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Abstract 

 
Innovations in technology and greater affordability of digital devices have presided over 
today’s Age of Big Data, an umbrella term for the explosion in the quantity and diversity 
of high frequency digital data. These data hold the potential—as yet largely untapped—
to allow decision makers to track development progress, improve social protection, and 
understand where existing policies and programmes require adjustment. 
Turning Big Data—call logs, mobile-banking transactions, online user-generated content 
such as blog posts and Tweets, online searches, satellite images, etc.—into actionable 
information requires using computational techniques to unveil trends and patterns within 
and between these extremely large socioeconomic datasets. New insights gleaned from 
such data mining should complement official statistics, survey data, and information 
generated by Early Warning Systems, adding depth and nuances on human behaviours 
and experiences—and doing so in real time, thereby narrowing both information and 
time gaps.  
With the promise come questions about the analytical value and thus policy relevance of 
this data—including concerns over the relevance of the data in developing country 
contexts, its representativeness, its reliability—as well as the overarching privacy issues 
of utilising personal data. This paper does not offer a grand theory of technology-driven 
social change in the Big Data era. Rather it aims to delineate the main concerns and 
challenges raised by “Big Data for Development” as concretely and openly as possible, 
and to suggest ways to address at least a few aspects of each. 

It is important to recognise that Big Data and real-time analytics are no modern panacea 
for age-old development challenges.  That said, the diffusion of data science to the realm 
of international development nevertheless constitutes a genuine opportunity to bring 
powerful new tools to the fight against poverty, hunger and disease. 
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Introduction 
 

Since the turn of the century, innovations in technology and greater affordability of 
digital devices have presided over the “Industrial Revolution of Data,”1 characterised by 
an explosion in the quantity and diversity of real-timei digital data resulting from the 
ever-increasing role of technology in our lives. As a result, we are “entering an 
unprecedented period in history in terms of our ability to learn about human 
behaviour.”2 

What was a hypothesis only a few years ago is today being confirmed by researchers and 
corporations, and has recently received significant coverage in the mainstream media3: 
analysis of this new wealth of digital data—the massive and ever-expanding archive of 
what we say and do using digital devices every day—may reveal remarkable insights into 
the collective behaviour of communities. No less significantly, just as this data is 
generated by people in real time, so it may now be analysed in real time by high 
performance computing networks, thus creating at least the potential for improved 
decision-making.  It is time for the development community and policymakers around the 
world to recognise and seize this historical opportunity to address twenty-first century 
challenges, including the effects of global volatility, climate change, and demographic 
shifts, with twenty-first century tools. 
What exactly is the potential applicability of “Big Data for Development?” At the most 

general level, properly analysed, these new data can provide 
snapshots of the well-being of populations at high frequency, high 
degrees of granularity, and from a wide range of angles, narrowing 
both time and knowledge gaps. Practically, analysing this data may 
help discover what Global Pulse has called “digital smoke 
signals”4—anomalous changes in how communities access 
services, that may serve as proxy indicators of changes in 
underlying well-being. Real-time awareness of the status of a 
population and real-time feedback on the effectiveness of policy 
actions should in turn lead to a more agile and adaptive approach 
to international development, and ultimately, to greater resilience 
and better outcomes. 

Big Data for Development is about turning imperfect, complex, often unstructured data 
into actionable information. This implies leveraging advanced computational tools (such 
as machine learning), which have developed in other fields, to reveal trends and 
correlations within and across large data sets that would otherwise remain undiscovered. 
Above all, it requires human expertise and perspectives. Application of these approaches 
to development raises great expectations, as well as questions and concerns, chief of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
i	  For the purposes of this paper, as discussed in Section 1.2, real time data is defined as “data that (1) 
covers/is relevant to a relatively short and recent period of time—such as the average price of a commodity 
over a few days rather than a few weeks, and (2) is made available within a timeframe that allows action to 
be taken that may affect the conditions reflected in the data”. The definition of “real time” is contextual: 
real time in the realm of fiber optics is not the same as in the realm of public policy.	  

“The hope is that as you take the economic pulse in real time, you will be able to respond to anomalies more quickly.” 
- Hal Varian, Google Chief Economist (Professor Emeritus, University of California, Berkeley) 

Big data for 
development is 
about turning 
imperfect, 
complex, often 
unstructured 
data into 
actionable 
information.	  
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which is the analytical value – and thus ultimately the policy relevance – of big data to 
address development challenges.  

These must be discussed in a very open manner to ensure that there are no 
misunderstandings about what and how real-time data analytics can offer the field global 
development, and what it cannot.  
This paper outlines the opportunities and challenges, which have guided the United 
Nations Global Pulse initiative since its inception in 2009. The paper builds on some of 
the most recent findings in the field of data science, and findings from our own 
collaborative research projects. It does not aim to cover the entire spectrum of challenges 
nor to offer definitive answers to those it addresses, but to serve as a reference for further 
reflection and discussion. The rest of this document is organised as follows: section one 
lays out the vision that underpins Big Data for Development; section two discusses the 
main challenges it raises; section three discusses its application. The concluding section 
examines options and priorities for the future.  
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Section 1: Opportunity 
 

1.1. Data Intent and Capacity 

The Data Revolution 

The world is experiencing a data revolution, or “data deluge” (Figure 1).5 Whereas in 
previous generations, a relatively small volume of analog data was produced and made 
available through a limited number of channels, today a massive amount of data is 
regularly being generated and flowing from various sources, through different channels, 
every minute in today’s Digital Age.6 It is the speed and frequency with which data is 
emitted and transmitted on the one hand, and the rise in the number and variety of 
sources from which it emanates on the other hand, that jointly constitute the data deluge. 
The amount of available digital data at the global level grew from 150 exabytes in 2005 
to 1200 exabytes in 2010.7 It is projected to increase by 40% annually in the next few 
years, 8 which is about 40 times the much-debated growth of the world’s population.9 
This rate of growth means that the stock of digital data is expected to increase 44 times 
between 2007 and 2020, doubling every 20 months.ii  

Figure 1: The Early Years of the Data Revolution 

	  

Source: The Economist, based on IDC data 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
ii	  In September 2008, the “Jerusalem Declaration” stated: “We are entering the era of a high rate of 
production of information of physical, biological, environmental, social and economic systems. The 
recording, accessing, data mining and dissemination of this information affect in a crucial way the 
progress of knowledge of mankind in the next years. Scientists should design, explore and validate 
protocols for the access and use of this information able to maximize the access and freedom of research 
and meanwhile protect and respect the private nature of part of it.”(..) “several scientific disciplines once 
characterized by a low rate of data production have recently become disciplines with a huge rate of data 
production. Today a huge amount of data easily accessible in electronic form is produced by both research 
and, more generally, human activity.” 
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The revolution has various features and implications. The stock of available data gets 
younger and younger, i.e. the share of data that is “less than a minute old” (or a day, or a 
week, or any other time benchmark) rises by the minute.iii Further, a large and increasing 
percentage of this data is both produced and made available real-time (which is a related 
but different phenomenon).iv The nature of the information is also changing, notably with 
the rise of social media and the spread of services offered via mobile phones. The bulk of 
this information can be called “data exhaust,” in other words, “the digitally trackable or 
storable actions, choices, and preferences that people generate as they go about their 
daily lives.”10 At any point in time and space, such data may be available for thousands 
of individuals, providing an opportunity to figuratively take the pulse of communities. 
The significance of these features is worth re-emphasising: this revolution is extremely 
recent (less than one decade old), extremely rapid (the growth is exponential), and 
immensely consequential for society, perhaps especially for developing countries. 

Relevance to the Developing World 

The data revolution is not restricted to the industrialised world; it is also happening 
in developing countries—and increasingly so. The spread of mobile-phone technology to 
the hands of billions of individuals over the past decade might be the single most 
significant change that has affected developing countries since the decolonisation 
movement and the Green Revolution. Worldwide, there were over five billion mobile 
phones in use in 2010, and of those, over 80% in developing countries. That number 
continues to grow quickly, as analysts at the GSM Association/Wireless Intelligence 
predict six billion connections worldwide by the middle of 2012. The trend is especially 
impressive in Sub-Saharan Africa, where mobile phone technology has been used as a 
substitute for usually weak telecommunication and transport infrastructure as well as 
underdeveloped financial and banking systems.v 

Across the developing world, mobile phones are routinely used not only for personal 
communications, but also to transfer money, to search for work, to buy and sell goods, or 
transfer data such as grades, test results, stock levels and prices of various commodities, 
medical information, etc. (For example, popular mobile services such as Cell Bazaar in 
Bangladesh allow customers to buy and sell products, SoukTel in the Middle East offers 
an SMS-based job-matching service, and the M-PESA mobile-banking service in Kenya 
allows individuals to make payments to banks, or to individuals.) In many instances, 
mobile services have outpaced the growth and availability of their traditional 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
iii	  As demographic theory shows, a population whose rate of growth has risen, as in the case of digital data, 
will eventually get younger for several years, and the process will continue if the rate of growth continues 
to increase; nonetheless a population of data will always be older than a population of humans subject to 
the same birth rate because the life expectancy of digital data is much higher than that of any human 
population.  
iv	  Conceptually, not all newly produced data is real-time data as defined above and in section 1.2. For 
example, if all historical vital statistics records of the world were all of a sudden made available digitally, 
these newly produced digital data would obviously not be real-time data. In practice, it is the case that a 
large share of newly produced digital data tends to be high frequency.	  
v	  For example, mobile phone penetration, measured by the number of mobile phones per 100 habitants, was 
96% in Botswana, 63% in Ghana, 66% in Mauritania, 49% in Kenya, 47% in Nigeria, 44% in Angola, 40% 
in Tanzania, etc. <http://www.google.com/fusiontables/Home/> (Source: Google Fusion Tables)	  
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counterparts. According to  Gavin Krugel, director of mobile banking strategy at GSM 
Association, an industry group of 800+ wireless operators, “one billion consumers in the 
world have a mobile phone but no access to a bank account”. 11 Further, “about 40 
million people worldwide use mobile money, and the industry is growing. (...) Africa and 
Asia are the most active regions right now [with] 18,000 new mobile banking users per 
day in Uganda, 15,000 in Tanzania and 11,000 in Kenya.”  

