

Big Data Analytics in Telecommunication

Nokia NET Technologies & Innovation / Norbert Kraft code::dive conference / Wroclaw / 05-Nov-2015

Short Introduction

- Software researcher & data analyst
- Nokia Technology & Innovation
- Long history in SW development
- Project Leader NDI research project:

'Network Data Intelligence'

What is a data analyst? A Person ...

who knows more about programming than a mathematician ...

... and who knows more about statistics than a programmer.

Research Project Network Data Intelligence

- Nokia research project
- Technology exploration
- Generate new insights in telecom data
- Raise new business opportunities

End to End Mobile Broadband More Than an End Device

Some (estimated) Numbers ... German Telekom (2012)

36.6 Million Subscribers for German Telekom

Total of 113 Million Subscribers in Germany

~70 000 Radio Cells in Germany

~100 Million GBytes traffic volume (*2011)

xxx.xxx.xxx.xxx Number of Calls & SMS per Day

xxx.xxx.xxx.xxx Number of Internet connections

SmartPhone is always 'ON'

Radio Cell Layout of Munich

ΝΟΚΙΔ

Source: Bundesnetzagentur from 2012

Total number of Radio Cells: Munich Example

Some Secret about Big Data (... you might have never heard) Big data is useless ... only Information counts

Id	IMSI	IMEI	Radio cell id	RNC	Error code	IP address	ports	•••	
xxx	2345		45	1	0x0af	10.1.	80		

Customer A has some trouble, specifically if he enters radio cell B during business hours, because he is using an old fashioned smart phone with a wrong setup and additionally his office location has a bad radio coverage.

What the Operator (needs to ...) know about ... Mobile Network Data on 'Signaling' <u>not on Content</u>!

11 © Nokia Networks 2015

NOKI<u>A</u>

Attention Network Data is **Personal Data**

- Strictly limited by (inter)national laws
- Very complex field under continuous change
- Different views in different countries
- Restrictions on use beyond network management scope
- Usage requires customer permission

Meta data

- Network operators have the right to use this data for management purposes
 - Billing
 - Fault diagnosis
 - Network improvement
 - Support activities

<u>User data</u>

• Strictly limited access allowed with judicial order acc. local laws

NOKIA

Map of Big Data Analytics Use Cases

Basic Thoughts Get to Know what's going on - Example

Lets assume you are a hardware developer and your board is coming back from prototype manufacturing and it does not work ...

NDI Components Idea: Analytics Engine

- Universal analysis tool
- Works on every mobile network data
 - Traffica (Nokia Network Data Collector)
 - Service KPIs
 - Log/Trace files
- View concept for specific aspects:
 - Time
 - Radio Cell
 - Parameter correlation
 - Statistics
 - Entity relations
- Applies selectable algorithms: prediction, clustering, regression, (un-)supervised learning, training mode
- Highly interactive

Network Use Cases KPI Prediction & Time Slot Classification

- Time slot classification on history
 - Normal behavior
 - Outliers
- Long term trend analysis
- KPI radar & prediction

Network Use Cases Dropped Packet Connections per Radio Cell

- Important SLA criteria
- History Needs to be continuously monitored
- Prediction turns monitoring to preventive activity
- Correlate network problems with 3D buildings

onnednacketcon

Network Use Cases Parameter Correlation

- Show as many dimensions as possible
- Show relations between data

NOKIA

The Problem ... more information does not always help

There must be something more intelligent

KPI Time Series Operation Challenges

What KPI is operating in (un-)normal state?

Critical situations: When, Where?

What is the reason for that?

What will happen tomorrow?

KPI Time Series Operation Challenges - Answers Today: Thresholds

Weak Concept ...

- Thresholds depend on time, radio cell ...
- Hard to find the right boundary between good/bad
- Does not reflect seasonality
- Generate a lot of false positives

Solutions today:

- Experienced 'eyes'
- But
 - Too much KPIs ... hundreds
 - Too much cells ... thousands
 - Not enough experienced 'eyes' ...
 - Error prone

An intelligent system should tell me:

- Where to look at ...
- Where are reasonable anomalies ...
- Where are dependencies to other KPIs, entities
- What are possible reasons for this behavior

NOKIA

Split system signal into

- Season component (day, week, month)
- Trend
- Noise

Set upp./low. threshold

- Season component
- Trend

Corridor of expectations

KPI Time Series Corridor of 'expected behavior'

Multi KPI Problems Finding Anomalies between KPIs

- In most cases the ratio dropped calls / registered users is in a similar range
- By using clustering **outliers** can be detected
- Nevertheless the single KPIs might be in the trusted/expected corridor

Why Prediction is so Important Some Facts ...

