BIG DATA ANALYTICS

ARCHITECTURES, ALGORITHMS
AND APPLICATIONS
PART #3: ANALYTICS PLATFORM

SIMON WU

EDWARD CHANG! &% &

1/26/2015 Ed Chang @ BigDat 2015

http://infolab.stanford.edu/~echang/chronological-order.html

Three Lectures

* Lecture #1: Scalable Big Data Algorithms
— Scalability issues
— Key algorithms with application examples

* Lecture #2: Intro to Deep Learning

— Autoencoder & Sparse Coding
— Graph models: CNN, MRF, & RBM

e Lecture #3: Analytics Platform [by Simon Wu]
— Intro to LAMA platform
— Code lab

Lecture #3 Outline

Motivation
ntroduction

_AMA
~unctional Programming

Coding Demo

Contents

* Motivation

https://github.com/LamaBigData/lama-
demo

Motivation

https://github.com/LamaBigData/lama-
demo

What Do We Need?

* Log Management System:
— Collect application logs with reasonable latency

e Data processing platform:

— Interactive, batch, streaming

* Analytics platform:

— Visual, ad-hoc

https://github.com/LamaBigData/lama-
demo

Contents

* Introduction

https://github.com/LamaBigData/lama-
demo

Architecture

(Analytics Platform A
[Visual (Tableau)] [Ad-hoc (R+D3.JS)]

N _J

JDBC/ODBC Interface

[Processing Platform \
Interactive Batch Streaming
Querying Processing Processing
(Impala) (Summingbird) (Storm)

a Storage B
[HDFS] [HBase J [Database J Kafka
Log Management(Flume/Fluentd)

(Applications h

[App1] [App2] "= AppN
N\ _J

https://github.com/LamaBigData/lama-
demo

Logging Management

* Open-sourced systems:
— Flume
— FluentD (recommended by GCE)

* Supported file formats:

— Textline, SequencefFile, Structured data in Thrift/
Protobuf/Avro

— Compressed data in Lzo/Gzip/Snappy

— However, logs saved in Parquet (columnar format)
give us significant performance gains over other
choices

https://github.com/LamaBigData/lama-
demo

Data Processing Engines

Interactive
— Impala (open sourced), BigQuery (Google)

Batch

— Hadoop MapReduce, Spark, Hive/Pig, Cascading/
Scalding

Streaming
— Storm, Spark streaming

Hybrid

— Google’s Dataflow (managed, in beta)

https://github.com/LamaBigData/lama-
demo

Different Data Processing Engines

Engine Open-Source Properties Latency Application
Framework
Batch ‘ h ’ * Large data sets | Hours or Hourly/Daily
Processing | n"laap H‘g?d%’ge » High Throughput Days Statistics
Streaming C Real-time Millseconds| Real-time Counting
Processing srgww * In-memory
Interactive « SQL-like query Minutes |Ad-Hoc SQL-like Data
Querying gz) |+ In-memory Analysis
Iterative N> |* DAG execution Hours Machine Learning
Data SparK™ |° In-memory
Analysis

demo

https://github.com/LamaBigData/lama-

Analytics Platform

* Visual Analytics:
— Template dashboard
— Customized visual graphs and pivotal tables
— Tableau will be our choice!
— Best for Execs/PMs/Sales, even for Engineers

* Ad-hoc Analytics:
— R + DS.js + GGPlot2
— More sophisticated DM/ML analytics on big data
— Best for Engineers

Interactive Querying Engine

Built upon an open-sourced distributed SQL
query engine (Impala)

Logs saved in HDFS in columnar-format
(Parquet)

Query in SQL-like syntax

Benchmark results show Impala+Parquet
outperforms the various other open source
alternatives

https://github.com/LamaBigData/lama-
demo

Who is Going to Need it?