Other real-time information streams are also growing in developing regions. While 
Internet traffic is expected to grow 25-30% between 2011 and 2015 in North America, 
Western Europe and Japan, the figure is expected to reach or surpass 50% in Latin 
America, the Middle East and Africa (Figure 2)12—and the bulk will come from mobile 
devices. There has also been a rise in local call-in radio shows, information hotlines and 
kiosks—such as Question Box or UNICEF’s “Digital Drum”vi—that allow populations in 
remote areas to seek answers on issues ranging from agriculture, health, and education to 
business advice and entertainment, providing a window on the interests and concerns of 
information seekers whose location, age and gender are generally recorded. 
The use of social media such as Facebook and Twitter is also growing rapidly; in 
Senegal, for example, Facebook receives about 100,000 new users per month.13 Tracking 
trends in online news or social media can provide information on emerging concerns and 
patterns at the local level which can be highly relevant to global development. 
Furthermore, programme participation metrics collected by UN agencies and other 
development organisations providing services to vulnerable populations is another 
promising source of real-time data, particularly in cases where there is an Information 
and Communications Technology (ICT) component of service delivery and digital 
records are generated.  

Figure 2: Global Internet usage by 2015 
 

 

 

 

 

 

 

 

                     Source: The Atlantic, “ Global Internet Traffic Expected to Quadruple by 2015.” 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
vi	  Question Box is a pilot initiative that helps people find answers to everyday questions through hotlines, 
SMS, and kiosks (http://questionbox.org/). UNICEF’s Digital Drum is a solar powered computer kiosk 
(http://is.gd/gVepRP)	  
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Although the data revolution is unfolding around the world in different ways and with 
different speeds, the digital divide is closing faster than many had anticipated even a few 
years ago. Furthermore, in countries with weak institutional capacities, the data 
revolution may be especially relevant to supplement limited and often unreliable data. 
Increasingly, Big Data is recognised as creating “new possibilities for international 
development.”14 But data is a raw good that would be of little use without both “intent 
and capacity”15 to make sense of it.  

Intent in an Age of Growing Volatility 

There is a general perception that our world has become more volatile, increasing the 
risk of severe hardship for vulnerable communities. Fluctuations in economic 
conditions—harvests, prices, employment, capital flows, etc.—are certainly not new, but 
it seems that our global economic system may have become more prone to large and 
swift swings in the past few years. 

The most commonly mentioned drivers are financial and climatologic 
shocks in a context of greater interconnection.16 In the last five years 
alone, a series of crises have unfolded17 with the food and fuel crisis 
of 2007 to 2008 followed by the ‘Great Recession’ that started in 
2008. By the second half of 2011 the world economy entered yet 
another period of turmoil with a famine in the Horn of Africa and 
significant financial instability in Europe and the United States. 
Global volatility is unlikely to abate: according to the OECD, 
“[d]isruptive shocks to the global economy are likely to become more 
frequent and cause greater economic and societal hardship. The 
economic spill-over effect of events like the financial crisis or a 
potential pandemic will grow due to the increasing interconnectivity 
of the global economy and speed with which people, goods and data 
travel”.18 For many households in developing countries, food price 
volatility—even more than price spikes—is the most severe 
challenge.19 

For all this interconnectivity, local impacts may not be 
immediately visible and trackable, but may be both severe and long lasting. A rich 
literature on vulnerability20 has highlighted the long-term impact of shocks on poor 
communities. Children who are forced to drop out of school may never go back or catch 
up; households forced to sell their productive assets or flee face a significant risk of 
falling back or deeper into poverty; undernourished infants and foetuses exposed to acute 
maternal malnutrition may never fully recover21—or worse die.22 These processes often 
unfold beneath the radar of traditional monitoring systems. By the time hard evidence 
finds its way to the front pages of newspapers and the desks of decision makers, it is 
often too late or extremely expensive to respond. The main triggers will often be 
known—a drought, rising temperatures, floods, a global oil or financial shock, armed 
conflict—but even with sufficient macro-level contextual information it is hard to 
distinguish which groups are affected, where, when, and how badly.  
Policymakers have become increasingly aware of the costs of this growing volatility; 
they know the simple fact that it is easier and less costly to prevent damages or to keep 

By the time 
hard evidence 
finds its way 
to the front 
pages of 
newspapers 
and the desks 
of decision 
makers, it is 
often too late 
or extremely 
expensive to 
respond. 
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them at a minimum than to reverse them. These arguments have been ringing in their ears 
in recent years as the words volatility, vulnerability, fragility and austerity have made 
headlines.  
Various existing Early Warning Systemsvii do help raise flags in the international 
community, but their coverage is limited (with a heavy focus on food security in rural 
areas) and they are expensive to scale. Some are also plagued with design and 
implementation problems.viii Survey data also provide important insights, but such data 
takes time to be collected, processed, verified, and eventually published. Surveys are too 
cumbersome and expensive to scale up to the point that they can function as an effective 
and proactive solution. These “traditional data” (which, for the purpose of this paper, 
refers to official statistics and survey data) will continue to generate relevant information, 
but the digital data revolution presents a tremendous opportunity to gain richer, deeper 
insights into human experience that can complement the development indicators that are 
already collected. 

Meanwhile, examples of the private sector successfully embracing Big Data analyticsix 
and a growing volume of reports and discourse emphasising the promise of real-time 
data, and “data-driven decision-making” forwarded by leading institutes, institutions and 
media—from the World Economic Forum to the McKinsey Institute23 to the New York 
Times—have begun to make their way into the public sector discourse.  
Civil society organisations have also showed their eagerness to embrace more agile 
approaches to leveraging real-time digital data. This is evidenced by the growing role of 
‘crowdsourcing’x and other “participatory sensing”24 efforts bringing together 
communities of practice and like-minded individuals through the use of mobile phones 
and other platforms including Internet, hand-held radio, and geospatial technologies etc.xi 
In many cases, these initiatives involve multiple partners from various fields in what 
constitutes a novel way of doing business. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
vii	  A mapping conducted by Global Pulse found 39 such systems in operation in the UN system alone.	  
viii Reasons include their focus on climate-related shocks as a criterion for geographical coverage, lack of 
consistency of definitions, and lag in reporting. See in particular: WFP and UNICEF. Food and Nutrition 
Security Monitoring and Analysis Systems: A Review of Five Countries (Madagascar, Malawi, Nepal, and 
Zambia). Rep. UN Global Pulse, Dec, 2011. <http://www.unglobalpulse.org/projects/rivaf-research-study-
impact-global-economic-and-financial-crisis-vulnerable-people-five-cou>  
ix	  For example MIT Professor Erik Brynjolfsson’s research found significant differences in the data 
payoff—a 5 percent gap in productivity considered to be a decisive advantage—enjoyed by companies 
relying on “data-driven decision-making processes” on the one hand and those that continue to rely 
primarily on “experience and intuition” on the other hand. Source: Lohr, Steve. “When There’s No Such 
Ting as Too Much Information.” The New York Times. 23 Apr. 2011. 
<http://www.nytimes.com/2011/04/24/business/24unboxed.html?_r=1&src=tptw> 
x	  The word “crowdsourcing” refers to the use of non-official actors (“the crowd”) as (free) sources of 
information, knowledge and services, in reference and opposition to the commercial practice of 
outsourcing. " 
xi	  Examples of such initiatives and approaches include Crisismappers, Ushahidi and participatory sensing. 
For additional information details, see “Crisis Mappers Net—The international Network of Crisis 
Mappers.”  <http://crisismappers.net>, http://haiti.ushahidi.com and Goldman et al., 2009 
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Slowly, governments the world over are realising the power of Big Data. Some choose 
conservative paths for managing the data deluge, involving crackdowns and strict 
controls (which will likely prove unsustainable), while others will devise institutional 
frameworks and support innovative initiatives, such as open data movements, that will 
help leverage its power for the common good.xii  
Finally, many other applications in the social sciences have also strengthened the case for 
embracing Big Data for Development, as mentioned above and discussed in greater detail 
below.  

It is the double recognition of the promise of the data revolution and the need for better, 
faster information in an age of growing global volatility that led the leaders of the G20 
and the UN Secretary-General to call for the establishment of 
the Global Pulse initiative (in the wake of the on-going 
Global Economic Crisis), with the aim of developing of a 
new approach to “social impact monitoring” and behavioural 
analysis by building on new sources of data and new 
analytical tools.  

Beyond the availability of raw data alone, and beyond the 
intent to utilize it, there needs to be capacity to understand 
and use data effectively. In the words of Stanford Professor 
Andreas Weigend, “data is the new oil; like oil, it must be 
refined before it can be used.”25 

Big Data for Development: Getting Started 

"Big Data" is a popular phrase used to describe a massive volume of both structured and 
unstructured data that is so large that it's difficult to process with traditional database and 
software techniques. The characteristics which broadly distinguish Big Data are 
sometimes called the “3 V’s”: more volume, more variety and higher rates of velocity.  
This data comes from everywhere: sensors used to gather climate information, posts to 
social media sites, digital pictures and videos posted online, transaction records of online 
purchases, and from cell phone GPS signals to name a few. This data is known as "Big 
Data" because, as the term suggests, it is huge in both scope and power. 
To illustrate how Big Data might be applicable to a development context, imagine a 
hypothetical household living in the outskirts of a medium-size city a few hours 
from the capital in a developing country. The head of household is a mechanic who 
owns a small garage. His wife cultivates vegetables and raises a few sheep on their plot 
of land as well as sews and sells drapes in town. They have four children aged 6 to 18. 
Over the past couple of months, they have faced soaring commodity prices, particularly 
food and fuel. Let us consider their options.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xii	  Several governments, for example, have already taken significant steps to make government data open 
and available for analysis and use. Countries from regions across the globe – from Kenya to Norway, Brazil 
to South Korea, and international institutions like the World Bank – have begun adopting norms to 
standardize and publish datasets. See “Open Data Sites.” < http://www.data.gov/opendatasites/> for a 
sample of existing sites and datasets.  
	  

