than “equal to” the
value NULL. If you do the latter, you are telling the database system you want all rows in
which the field is the word “NULL” rather than the indicator NULL.

Using Dates in Expressions

Special considerations must be taken when using date fields in expressions. Query Manager
automatically converts all values from date fields to text in its processing. For instance, if
A.TERM_BEGIN_DT contains the date August 24, 2009, Query Manager turns this into the string
“08/24/2009”.

This can be confirmed by looking at the SQL generated for the query. Consider a query containing a date
field, such as the following example:

The query made by Query Manager is:

SELECT A.STRM, TO_CHAR(A.TERM_BEGIN_DT,'YYYY-MM-DD')
 FROM PS_TERM_TBL A
 WHERE A.ACAD_CAREER = 'UGRD'

In the SELECT clause, the value in the TERM_BEGIN_DT field is passed to the TO_CHAR function. Note
also that it is converted to a format such that the components appear in the order year, month, and day
(ex. “2009-08-04”). This is then converted again when the query results are displayed.

The consequence of the date being converted to a string is that functions that expect a date value will
not work properly. This is because the query engine will not know how to derive a valid date from the
string. For example, consider a modified version of the above query to which an expression is added;
this expression finds the date four months after the beginning of the term.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 40 of 51

Upon running the revised query, this error is reported: “ORA-01861: literal does not match format string
(50,380)”. This error is shown when a string to be converted or displayed in a certain manner is
incompatible with the instructions of how to convert or display that string; these instructions are the
“format string” referred to in the message.

Viewing the SQL generated for the query can help show why the query fails:

SELECT A.STRM, TO_CHAR(A.TERM_BEGIN_DT,'YYYY-MM-DD'),
 ADD_MONTHS(TO_CHAR(A.TERM_BEGIN_DT,'YYYY-MM-DD'), 4)
 FROM PS_TERM_TBL A
 WHERE A.ACAD_CAREER = 'UGRD'

The TO_CHAR function marked in red converts the date to a string. If A.TERM_BEGIN_DT contains the
date January 11, 2010, TO_CHAR(A.TERM_BEGIN_DT, 'YYYY-MM-DD') produces the string “2010-01-11”.
Next, ADD_MONTHS, marked in blue, attempts to add four months to the first value provided to it.
However, the first parameter is receiving text instead of a date; in this instance, the function call is
effectively ADD_MONTHS('2010-01-11', 4). The string “2010-01-11” cannot be automatically converted
to a date, so this results in an error.

To work around this aspect of Query Manager, the date field that is implicitly converted to a string must
be converted back to a date. This can be done by using the TO_CHAR function to transform the string

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 41 of 51

into a date. (See the Conversion Functions segment elsewhere in this section.) The following table lists
the various types of date fields and the conversion that must be performed to use them in an
expression.

Field Type Convert the Query Manager-converted date to an actual date

Date TO_DATE(date field, 'YYYY-MM-DD')

Datetime TO_DATE (datetime field,'YYYY-MM-DD-HH24.MI.SS. ' || CHR(34) || '000000'
|| CHR(34))

Time TO_DATE(time field, 'HH24:MI:SS.' || CHR(34) || '000000' || CHR(34))

The ADD_MONTHS expression above would have to be the following in order to work properly in Query
Manager: ADD_MONTHS(TO_DATE(A.TERM_BEGIN_DT, 'YYYY-MM-DD'), 4). This will be converted by
Query Manager to ADD_MONTHS(TO_DATE(TO_CHAR(A.TERM_BEGIN_DT,'YYYY-MM-DD'), 'YYYY-MM-
DD'), 4) when the SQL is built; the string produced by TO_CHAR will be converted to a date by TO_DATE
before being given to ADD_MONTHS, satisfying the requirement that ADD_MONTHS receives a date.

Note that the TO_DATE function will produce actual date values and the expressions that use them will
not be reformatted by Query Manager. Instead, they will be displayed in Oracle’s native format, which
is a two-digit year, a three-letter month abbreviation, and a two-digit day, separated by dashes (ex. “24-
AUG-09”). To display such a date in the same format Query Manager normally uses, the result of the
expression must be converted into a string. The following table shows how TO_CHAR can be used to
convert the whole expression to a string that matches Query Manager’s display format.