Business Facts

- Radio cell outage impacts a large amount of customers
- Even if you rapidly realize a problem it is always too late ...
- High acquisition costs for new customers

Idea: Change from ,reactive' mode to ,preventive' mode

- Make an estimation which cells are in trouble next time
- Trigger preventive maintenance actions

KPI Modelling Now machine learning comes into play

Sizing & computation efforts increase ...

- 1 model per cell & KPI
- x.xxx.xxx number of models

Algorithms Trend Linear Regression

Seasonality

k Nearest Neighbor or Decision Tree or (non)linear Regression Logistic Regression

NOKIA

Problem solving A Simple Thing

- Find problem
 - Normal operation?
 - Hundred of KPIs
 - Thousands of cells
- Show deviations

Detect 🗸

Explain ?

- Problem location
- Involved systems
- References to
 - Customer
 - Device type

• Change parameters

- Fix problem
- Invest

Solve

Why something happens ... Root Cause Analysis

Having a KPI is not sufficient ...

- Drop call rate in cell A is too high
- Huge amount of handover failure during busy hours

Reasoning is important ...

- Why does this happen?
- What is driving this problem?
- Is it a periodic or a one time problem?
- What do I need to do, how can I change it?

Root Cause Analysis Information Complexity – Just a normal case: Handover failures

Questions:

- Errors specifically related to time, BSC, cell, end device
- Any typical errors (DX_CAUSES)

Timeslot60 💌	Inter2gTransRealFail 🔹	BSC_ID 💌	CELL *	DX_CAUSE *	LAC 💌	PRB *	MM_CAUSE *	TAC 💌	HOUR *	M15 💌	M05 *	М т	
2014-04-16T14:00:00	1	343	45831	2835	34301	306		01371900	14	0	2	14	
2014-04-16T15:00:00	0	341	43993	778	34100	306	17	35477004	15	3	11	59	
2014-04-16T15:00:00	1	351	56983	2835	35100	306		01264600	15	3	11	59	
2014-04-16T15:00:00	0	342	48171	778	34202	306	17	35750805	15	3	11	59	
2014-04-16T15:00:00	0	343	47493	3328	34300	306		35461002	15	3	11	59	
2014-04-16T15:00:00	0	343	47593	778	34300	306	17	01362900	15	3	11	58	
2014-04-16T15:00:00	0	342	40702	778	34201	306	17	35491105	15	3	11	58	
2014-04-16T15:00:00	1	342	42221	2842	34200	306		35907605	15	3	11	58	
2014-04-16T15:00:00	0	343	42593	3336	34302	306		35635505	15	3	11	58	
2014-04-16T15:00:00	0	342	40611	778	34201	306	17	35487901	15	3	11	58	
2014-04-16T15:00:00	0	343	45571	778	34300	306	17	35957605	15	3	11	58	
2014-04-16T15:00:00	o KPI	342	40051	778	34202	306	17	35907605	15	3	11	58	
	I												

3.624 messages

NOKIA

Root Cause Analysis Let's solve it graphically

• Must be an interactive drill down

- Reduces xx.xxx messages to a single problem
- Shows dependencies, anomalies
- Provides possible reasons