…Big Data analytics 
refers to tools and 

methodologies that 
aim to transform 

massive quantities of 
raw data into “data 

about data” – for 
analytical purposes. 
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The couple could certainly reduce their expenses on food by switching to cheaper 
alternatives, buying in bulk, or simply skipping meals. They could also get part of their 
food at a nearby World Food Programme distribution center. To reduce other expenses, 
the father could start working earlier in the morning in order to finish his day before 
nightfall to lower his electricity bill. The mother could work longer hours and go to town 
everyday to sell her drapes, rather than twice a week. They could also choose to top-off 
their mobile phone SIM cards in smaller increments instead of purchasing credit in larger 
sums and less-frequent intervals. The mother could withdraw from the savings 
accumulated through a mobile phone-based banking service which she uses. 
If things get worse they might be forced to sell pieces of the garage equipment or a few 
sheep, or default on their microfinance loan repayment. They might opt to call relatives in 
Europe for financial support. They might opt to temporarily take their youngest child out 
of school to save on tuitions fees, school supplies and bus tickets. Over time, if the 
situation does not improve, their younger children may show signs of anaemia, prompting 
them to call a health hotline to seek advice, while their elder son might do online 
searches, or vent about his frustration on social media at the local cybercafé. Local aid 
workers and journalists may also report on increased hardships online. 
Such a systemic—as opposed to idiosyncratic—shock will prompt dozens, hundreds 
or thousands of households and individuals to react in roughly similar ways.26 Over 
time, these collective changes in behaviour may show up in different digital data sources. 
Take this series of hypothetical scenarios, for instance: 

(1) The incumbent local mobile operator may see many subscribers shift from adding 
an average denomination of $10 on their SIM-cards on the first day of the month 
to a pattern of only topping off $1 every few days; The data may also show a 
concomitant significant drop in calls and an increase in the use of text messages; 

(2) Mobile banking service providers may notice that subscribers are depleting their 
mobile money savings accounts; A few weeks into this trend, there may be an 
increase in defaults on mobile repayments of microloans in larger numbers than 
ever before; 

(3) The following month, the carrier-supported mobile trading network might record 
three times as many attempts to sell livestock as is typical for the season.  

(4) Health hotlines might see increased volumes of calls reporting symptoms 
consistent with the health impacts of malnutrition and unsafe water sources; 

(5) Other sources may also pick up changes consistent with the scenario laid out 
above. For example, the number of Tweets mentioning the difficulty to “afford 
food” might begin to rise. Newspapers may be publishing stories about rising 
infant mortality; 

(6) Satellite imaging may show a decrease in the movement of cars and trucks 
travelling in and out of the city’s largest market;  

(7) WFP might record that it serves twice as many meals a day than it did during the 
same period one year before. UNICEF also holds daily data that may indicate that 
school attendance has dropped. 
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The list goes on.  
This example touches on some of the opportunities available for harnessing the power of 
real-time, digital data for development. But, let us delve a little deeper into what the 
relevant characteristics, sources, and categories of Big Data, which could be useful for 
global development in practice, might be.  
Big Data for the purposes of development relates to, but differs from, both ‘traditional 
development data’ (e.g. survey data, official statistics), and what the private sector and 
mainstream media call ‘Big Data’ in a number of ways.  

For example, microfinance data (e.g. number and characteristics of clients, loan amounts 
and types, repayment defaults) falls somewhere between ‘traditional development data’ 
and ‘Big Data.’ It is similar to ‘traditional development data’ because the nature of the 
information is important for development experts. Given the expansion of mobile and 
online platforms for giving and receiving microloans means that today a large amount of 
microfinance data is available digitally and can be analysed in real time, thus qualifying it 
to be considered Big Data for Development.  
At the other end of the spectrum, we might include Twitter data, mobile phone data, 
online queries, etc. These types of data can firmly be called ‘Big Data’, as popularly 
defined (massive amounts of digital data passively generated at high frequency). And, 
while these streams of information may not have traditionally been used in the field of 
development, but they could prove to be very useful indicators of human well-being. 
Therefore, we would consider them to be relevant Big Data sources for development.  
Big Data for Development sources generally share some or all of these features:  

(1) Digitally generated – i.e. the data are created digitally (as opposed to being 
digitised manually), and can be stored using a series of ones and zeros, and thus 
can be manipulated by computers.  

(2) Passively produced – a by product of our daily lives or interaction with digital 
services  

(3) Automatically collected – i.e. there is a system in place that extracts and stores 
the relevant data as it is generated 

(4) Geographically or temporally trackable – e.g. mobile phone location data or 
call duration time.  

(5) Continuously analysed – i.e. information is relevant to human well-being and 
development and can be analysed in real-time 

It is important to distinguish that for the purposes of global development, “real-time” 
does not always mean occurring immediately. Rather,  “real-time” can be understood as 
information which is produced and made available in a relatively short and relevant 
period of time, and information which is made available within a timeframe that allows 
action to be taken in response i.e. creating a feedback loop.xiii Importantly, it is the 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xiii	  “A feedback loop involves four distinct stages. First comes the data: A behaviour must be measured, 
captured and stored. This is the evidence stage. Second, the information must be relayed to the individual, 
not in the raw-data form in which it was captured but in a context that makes it emotionally resonant. This 
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intrinsic time dimensionality of the data, and that of the feedback loop that jointly define 
its characteristic as real-time. (One could also add that the real-time nature of the data is 
ultimately contingent on the analysis being conducted in real-time, and by extension, 
where action is required, used in real-time.) 

With respect to spatial granularity, finer is not necessarily better. Village or community 
level data may in some cases be preferable to household or individual level data because 
it can provide richer insights and better protect privacy. As per the time dimensionality, 
any immediacy benchmark is difficult to set precisely, and will become out-dated, as 
higher frequency data are made available in greater volumes and with a higher degree of 
immediacy in the next few years. It must also be noted that real-time is an attribute that 
doesn’t last long: sooner or later, it becomes contextual, i.e. non-actionable data. These 
include data made available on the spot about average rainfalls or prices, or phone calls 
made over a relatively long period of time in the past (even a few months), as well as the 
vast majority of official statistics—such as GDP, or employment data. 

Without getting too caught up in semantics at length, it is important to recognise that Big 
Data for Development is an evolving and expanding universe best conceptualised in 
terms of continuum and relativeness.  
For purposes of discussion, Global Pulse has developed a loose taxonomy of types of 
new, digital data sources that are relevant to global development:  

 
(1) Data Exhaust – passively collected transactional data from people’s use of digital 

services like mobile phones, purchases, web searches, etc., and/or operational 
metrics and other real-time data collected by UN agencies, NGOs and other aid 
organisations to monitor their projects and programmes (e.g. stock levels, school 
attendance); these digital services create networked sensors of human behaviour;  

(2) Online Information – web content such as news media and social media 
interactions (e.g. blogs, Twitter), news articles obituaries, e-commerce, job 
postings; this approach considers web usage and content as a sensor of human 
intent, sentiments, perceptions, and want.  

(3) Physical Sensors – satellite or infrared imagery of changing landscapes, traffic 
patterns, light emissions, urban development and topographic changes, etc; this 
approach focuses on remote sensing of changes in human activity  

(4) Citizen Reporting or Crowd-sourced Data – Information actively produced or 
submitted by citizens through mobile phone-based surveys, hotlines, user-
generated maps, etc; While not passively produced, this is a key information 
source for verification and feedback  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
is the relevance stage. But even compelling information is useless if we don’t know what to make of it, so 
we need a third stage: consequence. The information must illuminate one or more paths ahead. And finally, 
the fourth stage: action. There must be a clear moment when the individual can recalibrate a behaviour, 
make a choice and act. Then that action is measured, and the feedback loop can run once more, every 
action stimulating new behaviours that inch us closer to our goals.” Goetz, Thomas. “Harnessing the Power 
of Feedback Loops.” Wired.com. Conde Nast Digital, 19 June 2011. 
<http://www.wired.com/magazine/2011/06/ff_feedbackloop/all/1>.	  
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Yet another perspective breaks down the types of data that might be relevant to 
international development by how it is produced or made available: by individuals, by the 
public/development sector, or by the private sector (Figure 3). 
 

Figure 3: “Understanding the Dynamics of the Data Ecosystem” 
 
 
 
 
 
 
 
 
 
 
 
 

The new data ecosystem, as illustrated by the World Economic Forum, which we are in today includes 
various data types, incentives, and requirements of actors. Source: WEF White Paper, “Big Data, Big 

Impact: New Possibilities for International Development”  
http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_Briefing_2012.pdf	  

 

Capacity: Big Data Analytics 

The expansion of technical capacity to make sense of Big Data in various sectors and 
academia abounds. Initially developed in such fields as computational biology, 
biomedical engineering, medicine, and electronics, Big Data analytics refers to tools and 
methodologies that aim to transform massive quantities of raw data into “data about the 
data”—for analytical purposes. They typically rely on powerful algorithms that are able 
to detect patterns, trends, and correlations over various time horizons in the data, but also 
on advanced visualization techniques as “sense-making tools.”27 Once trained (which 
involves having training data), algorithms can help make predictions that can be used to 
detect anomalies in the form of large deviations from the expected trends or relations in 
the data.  
Discovering patterns and trends in the data from the observation and juxtaposition of 
different kinds of information requires defining a common framework for information 
processing. At minimum, there needs to be a simple lexicon that will help tag each 
datum. This lexicon would specify the following: 

(1) What: i.e. the type of information contained in the data,  
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(2) Who: the observer or reporter,  
(3) How: the channel through which the data was acquired,  
(4) How much: whether the data is quantitative or qualitative, 
(5) Where and when: the spatio-temporal granularity of the data—i.e. the level of 

geographic disaggregation (province, village, or household) and the interval at 
which data is collected. 