Field Type Convert date expression to string having

Query Manager display format

Minimum Length

Date TO_CHAR(expression, 'MM/DD/YYYY') 10

Datetime TO_CHAR(expression, 'MM/DD/YYYY fmHH12fm:MI:SSAM')

Note: this format does not exactly match that of Query Manager; the hour is not
preceded by an extra space if the hour is less than 10. If the “fm” format
modifiers are removed, the format will have the correct length, but the hour will
be zero-padded, so the format will still not match exactly. The format model
used above is as close to the Query Manager display format as possible without
resorting to extremely elaborate conversions.

21

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 42 of 51

Field Type Convert date expression to string having

Query Manager display format

Minimum Length

Time TO_CHAR(expression, 'fmHH12fm:MI:SS.' || CHR(34) || '000000'
|| CHR(34) || 'AM')

17

In summary, when using dates in expressions:

1. Query Manager automatically converts the date to a string. Convert it back to a date using the
TO_DATE function.

2. Perform other desired operations on the date, such as date arithmetic and using functions such
as ADD_MONTHS.

3. If the expression will be used as a field, pass the whole expression as the first argument to
TO_CHAR and the desired format model as the second argument. To match the default Query
Manager display format, consult the above table.

4. If the expression will be used as a field and in criteria, make two expressions, one that just
converts the string to a date, and one that converts the string to a date then back to a string of
the desired format.

This repeated conversion between dates and strings is only needed to work around
the automatic conversion of date fields to strings in Query Manager. This is not
required when running a SQL statement directly.

What Else is There?

There are many more functions and formats beyond those listed here. The Oracle Database SQL
Reference (http://www.oracle.com/pls/db10g/portal.portal_demo3?selected=1) is comprehensive, but
may be difficult to read for the non-technical user. If you plan to frequently use functions in your
queries, you may want to find a book on the Oracle dialect of SQL. There are plenty of Oracle SQL
books, both hardcopy and electronic, available at the BGSU Jerome Library and through OhioLINK.

http://www.oracle.com/pls/db10g/portal.portal_demo3?selected=1�

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 43 of 51

Structured Query Language (SQL)

The standard language for writing queries to retrieve and manipulate the data in a relational database is
the Structured Query Language, abbreviated SQL. When you use Query Manager to construct a query, a
SQL statement is built automatically, and it is this statement that the database management system
executes to return data to you.

While it is not necessary to be able to read or write SQL statements to use Query Manager, a basic
understanding of SQL can help with troubleshooting queries by revealing the details that Query
Manager hides.

Basic Query

A basic query in SQL has the following form:

SELECT <display field/expression list>
 FROM <table/record list>
 WHERE <criteria>
 ORDER BY <sort field/expression list>

The keywords in all capital letters indicate the general structure of a query. You select the data that you
want to retrieve from one or more tables where certain conditions are met and order the results by
particular fields.

Consider the following example query that retrieves the codes and descriptions of all countries and
states in which the country is a member of the European Union and sorts the results by country name
and state name.

SELECT A.COUNTRY, A.DESCR, B.STATE, B.DESCR
 FROM PS_COUNTRY_TBL A, PS_STATE_TBL B
 WHERE A.COUNTRY = B.COUNTRY
 AND A.EU_MEMBER_STATE = 'Y'
 ORDER BY A.DESCR, B.DESCR

The FROM clause lists the tables (corresponding to records in PeopleSoft terminology) from which the
data is being retrieved. The two tables in this case are PS_COUNTRY_TBL and PS_STATE_TBL. These
have been given aliases of A and B, respectively. The tables are referred to by alias throughout the rest
of the query. Note that all tables in the FROM clause are joined together, with the join conditions given
in the WHERE clause. The joins are inner joins unless otherwise specified; this is explained below.

 Most tables in PeopleSoft have the same name as the corresponding record, but the name is
preceded by “PS_.” Thus, the table corresponding to ADDRESSES is PS_ADDRESSES. Tables

that contain internal PeopleSoft information do not necessarily follow this convention.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 44 of 51

Aliases do not have to be single letters (A, B, C, etc.). They can be abbreviations. Query
Manager uses single letters; you are therefore limited to a maximum of 26 records in a
query.

The list of fields being displayed is given as a series of field names, separated by commas, in the SELECT
clause. The field names are fully qualified because they are preceded by a table alias (A or B) and a
period. For instance, B.STATE indicates that STATE should be taken from table PS_STATE_TBL, which has
the alias B. Using fully qualified names is not required except when a field being referenced exists in
multiple tables used within the query, in which case it is needed to distinguish between such fields. In
the query above, a reference to COUNTRY must be fully qualified so that the database system knows
whether to take it from PS_COUNTRY_TBL (A.COUNTRY) or PS_STATE_TBL (B.COUNTRY).

