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Abstract. This paper studies the so-called bi-quadratic optimization over unit spheres

min
x∈Rn,y∈Rm

∑
1≤i,k≤n, 1≤j,l≤m

bijklxiyjxkyl

subject to ‖x‖ = 1, ‖y‖ = 1.

We show that this problem is NP-hard and there is no polynomial time algorithm returning a

positive relative approximation bound. After that, we present various approximation methods

based on semidefinite programming (SDP) relaxations. Our theoretical results are: For general

bi-quadratic forms, we develop a 1
2max{m,n}2 -approximation algorithm; for bi-quadratic forms that

are square-free, we get a relative approximation bound 1
nm

; when min{n, m} is a constant, we

present two polynomial time approximation schemes (PTASs) which are based on sum of squares

(SOS) relaxation hierarchy and grid sampling of the standard simplex. For practical computational

purposes, we propose the first order SOS relaxation, a convex quadratic SDP relaxation and a simple

minimum eigenvalue method, and give their quality analyses. Some illustrative numerical examples

are also given.

Key Words. Bi-quadratic optimization, semidefinite programming, approximate solution, sum of

squares, polynomial time approximation scheme

1 Introduction

Consider the bi-quadratic polynomial optimization of the form

min
x∈Rn,y∈Rm

b(x, y) =
∑

1≤i,k≤n, 1≤j,l≤m

bijklxiyjxkyl

subject to ‖x‖ = 1, ‖y‖ = 1,
(1.1)

∗School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou, 310018, China. E-
mail: linghz@hzcnc.com. Current address: Department of Applied Mathematics, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong. His work was supported by the Zhejiang Provincial National Science Foundation of
China (Y606168) and a Hong Kong Polytechnic University Postdoctoral Fellowship.

†Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
E-mail: njw@math.ucsd.edu.

‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
E-mail: maqilq@polyu.edu.hk. His work is supported by the Hong Kong Research Grant Council.

§Department of Management Science and Engineering, and by courtesy, Electrical Engineering, Stanford University,
Stanford, CA94305, USA. E-mail: yinyu-ye@stanford.edu.

1



where ‖ · ‖ denotes the standard 2-norm in Euclidean spaces Rn and Rm. Without
loss of generality, we can assume the coefficients bijkl satisfy the symmetric property:
bijkl = bkjil = bilkj for i, k = 1, · · · , n and j, l = 1, · · · ,m. Denote A := (bijkl). Then A
is a fourth order partially symmetric tensor.

Throughout this paper, Rn denotes the space of real n-dimensional column vectors,
Sn denotes the space of real symmetric n×n matrices, and T denotes transpose. Sn,m =
{(x, y) ∈ Rn × Rm : ‖x‖ = ‖y‖ = 1} denotes the unit bi-sphere. For x ∈ Rn, xj denotes
the j-th component of x. For any matrix A and fourth order tensor A, ‖A‖F and ‖A‖F

denote the Frobenius norms of A and A respectively, i.e.,

‖A‖F =
(
Tr(AT A)

)1/2
, ‖A‖F =

( ∑

1≤i,k≤n,1≤j,l≤m

b2
ijkl

)1/2

,

where Tr(·) denotes the trace of a matrix. For A ∈ Sn, A º 0 (resp. A Â 0) means
that A is positive semidefinite (resp. positive definite). Sn

+ denotes the cone of positive
semidefinite matrices in Sn. I stands for the identity matrix in an appropriate dimension.

Problem (1.1) arises from the strong ellipticity condition problem in solid mechanics
(for n = m = 3) [18, 19, 32, 34, 39] and the entanglement problem in quantum physics.
The entanglement problem is to determine whether a quantum state is separable or
inseparable (entangled), or to check whether an mn × mn symmetric matrix A º 0
can be decomposed as a convex combination of tensor products of n and m dimensional
vectors [6]. It has fundamental importance in quantum science and has attracted much
attention since the pioneer work of Einstein, Podolsky and Rosen [10] and Schrödinger
[33]. The entanglement problem was proved to be NP-hard by Gurvits [15].

Bi-quadratic optimization (1.1) also has another application. Suppose that (x∗, y∗)
is a global minimizer and pmin is the minimum objective value of (1.1). Let pmax be
the maximum objective value of (1.1) under the same sphere constraints and (x̄, ȳ) be a
global maximizer. If |pmin| ≥ |pmax|, then pmin ·

(
x∗(y∗)T

)⊗(
x∗(y∗)T

)
is the best rank-one

approximation to the tensor A. If |pmax| > |pmin|, then pmax ·
(
x̄ȳT

)⊗ (
x̄ȳT

)
is the best

rank-one approximation to A; see [30] for details. The best rank-one approximation
problem has wide applications in signal and image processing, wireless communication
systems, data analysis, higher-order statistics, as well as independent component analysis
[3, 5, 7, 8, 14, 20, 27, 40].

If we fix x ∈ Rn in (1.1), then we have a quadratic optimization problem

min
y∈Rm

yT B(x)y subject to ‖y‖ = 1, (1.2)

where B(x) =
(∑n

i,k=1 bijklxixk

)
1≤j,l≤m

is an m×m symmetric matrix. Similarly, if we

fix y ∈ Rm, then we have a quadratic optimization problem

min
x∈Rn

xT C(y)x subject to ‖x‖ = 1, (1.3)

2



where C(y) =
(∑m

j,l=1 bijklyjyl

)
1≤i,k≤n

is an n × n symmetric matrix. Since problem

(1.1) is so closely related to quadratic optimization, we call it a bi-quadratic optimization
problem, or a bi-quadratic program. By using the symbol A, B(x) and C(y) can also be
written as AxxT and yyTA, respectively. So, it is clear that

b(x, y) = (AxxT ) • (yyT ) = (yyTA) • (xxT ),

where X • Y stands for usual matrix inner product, i.e., X • Y = Tr(XT Y ).

Contributions In Section 2, we show the problem (1.1) is NP-hard. Thus, it is not
expected to find a polynomial time algorithm to solve (1.1) for general bi-quadratic form
b(x, y). Actually, we have proved a stronger result: there does not exist any polynomial
time approximation algorithm that returns an upper bound having the same sign as the
optimal value, unless P=NP.

In Section 3, we propose various approximation methods to solve (1.1) using semidef-
inite programming (SDP) and analyze their approximation qualities. For general bi-
quadratic forms b(x, y), we give a 1

2max{m,n}2 -approximation algorithm. For b(x, y) that

is square-free (contains no quartic term with x2
i or y2

j for any i and j), we given an

SDP relaxation with relative approximation bound 1
nm

. In case that min{n,m} is a
constant, we give two polynomial time approximation schemes (PTASs); one is based on
sum of squares (SOS) relaxation hierarchy, and the other is based on grid sampling of
the standard simplex originally used by Bomze and de Klerk [1].

In Section 4, for practical computational purposes, we propose the first order SOS
relaxation, a convex quadratic SDP relaxation, a simple minimum eigenvalue relaxation
method; and give the quality analyses of the three methods with certain rounding pro-
cedures.

Some illustrative numerical examples are given in Section 5. We conclude and list a
few open problems in the final section.

2 Complexity analysis: hardness results

Since b(x, y) is a continuous function and the feasible set of (1.1) is compact, the problem
(1.1) has a global minimizer (x∗, y∗). When either x or y is fixed, the problem is then
reduced to an eigenvalue problem and hence can be solved in polynomial time. However,
when x and y are both variables, (1.1) is a non-convex optimization problem, since its
objective is bi-quadratic and nonconvex. How difficult is to solve (1.1) globally? In
this section, we show that the problem (1.1) is NP-hard to solve. We can even prove a
stronger result: there does not exist any polynomial time approximation algorithm that
returns an upper bound having the same sign as the optimal value, unless P=NP.

We first define a quality measure of approximation ratio:

Definition 2.1. Let A be a polynomial time (in n and m) approximation algorithm
to solve (1.1). For an instance of (1.1), we say A has a relative approximation bound
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C = C(A, b) ∈ (0, 1] for it, if the algorithm A can find an upper bound p for (1.1) such
that {

C · p ≤ pmin ≤ p, if pmin ≥ 0,
pmin ≤ p ≤ C · pmin, if pmin < 0,

(2.1)

where pmin is the optimal value of (1.1).

In this definition, the closer C to 1, the better the approximation algorithm will be.