Then, the data that will eventually lend itself to analysis needs to be adequately prepared. 
This step may include: 

(1) Filtering—i.e. keeping instances and observations of relevance and getting rid of 
irrelevant pieces of information 

(2) Summarising—i.e. extracting keyword or set of keywords from a text 
(3) Categorising, and/or turning the raw data into an appropriate set of indicators—

i.e. assigning a qualitative attribute to each observation when relevant—such as 
‘negative’ vs. ‘positive’ comments, for instance. Yet another option is simply to 
calculate indicators from quantitative data such as growth rates of price indices 
(i.e. inflation).  

Once the data is ready to be analysed, data analytics per se imply letting powerful 
algorithms and computational tools dive into the data. A characteristic of these 
algorithms is their ability to adapt their parameters in response to new streams of data by 
creating algorithms of their own to take care of parts of the data. This is necessary 
because these advanced models—non-linear models with many heterogeneous interacting 
elements—require more data to calibrate them with a data-driven approach.28  

This intensive mining of socioeconomic data, known as “reality mining,”29 can shed light 
on processes and interactions in the data that would not have appeared otherwise. Reality 
mining can be done in three main ways:42 

(1) “Continuous data analysis over streaming data,” using tools to scrape the Web to 
monitor and analyse high-frequency online data streams, including uncertain, 
inexact data. Examples include systematically gathering online product prices in 
real-time for analysis.  

(2) “Online digestion of semi-structured data and unstructured ones” such as news 
items, product reviews etc., to shed light on hot topics, perceptions, needs and 
wants.  

(3)  “Real-time correlation of streaming data (fast stream) with slowly accessible 
historical data repositories.” This terminology refers to “mechanisms for 
correlating and integrating real-time (fast streams) with historical records…in 
order to deliver a contextualised and personalised information space [that adds] 
considerable value to the data, by providing (historical) context to new data.”30 

Big Data for Development could use all three techniques to various degrees depending on 
the availability of data and the specific needs. 
 
Further, an important feature of Big Data analytics is the role of visualisation, which can 
provide new perspectives on findings that would otherwise be difficult to grasp. For 
example, “word clouds” (Figure 4), which are a set of words that have appeared in a 
certain body of text – such as blogs, news articles or speeches, for example – are a simple 



	   19	  

and common example of the use of visualisation, or “information design,” to unearth 
trends and convey information contained in a dataset, but there exist many alternatives to 
word clouds (Figure 5).xiv 

Figure 4: A word cloud of this paper 
 

 

 

 

 

 

 

 

 
                  Source: The full text of this paper; world cloud created using www.Wordle.net 

 
Figure 5: Data Visualization of the Global Legal Timber Trade 

 
Graphic designer Paul Butt created a data visualization that shows the top five timber exporting countries 

of the world, and maps out the countries to which the timber is sold, and at what cost. 

Source: http://awesome.good.is/transparency/web/1102/timber-trade/flat.html 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xiv	  Global Pulse has been working with the global community, Vizualizing.org to explore different styles 
and methods for data visualization and information design. See “Data Channels, UN Global Pulse.”  
<http://www.visualizing.org/data/channels/un-global-pulse.> 
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1.2 Social Science and Policy Applications 

A Growing Body of Evidence 

There is already evidence of the power of data analytics beyond the fields of hard 
sciences and business. In the field of social science and public policy it is the predictive 
power of the data that has attracted the most attention, as academic teams across the 
world are discovering the insights on human behaviour that can be gleaned from these 
data.  
For example, a team of physicists from Northeastern University conducted a study in 
which they were able to predict, with over 93% accuracy, where a person is physically 
located at any given time based on analysis of cell-phone information generated from 
their past movements.31 Another two-year research effort provided evidence of the power 
of mobile phones as sensors and predictors of human behaviour, prompting the academic 
Dr. Alex Pentland of the Massachusetts Institute of Technology, who led the initiative, to 
conclude: “phones can know.”32 Mobile phones give researchers the ability to “quantify 
human movement on a scale that wasn’t possible before,” including to “detect changes 
from standard commuting patterns” based on their radius of gyration after losing a job. 33  

It has also been found that a country’s GDP could be estimated in real time by measuring 
light emissions at night through remote sensing.34 

Another well-known example is Google Flu Trends, a tool launched in 2008 based on the 
prevalence of Google queries for flu-like symptoms. A research paper35 found that 
“because the relative frequency of certain queries is highly correlated with the 
percentage of physician visits in which a patient presents with influenza-like symptoms,” 
it was possible to “accurately estimate the current level of weekly influenza activity in 
each region of the United States, with a reporting lag of about one day.” The conclusion 
was that it is “possible to use search queries to detect influenza epidemics in areas with a 
large population of web search users.” When applied to public health, online data has 
been used as part of syndromic surveillance efforts also known as infodemiology.36 
According to the US Center for Disease Control and Prevention (CDC), mining vast 
quantities of health-related online data can help detect disease outbreaks “before 
confirmed diagnoses or laboratory confirmation.”37 Google Dengue Trends works in the 
exact same way, and has shown similar promise (Figure 6). 
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Figure 6: Screen Shot of Google Dengue Trend Website 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: http://www.google.org/denguetrends/about/how.html 

Twitter may serve a similar purpose. Computer scientists at John Hopkins University 
analysed over 1.6 million health-related tweets (out of over 2 billion) posted in the US 
between May 2009 and October 2010 using a sophisticated proprietary algorithm and 
found a 0.958 correlation between the flu rate they modelled based on their data and the 
official flu rate (Figure 7).38 

The prevalence and spread of other types of health conditions and ailments in a 
community can also be analysed via Twitter data, including obesity and cancer.39 
Information about Twitter users' location that they provide publicly can be used to study 
the geographic spread of a disease or virus, as evidenced by a study of the H1N1 
epidemic in the US.40  
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Figure 7: Twitter-based vs. Official Influenza Rate in the U.S. 
  

Source: « You Are What You Tweet: Analyzing Twitter for Public Health. M. J. Paul and M. Dredze, 
2011. http://www.cs.jhu.edu/%7Empaul/files/2011.icwsm.twitter_health.pdf 

Note: “Influenza rate from August 2009 to October 2010 as measured by CDC FluView (measured as 
percentage of specimen’s that tested positive for influenza) and ATAM+’s “flu” ailment (the normalised 

probability of the “flu” ailment given the week): correlation coefficient of 0.958.” (p. 4)	  

 
Another application for which Twitter is especially suited is to provide richer information 
on health-related behaviours, perceptions, concerns, and beliefs. Important sociological 
insights were gleaned from the John Hopkins study. These included detailed information 
about the use and misuse of medication (such as self-prescribed antibiotics to treat the 
flu, which are by nature irrelevant, and other over-the-counter misuse) and exercise 
routines among various socioeconomic groups—relevant for both research and policy. 
Still in the realm of social media, a study showed that Facebook updates, photos and 
posts could help identify drinking problems among college students, a major public 
health concern.41 An important difference between Twitter and Facebook is, of course, 
the fact that the latter is a closed network, whereas the vast majority of tweets are public, 
thus theoretically (but not necessarily) accessible for analysis. 

Other data streams can also be brought in or layered against social media data, notably to 
provide geographical information: the Healthmap project, for example, compiles 
disparate data from online news, eyewitness reports and expert-curated discussions, as 
well as validated official reports, to “achieve a unified and comprehensive view of the 
current global state of infectious diseases” that can be visualised on a map.42 In the 
words of one of its creators, “[i]t’s really taking the local-weather forecast idea and 

!
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making it applicable to disease.”43 This may help communities prepare for outbreaks as 
they do for storms.  

Another example of the use of new data for policy purposes was Ushahidi’sxv use of 
crowdsourcing following the earthquake that devastated Haiti, where a centralised text 
messaging system was set up to allow cell-phone users to report on people trapped under 
damaged buildings. Analysis of the data found that the concentration of aggregated text 
messages was highly correlated with areas where the damaged buildings were 
concentrated.xvi According to Ushahidi’s Patrick Meier these results were evidence of the 
system’s ability to “predict, with surprisingly high accuracy and statistical significance, 
the location and extent of structural damage post-earthquake." 	  
	  

This section has aimed to illustrate how leveraging Big Data for Development can reduce 
human inputs and time-lags in production, collection, and transmission of information, 
and allow for more onus to be placed on analysis and interpretation, and making 
informed and effective evidence-based decisions from the data.  

With all this available data, a growing body of evidence, and all the existing 
technological and analytical capacity to use it, the question must be asked: why hasn’t  
Big Data for Development taken hold as a common practice ? 
The answer is because it is not easy. Section 2 turns to the challenges with using Big Data 
for Development. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xv	  Ushahidi is a nonprofit tech company that was developed to map reports of violence in Kenya following 
the 2007 post-election fallout. Ushahidi specializes in developing “free and open source software for 
information collection, visualization and interactive mapping.” <http://ushahidi.com> 
xvi	  Conducted by the European Commission's Joint Research Center against data on damaged buildings 
collected by the World Bank and the UN from satellite images through spatial statistical techniques.	  
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Section II: Challenges 
 

Applying Big Data analytics to the fuel of development faces several challenges. Some 
relate to the data—including its acquisition and sharing, and the overarching concern 
over privacy. Others pertain to its analysis. This section discusses the most salient of the 
challenges (recognising that there are others).  
 