Root Cause Analysis Solutions: Let's use an algorithm for that

Timeslot60 *	Inter2gTransRealFail *	BSC_ID *	CELL 🔻	DX_CAUSE *	LAC 🔻	PRB 🔻	MM_CAUSE *	TAC 🔻	HOUR *	M15 💌	M05 *	м *
2014-04-16T14:00:00	1	343	45831	2835	34301	306		01371900	14	0	2	14
2014-04-16T15:00:00	0	341	43993	778	34100	306	17	35477004	15	3	11	59
2014-04-16T15:00:00	1	351	56983	2835	35100	306		01264600	15	3	11	59
2014-04-16T15:00:00	0	342	48171	778	34202	306	17	35750805	15	3	11	59
2014-04-16T15:00:00	0	343	47493	3328	34300	306		35461002	15	3	11	59
2014-04-16T15:00:00	0	343	47593	778	34300	306	17	01362900	15	3	11	58
2014-04-16T15:00:00	0	342	40702	778	34201	306	17	35491105	15	3	11	58
2014-04-16T15:00:00	1	342	42221	2842	34200	306		35907605	15	3	11	58
2014-04-16T15:00:00	0	343	42593	3336	34302	306		35635505	15	3	11	58
2014-04-16T15:00:00	0	342	40611	778	34201	306	17	35487901	15	3	11	58
2014-04-16T15:00:00	0	343	45571	778	34300	306	17	35957605	15	3	11	58
2014-04-16T15:00:00	0	342	40051	778	34202	306	17	35907605	15	3	11	58

Root Cause Analysis Show dependencies for error type 778 CLEAR/A ONHOOK DURING SET-UP PHASE

Feature *	Probability 🔺		
М	30.094	Strong tim	e dependency
HOUR	12.699		
M05	5.611		
M15	1.537		
PRB=306	1		
MM_CAUSE=17	0.999		
BSC_ID=341	0.283		
BSC_ID=342	0.247	Involveme	nt of BSCs
BSC_ID=343	0.228	、 · · · · · · · · · · · · · · · · · · ·	
LAC=34100	0.114		
ui i Lin	es: 41 🕨 🕨	1	

Algorithmic View

Report types	Sub types	Algorithm	Use case
Model deviation (single field)	Difference between model an real value above limit (x%, configurable) Difference between model & real value but also value near zero	Nearest Neighbor (KNN)	Unexpected value 'sleeping cell'
Trend violation (single field)	Raised if trend slope above/below limit	Linear Regression	Long term trend analysis
Classification error (multiple field)		DBSCAN	Detecting irregular pattern KPI (combinations not seen before)
Root cause analysis (multiple field)	Gaussian Naive Bayes	Gaussian Naive Bayes	Find driving factor for specific dx_causes Show relations to other attributes (cell, customer,)

Summary From Simple KPIs to a guided problem solving workflow ...

Tre-BLabel Cat. I Cat. 2 Cat. 1 Cat. 4 Cat. 5

Events per CELL

Probability *

30.094

12 699

5.611

1.537

1

0.999

0.283

0.247

0.228

0.114

۶I

Telecommunication Data & Use Cases

Anomaly & Root Cause Detection

Time Series Analysis & Prediction

Software & Methods

NOKIA

How to do Time Series Prediction Prediction of Time Series (ARMA) – Step 1

Raw DataTimeKPITime tKPI valueTime t-1KPI valueTime t-2KPI valueTime t-3KPI valueTime t-4KPI value

Step 1: Computing Moving Averages

Time	KPI	Mov AVG
Time t	KPI value	MA KPI
Time t-1	KPI value	MA KPI
Time t-2	KPI value	MA KPI
Time t-3	KPI value	MA KPI
Time t-4	KPI value	MA KPI

Moving average window

Auto
Regression
Moving
Average

NOKIA

How to do Time Series Prediction Prediction of Time Series (ARMA) – Step 2

Step 1: Computing Moving Averages

Time	KPI	Mov AVG	Lag window
Time t	KPI value	MAINM	
Time t-1	KPI value	MA KPI	
Time t-2	KPI value	MA KPI	
Time t-3	KPI value	MA KPI	
Time t-4	KPI value	ΜΑ ΚΡΙ	

Step 2: Generating lag window

Time	KPI	KPI t-1	KPI t-2	KPI t-3	Mov AVG	M AVG t-1	M AVG t-2	M AVG t-3
Time t	KPI value	KPI value	KPI value	KPI value	ΜΑ ΚΡΙ	MA KPI	ΜΑ ΚΡΙ	ΜΑ ΚΡΙ
Time t-1	KPI value	KPI value	KPI value	KPI value	ΜΑ ΚΡΙ	ΜΑ ΚΡΙ	ΜΑ ΚΡΙ	ΜΑ ΚΡΙ
Time t-2	KPI value	KPI value	KPI value	KPI value	ΜΑ ΚΡΙ	MA KPI	ΜΑ ΚΡΙ	MA KPI
Time t-3	KPI value	KPI value	KPI value	KPI value	MA KPI	MA KPI	ΜΑ ΚΡΙ	ΜΑ ΚΡΙ
Time t-4	KPI value	KPI value	KPI value	KPI value	MA KPI	ΜΑ ΚΡΙ	ΜΑ ΚΡΙ	MA KPI