2.1 Hardness of bi-quadratic optimization

Our main result in this section is the following:

Theorem 2.2. (i) The following problem is NP-hard: Given any bi-quadratic objective
function b(x, y) of (1.1), find the minimum value pmin of b(x, y) over the bi-sphere Sn,m.
(ii) Unless P=NP, there does not exist a polynomial time approximation algorithm A for
(1.1) to get a positive relative approximation bound for every instance of (1.1).

Proof. (i) We show the NP-hardness when the bi-quadratic forms are restricted to
be square-free and that n = m. To see this point, let G = (V,E) be a graph with V being
the set of n vertices and E being its edge set. Then define a square-free bi-quadratic
form associated with G as

bG(x, y) := −2
∑

(i,j)∈E

xixjyiyj.

Let ∆n = {x ∈ Rn
+ : x1 + · · ·+ xn = 1} be the standard simplex. Then we have that

min
(x,y)∈Sn,m

bG(x, y) = − max
‖x‖=1

∑

(i,j)∈E

2x2
i x

2
j = −max

x∈∆n

∑

(i,j)∈E

2xixj = −1 +
1

α(G)
,

due to a theorem of Motzkin and Straus [24]. Here, α(G) is the stability number of
the graph G, i.e., the cardinality of the maximum independent set of G. Therefore, to
compute the minimum of bG(x, y) over the bi-sphere is NP-hard, since it is known to be
NP-hard to compute α(G).

(ii) We prove this is impossible when n = m. Given any integer vector a, define
bi-quadratic form

ba(x, y) = (aT x)2(aT y)2 +

(
1− 1

n

)
‖x‖2 · ‖y‖2 − 2

∑
1≤i<j≤n

xixjyiyj. (2.2)

In the rest of the proof, we restrict (x, y) to be in Sn,m. Then we have

2
∑

1≤i<j≤n

xixjyiyj ≤
∑

1≤i<j≤n

x2
i x

2
j +

∑
1≤i<j≤n

y2
i y

2
j ≤ 1− 1

2

(
n∑

i=1

x4
i +

n∑
i=1

y4
i

)
≤ 1− 1

n
.
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In the above, all the inequalities become equalities if and only if x = ±y has the form
1√
n
(±1, · · · ,±1). Obviously,

(aT x)2(aT y)2 ≥ 0

and the inequality becomes an equality if and only if at least one of aT x and aT y is equal
to zero. So we can see that pmin ≥ 0 and the equality holds if and only if the integer
vector a can be partitioned into two parts of equal sum, which is known to be NP-hard.

Now we prove (ii) by contradiction. Assume such an algorithm A exists. Then for
every integer vector a, we apply the algorithm A to the bi-quadratic form ba(x, y) defined
in (2.2) and would get a bound p and 0 < C = C(A, a) ≤ 1 such that

C · p ≤ pmin ≤ p.

Then we can see pmin = 0 if and only if p = 0. This implies we can decide whether an
arbitrary integer vector would be partitioned into two parts of equal sums in polynomial
time, which is impossible unless P=NP. ¤

The proof of item (i) of Theorem 2.2 indicates a stronger result: the problem (1.1)
remains to be NP-hard when the bi-quadratic forms are restricted to be square-free and
n = m. The item (ii) of Theorem 2.2 says that there exists no problem-data dependent or
independent positive relative approximation quality bound (the relation (2.1)) for (1.1).
However, there is a problem-data independent positive relative approximation quality
bound when the bi-quadratic forms are restricted to be square-free. This will be shown
in Theorem 3.3.

2.2 Hardness of bi-linear SDP relaxation

Now we propose a natural bi-linear SDP relaxation for (1.1) and discuss its quality. It
is easy to see that problem (1.1) can be written as

pmin := min
x∈Rn,y∈Rm

(AxxT ) • (yyT )

subject to Tr(xxT ) = 1,
Tr(yyT ) = 1,

(2.3)

which is equivalent to

min
X,Y

(AX) • Y

subject to Tr(X) = 1, X º 0,
Tr(Y ) = 1, Y º 0,
rank(X) = 1, rank(Y ) = 1.

(2.4)

Here X ∈ Sn, Y ∈ Sm and AX is an m×m matrix with

(AX)jl =
n∑

i,k=1

bijklXik, j, l = 1, 2, · · · ,m.
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Thus, a bi-linear SDP relaxation of (1.1) is

psdp := min
X,Y

(AX) • Y

subject to Tr(X) = 1, X º 0,
Tr(Y ) = 1, Y º 0.

(2.5)

We denote by psdp the optimal value of (2.5). It is clear that psdp ≤ pmin.
We now consider how to generate an optimal solution (x∗, y∗) of the original problem

(1.1) from an optimal solution pair (X∗, Y ∗) of the bi-linear SDP problem (2.5). To this
aim, we state a matrix decomposition result first.

Lemma 2.3. (Sturm and Zhang [35]) Let X ∈ Sn
+ be a positive semidefinite matrix of

rank r. Let G ∈ Sn be such that G •X ≥ 0. Then, one can always find x1, · · · , xr ∈ Rn

in polynomial time such that X =
∑r

i=1 xi(xi)T and

G • xi(xi)T = G •X/r for i = 1, · · · , r.

Theorem 2.4. The bi-quadratic optimization (1.1) and bi-linear SDP (2.5) are equiva-
lent, that is, (1.1) and (2.5) have the same optimal value and one optimal solution pair
of (1.1) can be obtained from the optimal solution pair of (2.5).

Proof. Let (X∗, Y ∗) be an optimal solution matrix pair of (2.5). Without loss of
generality, we assume that X∗ and Y ∗ have full ranks n and m, respectively. Then, by
Lemma 2.3, one can find the decompositions of X∗ and Y ∗ such that

X∗ =
n∑

i=1

x̄i(x̄i)T , ‖x̄i‖2 = I •X∗/n = 1/n, ∀ i

and

Y ∗ =
m∑

j=1

ȳj(ȳj)T , ‖ȳj‖2 = I • Y ∗/m = 1/m, ∀ j.

There must exist an index, say 1, such that (AX∗) • ȳ1(ȳ1)T ≤ psdp/m, since

psdp = (AX∗) • Y ∗ = (AX∗) •
(

m∑
j=1

ȳj(ȳj)T

)
.

Let y∗ =
√

mȳ1. Then we must have

(AX∗) • y∗(y∗)T ≤ psdp, ‖y∗‖2 = 1.

Continue this process on X∗. There must be an index, say 1, such that

(Ax̄1(x̄1)T ) • y∗(y∗)T ≤ psdp/n.

Let x∗ =
√

nx̄1, we must have

(Ax∗(x∗)T ) • y∗(y∗)T ≤ psdp, ‖x∗‖2 = 1, ‖y∗‖2 = 1.
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That is, (x∗, y∗) is a feasible solution pair for the original problem (1.1) so that

pmin ≤ (Ax∗(x∗)T ) • y∗(y∗)T ≤ psdp ≤ pmin,

which implies that pmin = psdp = (Ax∗(x∗)T ) • y∗(y∗)T . We complete the proof. ¤
Theorem 2.4 shows that we can obtain a solution of (1.1) in polynomial time from a

solution of (2.5). Therefore, (2.5) must be still hard to solve.

Corollary 2.5. It is NP-hard to solve the bi-linear SDP relaxation (2.5).

Proof. Theorem 2.4 shows that the bi-quadratic optimization (1.1) and its bi-linear
SDP relaxation (2.5) have the same optimal value. From Theorem 2.2, we know (1.1) is
NP-hard, which immediately implies the relaxation (2.5) is also NP-hard. ¤

Our result is in contrast to the bi-linear optimization over two vector simplexes:

min
u∈Rn,v∈Rm

uT Av subject to
n∑

i=1

ui = 1,
m∑

j=1

vj = 1, u ≥ 0, v ≥ 0.

The above problem is solvable in polynomial time by simply choosing the minimum
element in the matrix A.

3 Approximation quality bounds

Theorem 2.2 shows that the bi-quadratic optimization (1.1) is NP-hard, and finding an
approximate solution with positive relative approximation bound is also NP-hard. But
this does not exclude the approximatability when the bi-quadratic form b(x, y) in (1.1)
has special structures. This section will give various approximation results when b(x, y) is
general or has special features. SDP relaxation methods are important on approximating
quadratic optimization problems and has received much attention recently, e.g., [11], [13],
[16], [22], [36] and [38]. Our approximation results are also based on SDP relaxations.

To present our results, we begin with another quality measure of approximation ratio:

Definition 3.1. Let 1 > ε ≥ 0 and A be an approximation algorithm for (1.1). We say
A is a (1−ε)-approximation algorithm for (1.1) if for any instance of (1.1) the algorithm
A returns a feasible pair (x̄, ȳ) to (1.1) such that

b(x̄, ȳ)− pmin ≤ ε(pmax − pmin).