2.1 Data 

Privacy 

Privacy is the most sensitive issue, with conceptual, legal, and technological 
implications. In its narrow sense, privacy is defined by the International 
Telecommunications Union as the “right of individuals to control or influence what 
information related to them may be disclosed.” Privacy can also be understood in a 

broader sense as encompassing that of companies 
wishing to protect their competitiveness and 
consumers and states eager to preserve their 
sovereignty and citizens. In both these 
interpretations, privacy is an overarching concern 
that has a wide range of implications for anyone 
wishing to explore the use of Big Data for 
development—vis-à-vis data acquisition, storage, 
retention, use and presentation.  

Privacy is a fundamental human right that has both intrinsic and instrumental values. Two 
authors, Helbing and Balietti44, stress the necessity to ensure an appropriate level of 
privacy for individuals, companies and societies at large. In their words, “a modern 
society needs [privacy] in order to flourish.”45 Without privacy, safety, diversity, 
pluralism, innovation, our basic freedoms are at risk. Importantly, these risks concern 
even individuals who have “nothing to hide.”46 There is no need to expand at length on 
the importance and sensitivity of information for corporations and states. 
Focusing on individual privacy, it is likely that, in many cases, the primary producers—
i.e. the users of services and devices generating data—are unaware that they are doing so, 
and/or what it can be used for. For example, people routinely consent to the collection 
and use of web-generated data by simply ticking a box without fully realising how their 
data might be used or misused.47 It is also unclear whether bloggers and Twitter users, for 
instance, actually consent to their data being analysed.48 In addition, recent research 
showing that it was possible to ‘de-anonymise’ previously anonymised datasets raises 
concerns.49 

The wealth of individual-level information that Google, Facebook, and a few mobile 
phone and credit card companies would jointly hold if they ever were to pool their 
information is in itself concerning. Because privacy is a pillar of democracy, we must 
remain alert to the possibility that it might be compromised by the rise of new 

Because privacy is a pillar of 
democracy, we must remain 
alert to the possibility that it 
might be compromised by the 
rise of new technologies, and put 
in place all necessary safeguards.  
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technologies, and put in place all necessary safeguards.  

Access and Sharing 

Although much of the publicly available online data (data from the “open web”) has 
potential value for development, there is a great deal more valuable data that is 
closely held by corporations and is not accessible for the purposes described in this 
paper. One challenge is the reluctance of private companies and other institutions to 
share data about their clients and users, as well as about their own operations. Obstacles 
may include legal or reputational considerations, a need to protect their competitiveness, 
a culture of secrecy, and, more broadly, the absence of the right incentive and 
information structures. There are also institutional and technical challenges—when data 
is stored in places and ways that make it difficult to be accessed, transferred, etc. (For 
example, MIT professor Nathan Eagle often anecdotally describes how he spent weeks in 
the basements of mobile-phone companies in Africa searching through hundreds of boxes 
filled with magnetic back-up tapes to gather data. An Indonesian mobile carrier estimated 
that it would take up to half a day of work to extract one day’s worth of backup data 
currently stored on magnetic tapes.50) Even within the UN system it can prove difficult to 
get agencies to share their programme data, for a combination of some or all of reasons 
listed above.  
Engaging with appropriate partners in the public and private sectors to access non-public 
data entails putting in place non-trivial legal arrangements in order to secure (1) reliable 
access to data streams and (2) get access to back up data for retrospective analysis and 
data training purposes. There are other technical challenges of inter-comparability of data 
and inter-operability of systems, but these might be relatively less problematic to deal 
with than getting formal access or agreement on licensing issues around data. 
For Big Data for Development to gain traction, these are serious, make-or-break 
challenges. Any initiative in the field ought to fully recognise the salience of the privacy 
issues and the importance of handling data in ways that ensure that privacy is not 
compromised. These concerns must nurture and shape on-going debates around data 
privacy in the digital age in a constructive manner in order to devise strong principles and 
strict rules—backed by adequate tools and systems—to ensure “privacy-preserving 
analysis.”51 

At the same time, the promise will not be fulfilled if institutions—primarily private 
corporations—refuse to share data altogether. In light of these necessities, Global Pulse, 
for instance, is putting forth the concept of “data philanthropy,”52 whereby 
“corporations [would] take the initiative to anonymize (strip out all personal 
information) their data sets and provide this data to social innovators to mine the data 
for insights, patterns and trends in realtime or near realtime.”53 Whether the concept of 
data philanthropy takes hold or not, it certainly points to the challenges and avenues for 
consideration in the future (Figure 8), and we can expect to see further refinements and 
alternative models proposed for how to deal with privacy, and data share. 
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Figure 8: Future challenges for social science data 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Source: “Ensuring the Data-Rich Future of the Social Sciences”. Gary King, Science Magazine, Vol. 331, 
11 February 2011. 

http://gking.harvard.edu/files/datarich.pdf 
 

 

2.2 Analysis 

Working with new data sources brings about a number of analytical challenges. The 
relevance and severity of those challenges will vary depending on the type of analysis 
being conducted, and on the type of decisions that the data might eventually inform. The 
question “what is the data really telling us?” is at the core of any social science research 
and evidence-based policymaking, but there is a general perception that “new” digital 
data sources poses specific, more acute challenges. It is thus essential that these concerns 
be spelled out in a fully transparent manner. The challenges are intertwined and difficult 
to consider in isolation, but for the sake of clarity, they can be split into three distinct 
categories: (1) getting the picture right, i.e. summarising the data (2) interpreting, or 
making sense of the data through inferences, and (3) defining and detecting anomalies.54 

 

!
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Getting the Picture Right 

One is reminded of Plato’s allegory of the cave: the data, as the shadows of objects 
passing in front of the fire, is all the analyst sees.55 But how accurate a reflection is the 
data? Sometimes the data might simply be false, fabricated. 
For example, unverified citizen reporters or bloggers could be publishing false 
information.xvii Individuals speaking under their actual identity—citizen reporters, 
bloggers, even journalists—may also fabricate or falsify facts. External actors or factors 
might interfere in ways that could make data paint a misleading picture of reality. For 
example, “if SMS streams are used to try to measure public violence […] the 
perpetrators will be actively trying to suppress reporting, and so the SMS streams will 
not just measure where the cell phones are, they'll measure where the cell phones that 
perpetrators can't suppress are. We'll have many more "false negative”xviii zones where 
there seems to be no violence, but there's simply no SMS traffic. And we'll have dense, 
highly duplicated reports of visible events where there are many observers and little 
attempt to suppress texting.”56 In all of these cases there is a willingness to alter the 
perception of reality that the observer will get out of the data. This challenge is probably 
most salient with unstructured user-generated text-based data (such as blogs, news, social 
media messages, etc.) because of its relatively more spontaneous nature and looser 
verification steps.  
In addition, a significant share of the new, digital data sources which make up Big Data 
are derived from people’s own perceptions—information extracted from calls to health 
hotlines and online searches for symptoms of diseases, for example. Perceptions differ 
from feelings in that they are supposed to convey objective facts—such as health 
symptoms. But perceptions can be inaccurate and thus misleading. 

A good example is Google Flu Trends, whose ability to “detect influenza epidemics in 
areas with a large population of web search users” was previously discussed. A team of 
medical experts compared data from Google Flu Trends from 2003 to 2008 with data 
from two distinct surveillance networksxix and found that while Google Flu Trends did a 
very good job at predicting nonspecific respiratory illnesses (bad colds and other 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xvii	  For example, Tom MacMaster, a Scotland-based heterosexual male caused quite the controversy during 
the 2011 Arab Spring when he regularly posted blogposts on the web in the persona of a lesbian woman in 
Syria. The blog, “A Gay Girl in Damascus,” managed to gather a growing following as MacMaster 
published regularly between February and June, until it was revealed that the blog was a hoax. The incident 
raised or intensified concerns about unverified user-generated information. While Tom MacMaster claimed 
he used the hypothetical persona to try to illuminate the events in the Middle East for a western audience, 
any reader would have been ultimately relying on fabricated information. Addley, Esther. “Syrian lesbian 
blogger is revealed conclusively to be a married man.” The Guardian.  12 Jun. 2011 
<http://www.guardian.co.uk/world/2011/jun/13/syrian-lesbian-blogger-tom-macmaster> 
xviii	  False negatives refer to cases where some event of interest fails to be noticed.  
xix	  The CDC's influenza-like-illness surveillance network reporting the proportion of people who visit a 
physician with flu-like symptoms (fever, fatigue and cough) and the CDC's virologic surveillance system 
reporting on the proportion of people who visit a physician and actually have lab-confirmed influenza Liu, 
Bing “Sentiment Analysis and Subjectivity.” Handbook of Natural Language Processing 2 (2010): 1-38. 
Department of Computer Science at the University of Illinois at Chicago. 
<http://www.cs.uic.edu/~liub/FBS/NLP-handbook-sentiment-analysis.pdf> 
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infections like SARS) that seem like the flu, it did not predict actual flu very well. The 
mismatch was due to the presence of infections causing symptoms that resemble those of 
influenza, and the fact that influenza is not always associated with influenza-like 
symptoms. According to one of the researchers, “[t]his year, up to 40% of people with 
pandemic flu did not have ‘influenza-like illness’ because they did not have a fever (…) 
Influenza-like illness is neither sensitive nor specific for influenza virus activity—it's a 
good proxy, it's a very useful public-health surveillance system, but it is not as accurate 
as actual nationwide specimens positive for influenza virus." This mismatch may have 
important policy implications. Doctors using Google Flu Trends may overstock on flu 
vaccines or be inclined to conclude that the flu-like symptoms of their patients are 
attributable to influenza, even when they are not. Similar caveats apply to the analysis of 
Tweets or calls to health hotlines.  

Another challenge relates to sentiment analysis (or opinion mining). The term refers to 
“the computational study of opinions, sentiments and emotions expressed in text”57 that 
aims at “translating the vagaries of human emotion into hard data.”58 Scraping blogs and 
other social media content has become a common undertaking of corporations and 
academic researchers. Sentiment analysis aims at finding out and quantifying whether, 
how many, and how strongly people are happy vs. unhappy, pessimistic vs. optimistic, 
what they like or dislike, support or reject, fear or look forward to something—and any 
“shades of grey” in between.  