Results Confusion Matrix

KPI: Pos./Neg. boundary Number of cells MA Window Lag time window Prediction window Ind. test data

PS_ACC_FA_RT_GCR

6% 233 (out of top BTS with highest voice traffic) 6 hours 48 hours 1 hour 12177 Positives / 785 Negatives(=KPI violation)

Method	Accuracy		Predicted as Positive	Predicted as Negative	Precision	Recall
Neural	93,944	Real Positive	True Positives:	False Negatives:	0.939	1
Networks		Real Negative	False Positives:	True Negatives:	?	0
Non Linear	98,681	Real Positive	True Positives: 12099	False Negatives: 78	0.992	0.994
Regression		Real Negative	False Positives: 93	True Negatives: 692	0.899	0.882
Logistic	98.388	Real Positive	True Positives: 12155	False Negatives: 62	0.988	0.995
Regression		Real Negative	False Positives: 147	True Negatives: 638	0.911	0.813
Decision	96.607%	Real Positive	True Positives: 11836	False Negatives: 143	0.976	0.988
Tree		Real Negative	False Positives: 287	True Negatives: 409	0.741	0.588
Ensemble	97.338	Real Positive	True Positives: 12087	False Negatives: 90	0.979	0.993
Trees		Real Negative	False Positives: 255	True Negatives: 530	0.855	0.675
42 © Nokia Netwo	rks 2015	TRUE NEGA FALSE NEG	ATIVES: Correctly predicted KPI violati	ons ctlv show as violation		NOKIA

KPI violations not found

FALSE POSITIVES

Network Data Intelligence Research Areas

Generalized Big Data Analytics Stack What do you need?

Use Cases

Visualization, Charting, Drill Down Views

Analytics Algorithms (K-Means, KNN...)

Data Storage (Relational, NoSQL)

Aggregation, Filtering, Distributed Computing

Import, Formatting, Type Conversion

Data Sources: net elements, protocols

Generalized Big Data Analytics Stack How does it correspond to the efforts?

Use Cases

Visualization, Charting, Drill Down Views

Analytics Algorithms (K-Means, KNN...)

Data Storage (Relational, NoSQL)

Aggregation, Filtering, Distributed Computing

Import, Formatting, Type Conversion

Data Sources: net elements, protocols

Development Effort

185

📷 🖪 🔼 🤌 💿 💿 🐨 🖏 🛤 📲 🍢 💽 🗇 📾 🖬 🙆 🙆 🔺 🌲

PPH10221G PPH10225F PPH10233D PPH10240E PPH10301C PPH10365C PPH10612I PPH10614A PPH10615A PPH10616E PPH10618F PPH10620E PPH10622D PPH10631D PPH10632A PPH10633C PPH10634B PPH10706D PPH10902C PPH10902C2 PPH10910A PPH10918F PPH10949A PPH11004A PPH11006D PPH11104E PPH11604E PPH11605A PPH11607E PPH11608E PPH12006B PPH12009E PPH12013B PPH12901C PPH12903G PPH13403H PPH20113B PPH20120A PPH20150D PPH20187A PPH20193C PPH30156A PPH30628A PPH30629A PPH30630A PPH30632C PPH30635C PPH30636D PPH31006A PPH31008E PPH31010A PPH31011A

• • • 口 京

Generalized Data Analytics Stack Final Choices

Use Cases

Visualization, Charting, Drill Down Views

Analytics Algorithms (K-Means, KNN...)

Data Storage (Relational, NoSQL)

Aggregation, Filtering, Distributed Computing

Import, Formatting, Type Conversion

Data Sources: net elements, protocols

Generalized Data Analytics Stack NDI Software Architecture

Network Data Intelligence Demonstrator NDI - Detailed Architecture

Standard Programming

Data Analytics & Aggregation

Rich Client & Charting

Tool

Network Data Intelligence Reasons to use Python

Rapid Prototyping

- Interpreted, very dense coding, eclipse supp.(PyDev)
- Zero turnaround, no SW production

High Functionality

Data analytics, Statistical computing, Text mining
Modern 'R'

Next generation programming

- Object oriented, Functional programming
- Closures, Duck typing, memory management, Lambdas

Huge library & community

- •Uses most C-libs on Linux therefore very fast
- •Communication stacks, encryption, ...