Recall that pmin (resp. pmax) is the minimum (resp. maximum) value of the objective in
(1.1). We say (1.1) has a polynomial time approximation scheme (PTAS) if for every
1 > ε > 0, there exists a (1− ε)-approximation algorithm.

One can see that Definition 3.1 is weaker than Definition 2.1 but standard. If pmax = 0,
then the two definitions coincide each other with C = 1− ε.
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We will consider the general bi-quadratic form b(x, y) first and give a 1
2max{m,n}2 -

approximation algorithm for (1.1). When b(x, y) has only squared terms in x or y,
we will show (1.1) can be solved in polynomial time. When b(x, y) is square-free, we
will show (1.1) has an SDP relaxation with a relative approximation bound 1

nm
under

Definition 2.1. When min{n,m} is a constant, we present two PTASs for (1.1).

3.1 SDP approximation bounds based on ellipsoids

Let pmin and pmax be the minimum and the maximum objective values of (1.1) under
the unit ball conditions. Let A be the fourth order partially symmetric tensor defined
in Introduction. A bi-linear SDP relaxation of (1.1) is (2.5). Theorem 2.4 actually
indicates that this relaxation is tight, namely, given any (X, Y ) feasible for (2.5), one
can in polynomial time find feasible solution pairs (x′, y′), (x′′, y′′) of (1.1) such that

b(x′, y′) ≤ (AX) • Y, b(x′′, y′′) ≥ (AX) • Y.

The bi-linear SDP relaxation (2.5) can be rewritten as

pmin := min
X,Y

(AX) • Y + 1
n
(AIn) • Y + 1

m
(AX) • Im + 1

mn
(AIn) • Im

subject to Tr(X) = 0, X + 1
n
In º 0

Tr(Y ) = 0, Y + 1
m

Im º 0

(3.1)

after some linear transformations X := X − 1
n
In and Y := Y − 1

m
Im.

The objective function in (3.1) contains linear and constant terms, which are all zeros
when the bi-quadratic form b(x, y) is square-free. The constant term p̄ := 1

mn
(AIn) • Im

is the objective value of (2.5) for the feasible pair ( 1
n
In, 1

m
Im). Thus, we know

pmin ≤ p̄ ≤ pmax.

We denote

φ(X, Y ) = (AX) • Y +
1

n
(AIn) • Y +

1

m
(AX) • Im.

Note that the following relation holds for matrices in Sn:

{
X :

Tr(X) = 0
‖X‖F ≤ 1

n

}
⊆

{
X :

Tr(X) = 0
X º − 1

n
In

}
⊆

{
X :

Tr(X) = 0

‖X‖F ≤
√

1− 1
n

}
. (3.2)

For any scalars λ > 0 and µ > 0, denote Ω(λ, µ) for the optimization problem:

p(λ, µ) := min
X,Y

φ(X,Y )

subject to Tr(X) = Tr(Y ) = 0,
‖X‖F ≤ λ, ‖Y ‖F ≤ µ.

(3.3)

This is a non-homogeneous quadratic optimization over two ellipsoidal constraints. It
can be viewed as using an ellipsoidal set to approximate the affine conic feasible set
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of (2.5), which was first used in Ye [37] and by Fu et al. [13] for polyhedral constrained
non-convex quadratic optimization, and more recently by Luo and Zhang [23] for ho-
mogeneous quartic polynomial optimization. Note again the relationship between the
optimal values

p(1, 1) ≤ pmin − p̄ ≤ p

(
1

n
,

1

m

)
≤ p

(
1

max{m,n} ,
1

max{m,n}
)

.

For any optimal pair (X∗, Y ∗) of (3.3), the linear sum 1
n
(AIn)•Y ∗+ 1

m
(AX∗)•Im must be

non-positive, otherwise we can replace (X∗, Y ∗) by (−X∗,−Y ∗) to get a smaller objective
value. Hence, we have the relation

p(1, 1) ≤ p

(
1

n
,

1

m

)
≤ p

(
1

max{m,n} ,
1

max{m,n}
)
≤ 1

max{m,n}2
p(1, 1).

Thus, if one can compute a feasible pair (X̄, Ȳ ) for Ω
(

1
n
, 1

m

)
such that φ(X̄, Ȳ ) ≤

αp
(

1
n
, 1

m

)
, then

φ(X̄, Ȳ ) ≤ α

max{m,n}2
p(1, 1) ≤ α

max{m,n}2
(pmin − p̄).

Taking X = X̄ + 1
n
In and Y = Ȳ + 1

m
Im, we have

(AX) • Y − p̄ ≤ α

max{m,n}2
(pmin − p̄).

From the proof of Theorem 2.4, one can, in polynomial time, compute a solution (x′, y′)
feasible to (1.1) such that

b(x′, y′)− p̄ ≤ (AX) • Y − p̄ ≤ α

max{m,n}2
(pmin − p̄).

Since p̄ ≤ pmax, this also implies b(x′, y′)− pmax ≤ α
max{m,n}2 (pmin − pmax) and

b(x′, y′)− pmin ≤
(

1− α

max{m,n}2

)
(pmax − pmin).

In other words, we are able to get a 1
2max{m,n}2 -approximation for (1.1) if Ω

(
1
n
, 1

m

)
has a

feasible solution of relative approximation bound α = 1
2
.

Theorem 3.2. The SDP relaxation Ω
(

1
n
, 1

m

)
can return a solution (x′, y′) for bi-quadratic

optimization (1.1) such that

b(x′, y′)− pmin ≤
(

1− 1

2max{m,n}2

)
(pmax − pmin).
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Proof. From the above discussion, we know it suffices to show that Ω( 1
n
, 1

m
) allows

a solution of relative approximation bound α = 1
2
. To see this, note that (3.3) can be

equivalently formulated as the quadratic optimization problem

min
z∈RN

q(z) := zT Qz + 2cT z

subject to zT A1z ≤ 1,
zT A2z ≤ 1,

(3.4)

where A1, A2 º 0 and A1 +A2 Â 0, N = 1
2
[n(n+1)+m(m+1)]− 2 and Q is symmetric.

Denote its minimal value by qmin. Then qmin ≤ 0 as z = 0 is a feasible solution of (3.4).
A standard SDP relaxation for the above problem is

min
x∈Rn

Q •W + 2cT z

subject to A1 •W ≤ 1, A2 •W ≤ 1,(
1 zT

z W

)
º 0.

This SDP has three constraints, so that an optimal

(
1 (z∗)T

z∗ W ∗

)
can be computed in

polynomial time such that its rank equals 2 (e.g., see [38]). Hence the Schur complement
W ∗ − z∗(z∗)T must be rank one and one can write

W ∗ = z∗(z∗)T + w∗(w∗)T

for some z∗ ∈ Rn. Let us choose w∗ such that cT w∗ ≤ 0 (otherwise, we choose −w∗ as
w∗). Note that both z∗ and w∗ are feasible for (3.4), because both A1 and A2 are positive
semidefinite. Now we have

q(z∗) = Q • z∗(z∗)T + 2cT z∗, q(w∗) = Q • w∗(w∗)T + 2cT w∗.

Adding these two, together with cT w∗ ≤ 0, we have

q(z∗) + q(w∗) = Q • (
z∗(z∗)T + w∗(w∗)T

)
+ 2cT (z∗ + w∗) ≤ Q •W ∗ + 2cT z∗ = qmin,

which implies

min{q(z∗), q(w∗)} ≤ 1

2
qmin.

That is, either z∗ or w∗ is a solution of relative approximation bound α = 1
2

for (3.4). ¤

Theorem 3.2 establishes an approximation bound for general bi-quadratic form b(x, y).
When b(x, y) has special features, better results are possible.

Theorem 3.3. For bi-quadratic optimization (1.1), we have:

(i) If b(x, y) in (1.1) is square-free, then the SDP relaxation Ω
(

1
n
, 1

m

)
can be solved in

polynomial time and

pmin ≤ p

(
1

n
,

1

m

)
≤ 1

nm
pmin.
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(ii) The bi-quadratic optimization (1.1) can be solved in polynomial time if b(x, y) has
only squared terms in x, or has only squared terms in y.