More used to SQL-like querying

Impatient enough to see results, i.e., in
minutes instead of hours

Quickly testing ideas through visual analytics
on short or medium-long period of history
logs

ldeal choice for PMs/Sales/Execs, even for
engineers

https://github.com/LamaBigData/lama-
demo

Impala Architecture

Common Hive SQL and interface Unified metadata

W

Fully MPP

Distributed
<4

—
-

R
Localn

Direct Reads

olit 18

Figure credit: http://impala.io/overview.html|
https://github.com/LamaBigData/lama-
demo

Data Processing Engines

e Batch

— Hadoop MapReduce, Spark, Hive/Pig, Cascading/
Scalding

https://github.com/LamaBigData/lama-
demo

Batch Processing Engine

e Capable of processing much longer period of
history logs with higher latency, usually in
hours or longer

e Capable of conducting very sophisticated
analytics using DM/ML techniques using
MapReduce

* Cron-scheduled for processing new logs

https://github.com/LamaBigData/lama-
demo

Batch System Architecture

Scheduler

Chronos]

Jobs

User can do
visual or adhoc
analysis on
results computed
from batch

system

|

Workflow Monitoring

Ambrose

Job status
in HBase

MapReduce (Summingbird + Scalding)

l

HDFS

HBase DB

l

l

Analytics Platform

https://github.cd

Read-only Online Store

m/Lam

hBigData/lama-

demo

It’s also common
to upload results
computed from
batch system to
online readonly
store, in order
for online
services to
lookup values

—

One Problem?

e What if we want to see metrics from all
history to current moment?

— Batch: high throughput, but high latency

— Streaming: low throughput, but low latency

e The Lambda Architecture is the solution!

https://github.com/LamaBigData/lama-
demo

The Lambda Architecture

 Generic, scalable and fault-tolerant data
processing architecture

* Proposed by Nathan Marz:
http://lambda-architecture.net/

https://github.com/LamaBigData/lama-
demo

Batch Layer

Technology Does it fit Maturity Ease of use Language Platforms Comments

Hadoop MapReduce *kk 0.8, 8. * Java Hadoop Very low-level, not re-usable
Spark Jokk *k ok k Scala, Java, Python Spark In-memory

Hive 2. 9.8.1 0.8, 8.¢ 2.8, HiveQL, Java Hadoop Support planned for Tez
Spark SQL 2. 0.8.1 * *k SQL, Scala, Java, Python Spark Successor of Shark

Pig Ykk kK Jookk Pig Latin, Java Hadoop Support planned Tez

Spork *kk * 2.8.8.¢ Pig Latin, Java Spark

Cascading/Scalding Yok k ok ok Java, Scala Hadoop

Cascalog Jkk * * Clojure Hadoop

Crunch/SCrunch ok k *k * Java, Scala Hadoop Support planned for Spark and Tez
Pangool Jkk * * Java Hadoop

Table credit: http://lambda-architecture.net/components/2014-06-30-batch-components/

https://github.com/LamaBigData/lama-
demo

Speed Layer

Technology Does it fit Maturity Ease of use Language Comments

Apache Storm 2.0, 1 *hk ok Clojure originates from Twitter

Apache Spark Streaming ok *k 0.8, 8.1 Scala/Java/Python originates from AMPLab

Apache Samza Fokk *k * Scala/Java originates from LinkedIn

Apache S4 Fokk * * Java originates from Yahoo!

Spring XD Fokk ok ok k Java originates from Pivotal
Cloud-based (XaaS) Offerings

Technology Does it fit Maturity Ease of use API Comments

AWS Kinesis Yok ok *ok *k Java introduced in 11/2013

Google Cloud Dataflow ** - ? Java introduced in 06/2014, not yet available

Table credit: http://lambda-architecture.net/components/2014-06-30-speed-components/

https://github.com/LamaBigData/lama-
demo

Serving Layer

Merge/Low-Latency Databases

Technology Does it fit Maturity Ease of use API Language Comments

ElephantDB Fkk * * Clojure

SploutSQL 2.8, 8 .1 * *k Java

Voldemort (with a ReadOnly backend) *k *k *k Java

HBase (bulk loading) *k *k *k Java

Druid Fokk *k * Java originates from Metamarkets

Table credit: http://lambda-architecture.net/components/2014-06-30-serving-components/

https://github.com/LamaBigData/lama-
demo

Our Solution: LAMA "G "

* LAMA: Lambda Architecture Based Big Data
Analytics System

* Based on Twitter’s open sourced SummingBird
project!

ata Stream

T

»/“

fluentd

§g kafka

Content

* LAMA

https://github.com/LamaBigData/lama-
demo

t Stores

How Does SummingBird Work'?