- •Django (HTTP based)
- •Twisted (event based)

Google: "... we use Python, where we can, C/C++, where we must ..."

Experiences / Details Python - Possible Counter Arguments

• Our code just worked from the beginning, no GC pain, no bugs, ...

Important NDI Components Pandas

- R-extension for Python
- 'in-memory' SQL
- Fast native C-arrays
- Data types:
 - Series, DataFrame, Panel, 4D
- Vector operations
- IO operations (CSV, DBs, ...)
- Descriptive statistics
- Group by, sort, indexing
- Merge, join, concatenate
- Reshape, pivoting
- Time series analysis

SCI-Kit

- (Un)-Supervised learning
 - Decision trees, ...
- Classification
 - SVM, nearest neighbors, random forest, ...
- Clustering
 - k-Means, spectral clustering, mean-shift, ...
- Regression
 - SVR, ridge regression, Lasso, ...
- Data pre-processing
 - Normalization

Network Data Intelligence Importer Data Model

- Describes transformation of raw data to a ndimensional OLAP cube
- Dimensions
 - 1st aggregation dimension
 - CGI, IMSI, URL, IMEI, Service ...
 - 2nd aggregation dimension
 - Time
 - 3rd aggregation dimension on demand
 - IMSI / CGI (e.g. for mobility)
- Aggregation levels
 - Time: 15min, hour, day, week, month
 - CGI: MCC, MNC, LAC, Class ID
 - IMEI: TAC, SNR
 - IMSI: MCC, MNC, MSIN

NOKIA

Data Importer Architecture

Real Time Streaming

Pandas

NDI Parallel Real Time Engine

61

Speed: Up to 150.000 msg/sec on 4 server system

Real Time Streaming

Pandas

Important Importer Components Celery

- Distributed task messaging
- Tight python integration
 - @task
 - Django integration
 - Django management support module
- Based on several message brokers
 - RabbitMQ
 - Redis
 - ...others
- Inter / intra node operation

RabbitMQ

- Message Broker
- Communication patterns
 - 1:1, 1:n, n:1
 - Publish / subscribe
- Multiple queue support
- Complex message routing
- AQMP standard
- Multi language support
- Written in Erlang

Real Time Streaming

Pandas

SCI Kit Pythor

Rich Client Development Basic Thoughts about Browsers ...

Virtual machines

- Container for complex applications
- Standardized environment (better than any alternative)

... with multiple DSL support

- HTML5: DOM structure
- CSS3: look & feel
- JavaScript: behavior

... comes with development environment

- Extremely fast and well tested
- Available everywhere: PCs, Tabs, Mobiles
- Powerful choices: Chrome, Firefox (not IE)

And they are for free

Rich Client Development Web application types

Client rendering

- JavaScript application loaded via HTTP
- Requires client framework
 - Angular, Ember
- Complex JavaScript application
- Triggers locally handled
- Fast local interaction
- Data access via JSON
- Lots of JavaScript
- Behaves like an application

- Fully rendered web page downloaded
- Requires server framework
 - Java: GWT, JSF, Portlets ...
- Pure server programming
- All interactive events across server
- No local interaction
- Data embedded in DOM
- Mostly server programming
- Less interactive

0 0

0 0

Rich Client Development Client Components/Libraries

Openlayers

- All kind of maps(OSM, Google ...)
- Graphics layers

HighCharts

- Complex charts
- Highly interactive(zoomin/shifting, event handling, ...

D3 • C • L0

- Complex graphics (Force directed graphs, trees Low level graphics and event handling
- Low level graphics and event handling

Complexity

Rich Client Development The Need for Angular

- Angular capabilities
 - MVC architecture
 - 2 way binding
 - JavaScript <-> HTML/DOM
 - Expressions
 - Directives
 - ng-show, ng-repeat
 - Routing

© Nokia Networks 2015

68

 Introduces sub commands to URL

- 'Tomcat / JBOSS' for rich client development
- Great simplification for development
- Reduces amount of necessary JavaScript code

Big Data Analytics in Telecommunication $Wrap \ Up$

Nokia Networks

Thank You!

norbert.kraft@nokia.com

NOKIA