Difficulties in conducting sentiment analysis can be organised in various ways.59 One 
perspective distinguishes challenges related to “conceptualisation” (i.e. defining 
categories, clusters), “measurement” (i.e. assigning categories and clusters to 
unstructured data, or vice-versa) and “verification” (i.e. assess how well steps 1 and 2 
fare in extracting relevant information). Another focuses on the main challenges of 
selecting “target documents,” “identifying the overall sentiment expressed” in the target 
documents, and lastly “present[ing] these sentiments […] in some reasonable summary 
fashion.”xx 

Overall, the fundamental challenge is getting to the true intent of a statement, in terms of 
polarity, intensity, etc. Many obstacles may impede this, from the use of slang, local 
dialect, sarcasm, hyperboles, and irony, to the absence of any key words. These are, in a 
sense, technical or measurement challenges that become easier to handle as the degree of 
sophistication of sentiment analysis algorithms improves. But the conceptualisation and 
classification phase of any analysis which is to be conducted is non-trivial. This implies 
deciding, for instance, whether what matters is frequency or presence of key word(s). 
Thus, the human analyst’s input is critical. Classification is “one of the most central and 
generic of all our conceptual exercises. […] Without classification, there could be no 
advanced conceptualization, reasoning, language, data analysis, or, for that matter, 
social science research.”60 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xx	  Options considered include “(a) aggregation of “votes” that may be registered on different scales (e.g., 
one reviewer uses a star system, but another uses letter grades), (b) selective highlighting of some opinions 
(c) representation of points of disagreement and points of consensus (d) identification of communities of 
opinion holders (e) accounting for different levels of authority among opinion holders.” (Source: Pang and 
Lee, 2008.) 
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Text mining goes beyond sentiment analysis to the extraction of key words or events. It 
may involve scraping websites for facts such as deaths, job announcements or losses, 
foreclosures, weddings, and financial difficulties, etc. The difficulty here, again, is 
extracting the true significance of the statements in which these facts are reported. For 
example, if our hypothetical couple’s son reports having lost “a” job (possibly out of two 
or more), it is different from having lost one’s only job (just like losing a part-time job is 
different from losing a full-time job). Text mining may also involve looking for trending 
topics in online news and other publications. This type of analyses—text categorisation—
is technically relatively easier to conduct, but aggregating topics within larger clusters 
also requires inputs from the analyst.  

A somewhat different problem is the fact that a significant share of new, digital data 
sources are based on expressed intentions as revealed through blogposts, online searches, 
or mobile-phone based information systems for checking market prices, etc., which may 
be a poor indicator of actual intentions and ultimate decisions. An individual searching 
for information about or discussing “moving to the UK” may have no intention of 
moving to the UK at all, or may not follow through on his/her intentions even if he or she 
initially did.  
These examples are meant to illustrate just some of the difficulties in summarising facts 
from user-generated text; the line between reported feelings and facts may not be as easy 
to distinguish as it may seem—because “facts all come with points of view.”61 With an 
understanding of the kinds of issues related to the ‘accuracy’ of the variety of new digital 
data sources that make up “Big Data,” let us now turn to the challenge of interpretation. 

Interpreting Data 

In contrast to user-generated text, as described in the section above, some digital data 
sources—transactional records, such as the number of microfinance loan defaults, 
number of text messages sent, or number of mobile-phone based food vouchers 
activated—are as close as it gets to indisputable, hard data. But whether or not the data 
under consideration is thought to be accurate, interpreting it is never straightforward.  
A frequently voiced concern is the sampling selection bias, i.e. the fact that the people 
who use mobile or other digital services (and thus generate the real-time digital data 
being considered for analysis) are not a representative sample of the larger population 
considered. Cell-phones, computers, food vouchers, or microfinance products, are neither 
used at random nor used by the entire population. Depending on the type of data, one can 
expect younger or older, wealthier or poorer, more males than females, and educated or 
uneducated individuals, to account for a disproportionate share of producers.xxi  

For instance, “[c]hances are that older adults are not searching in Google in the same 
proportion as a younger, more Internet-bound, generation."62It is the combination of the 
self-selection of individuals with specific attributes and the fact that these attributes affect 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xxi	  Note that the fact that some respondents in a representative sample may yield more data points than 
others does not jeopardize the representativeness of the sample—once will simply infer that the same 
behavior will appear in the larger population within which the sample was drawn.  
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their behaviours in other ways that causes the bias.xxii There are other practical reasons 
why the sample may be non-representative. For example, it could be that only data for 
one mobile phone companies is available for analysis. The resulting sample will most 
likely be non-representative of either the population of mobile-phone holders or of the 
population of the area. More traditional datasets are generally less subject to such a 
bias.xxiii  

The problem with findings based on non-representative samples is that they lack external 
validity.xxiv They cannot be generalised beyond the sample. Suppose that, in the village 
where our hypothetical household lives, the number of cases of cholera reported through 
a mobile-phone hotline doubles in a week following a rise in temperature. Because the 
sample is not representative—since individuals using cell-phones tend to have specific 
characteristics—one cannot infer that there are twice as many cases of cholera in the 
entire community,xxv nor that in general a rise in temperature leads to more cases of 
cholera. But while findings based on non-representative datasets need to be treated with 
caution, they are not valueless—as discussed in section three. 
Further, with massive quantities of data there is a risk of focusing exclusively on finding 
patterns or correlations and subsequently rushing to judgements without a solid 
understanding of the deeper dynamics at play. Such a wealth of data “tempts some 
researchers to believe that they can see everything at a 30,000-foot view. It is the kind of 
data that encourages the practice of apophenia: seeing patterns where none actually 
exist, simply because massive quantities of data can offer connections that radiate in all 
directions.”63 It also “intensifies the search for interesting correlations”64, which might 
be (mis)interpreted as causal relationships.  
The latter tendency is problematic with any type of data, but new data sources—

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xxii	  Importantly, the sampling bias issue is only about the sample—i.e. the individuals who are observed—
not about the type or number of ‘data’ they generate. Some individuals may generate many more 
observations (such as phone calls, or visits to clinics) than others but as long as the difference is not due to 
any other measurement problems—and the sample is representative—the data is unbiased. 
xxiii	  This can be avoided in one of three ways: one is obviously to ensure complete coverage of the unit of 
analysis, another is to observe or survey individuals truly at random on a sufficiently–large scale. For 
instance, random samples can be constructed using a computer that ‘picks up’ some individual specific 
numbers at random and a (less rigorous way) third way is to purposefully ‘build’ a representative sample 
ex-ante or ex-post. The latter technique is used by pollsters who ‘redress’ the results obtained from a 
sample thought to be non-representative by using ‘weights’ 
xxiv	  The term ‘validity’ refers to the degree to which a conclusion or inference accurately describes a real-
world process. It is standard to contrast internal versus external validity. The former refers to “the 
approximate truth about inferences regarding cause-effect or causal relationships.” In other words, the 
extent to which a study demonstrates the existence of a causal relationship. The latter refers to the degree to 
which an internally valid conclusion can be generalised to a different setting. A causal relationship is 
different from a causal effect, which is the quantifiable difference between two potential outcomes if some 
initial condition changed. For the purposes of this paper, internal validity is understood to encompass the 
extent to which the existence of some recurrent pattern in the data—a stylised fact, a correlation—can be 
established. (Sources: King, Gary and Powell, Eleanor. “How Not to Lie Without Statistics.” Harvard 
University. National Science Foundation (2008) <http://gking.harvard.edu/files/mist.pdf>) and “Internal 
Validity.” Research Methods Knowledge Base. <http://www.socialresearchmethods.net/kb/intval.php>) 
xxv	  Some may treat this as an internal validity problem but it is only because they wrongfully confound the 
sample and the larger unit of analysis it is drawn from.	  
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particularly social media, crowd-sourced information, or other user-created content—may 
pose specific challenges. Considering the claims of Ushahidi in Haiti after the 
earthquake. A prominent ICT4D blogger, Jim Fruchterman65 discussed the problems with 
drawing the types of conclusions that Ushahidi’s staff had drawn on the basis of crowd-
reported information. As he explains: 	  

[t]he correlation found in Haiti is an example of a "confounding factor." A 
correlation was found between building damage and SMS streams, but only 
because both were correlated with the simple existence of buildings. Thus the 
correlation between the SMS feed and the building damage is 
an artifact or spurious correlation…once you control for the presence of any 
buildings (damaged or undamaged), the text message stream seems to have a 
weak negative correlation with the presence of damaged buildings. That is, the 
presence of text messages suggests there are fewer (not more) damaged buildings 
in a particular area.xxvi 	  

According to Fruchterman and his colleagues, the Ushahidi system’s apparent ability to 
“predict (…) the location and extent of structural damage post-earthquake” simply 
reflected this spurious correlation, which was so strong that it more than offset the actual 
negative correlation between the number of SMS text messages and the damages.xxvii 
Why was that correlation negative? “It may be that people move away from damaged 
buildings (perhaps to places where humanitarian assistance is being given) before 
texting.” This would explain, all other things being equal, the underreporting of damages 
in places worst hit.  

Importantly, this example actually illustrates two very different analytical issues. One is 
the presence of a confounding factor.xxviii But higher mortality or departure from the zone 
of interest is a problem of attrition, a form of selection bias (not related to the initial 
sample) that undermines internal validity (not external as in the case of a sampling bias). 	  