1 Only define job logic once Text/TSV/CSV

Source ¥ Job Logic Store
\ /
\ : '.’ protobuf

Text/TSV/CSV

_',l prot:obuf

Store

~ e . 2 Selecta platform
Wocalding «~ | ~a
IIII cascading 5 S J‘Z
i, sTORM VP ark

* Generate topology automatically

e No n¥&EY S e yPotI8e IR a M details

demo

Perspectives

* For batch & streaming, same job logic, different
running platform
— Why? Since both batch and streaming DO mapreduce
in different ways
* For iterative data analysis, at least same language
& APIs, no need to learn different ones

 DOES not support interactive querying platform,
which SHOULD be in SQL-like querying language

Key Concept in SummingBird: BatchID

e BatchlID: Used for job scheduling, data merging, fault
tolerance

e Batcher here is used to declare how often this job will run
e Batcher.ofDays(1) means this job will run once every day

BatchID.O BatchID.1 BatchlID.2 BatchlID.3

Sum of
RealTime.BatchlD.i
+ Hadoop.BatchlID.i-1

https://github.com/LamaBigData/lama-
demo

Why not directly using SummingBird?

* Immature

— No job concept (which means you have to take care of job
runner by yourself)

— APIs are hard to use

— Users have to deal with batchID by themselves

— Too few input/output formats and databases supported
— No DAG job supported

— No deployment, monitoring

— No support for Spark platform

— No Support for Google’s GFS/BigQuery/DataStore

— No support for Google’s Dataflow

* More like a prototype than a product!

https://github.com/LamaBigData/lama-
demo

Lama’s Contributions

 Simplified API

* BatchlD Management

* More Flexible Inputs and Outputs
* DAG Job Scheduling

* Easy Deployment & Monitoring

* Visualization

* Support Google’s GCS/BigQuery/DataStore/
Dataflow

* Support Spark (ready by EOQ1)

https://github.com/LamaBigData/lama-
demo

Perspectives

* Based on Twitter’'s Summingbird
— Scala DSL
— 00P
— Cascading in low level
* Thanks to Scala DSL, writing MapReduce jobs
is like writing native programming codes

* All components of the job can be unit tested

Contents

* Functional Programming

https://github.com/LamaBigData/lama-
demo

Scala

A Scalable language

Created by Martin Odersky (founder of
Typesafe)

Object-oriented
Seemless Java interop
Functions are objects
Future proof

Fun

https://github.com/LamaBigData/lama-
demo

Who Are Using Scala?

Twitter
LinkedIn
Foursquare
Box

Quora
Tumblr

Git
Yammer

https://github.com/LamaBigData/lama-
demo

Best Scala Lectures

e Scala school:
http://twitter.github.io/scala school/

e Effective scala:
http://twitter.github.io/effectivescala/

https://github.com/LamaBigData/lama-
demo

Basic Data Structures

List: An ordered collection of elements
— scala> val numList = List(1, 2, 3, 4)
Set: No duplicates
— scala> val numSet = Set(1, 2)
Tuple: A group of simple logical collections
— scala> val record = (“Peter”, “male”, 30)
Map: mapping association
— scala> val wordCount = Map(“foo” -> 30)
Option: A container that may or may not hold sth
— scala> wordCount.get(“foo”) (Some(30))
— scala> wordCount.get(“bar”) (None)

https://github.com/LamaBigData/lama-
demo

Functional Combinators

map: evaluates a function over each element in the list
— scala> numlList.mapf{i: Int =>i * 2}
flatMap: combines map and flatten
— scala> numlList.map({i: Int => List(i*2, i*2 + 1)}
foreach: similar with map without returning anything
— scala> numlist.foreach{i: Int =>i * 2}
filter: removes any elements whose logic is false
— scala> numlist.filter{i: Int =>i % 2 == 0} Can you implement it?
Your own! /
— scala> def isEven(i: Int): Boolean =i % 2 ==
— scala> def myFilter(num: List[Int], fn: Int => Boolean): List[Int]

— scala> def myFilter(num: List[Int], fn: Int => Boolean): List[Int] =
num.flatMapf{i: Int => if (fn(i)) Some(i) else None}

https://github.com/LamaBigData/lama-
demo

Basics Continued

Object:

— It’s used to hold single instances of classes
Companion object:

— When an object has the same name with the class

— You can put your static methods here for easy sharing and
unittesting

Case class
— It’s used to conveniently store and match on the class contents
Trait
— Similar with interfaces in Java, but with partial implementations
— May not have constructor parameters

— Define object types by specifying the signature of the supported
methods.

https://github.com/LamaBigData/lama-
demo

Content

* LAMA

https://github.com/LamaBigData/lama-
demo

A LAMA Job Example

 Example: Kevin is an engineer in studio team
working on NLP projects. He needs to count
word frequencies from a certain period of
history related news logs, where each news is
a very long article. He has to parse each
article, split them into words, and then count
number of words. Logs are saved in a Hadoop
cluster in cloud. So he wrote a batch job using
LAMA as shown in next page

How to Write a LAMA Job?

Source: This is how you read/transform raw data into
your desired format

Store: This is the place where your aggregation logics
happen, so define the key, value, and serialized data
format here

Monoid: This instructs the store how to aggregate your
keys
Injection: This instructs the store how to serialize data

Job: This is the main place where you combine all

modules together in order to compute your metrics
constantly.

It supports both batch (Scalding) and J O b
streaming (Storm), so just extend it

to create your
WordCountScaldinglob and

WordCountStormJob

Job details have
been abstracted!

WordCountJob[P <: Platform[P]] HTCJob[P] {

args: Args|

batcher = Batcher.ofDays(1)

Specify how to

schedule the job
https://github.com/LamaBigData/lama-
o rrunning

Source

S /usr/hadoop/usr_log/2015/01/23/part-000.txt
S /usr/hadoop/usr_log/2015/01/24/part-000.txt
S /usr/hadoop/usr_log/2015/01/25/part-000.txt
S /usr/hadoop/usr_log/2015/01/26/part-000.txt

source: Source[String] = createSource(batchId =>
TimePathedTextSaurce(

inputPath + inputTimePathPattern + "/x",
dateRangeFrom(batchld))

We have imrPIem_ented most source
https://github.com/LamaBigData/lama-

APls. You can afso custemize yours

Monoid

featureMonoid = Monoid [ImageFeatures] {
zero = ImageFeatures.newBuilder().build()

plus(ml: ImageFeatures, m2: ImageFeatures) = {
(!isNonZero(ml)) {

m2

(!isNonZero(m2)) {
ml

{
(ml.getImageId() != m2.getImageId()) {

CouldNotMergeException(ml.getImageId(), m2.getImageId())

}

ImageFeatures.newBuilder().mergeFrom(ml).mergeFrom(m2).build()

In this example, we tells LAMAhowto reduce iwedmageFeatures protobuf into one.

demo

Store

store: Store[UserInfo, Long] = TextLineStore(outputPath) (

batcher, UserInfoOrder, UserInfoTsvInjection)

S /usr/hadoop/usr_count/2015/01/23/part-000.txt
S /usr/hadoop/usr_count/2015/01/24/part-000.txt
S /usr/hadoop/usr_count/2015/01/25/part-000.txt
S /usr/hadoop/usr_count/2015/01/26/part-000.txt

Note: In our latest LAMA APIs, store has completely replace
source, coz they serves very similar purposes

https://github.com/LamaBigData/lama-
demo

Injection

UserInfoTsvInjection Injection[(UserInfo, Long), String] {
apply(record: (UserInfo, Long)): String = {
(key, value) = record
StringBuilder(key.toString(StringSeparator))
.append(StringSeparator)
.append(value)
.toString

invert(str: String) = Try {
str.split(StringSeparator) {
Array(uid, app, dayId, actions) =>
(UserInfo(uid, app, dayId.toLong), actions.tolLong)

Injection tells LAI\/IA ho to serialize/de- serlal|ze key-value pairs

ps/ ithub. com/Lama igData/lama-
demo

Business Logics

toWords(sentence: String): Array[String] = sentence.tolLowerCase
.replaceAll(" [*a-zA-Z0-9\\s]", " ")

split("\\s+")

filter(s => s != "" && !s(0).isDigit)

jobe=_source
.flatMap { sentenceé =>_toWords(sentence).map(_ —> 1L) }
.sumByKey(store)

Just override the job function to
. https://github.cqm/LamaBigData/lama-
|mplement your own Qussness ?OgICS

Run in Different Platform?

e Batch (Scalding)

WordCountScaldingJob(args: Args)
WordCountJob[Scalding] HTCScaldingJob {

source = Source.text(inputPath)
store =
Store.jdbc[String, Long, (String, Long)](connection, table)

e Streaming (Storm)

WordCountStormJob(args: Args)
WordCountJob[Storm] HTCStormJob {

source = Source.generator(generator)
store =
Storehaus.jdbc[String, Long] (connection, table).fixedStore

How about Google’s DataFlow?