The WHERE clause contains the criteria used to limit results in the query. In this example there are two
criteria. The first, A.COUNTRY = B.COUNTRY, is the join criterion between PS_COUNTRY_TBL and
PS_STATE_TBL on the COUNTRY field. The second, A.EU_MEMBER_STATE = 'Y,' is what restricts the
results to those countries that are members of the European Union.

The ORDER BY clause designates how the results are sorted. The first field given is the primary sort field;
the second field given is the secondary sort field, and so on. To have the rows sorted by a field in
descending order, follow the field name with the DESC keyword. In the example, an ORDER BY clause of
A.DESCR, B.DESCR directs the database server to return the results in order by first by country name,
then by state name within each country.

You can use numbers instead of fields and expressions in the ORDER BY clause. Each number
corresponds to the position of a field or expression in the SELECT clause, with 1 representing the
first field or expression. This is not recommended for manually-written SQL since if you change

the order of items in the SELECT clause; you will have to change the position numbers as well. In the
given example, the ORDER BY clause could be rewritten as ORDER BY 2, 4. Note that the queries
generated by Query Manager use position numbers.

Whitespace is ignored; tabs, spaces, and carriage returns are legal except in the middle of
field names and keywords (except for multi-word keywords such as ORDER BY). When using
a fully-qualified name, there cannot be a space between the alias and the period or the

period and the field name. “A.DESCR” is allowed but “A . DESCR” is not. However,
“A.COUNTRY=B.COUNTRY” and “A.COUNTRY = B.COUNTRY” are the same.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 45 of 51

Outer Joins

The previous example involves two tables connected using an inner join. The syntax for an outer join is
a little more complex, involving giving the join conditions within the FROM clause. The following
example obtains a list of departments and the names of their managers; when a manager is not known,
the department is still listed. (This is the SQL equivalent of exercise TRNG_QM##_E14B.)

SELECT A.DEPTID, A.DESCR, A.MANAGER_ID, B.NAME
 FROM (PS_DEPT_TBL A LEFT OUTER JOIN PS_PERSON_NAME B ON A.MANAGER_ID = B.EMPLID)
 WHERE A.EFFDT = (SELECT MAX(A_ED.EFFDT)
 FROM PS_DEPT_TBL A_ED
 WHERE A.SETID = A_ED.SETID
 AND A.DEPTID = A_ED.DEPTID
 AND A_ED.EFFDT <= SYSDATE)
 AND A.SETID = 'BGSUN'
 AND A.EFF_STATUS = 'A'

In the FROM clause, the description of the outer join is enclosed in parentheses. The LEFT OUTER JOIN
keyword indicates that an outer join will be used to combine data from the two tables. The ON clause
designates the criteria that are used to perform the outer join; this is built by Query Manager when “this
criteria belongs to” is set to “ON clause of outer join B.”

There is alternate outer join syntax for various database systems. For instance, with Oracle 10g, the
table names can be a regular list in the FROM clause, and the criteria that would normally be in the ON
clause would have the symbol “(+)” following them. The following Oracle-specific query is equivalent to
the above example:

SELECT A.DEPTID, A.DESCR, A.MANAGER_ID, B.NAME
 FROM PS_DEPT_TBL A, PS_PERSON_NAME B
 WHERE A.MANAGER_ID = B.EMPLID(+)
 AND A.EFFDT = (SELECT MAX(A_ED.EFFDT)
 FROM PS_DEPT_TBL A_ED
 WHERE A.SETID = A_ED.SETID
 AND A.DEPTID = A_ED.DEPTID
 AND A_ED.EFFDT <= SYSDATE)
 AND A.SETID = 'BGSUN'
 AND A.EFF_STATUS = 'A'

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 46 of 51

Aggregate Query

A query that involves aggregate functions has a couple of additional clauses:

SELECT <display field/expression list>
 FROM <table/record list>
 WHERE <criteria>
 GROUP BY <grouping field/expression list>
 HAVING <having criteria>
 ORDER BY <sort field/expression list>

Consider the following example in which the query gets a count of active plans per program, ordered by
program code, showing only those programs for which there are more than 50 plans.