Proof. (i) When b(x, y) is square-free, p̄ = 0 and φ(X,Y ) is homogeneous, so that
p( 1

n
, 1

m
) = 1

nm
p(1, 1). Then p(1, 1) ≤ pmin ≤ p( 1

n
, 1

m
) immediately implies the inequalities

in (i). On the other hand, when b(x, y) is square-free, we point out that problem (3.3) is
polynomial time solvable, since by eliminating variables it can be reduced to maximizing
a quadratic form over two homogeneous quadratic inequalities. The latter problem can
be solved by the S-lemma; see Ye and Zhang [38].

(ii) Now we consider the special case that b(x, y) in (1.1) has only squared terms in x
or has only squared terms in y. Assume the latter case. Then (1.1) has the form

min
x∈Rn,y∈Rm

∑

1≤i,k≤n, 1≤j≤m

bijkjxixky
2
j subject to ‖x‖2 = 1, ‖y‖2 = 1

= min
x∈Rn, ‖x‖2=1

min
1≤j≤m

∑

1≤i,k≤n

bijkjxixk = min
1≤j≤m

min
x∈Rn, ‖x‖2=1

∑

1≤i,k≤n

bijkjxixk

= min
1≤j≤m

λmin(Bj),

where for j = 1, · · · ,m, λmin(Bj) is the smallest eigenvalue of the symmetric n × n
matrix Bj = (bijkj)1≤i,k≤n. Since we may find the smallest eigenvalue of a symmetric
n× n matrix in polynomial time, this case can be solved in polynomial time. Similarly
one can solve the case that bijkl = 0 whenever i 6= k in polynomial time. ¤

3.2 A partial PTAS for (1.1) based on sum of squares

Let B(x) be the symmetric matrix in (1.2). Then the original bi-quadratic optimization
(1.1) can be equivalently formulated as

pmin := max γ
subject to B(x)− γ(xT x)Im º 0, ∀x ∈ Rn.

(3.5)

A sequence of SDP relaxations based on sum of squares (SOS) can be applied to solve
the problem (3.5). Recently SOS techniques have received much attention in solving
nonconvex polynomial optimization problems [9, 17, 21, 28, 25]. Usually a hierarchy of
SDP relaxations based on SOS can be applied to obtain a sequence of lower bounds con-
verge to the optimal value of polynomial optimization problems. A general convergence
rate was given by Nie and Schweighofer [26].

Let N ≥ 0 be an integer. Consider the following N -th order SOS relaxation

pN := max γ
subject to (xT x)N

(
B(x)− γ(xT x)Im

)
is SOS .

(3.6)

For a symmetric matrix polynomial F (x), we say F (x) is SOS if there exists some matrix
polynomial G(x) such that F (x) = G(x)T G(x). Obviously, for any integer N , pN is a
lower bound of pmin. When N = 0, the dual of the relaxation (3.6) is the problem (4.2)
of the next section. The convergence result is as follows.

11



Theorem 3.4. For any N ≥ 3n
log 2

− 1
2
n− 2, it holds

0 ≤ pmin − pN

pmax − pmin

≤ 6n

(2N + n + 4) log 2− 6n
,

where pmax is the maximum of b(x, y) over the bi-sphere Sn,m.

SOS methods have been applied to minimize forms (homogeneous scalar polynomi-
als) over unit spheres. Faybusovich [11] proved a quality bound like in Theorem 3.4
for minimizing general even forms over unit spheres, using a result of Reznick [31] on
degree bounds of representing positive definite forms by using sum of squares. To prove
Theorem 3.4, we need generalize that result of degree bounds to positive definite matrix
forms (homogeneous matrix polynomials). That is the following lemma.

Lemma 3.5. Let F (x) be a homogeneous symmetric matrix polynomial of degree 2d such
that F (x) Â 0 for any x 6= 0. Let

c(F ) = max
‖ξ‖=1

max‖x‖=1 ξT F (x)ξ

min‖x‖=1 ξT F (x)ξ
.

Then for any integer N such that

N ≥ nd(2d− 1)

(2 log 2)
c(F )− n + 2d

2
,

the matrix polynomial (
∑

i x
2
i )

NF (x) is SOS.

Proof. We generalize the proof in Section 7 of Reznick [31] for scalar forms to matrix
forms. Write F (x) =

∑
i Fifi(x) where Fi are matrices and fk(x) are scalar homogeneous

polynomials. Let G(x) = x2
1+ · · ·+x2

n. For any polynomial p(x), the differential operator
p(∂) is defined by replacing each xj by ∂

∂xj
, e.g., G(∂) = ∆ is the Laplacian operator.

The matrix differential operator F (∂) is defined to be
∑

k Fkfk(∂). For every polynomial
h of degree 2d, it holds

h(∂)GN = ΦN(h)GN−2d, where ΦN(h) =
∑

k≥0

(N)d−k

22k−dd!
∆k(h)Gk.

Here (N)t = N(N − 1) · · · (N − (t− 1)). The above two identity implies that

h(∂)GN = h(∂)

(
N∑

k=1

λk(αk1x1 + · · ·+ αknxn)2N

)
,

ΦN(h)GN−2d = (2N)d

N∑

k=1

λkh(αk1, · · · , αkn)(αk1x1 + · · ·+ αknxn)2N−2d.

12



If we choose h = Φ−1
N (fi), then we have

fi(x)GN−2d = (2N)d

N∑

k=1

λkΦ
−1
N (fi)(αk1, · · · , αkn)(αk1x1 + · · ·+ αknxn)2N−2d.

Therefore, it holds

F (x)GN−2d = (2N)d

N∑

k=1

λk

∑
i

FiΦ
−1
N (fi)(αk1, · · · , αkn)(αk1x1+· · ·+αknxn)2N−2d. (3.7)

For any polynomial p, Φ−1
N (p) has the formula

Φ−1
N (p) =

1

(N)d2d

(
p− ∆(p)G

2(n + 2N − 2)
+

∆2(p)G2

8(n + 2N − 2)(n + 2N − 4)
− · · ·

)
.

Hence

∑
i

FiΦ
−1
N (fi) =

1

(N)d2d

(
F (x)− ∆(F )G

2(n + 2N − 2)
+

∆2(F )G2

8(n + 2N − 2)(n + 2N − 4)
− · · ·

)
.

Obviously, it holds

lim
N→∞

(N)d2
d
∑

i

FiΦ
−1
N (fi(x)) = F (x).

When F (x) Â 0, we can choose N big enough such that
∑

i FiΦ
−1
N (fi(x)) Â 0.

For any vector ξ with ‖ξ‖ = 1, it holds

ξT

(∑
i

FiΦ
−1
N (fi)

)
ξ =

1

(N)d2d

(
ξT Fξ − ∆(ξT Fξ)G

2(n + 2N − 2)
+

∆2(ξT Fξ)G2

8(n + 2N − 2)(n + 2N − 4)
− · · ·

)
.

By the Theorem in Section 7 in [31], when

N ≥ nd(2d− 1)

(2 log 2)

max‖x‖=1 ξT F (x)ξ

min‖x‖=1 ξT F (x)ξ
− n + 2d

2
,

ξT
(∑

i FiΦ
−1
N (fi)

)
ξ is positive. Choose a uniform N for all ‖ξ‖ = 1. For

N ≥ nd(2d− 1)

(2 log 2)
c(F )− n + 2d

2
,

we have
∑

i FiΦ
−1
N (fi(x)) Â 0. So (

∑
i x

2
i )

NF (x) is SOS by (3.7). ¤

Proof of Theorem 3.4. Note that we have the inequality

pminIm ¹ B(x) ¹ pmaxIm, ∀ x ∈ {x ∈ Rn : ‖x‖ = 1}.

13



Let γ < pmin. Then it holds

(pmin − γ)Im ¹ B(x)− γ(xT x)Im ¹ (pmax − γ)Im, ∀x ∈ {x ∈ Rn : ‖x‖ = 1},
and hence

c(B(x)− γ(xT x)Im) ≤ pmax − γ

pmin − γ
.

Now fix one N > 3n
log 2

− 1
2
n− 2, and choose

γN = pmin − 6n(pmax − pmin)

(2N + n + 4) log 2− 6n
.

Then we can verify that

N =
3n

(log 2)

pmax − γN

pmin − γN

− n + 4

2
.

By Lemma 3.5, we know (xT x)N(B(x) − γN(xT x)Im) is SOS. By definition of pN , we
know pN satisfies the inequality claimed by Theorem 3.4. ¤

Let C(y) be the symmetric quadratic matrix defined in (1.3). Then the equivalent
formulation (1.3) of (1.1) can be formulated as

pmin := max γ
subject to C(y)− γ(yT y)In º 0, ∀y ∈ Rm.