* Google’s DataFlow is a managed batch
+streaming platform?

* Not free
* LAMA supports it too

WordCountDataFlowJob(args: Args)

WordCountJob[Scalding] HTCDataFlowJob {

source = Source.bigQuery(input)
sink = Sink.bigQuery(output, schema)

https://github.com/LamaBigData/lama-
demo

Data Processing Engines

* Streaming

— Storm, Spark streaming

https://github.com/LamaBigData/lama-
demo

Streaming Processing System

* We built a realtime computation system using
Storm
— A distributed realtime computation system

— Simple, fast, scalable, fault-tolerant, and very
reliable

— Throughput up to 1M tuples processed per second
per node

e Events are sent from services through Kafka,
which connects with Storm’s bolts

https://github.com/LamaBigData/lama-
demo

Supported Data Input Channels

Kafka
Kestrel
Flume

Majority of key-value stores, such as
Memcache, Reddis, MangoDB

MySQL

https://github.com/LamaBigData/lama-
demo

Possible Applications

Realtime analytics
Online machine learning
Continuous computation
Distributed ETL

https://github.com/LamaBigData/lama-
demo

Visual Analytics

 Example: Alice is a PM in HTC studio. One day,
it’s urgent for her to get numbers of HTC cell
phones sold in Asian countries in past month.
Alice uses our interactive querying system to
get what she needs by following steps like:
— Write a SQL-like query and execute it in Impala

— Wait for several minutes (just some time for
drinking a cup of coffee)

— See visualized reports in Tableau

Step 1: Write an Impala Query

\f Impala QueryEditor My Queries Saved Queries History

Navigator
) 1 SELECT

Settings 2 country,

3 SUM(distinct device_id)

4 FROM Region_ ASIA
DATABA... ol ? 5 GROUP BY country
default v

m Save as... Explain orcreatea New query

Region_ASIA|

* In this example, | used Apache Hue as an example of query IDE. We can
certainly do the same thing.inJahleau but l.eant access it at the time of writing
the deck. demo

Step 2: Visualize Results in Tableau

= - —_— T
o 5 X Ax O #© ® 1]
Undo Hedo Pause Updates Swap Totals Show Labels View Size Worksheet Export Show Me
Pages JIl Columns Longitude (generated)
) = Rows Latitude (generated)
Filters
Latitude (generated) deviceid
Longitude (generated) 2 T 512,038
Marks
%4 Filled Map v
) A 1%
Color Size Label
Detail Tooltip
&, | SUM(deviceid)
upper(region)

https://github.com/LamaBigData/lama-
demo

Ad-hoc Analytics

* Example: Tom is an engineer in HTC studio.
One day, he came up with an idea of
computing similarity between any two Apps
from logs. By similarity, he means normalized
common #users. Tom implemented his idea
by writing a batch script using Scalding, ran it
on one month of history logs, and visualize his
app network results using D3.js to get high-
level understanding.

App Similarity Network

Overall Network Highlights for one App
(@)
© o
()
. o 0,0 %5
(ONNe) o
O
o ooO O ? @
0 o .
0o © o . O OO O O
e O o o= i O ©
o —£% o)
®Oo o o ° o © o 0°
o) OOZO o)

* . . . H 1
Network graph is VIﬁtl#pas;l);g%(hjuHcsgrqﬁagﬁgEggsData/lama—
demo

Coding Lab

* Demo repository:
— https://github.com/LamaBigData/lama-demo

 Q/A contact:
— Skype account @ LamaBigData

e Lab hour:
— Mon, 1/26, 19:10~21:00

https://github.com/LamaBigData/lama-
demo

Environment Setup

Install Git:

— http://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Install Scala:
— http://scala-lang.org/download/2.10.3.html

Clone the repository:

S git clone https://code.google.com/p/lama-demo-spain

Compile codes

S ./sbt compile

Follow README for the rest