SELECT A.ACAD_PROG, COUNT(*)
 FROM PS_ACAD_PLAN_TBL A
 WHERE A.EFFDT = (SELECT MAX(A_ED.EFFDT)
 FROM PS_ACAD_PLAN_TBL A_ED
 WHERE A.INSTITUTION = A_ED.INSTITUTION
 AND A.ACAD_PLAN = A_ED.ACAD_PLAN
 AND A_ED.EFFDT <= SYSDATE)
 AND A.EFF_STATUS = 'A'
GROUP BY A.ACAD_PROG
HAVING COUNT(*) > 50
 ORDER BY A.ACAD_PROG

The GROUP BY clause lists the fields that are used to group rows together for the aggregate function to
work upon. In the above example, the GROUP BY clause has the field A.ACAD_PROG, so the counts are
of rows having the same academic program code.

If the results will be limited based on the result of the aggregate function, there must be a HAVING
clause. In this clause, there are criteria that use the aggregate function to restrict the groups that are
shown. The above example has one criterion in its HAVING clause – COUNT(*) > 50 – which instructs the
database server to only return groups having a count of rows greater than 50. The results will therefore
be limited to programs that have more than 50 plans.

The asterisk * is a shortcut representing all fields. When used in the SELECT clause, it represents
all fields from all tables in the query if it is not preceded by an alias (SELECT *) or all fields from

one table if it is preceded by an alias (A.*). When used in the COUNT(*) function, in represents all fields
in the GROUP BY clause.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 47 of 51

Query Manager and SQL

The tabs in Query Manager correspond roughly to the clauses of a query in SQL as follows:

• Records – no equivalent, since this is where tables are searched for and added or joined

• Query – the FROM clause

• Expressions – no equivalent; can appear where fields and values are allowed

• Prompts – no equivalent; can appear where fields and values are allowed

• Fields
o The SELECT clause since each field listed in this tab is displayed in the results
o The ORDER BY clause if the sort order is changed using the Edit Field Ordering page

(Reorder/Sort button)
o The GROUP BY clause since if there is a field with an aggregate function, those fields not

being aggregated comprise the groupings

• Criteria
o The WHERE clause of the main query
o The FROM clause when “this criteria belongs to” is set to “ON clause of outer join X,”

where X is the alias of the record on the right side of the join

• Having – the HAVING clause

• View SQL – no equivalent, but shows the SQL generated to execute the query

• Run – no equivalent, since it shows the results of the query

Note that the SQL that Query Manager generates may not exactly match the SQL that you or someone
else writes. There are multiple ways to express the same query in SQL, just as there are multiple ways to
express the same concept or instructions in human languages. This does not mean that your query is
incorrect or that the query from Query Manager is incorrect; they may be equivalent.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 48 of 51

Troubleshooting

Suggestions of what to check when a query produces incorrect results and/or errors:

• If the query produces many more rows than are expected
o Are there any criteria missing?

 Were you asked to limit the results to a particular term but there is no criteria
on STRM?

 Should you be showing only “active” rows, such as those with EFF_STATUS = 'A',
PROG_STATUS = 'AC’, etc.?

 Are there criteria on the appropriate key fields, such as INSTITUTION = BGSUN’,

SETID = 'BGSUN' or 'BGHCM', ACAD_CAREER = 'UGRD' or 'GRAD', etc.?
o Are the joins between records correct?

 If a join is missing, each row from the first table is combined with each row from
the second table.

 If you added the join yourself by creating criteria, did you join on all appropriate
key fields? For example, if you are querying on SRVC_IND_DATA and join to
SRVC_IND_RSN_TBL to get the description of the reason code, did you join on
INSTITUTION and SRVC_IND_CD as well as SRVC_IND_REASON?

 Did you use a left outer join instead of a standard join? Left outer joins are used
only when you need rows from the first table to be shown regardless of
whether there is a match in the second table. If a match is required, use a
standard join.

• If the query produces many fewer rows than are expected
o Did you create a criterion on the wrong field? For example, to find a class by course ID,

did you put a criterion on CATALOG_NBR instead of CRSE_ID?
o Did you compare against the wrong value? For instance, if you want active programs,

did you check for PROG_STATUS = 'AC' or PROG_STATUS = 'ACTV'? (In this case, the

former is correct; 'ACTV' is a valid value for PROG_ACTION.)
o Did you manually join two records on the wrong fields? The values in each field are not

like each other, so there is unlikely to be a match, and if there is one, it will be by
coincidence. For instance, the field ACAD_PLAN should not be joined to the field
ACAD_PROG since they represent different things. (Hint: fields that can be joined will
likely have identical or similar names.)

o Is it impossible to meet the conditions? If you wrote a query to find cases where

PROG_STATUS is either 'AC' or 'LA', did you use PROG_STATUS = 'AC' AND PROG_STATUS

= 'LA' or PROG_STATUS = 'AC' OR PROG_STATUS = 'LA'? Since it is not possible for a field

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 49 of 51

to have two values that the same time, a query with X = <value1> AND X = <value2> will
always return no rows.