(3.8)

Similarly, a sequence of convergent SDP relaxations using sum of squares can be applied
to solve the problem (3.8), as we have done for (3.5). Let N ≥ 0 be an integer. The
N -th order SOS relaxation for (3.8) is

p̃N := max γ
subject to (yT y)N

(
C(y)− γ(yT y)In

)
is SOS .

(3.9)

Obviously, for any integer N , p̃N is a lower bound of pmin. When N = 0, the dual of the
relaxation (3.9) is also the same as (4.2). A similar convergence result is as follows.

Theorem 3.6. For any N ≥ 3m
log 2

− 1
2
m− 2, it holds

0 ≤ pmin − p̃N

pmax − pmin

≤ 6m

(2N + m + 4) log 2− 6m
,

where pmax is the maximum of b(x, y) over the bi-sphere Sn,m.

Note that when min{n,m} and N are fixed, either the SOS relaxation (3.6) or (3.9)
can be solved in polynomial time. Thus Theorems 3.4 and 3.6 imply the following
corollary:

Corollary 3.7. If min{n,m} is fixed, there exists a PTAS based on SOS relaxations
(3.6) or (3.9) for solving (1.1) .
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3.3 Another partial PTAS for (1.1) based on grid sampling on simplex

Now consider the bi-quadratic optimization of the special form

pmin := min
x∈Rn,y∈Rm

∑
1≤i,k≤n, 1≤j,l≤m

bijklxiyjxkyl

subject to ‖x‖ = 1, ‖y‖ = 1,
y ≥ 0.

(3.10)

The difference of (3.10) from the original bi-quadratic optimization (1.1) is that (3.10) re-

quires y ≥ 0. In this case, one can choose y ∈ Rm
+ to be from grid points

{
0,

√
1
d
, · · · ,

√
d−1

d
, 1

}

such that y2
1 + · · ·+y2

m = 1, for some given integer d. They represent uniform grid points
on the partial sphere {y ∈ Rm

+ : ‖y‖ = 1}. The total number of such feasible grid points

is
(

m+d−1
d

)
which is polynomial in m for any fixed integer d ≥ 1.

For each feasible grid point ŷ, one can solve the minimum eigenvalue problem

pŷ := min
x∈Rn

∑

1≤i,k≤n

∑

1≤j,l≤m

bijklxiŷjxkŷl subject to ‖x‖ = 1.

The above problem can be solved in polynomial time for each fixed ŷ. Then, one can
choose ŷ among these grid points such that pŷ is the smallest, which gives a (1 − 1

d
)-

approximation solution to (3.10) (see Bomze and de Klerk [1]). Thus we have:

Theorem 3.8. There is a PTAS for solving problem (3.10).

Similarly, if in problem (3.10) the constraint y ∈ Rm
+ is replaced by x ∈ Rn

+, then
a similar PTAS exists. So, for the original bi-quadratic optimization (1.1), if we know
in advance the sign of optimal vector x∗ or y∗, then the PTAS above can be modified
slightly to solve (1.1). For instance, when all the coefficients of the bi-quadratic form are
non-positive, the optimal x∗ and y∗ must be nonnegative, and hence a PTAS exists.

Note that the number of sign patterns for x ∈ Rn and y ∈ Rm are at most 2n and
2m respectively. If min{n,m} is fixed, then we can get a PTAS for (1.1) by solving
subproblems of the form (3.10) at most 2min{n,m} times. Hence, this presents a PTAS for
solving (1.1) when min{n,m} is fixed.

Corollary 3.9. If min{m,n} is fixed, there exists a PTAS based on the grid sampling
on simplex for solving (1.1).

4 Some practical semidefinite relaxations

Section 2 proved the NP-hardness of the bi-quadratic optimization (1.1). Section 3
presented some approximation results. The methods provided there are more for the
purpose of theoretical analysis and might not be quite efficient for practical problems.
In this section, we give some more practical semidefinite relaxation methods. They are
based on the first order SOS relaxation and a convex quadratic SDP relaxation.
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4.1 First order SOS relaxation and the minimum eigenvalue method

Note that the bi-linear SDP (2.5) can be equivalently formulated as

pmin := min
∑

1≤i,k≤n, 1≤j,l≤m

bijklXikYjl

subject to Tr(X ⊗ Y ) = 1,
X ⊗ Y º 0.

(4.1)

Here ⊗ denotes the standard Kronecker product. In (4.1), define m×m matrices B(i,k) =
(bijkl)1≤j,l≤m. Then we can further relax the above bi-linear SDP (4.1) as the linear SDP

psos := min
Z

∑
1≤i,k≤n

B(i,k) • Z(i,k)

subject to
n∑

i=1

Tr(Z(i,i)) = 1,

Z(i,k) = Z(k,i), (Z(i,k))T = Z(i,k),∀ (i, k),
Z :=

(
Z(i,j)

)
1≤i,j≤n

º 0.

(4.2)

Obviously, the optimal value psos of (4.2) is a lower bound for the minimum value pmin

of (1.1). The dual of the SDP relaxation (4.2) can be shown to have the form

max
γ,W

γ

subject to B = W + γInm

W (i,k) = W (k,i), (W (i,k))T = W (i,k),∀ (i, k),
W :=

(
W (i,j)

)
1≤i,j≤n

º 0,

(4.3)

where the matrix B is defined as B =
(
B(i,j)

)
1≤i,j≤n

.

Theorem 4.1. The relaxation (4.2) has the following properties:

(i) For any feasible γ in (4.3), the difference b(x, y)− γxT x · yT y is a sum of squares,
i.e., there exist matrices A1, · · · , AK ∈ Rn×m(K ≤ nm) such that

b(x, y)− γ · xT x · yT y =
K∑

k=1

(xT Aky)2.

In particular, the difference b(x, y)− psos · xT x · yT y is a sum of squares.

(ii) It holds that λmin(B) ≤ psos ≤ pmin.

(iii) If min{n,m} = 2, then pmin = psos.

Proof. (i) Let (γ, W ) be a feasible pair for (4.3). Then we have the relation

(x⊗ y)T B(x⊗ y) = (x⊗ y)T W (x⊗ y) + γ‖(x⊗ y)‖2.
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Hence we get the polynomial identity

b(x, y)− γ · xT x · yT y = (x⊗ y)T W (x⊗ y).

Since W º 0, there exists a matrix L ∈ Rnm×K such that W = LLT . Here K is the
rank of W . For every k = 1, . . . , K, let Ak be a matrix such that the vectorization of Ak

equals the k-th column of L. Thus the first part of (i) is proved.
Since the feasible set of (4.2) has nonempty interior, the optimal value of the dual

(4.3) is attainable and must equal psos. Hence there exists some W ∗ such that (psos,W
∗)

is feasible for (4.3). So the second part of (i) can be implied by the first part of (i).
(ii) The second inequality is obvious. In SDP relaxation (4.2), if we do not require

any off-diagonal block of Z to be symmetric, then it can be further relaxed to

min B • Z subject to Tr(Z) = 1, Z º 0. (4.4)

The optimal value above is exactly λmin(B). Then we can see λmin(B) ≤ psos.
(iii) By definition of pmin, we know b(x, y)−pmin ·xT x·yT y is a nonnegative bi-quadratic

form. When n = 2 or m = 2, Calderón [2] showed that every nonnegative bi-quadratic
form b(x, y) must be a sum of squares. So we have pmin ≤ psos by the definition psos. By
(ii), we know pmin = psos. ¤

From (i) of Theorem 4.1, we can see that the dual problem (4.3) is actually the first
one (N = 0) in the hierarchy defined in (3.6). Hence psos = p0. Once the SDP relaxation
(4.2) is solved, we get a lower bound psos and an optimal matrix Z∗ º 0. When Z∗

has rank one, the block-symmetric structures of Z∗ imply that there are some vectors
x∗ ∈ Rn, y∗ ∈ Rm such that Z∗ = (x∗ ⊗ y∗)(x∗ ⊗ y∗)T , and hence (x∗, y∗) is one global
optimizer for (1.1). Now we consider the general case that

Z∗ = λ1z
1(z1)T + · · ·+ λrz

r(zr)T

for orthonormal vectors z1, . . . , zr and scalars λ1 ≥ 0, . . . , λr ≥ 0 with λ1 + · · ·+ λr = 1.
For each zi, we pack it back into an m × n matrix Ui = mat(zi) by columns, i.e., the
m elements in the j-th column of Ui consist of zi

(j−1)m+1, · · · , zi
jm of zi. Then find the

Singular Value Decomposition (SVD)

Ui = σi,1u
i,1(vi,1)T + · · ·+ σi,ki

ui,ki(vi,ki)T .