There are many other cases where correlations should not be misinterpreted as 
causations. Google Correlate, for example, is a tool that helps identify best-fit 
correlations between two sets of terms in online searches patterns. Playing with the tool 
revealed a 0.9 (90%) fit between the terms “weight gain” and “apartments for rent” in US 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xxvi	  Jim Fruchterman provided two additional examples of spurious correlations are their implications for 
policy: “Children's reading skill is strongly correlated with their shoe size -- because older kids have 
bigger feet and tend to read better. You wouldn't measure all the shoes in a classroom to evaluate the kids' 
reading ability. Locations with high rates of drowning deaths are correlated with locations with high rates 
of ice cream sales because people tend to eat ice cream and swim when they're at leisure in hot places with 
water, like swimming pools and seasides. If we care about preventing drowning deaths, we don't set up a 
system to monitor ice cream vendors.” 
xxvii	  In other words, when the number of buildings was not controlled for, its effect was then picked up by 
(added to) the effect the number of texts from or about these buildings, turning the ‘true’ negative 
correlation into an overall strong, statistically significant positive correlation. 
xxviii	  Clearly, this is not a sampling bias problem, because the dependent variable (the number of buildings 
that actually collapsed) is observed for all observations in the data, not just for a sample. At the same time, 
the realization that internal validity—i.e. the ability to infer the existence of a causal relation—is 
compromised does prevent generalization—i.e. negates the possibility of external validity: internal validity 
is a necessary but insufficient condition of external validity. 
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searches since 2004 (Figure 9). It is unclear how one could cause the other. 
 

Figure 9: Correlation Does Not Mean Causation 
 

 

 

 

Source: Google Correlate 

The problems highlighted here can have serious policy implications since 
“[m]isunderstanding relationships in data (…) can lead to choosing less effective, more 
expensive data instead of choosing obvious, more accurate starting points.” In the 
Ushahidi case, Fruchterman argued, “if decision makers simply had a map [of pre-
earthquake buildings] they could have made better decisions more quickly, more 
accurately, and with less complication.”xxix	  

Another temptation when faced with the availability of massive amounts of disparate data 
is to throw in a large number of controls in regression analysis to find ‘true’ relationships 
in the data. Doing so can strengthen the analysis’ internal validity by ‘netting out’ of the 
effects of other endogenous factors on the dependent variable, but it brings about several 
potential challenges. First, it downplays the fact that combining data from multiple 
sources may also mean “magnifying”66 their flaws. If the results are contingent on factors 
specific to the unit of analysis, they also become hard to generalise to other settings with 
vastly different mean values of the included controls: external validity is then weakened. 
There is another econometric downside to throwing in a large number of controls 
indiscriminately. If many of them are correlated, the resulting multicollinearity will lead 
to non-unique parameter fits and more or less arbitrary parameter choices, meaning that 
the results may be misleading. This suggests that theory and context matter even (or, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xxix	  Note that the ‘causal link’ in question does not imply that text messages ‘cause’ actual damage, but that 
more texts mean more damage because of the features of the system.	  
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especially) with large amounts of data. 
Transposing insights gleaned from static analysis across time and space is also a 
challenge. Imagine that the prevalence of the phrase “runny nose” in Google searches 
doubles over a week. Most data is subject to a confirmation or ‘mimicking’ bias creating 
a ‘self-fulfilling prophecy’ similar to the case of inflation: if the rise is widely covered in 
the media, it is possible that more people will search for these terms. Various other events 
may affect people’s incentive to search for “runny nose”: if a cholera epidemic broke out, 
flu symptoms would become less of a concern. Conversely if the epidemic was brought 
under control, people may suddenly become more concerned about runny noses.xxx In 
other words, “Google's data are likely to be sensitive to factors that modify human 
behaviour but which are not related to true disease rate” as noted by Elena Naumova, 
Director of Tufts University Initiative for the Forecasting and Modeling of Infectious 
Diseases67 The same observation applies to other data streams—hotlines, purchases, 
Twitter, other user-generated content, etc. In addition, individuals being ‘surveyed’ in 
new data streams are usually different between two points in time—imagine how the 
population of a large university town changes in the summer—such that changes in 
behaviours may simply reflect this. 
The challenge here lies partly in the fact that (as discussed in the previous section) a 
significant share of the new data sources in question reflects perceptions, intentions, and 
desires. Understanding the mechanisms by which people express perceptions, intentions 
and desires—as well as how they differ between region or linguistic culture, and change 
over time—is hard. Other difficulties clearly find their root in the samples. Both internal 
and external validities can be threatened, depending on the exact set up and question. It 
can be difficult to establish a form of causality for a given area between two points in 
time, or for two different areas at a given point in time. Even once this is established, 
such that internal validity is ensured, the difficulty is to transpose the insight(s) to either a 
different point in time, or a different area, which relates to external validity. 
Above and beyond simply determining accuracy, these are just some of the key 
challenges associated with trying to draw valid inferences and conclusions from certain 
types of digital data sources. It should be clear that while some of these challenges are 
specific to dealing with new digital data sources, most are pervasive in social science and 
policymaking relying on any data. 

As discussed in section three, the best remedy is to rely on analysts who are fully aware 
of these limitations and keep the claims and decisions made on the basis of the data 
within acceptable boundaries—which are wide enough. 
 

Defining and Detecting Anomalies in Human Ecosystems 

An overarching challenge when attempting to measure or detect anomalies in 
human ecosystems is the characterization of (ab)normality. The nature and detection 
of what may constitute socioeconomic ‘anomalies’ differ—indeed may be less clear-
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xxx	  This observation echoes that made in Solzhenitsyn's “One Day in the Life of Denis Denisovich,” where 
his hero realizes that whenever his situation improves along some dimension, he notices a problem that had 
until then been hidden, concealed, by the graver concern.	  
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cut—from those in the realm of disease outbreak detection or malfunction monitoring in 
other types of dynamic systems (such as car engines). Even within a well-specified 
human ecosystem—a village or a household—it is difficult to determine precisely ex ante 
a set of ‘outputs’ to be expected from a given set of inputs: adaptive and agile systems 
such as human groups will produce ‘anomalies’ provided the model forecasting expected 
behaviours or outputs is excessively stringent.  

Human organs function in a similar way: a well-functioning heart beats irregularly; a 
heart that beats with a steady regularity is a heart that is most likely about to fail precisely 
because it signals the cardiac system’s inability to adapt. These elements suggest the need 
to develop methodologies to characterise and detect socioeconomic anomalies in context. 

Several examples point to the challenges of sensitivity versus specificity of monitoring 
systems. Sensitivity refers to the ability of a monitoring system to detect all cases it is set 
up to detect while specificity refers to its ability to detect only relevant cases. Failures to 
achieve the latter yields “Type I decision error”, also known as “false positive”; failures 
to achieve the former “Type II error”xxxi, or “false negative.” Both errors are undesirable 
when attempting to detect malfunctions or anomalies, however defined, for different 
reasons. False positives undermine the credibility of the system while false negatives cast 
doubt on its relevance.  

But whether false negatives are more or less problematic than false positives depends on 
what is being monitored, and why it is being monitored.  

 
Recognizing these challenges, the final section discusses the specific application of Big 
Data for the field of global development.  
	  

	  

	  

	  

	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xxxi	  Conducting repeated tests on a dynamic system with a very low probability of making a type I error “in 
any single trip” (or any single day) has a substantial probability of leading to such an error at least once 
after n trips (or tries). In contrast, a system that would have an unrealistically high probability of making a 
type II error (missing an actual problem) in any given trip has a very low probability of missing a problem 
after n trips for any N sufficiently large. Under all realistic scenarios, a malfunction will eventually be 
detected, such that in most cases “it would seem prudent to balance the probability of making type I and II 
errors in favor of reducing the chances of Type I errors” (Source: Box, George, Spencer Graves, Soren 
Bisgaard, John Van Gilder, Ken Marko, John James, Mark Poublon and Frank Fodale. “Detecting 
Malfunctions in Dynamic Systems.” Center for Quality and Productivity Improvement (1999): 1-10. 
University of Wisconsin, Mar. 1999 (p. 4).) 
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Section III: Application 
Big Data is not perfect—no data is—but it holds a tremendous wealth of information. 
Further, as this paper argues, the relevance of Big Data for global development hinges 
primarily on the type of analysis it is subjected to and the use that is made of the resulting 
information. 

  
3.1 What New Data Streams Bring to the Table  

Know Your Data 
A fundamental misconception of both its strongest advocates and fiercest sceptics is 
that Big Data is expected to be—or contain—the answer to all human problems. 
Advocates may hastily and blindly jump into the data without further consideration, 
fuelling the criticisms of the sceptics already prone to discard Big Data on the sole basis 
of its imperfection. “New,” “Big,” “official” or “traditional”: data is data. It has its flaws 
and its value. New, digital data sources considered relevant for the purposes of this 
paper—i.e. Big Data for Development—are certainly not perfect data, but their value is 
tremendous if they are both properly understood and analysed.  

There are certainly flaws in new data streams—in particular about their reliability, 
accuracy and representativeness—but these are not crippling provided they are 
understood. Certainly, some online user-created content will indeed be fakes or hoaxes. 
But these have plagued public debates—think of the Timisoara scandal68 some 20 years 
ago—way before the advent of the Internet and social media. Importantly, the power of 
technology and social media cuts both ways: “what's new about the world of social 
media is the speed with which information can be disseminated, questioned, and, where 
necessary, debunked.”69 Some media organizations, such as the BBC, stand by the utility 
of citizen reporting of current events: “there are many brave people out there, and some 
of them are prolific bloggers and Tweeters. We should not ignore the real ones because 
we were fooled by a fake one.”70 And have thus devised internal strategies to confirm the 
veracity of the information they receive and chose to report, offering an example of what 
can be done to mitigate the challenge of false information. At the same time, not all user-
generated content should be taken at face value. The fundamental, and still open-ended, 
question is: how much user-generated content is fake, or misrepresentative, and how 
much does it alter the overall picture?  
There is also much to be said about data that convey perceptions either explicitly (in 
blogs for example) or implicitly (through online searches or calls to health hotlines, for 
example). Some of these perceptions may be wrong or unwarranted, as previously 
discussed. This does not make them necessarily misleading. In response to its critics, 
Google reasserted that Flu Trends was not designed to monitor confirmed flu infections: 
"If you have a daughter who is ill, you wouldn't be able to tell the difference between flu 
and influenza-like illness when you're searching online," explained Google Flu Trends' 
lead engineer. “And it's just as important to monitor clusters of symptoms as it is to 
monitor specific infections. There are many cases where it makes more sense to look at 
the clinical [data] in combination with the virologic [data] in order to get a full picture 



	   36	  

of what's going on.” Thus Google Flu Trends might provide some unique advantages 
precisely because it is perception-based, and broad—provided the information it contains 
is not misinterpreted. Only those who wrongfully assume that the data is an accurate 
picture of reality can be deceived. Furthermore, there are instances where wrong 
perceptions are precisely what is desirable to monitor because they might determine 
collective behaviours in ways that can have catastrophic effects. For example, if HIV 
positive males in a community spread the word that having sex with a virgin will cure 
them, it is essential to pick up these signals as early as possible and act to counter the 
misinformation. Similarly, picking up reports coming from a community that aliens are 
invading from space is valuable to anticipate and 
manage the potential reaction by a panicked 
population. The point is that perceptions can also 
shape reality. Detecting and understanding 
perceptions quickly can help change outcomes. 