• Problems with expressions

o “Invalid identifier” error
 Field names referenced in an expression must be spelled correctly

(SRVC_IND_RSN is incorrect; SRVC_IND_REASON is correct)
 Function names must also be spelled correctly (TRUNCATE is incorrect; TRUNC is

correct)
 Strings (literal text included in the expression) must be enclosed in single quotes

o Value displayed has too few characters or digits
 Check the Length property of the expression.

• Character: If Length is 10 but the result of the expression is 20
characters long, only the first 10 characters are shown.

• Number: Values are shortened by trimming digits off the end of the
integer portion of the number (1234567.890 when displayed with a
Length property of 5 is shown as 12345).

o Missing parentheses
 Each opening parenthesis (must have a corresponding closing parenthesis)
 Errors can vary depending on how the query engine interprets the generated

SQL
o Functions

 Did you include all required arguments? For example, SUBSTR takes two or

three arguments, and the first two are required. Using SUBSTR('ABC') results in
a “not enough arguments for function” error.

 Did you include too many arguments? For example, LOWER takes only one

argument. Using LOWER('ABC', 5) results in a “too many arguments for
function” error.

 Did you use the right types of arguments? MONTHS_BETWEEN takes two date
arguments results in an “inconsistent datatypes” error. If a date is expected, a
date must be given, if a number is expected, a number (or string that can be
converted to a number) must be given, etc.

 Did you use the correct function? CEIL, FLOOR, ROUND, and TRUNC all round
numbers, but only ROUND and TRUNC can round to multiples other than 1, and
all four round slightly differently (CEIL rounds up, FLOOR rounds down, ROUND
follows regular rounding rules, and TRUNC drops the digits after the decimal
point).

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 50 of 51

• Problems with unions
o Each query that is part of a union must have the same number of fields. If there is a

difference, this error is displayed: “A UNION requires the same number of fields for each
SELECT. Correct and retry.”

• Problems with prompts
o A prompt that uses a prompt table may show no values when using the lookup feature.

If the prompt table has a key with more than one field, there must be prompts for all
fields before that field in the field order. For instance, if there is a prompt for Program
(ACAD_PROG) using ACAD_PROG_TBL as a prompt table, since the key of
ACAD_PROG_TBL is INSTITUTION + ACAD_PROG + EFFDT, there must also be a prompt
for INSTITUTION. In addition, the prompts must be specified in the order of the fields of
the key; in the example, the prompt on INSTITUTION must come before the prompt on
ACAD_PROG.

• Problems with aggregates
o You cannot use fields that are being aggregated as regular criteria. If you apply the

Count aggregate function to STRM, you cannot also add the criterion STRM = '2095'.
When you aggregate, you are no longer dealing with individual rows, but groups. (You
can still add criteria on the fields that are not being aggregated. In the example on
STRM, perhaps you could aggregate on ACAD_CAREER or ACAD_PROG.)

o Remember that once you add an aggregate to a displayed field, the aggregation is done
on groups defined by the other fields. For example, if you want to count how many
students there are per program, don’t include EMPLID in the fields being displayed, or
else the count will be per combination of program and EMPLID.

o If you put an aggregate function into an expression, you must check the Aggregate
Function checkbox, or you will receive the error “not a single-group group function.”
This is indicating that you are trying to use an aggregate function on results that are not
being aggregated.

• Unable to find a query
o Make sure you are on the Query Manager search page (titled “Query Manager”) rather

than the Records tab (titled “Find an Existing Record”). Since both have search
capabilities, one can mistake one of these search pages for the other page.

o If you tried searching for the full name of the query, you may have misspelled the name
either when searching for it or saving it. Try entering less of the name. For instance,
search for “TRNG_QM##” or even “TRNG” instead of “TRNG_QM##_Q15.” You may get
several extraneous results but have a better chance of getting the one that you need.

 BGSU PeopleSoft Query Course
 Query Manager

Supplemental Material

Page 51 of 51

• Learn SQL!
o The query is not checked for errors before it reaches the database. The error messages

reported by Query Manager are native to the database and refer to the generated SQL.
To debug the query, it is sometimes easiest to look at the generated SQL. This will show
which records are included, how they are joined (even if you didn’t create the join
conditions yourself); subqueries, effective date logic, and so on, as a legal SQL query. It
can also show a little more clearly which criteria are for which part of the query in the
case of large queries.