From the set of all pairs (vi,p, uj,q) obtained above, choose one pair (x∗, y∗) such that

b(x∗, y∗) = min
1≤i,j≤r

1≤p≤ki, 1≤q≤kj

b(vi,p, uj,q).

The performance of the above pair selection process is as follows:

Theorem 4.2. Let λmax(B) be the largest eigenvalue of the symmetric matrix B in (4.2).
From the first order SOS relaxation, together with the pair selection process described
above, one can generate a feasible pair (x∗, y∗) to (1.1) such that

λmax(B)− b(x∗, y∗) ≥ 1

min{n,m}(λmax(B)− pmin).
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Proof. From the rank one decomposition of optimal matrix Z∗, there exists one zi,
say z1, such that

(z1)T Bz1 ≤ psos and ‖z1‖2 = 1. (4.5)

Note that z1(z1)T may not have the desired block-symmetry any more. We can pack z1

back into an m×n matrix U1 = mat(z1) by columns. The rank of U1 is k1 (≤ min{m, n}).
‖z1‖ = 1 implies σ2

1,1 + · · ·+ σ2
1,k1

= 1. Hence, from (4.5), we have

λmax(B)− psos

≤ vec(U1)
T (λmax(B)Imn −B) vec(U1)

=

(
k1∑

j=1

σ1,jvec
(
u1,j(v1,j)T

)
)T

(λmax(B)Imn −B)

(
k1∑

j=1

σ1,jvec
(
u1,j(v1,j)T

)
)

≤ k1 ·
(

k1∑
j=1

σ2
1,jvec

(
u1,j(v1,j)T

)T
(λmax(B)Imn −B) vec

(
u1,j(v1,j)T

)
)

= k1 ·
(

λmax(B)−
k1∑

j=1

σ2
1,jb

(
v1,j, u1,j

)
)

,

where the first inequality comes from (4.5), and the second inequality comes from

λmax(B)Inm −B º 0. From
∑k1

j=1 σ2
1,j = 1, we must have one j, say j = 1 such that

λmax(B)− b
(
v1,1, u1,1

) ≥ 1

k1

(λmax(B)− psos) ≥ 1

min{m,n}(λmax(B)− psos),

that is, (v1,1, u1,1) is an approximate solution to the original problem (1.1) such that

λmax(B)− b
(
v1,1, u1,1

) ≥ λmax(B)− psos

min{m,n} ≥ λmax(B)− pmin

min{m,n} ,

where the second inequality comes from psos ≤ pmin. From the selection of the pair
(x∗, y∗), we immediately get the claim of the theorem. ¤

Note that the approximation result here depends only on min{m,n}, which is probably
why the first-order SOS relaxation (4.2) is more effective than other SDP relaxation
methods like (4.7) in practice.

One may solve the linear SDP (4.2) without the block symmetry constraints, that is,
solve (4.4) instead by computing a minimum-eigenvalue eigenvector of B and proceed
with the SVD rounding. Then a similar analysis gives the approximation result:

λmax(B)− b (x∗, y∗) ≥ 1

min{m,n}(λmax(B)− λmin(B)).

4.2 A convex quadratic SDP Relaxation

In this subsection, we present another method for estimating the optimal value pmin of
(1.1). This method generates a lower bound of pmin from the solution pair (X̄, Ȳ ) of
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a convex SDP relaxation of (1.1). At the same time, we obtain also an approximate
solution of (1.1).

Note that the bi-quadratic optimization (1.1) is equivalent to

min
X,Y

(AX) • Y + α {X •X + Y • Y }
subject to Tr(X) = 1, X º 0,

Tr(Y ) = 1, Y º 0,
rank(X) = 1, rank(Y ) = 1,

(4.6)

for any constant α > 0. Thus, we consider the natural quadratic SDP relaxation

pcsdp(α) := min
X,Y

(AX) • Y + α {X •X + Y • Y }
subject to Tr(X) = 1, X º 0,

Tr(Y ) = 1, Y º 0,

(4.7)

where α > 0 is large enough such that (4.7) is convex. Denoted by b̂(X, Y ) the objective

function in (4.7). In fact, b̂(X,Y ) can be written as

b̂(X,Y ) =
(
vec(X)T , vec(Y )T

)
(F (A) + αI)

(
vec(X)
vec(Y )

)
,

where the operator “vec” and F (A) is defined as

vec(X) =
(
X11,

√
2X12, · · · ,

√
2X1n, X22,

√
2X23, · · · ,

√
2Xn−1,n, Xnn

)T

,

F (A) =
1

2

(
0 A

AT 0

)
.

Here, A is a 1
2
n(n + 1)× 1

2
m(m + 1) matrix such that (AX) • Y = vec(X)T Avec(Y ). It

is well known that b̂(X,Y ) is convex if and only if F (A)+αI º 0, which is equivalent to
that 4α2I −AT A º 0. Therefore, we may choose α ≥ 1

2
‖A‖2 to guarantee the convexity

of (4.7), where ‖A‖2 = (λmax(A
T A))1/2.

Note that the convex quadratic SDP (4.7) is equivalent to the standard linear SDP

min
X,Y,W

(
0 0
0 F (A) + αI

)
•W

subject to Tr(X) = 1, Tr(Y ) = 1,

W :=




1 vec(X)T vec(Y )T

vec(X)
vec(Y )

Z


 º 0,

X º 0, Y º 0.

(4.8)

We mention that (4.8) is relatively easier to solve than (4.2), because the numbers of
equality constraints in (4.8) and (4.2) are O(n2 + m2) and O(n2m2) respectively. This
is also observed in the numerical results.
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Once the convex quadratic SDP (4.7) is solved, we can extract an approximate solution
pair (x̄, ȳ) of (1.1) as follows. Let (X̄, Ȳ ) be an optimal solution pair of (4.7) with α. By
eigenvalue decomposition, one knows that

X̄ = λ̄1x̄
1
(
x̄1

)T
+ · · ·+ λ̄rx̄

r (x̄r)T , Ȳ = µ̄1ȳ
1
(
ȳ1

)T
+ · · ·+ µ̄sȳ

s (ȳs)T .

Here, x̄1, · · · , x̄r and ȳ1, · · · , ȳs are the orthonormal eigenvectors of X̄ and Ȳ with respect
to positive eigenvalues λ̄1 ≥ · · · ≥ λ̄r > 0 and µ̄1 ≥ · · · ≥ µ̄s > 0, respectively. Let (x̄, ȳ)
be a vector pair satisfying

b (x̄, ȳ) = min
{
b
(
x̄i, ȳj

)
: 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
.

For any α ≥ 1
2
‖A‖2 and (x̄, ȳ) generated above, b(x̄, ȳ) is an upper bound for pmin.

A lower bound for (1.1) is readily given by pcsdp := pcsdp(α)− 2α, since (4.7) is an SDP
relaxation of (4.6) which is equivalent to the original problem (1.1) but its optimal value
is larger than that of (1.1) by 2α.

The quality of convex SDP relaxation (4.7) and the extraction process described above
is given below.

Theorem 4.3. The approximate solution (x̄, ȳ) of problem (1.1) generated as above from
the optimal solution of the convex quadratic SDP relaxation (4.7) satisfies

b(x̄, ȳ)− pmin ≤ α

(
2− 1

n
− 1

m

)
, (4.9)

where α is a number satisfying α ≥ 1
2
‖A‖2.

Proof. Since (X̄, Ȳ ) is an optimal solution of (4.7), there exist ζ̄ , η̄ ∈ R such that the
following system holds 




AX̄ + 2αȲ − ζ̄I º 0,
ȲA+ 2αX̄ − η̄I º 0,
(AX̄ + 2αȲ − ζ̄I) • Ȳ = 0,
(ȲA+ 2αX̄ − η̄I) • X̄ = 0.

(4.10)

Since Tr(X̄) = 1 and Tr(Ȳ ) = 1, from the third and the fourth equations of (4.10), we
have

ζ̄ = (AX̄) • Ȳ + 2αȲ • Ȳ and η̄ = (ȲA) • X̄ + 2αX̄ • X̄,

which imply that
(ζ̄ + η̄)/2 = pcsdp(α). (4.11)

Moreover, it is readily to see that

(ȲA+ 2αX̄ − η̄I) • x̄1(x̄1)T = 0, (AX̄ + 2αȲ − ζ̄I) • ȳ1(ȳ1)T = 0.

By this, we have
s∑

j=1

µ̄j

(
ȳj(ȳj)TA) • x̄1(x̄1)T = η̄ − 2αλ̄1,

r∑
i=1

λ̄i

(Ax̄i(x̄i)T
) • ȳ1(ȳ1)T = ζ̄ − 2αµ̄1.

(4.12)
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From the definition of (x̄, ȳ), it is clear that

b (x̄, ȳ) ≤ b
(
x̄i, ȳ1

)
=

(Ax̄i(x̄i)T
) • ȳ1(ȳ1)T , b (x̄, ȳ) ≤ b

(
x̄1, ȳj

)
=

(
ȳj(ȳj)TA) • x̄1(x̄1)T ,

which imply, together with (4.12), that

b (x̄, ȳ) ≤ ζ̄ − 2αµ̄1 and b (x̄, ȳ) ≤ η̄ − 2αλ̄1, (4.13)

since
r∑

i=1

λ̄i = 1 and
s∑

j=1

µ̄j = 1. By (4.11) and (4.13), we have

b (x̄, ȳ) ≤ pcsdp(α)− α(λ̄1 + µ̄1), (4.14)

which implies, together with pmin ≤ b(x̄, ȳ) and pcsdp(α)− 2α ≤ pmin, that

b (x̄, ȳ)− pmin ≤ α
(
2− λ̄1 − µ̄1

)
.

By this and the fact that λ̄1 ≥ 1/s ≥ 1/n and µ̄1 ≥ 1/r ≥ 1/m, we obtain the desired
result and complete the proof. ¤

We should point out, for the convex quadratic SDP (4.7) to approximate the bi-
quadratic optimization (1.1) efficiently, the constant α > 0 in (4.7) cannot be too large.
This will be shown in Theorem 4.4. In general, the obtained lower bound for (1.1) by
solving (4.7) is better when α near 1

2
‖A‖2 is chosen.

Theorem 4.4. Assume that b(x, y) ≥ 0 for every (x, y), i.e., AX ∈ Sm
+ whenever

X ∈ Sn
+ and YA ∈ Sn

+ whenever Y ∈ Sm
+ . If (X̄, Ȳ ) is an optimal solution of (4.7) with

α >
1

2
max{n− 1,m− 1}‖A‖F , (4.15)

then we have
rank(X̄) = n and rank(Ȳ ) = m. (4.16)

Proof. Since (X̄, Ȳ ) is an optimal solution of (4.7), there exist ζ̄ , η̄ ∈ R such that




AX̄ + 2αȲ − ζ̄I º 0,
ȲA+ 2αX̄ − η̄I º 0,
(AX̄ + 2αȲ − ζ̄I) • Ȳ = 0,
(ȲA+ 2αX̄ − η̄I) • X̄ = 0.

(4.17)

Let rank(X̄) = r and rank(Ȳ ) = s. It is clear that r ≥ 1 and s ≥ 1 because Tr(X̄) = 1
and Tr(Ȳ ) = 1, respectively. Moreover, since Tr(X̄) = 1, by Lemma 2.3, there exist
x̄i ∈ Rn (i = 1, · · · , r), such that

X̄ =
r∑

i=1

x̄i(x̄i)T , I • x̄i(x̄i)T = 1/r, for i = 1, · · · , r.
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Consequently,
(ȲA+ 2αX̄ − η̄I) • x̄i(x̄i)T = 0, for i = 1, · · · , r. (4.18)

On the other hand, from the second expression in (4.17), we have that Tr(ȲA) +
2αTr(X̄)− η̄Tr(I) ≥ 0, which implies

η̄n ≤ 2α + ‖A‖F , (4.19)

since Tr(ȲA) ≤ ‖A‖F‖Ȳ ‖F ≤ ‖A‖F . Moreover, we have that for every k,
(
ȲA+ 2αX̄ − η̄I

) • x̄k(x̄k)T

≥
(

2α
r∑

i=1

x̄i(x̄i)T − η̄I

)
• x̄k(x̄k)T

≥ (
2αx̄k(x̄k)T − η̄I

) • x̄k(x̄k)T

=
1

r

(
2α

1

r
− η̄

)
,

(4.20)

where the first inequality comes from the assumption that YA is positive semidefinite
for any Y ∈ Sm

+ , and the second inequality comes from the fact that xxT • x̃x̃T ≥ 0 for
any x, x̃ ∈ Rn.

Now we prove the conclusion for X̄ by contradiction. Suppose that rank(X̄) = r < n.

Then, it is readily to see that
1

r
≥ 1

n− 1
, which implies, together with (4.19), that

2α
1

r
− η̄ ≥ 2α

1

n− 1
− 2α

n
− ‖A‖F

n
=

1

n

(
2α

1

n− 1
− ‖A‖F

)
> 0 (4.21)

where the final inequality comes from (4.15). (4.21) shows, together with (4.20), that
for any i = 1, · · · , r, (

ȲA+ 2αX̄ − η̄I
) • x̄i(x̄i)T > 0,

which contradicts (4.18). Therefore, it holds that rank(X̄) = n. The conclusion for Ȳ
can be proved similarly. The proof of theorem is completed. ¤

5 Illustrative numerical results

This section reports some numerical results on the computational performances of the
first order SOS relaxation (4.2), the convex SDP relaxation (4.7), and the minimum
eigenvalue method (4.4). For the first order SOS method, we solve the SDP (4.2) to
find a lower bound psos and an optimal solution Z∗, and then apply the SVD rounding
procedure described in front of Theorem 4.2 to get an approximate solution pair (x∗, y∗)
of (1.1). For the convex quadratic SDP method, we choose α = 1

2
‖A‖2 and solve the

SDP (4.8) to get the optimal solution pair (X̄, Ȳ ). Then, follow the rounding procedure
described in front of Theorem 4.3 to get an approximate solution pair (x̄, ȳ) of (1.1)
and a lower bound pcsdp := pcsdp(α)− 2α. For the minimum eigenvalue method, we first
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compute the minimal eigenvalue λmin(B) and the corresponding eigenvector ẑ by solving

(4.4). Then we apply the same SVD rounding decomposition on the matrix Û = mat(ẑ)
to obtain an approximate solution (x̂, ŷ) of (1.1).

All the numerical computations here were done by using a Intel Core 2 Duo 2.4GHz
computer with 2GB of RAM, and all the SDP problems were solved by the SDP software
SDPA-M (Version 6.2.0) [12].

Example 5.1. Consider the bi-quadratic optimization

min
x∈R3,y∈R3

x2
1y

2
1 + x2

2y
2
2 + x2

3y
2
3 + 2(x2

1y
2
2 + x2

2y
2
3 + x2

3y
2
1)

−2x1x2y1y2 − 2x1x3y1y3 − 2x2x3y2y3

subject to ‖x‖2 = 1, ‖y‖2 = 1.

First, we use the first order SOS relaxation (4.2) to find a lower bound of pmin and then
extract an approximate solution for it. It can be shown [4] that pmin = 0 and the objective
bi-quadratic form is not SOS. From the given fourth order tensor A, it can be verified that
the coefficient matrix B in (4.2) has λmax(B) = 2.118 and λmin(B) = −0.118. By solving
(4.2), we get psos = −0.0972. It is clear that λmin(B) < psos < pmin. Now, we extract
an approximate solution of the original problem from Z∗ by applying the SVD rounding
procedure, and get x∗ = (−1, 0, 0)T and y∗ = (0, 0,−1)T . Note that b(x∗, y∗) = 0 attains
the exact minimum objective value.

Second, we use the convex quadratic SDP relaxation (4.6) to solve the problem. Choose
α = 1

2
‖A‖2 = 1.5. It is not difficult to obtain the optimal value pcsdp(α) = 2 of (4.6) and

an optimal matrix pair

X̄ = Ȳ =




1/3 0 0
0 1/3 0
0 0 1/3


 .

Hence, we obtain a lower bound −1 for the minimum pmin. Moreover, after rounding
we obtain an approximation solution pair x̄ = (−1, 0, 0)T and ȳ = (0, 0, 1)T , which also
attains the exact minimum objective value.

Furthermore, based upon the λmin(B) and its eigenvector ẑ, we extract the same exact
solutions x̂ = (−1, 0, 0)T and ŷ = (0, 0,−1)T .

Example 5.2. Consider the bi-quadratic optimization

min
x∈R6,y∈R6

5∑
i=1

xixi+1yiyi+1

subject to ‖x‖2 = 1, ‖y‖2 = 1.

First, we use the first order SDP relaxation (4.2) to solve the problem. It can be verified
that λmin(B) = −0.4505 and λmax(B) = 0.4505. We obtain psos = −0.25 and a cor-
responding optimal Z∗. Then, by applying the SVD rounding procedure, we extract an
approximate solution from Z∗

x∗ = (0, 0, 0, 0,−0.7066,−0.7076)T , y∗ = (0, 0, 0, 0.0001,−0.7077, 0.7065)T

23



such that b(x∗, y∗) = −0.2500.
Second, we use convex quadratic SDP relaxation to solve the problem. Choosing α =

1
2
‖A‖2 = 1/4, we obtain a lower bound pcsdp = −0.4167 and optimal matrices

X̄ = Ȳ =


0.1667 −0.0016 0 0 0 0
−0.0016 0.1667 0 0 0 0

0 0 0.1667 0 0 0
0 0 0 0.1667 0 0
0 0 0 0 0.1667 0
0 0 0 0 0 0.1667




.

Hence, we obtain a lower bound −0.4167 for the minimum pmin. From the rounding
procedure, we obtain an approximate solution with objective value −0.2500 as follows

x̄ = (−0.7071,−0.7071, 0, 0, 0, 0)T , ȳ = (0.7071,−0.7071, 0, 0, 0, 0)T .

Third, from the eigenvector ẑ corresponding to λmin(B), we extract an approximate
solution

x̂ = (0, 0, 1, 0, 0, 0)T , ŷ = (0, 0, 1, 0, 0, 0)T

such that b(x̂, ŷ) = 0, which does not attain the minimum objective value.

Example 5.3. Consider bi-quadratic optimization

min
x∈R9,y∈R12

∑

1≤i,k≤9, 1≤j,l≤12

xiyjxkyl

subject to ‖x‖2 = 1, ‖y‖2 = 1.

It can be verified that λmin(B) = 0 and λmax(B) = 108. By solving the first order SOS
relaxation (4.2), we obtain psos = 0 and extract a pair (x∗, y∗) with objective value 0:

x∗ = (0.5144, 0.1874, 0.6634, 0.4207, 0.1573,
−0.1194, 0.1873,−0.0378, 0.0877)T ,

y∗ = (−0.2207, 0.1225,−0.4439, 0.3975, 0.3158,−0.0189,
−0.5694, 0.0357, 0.3487,−0.1163, 0.0055, 0.1434)T .

For the convex SDP method, choosing α = 1
2
‖A‖2 = 54 and solving the SDP (4.8), we

get a lower bound −97.0909 and extract a pair (x̄, ȳ) with objective value 0:

x̄ = (−0.8445,−0.0163, 0.1397, 0.1302, 0.0452,
−0.0028, 0.4257, 0.0198,−0.2576)T ,

ȳ = (0.0464, 0.0617, 0.4152,−0.0305,−0.1712, 0.0110,
0.0655,−0.0409, 0.0778, 0.5078,−0.6675,−0.2754)T .
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Dim first order SOS (4.2) convex quadratic SDP (4.7) minimum Eig. M. (4.4)
Low.B. b(x∗, y∗) Cpu Low.B b(x̄, ȳ) Cpu Low.B b(x̂, ŷ) Cpu

(6, 7) −260.31 −260.31 0.39 −417.54 −257.50 0.12 −311.88 −251.17 0.01

(5, 8) −119.14 −119.14 0.21 −246.91 −45.71 0.09 −146.28 −116.42 0.01

(7, 8) −268.10 −268.10 1.03 −337.78 −263.78 0.28 −309.76 −262.41 0.03

(7, 9) −565.19 −565.19 1.79 −587.20 −564.91 0.43 −605.64 −563.64 0.04

(8, 9) −526.71 −526.71 3.45 −593.00 −525.31 0.57 −591.49 −521.98 0.04

(9, 9) −609.39 −609.39 6.45 −783.48 −602.14 0.84 −695.60 −597.92 0.06

(10, 10) −752.19 −752.19 18.81 −1003.22 −739.71 1.59 −880.63 −738.41 0.10

(11, 11) −362.66 −362.66 54.46 −980.97 −342.77 2.84 −444.13 −334.49 0.17

(12, 12) −499.41 −499.41 142.18 −982.55 −483.11 4.29 −623.55 −474.42 0.31

(13, 13) – – – −491.36 −7.06 5.15 −35.48 −14.12 0.48

(14, 14) – – – −509.56 −66.72 7.59 −82.96 −73.14 0.67

(20, 20) – – – −1360.31 −220.52 75.23 −250.54 −231.30 5.43

(50, 50) – – – – – – −9.34 −4.76 2.14

(100, 100) – – – – – – −9.28 −8.88 28.54

(150, 150) – – – – – – −13.26 −11.30 190.45

(200, 300) – – – – – – −8.17 −6.46 1256.63

(300, 300) – – – – – – −8.41 −6.32 1678.65

(300, 600) – – – – – – −8.20 −7.06 17826.25

Table 1: Computational results for random examples

For the minimum eigenvalue method, we also extract an approximate solution with ob-
jective value 0:

x̂ = (0.0972, 0.2778,−0.3277,−0.1575,−0.6329
−0.1641,−0.0369, 0.5925, 0.0366)T ,

ŷ = (−0.3893, 0.2134, 0.1229, 0.0646, 0.3544,−0.3069
−0.0483, 0.0915,−0.3173, 0.6016,−0.2807,−0.1088)T .

Finally we test some dense and sparse random examples for relatively larger dimen-
sion (n,m). The coefficients of the bi-quadratic form b(x, y) in (1.1) are generated
randomly by normal distribution. For (n,m) with (6, 7)− (20, 20), the coefficients of the
bi-quadratic form b(x, y) are dense, while for (n, m) beyond 50, they are sparse. Again,
the first order SOS relaxation (4.2), the convex quadratic SDP relaxation (4.7) and the
minimum eigenvalue method (4.4) are applied to solving these randomly generated bi-
quadratic optimization problems. The computational results are summarized in Table 1,
where “Dim” stands for the dimension pair (n,m), “Low.B.” denotes the computed lower
bound psos, pcsdp or λmin(B), and “Cpu” the consumed CPU time in seconds.

From Table 1, we see that the first order SOS relaxation (4.2) provides a better lower
bound than both the convex quadratic SDP relaxation (4.7) and the minimum eigenvalue
method (4.4), while the latter two consume less CPU time, especially for large-scale
problems. This is because (4.2) has O(m2n2) equality constraints, (4.7) has only O(m2+
n2) equality constraints, and (4.4) is just a problem of finding the minimum eigenvalue
and the corresponding eigenvector of B. For (n,m) = (13, 13), (14, 14) and (20, 20),
we obtain a lower bound and an approximate solution (x̄, ȳ) from solving (4.7). For
(n,m) = (50, 50) and beyond, we are only able to obtain the eigenvector ẑ corresponding
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to λmin(B) and an approximate solution (x̂, ŷ) from solving (4.4), due to the memory limit
when solving the SDP problems. It seems that there is a trade-off on choosing among
the relaxation methods: the first order SOS relaxation (4.2), the convex quadratic SDP
relaxation (4.7), and the minimum eigenvalue method (4.4).

6 Conclusion and open problems

This paper discusses minimizing bi-quadratic forms over unit spheres. We proved this
problem is NP-hard. Based on semidefinite programming relaxation, we developed sev-
eral approximation algorithms with guaranteed approximation bounds. When min{m,n}
is a constant, we established two PTASs for (1.1). We also proposed three practical
computational methods: first order SOS relaxation, the minimum eigenvalue method
and convex quadratic SDP relaxation. Preliminary computational results indicate that
they are all promising. It seems that the minimum eigenvalue method with the SVD
rounding procedure is the most time efficient and still generates good quality solutions.

Theorem 4.1 (iii) shows that when min{m,n} = 2, (1.1) is polynomial time solvable.
When min{m,n} is a constant bigger than 2, is (1.1) still polynomial time solvable? Is
there a PTAS for solving (1.1) for general bi-quadratic form b(x, y)? Does (1.1) have
a PTAS when b(x, y) is restricted to be square-free? In Theorem 3.2, can we improve
the approximation bound to O( 1

mn
)? To the best knowledge of the authors, all such

questions are open.
One natural generalization of bi-quadratic optimization (1.1) is

min b(x, y)
subject to xT Aix ≤ 1, i = 1, . . . , m1,

yT Bjy ≤ 1, j = 1, . . . , m2.
(6.1)

Here b(x, y) is still a bi-quadratic form and Ai, Bj are constant symmetric matrices. We
can see that (1.1) is a special case of (6.1). Hence problem (6.1) is also NP-hard. Are
our approximation results in Section 3 applicable to approximating (6.1)?
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