Signals emanating from non-representative samples 
can also be informative. The sampling selection bias 
can clearly be a challenge, especially in regions or 
communities where technological penetration is low. 
But this does not mean that the data has no value. For 
one, data from “non-representative” samples (such as 
mobile phone users) provide representative information about the sample itself—and do 
so in close to real time and on a potentially large and growing scale, such that the 
challenge will become less and less salient as technology spreads across and within 
developing countries.  

There have even been instances where the sample selection bias can be useful: for 
example, researchers from MIT’s Billion Prices Project found that the few retailers in 
Latin America use websites to advertise—definitely a non-representative sample—raise 
their online prices two to three weeks before price increases hit the physical market, 
because they know that their wealthier customer base (online shoppoers) can absorb the 
shock.71 In all cases, being aware of the potential bias and understanding its likely 
implication when considering the data should help avoid most of the associated pitfalls 
including unwarranted generalisations. 

The promise of Big Data for Development is, and will be, best fulfilled when its 
limitations, biases, and ultimately features, are adequately understood and taken 
into account when interpreting the data. As some of the examples discussed in this 
paper demonstrate, any challenge with utilizing Big Data source of information cannot be 
assessed divorced from the intended use of the information. These new, digital data 
sources may not be the best suited to conduct airtight scientific analysis, but they have a 
huge potential for a whole range of other applications that can greatly affect development 
outcomes.  

Applications of Big Data for Development  

A much-debated avenue is finding correlations and stylised facts in large datasets. 
Section two laid out some of the challenges and risks associated with rushing to find and 
interpret correlations. Yet, if done correctly, finding correlations is “enough to do 
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interesting things”.72 Observing that X and Y are consistently correlated in a given setting 
is useful information to predict what Y may look like if X is known, and vice-versa. In 
other words X and Y can be used as proxy indicators, even if no causality is claimed. As 
noted by Google Chief Economist Hal Varian, “even if all you have got is a 
contemporaneous correlation, you’ve got a 6-week lead on the reported values. The hope 
is that as you take the economic pulse in real time, you will be able to respond to 
anomalies more quickly”. 73 

The temptation to find any correlations in big datasets must certainly be kept in check to 
avoid misinterpretations and abuses, but there are many cases where correlations are 
relevant. In some cases, new data sources may mirror official statistics, offering cheaper 
and faster proxies. For example, as noted above, MIT researchers have been estimating 
inflation by collecting and analysing the daily price of goods sold or advertised on the 
web with impressive accuracy.74 The key value-add of this method is that online prices 
can be obtained daily whilst consumer price indices in most countries are only published 
on a monthly basis. Thus, this approach may help detect inflation spikes sooner than 
traditional methods, or offer new insights into the transmission of price fluctuations to 
various goods and areas. 
Beyond correlations, analysing large quantities of data can help unveil stylised facts—i.e. 
broadly recurring behaviours and patterns. Stylised facts should not be considered as laws 
that would always hold true, but they give a sense of the likelihood that some deviation 
from the trend may occur. As such, they form the basis of anomaly detection. When it 
comes to defining and detecting anomalies, important and promising work is being done. 

For example, researchers at the International Food Policy Research Institute (IFPRI) have 
developed a methodology to detect “excessive food price volatility, (…) i.e. a period of 
time in which a large number of extreme positive returns” usually defined as a value of 
return that is exceeded with low probability: 5% or 1%)75 in order to “determine 
appropriate country- level food security responses, such as the release of physical food 
stocks.” Similar methods can be applied to the detection of anomalies in how community 
members use their cell-phones, sell their livestock, etc.  
Access to large-scale sources of real time data can help save lives. The United States 
Geological Survey (USGS) has developed a system that monitors Twitter for significant 
spikes in the volume of messages about earthquakes.76 Location information is then 
extracted and passed on to USGS’s team of seismologists to verify that an earthquake 
occurred, locate its epicentre and quantify its magnitude. As it turns out, 90% of the 
reports that trigger an alert have turned out to be valid. Similarly, a recent retrospective 
analysis of the 2010 cholera outbreak in Haiti conducted by researchers at Harvard and 
MIT demonstrated that mining Twitter and online news reports could have provided 
health officials a highly accurate indication of the actual spread of the disease with two 
weeks lead time.77  
Further, as various examples have shown, it is not just the size and speed but also 
the nature, the richness of the information that many new data streams contain that 
has great value. In many cases Big Data for Development is not meant to replace or act 
as a proxy for official statistics, but to complement them by adding depth and nuance, as 
in the aforementioned John Hopkins study showed. Indeed, even in the field of 
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syndromic surveillance, experts agree that new data streams—Tweets in that case—are 
“not accurate enough to replace traditional methods” of sentinel surveillance.78 But the 
same experts add: “[t]here is a lot of potential to learn so much about people that they 
don’t share with their doctors.” The more qualitative social media information helps 
paint a picture that quickly reacts to changing conditions. In turn, all of this information 
can be factored in to affect these very same conditions in a much more agile way.  

It is clear from these examples that it is the combination of the size, speed, and nature of 
the data that is highly valuable to affect certain outcomes.  

A recent joint research project between Global Pulse and social media analysis firm 
Crimson Hexagon analysed over 14 million Tweets related to food, fuel, and housing in 
the US and Indonesia, to better understand people’s concerns.79 The research analysed 
trends in these topics in conjunction with themes such as “afford,” showing how the 
volume and topics of the conversations changed over time reflecting populations’ 
concerns. Interestingly, changes in the number of Tweets mentioning the price of rice and 
actual food price inflation (official statistics) in Indonesia proved to be closely correlated 
(Figure 9). Another collaborative research project between Global Pulse and the SAS 
Institute analysing unemployment through the lens of social media in the US and Ireland 
revealed that the increases in the volume of employment-related conversations on public 
blogs, online forums and news in Ireland which were characterised by the sentiment 
“confusion” show up three months before official increases in unemployment, while in 
the US conversations about the loss of housing increased two months after 
unemployment spikes (Figure 10).80 Similar research could be conducted in developing 
countries with high Internet penetration, such as Indonesia or Brazil for instance.  

 
Figure 9: Tweets about the price of rice vs. actual price of rice in Indonesia 

 

 
 

 
 
 

 
 

	  

 

Source:	  
http://www.unglobalpulse.org/projects/twitter-and-perceptions-crisis-related-stress	  
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Figure 10: Infographic depicting some of the leading and lagging indicators of 
unemployment spikes, as discovered through a joint SAS-Global Pulse research 

project examining unemployment through the lens of social media 

 

Source: “Can a Country’s Online Mood Predict Unemployment Spikes?” SAS.	  	  
http://www.sas.com/news/preleases/un-sma.html and http://www.unglobalpulse.org/projects/can-social-

media-mining-add-depth-unemployment-statistics 

 

Properly analysed, Big Data offers the opportunity for an improved understanding of 
human behaviour that can support the field of global development in three main ways: 

1) Early warning: early detection of anomalies in how populations use digital devices 
and services can enable faster response in times of crisis; 

2) Real-time awareness: Big Data can paint a fine-grained and current representation 
of reality which can inform the design and targeting of programs and policies; 

3) Real-time feedback: the ability to monitor a population in real time makes it 
possible to understand where policies and programs are failing and make the 
necessary adjustments. 

These applications are highly promising. But, as has been emphasised over and over, 
there is nothing automatic, lest simple, about turning Big Data sources into actionable 
information in development contexts.  

3.2. Making Big Data Work for Development 

Contextualisation is Key 

The examples and arguments presented so far have all underscored the importance of 
contextualisation—understood in two complementary ways. 

1) Data context. Indicators should not be interpreted in isolation. If one is 
concerned with anomaly detection, it is not so much the occurrence of one 
seemingly unusual fact or trend that should be concerning, but that of two, three 
or more;  
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2) Cultural context. Knowing what is “normal” in a country or regional context is 
prerequisite for recognising anomalies. Cultural practices vary widely the world 
over and these differences certainly extend to the digital world. There is a deeply 
ethnographic dimension in using Big Data. Different populations use services in 
different ways, and have different norms about how they communicate publicly 
about their lives.  

Becoming Sophisticated Users of Information 

The critical role of analysts is key at all stages, 
from the choice of taxonomies to the interpretation 
of results when and as appropriate. First and 
foremost, it requires relying on a variety of sources 
of information and assessing them with a critical 
eye. It implies avoiding the pitfalls exposed in the 
previous pages. Jim Fruchterman, in a blog series 
debunking the excessive hype around crowd-
sourcing, acknowledged that while there are risks 
and limitations of crowd-sourced data for decision 
making, there is value in that data – provided that it 
is employed by, what he termed, “sophisticated 
users of information.”81  
In a February 2012 presentation on the topic of 
“Real-Time Awareness,”82 Craig Fugate, 
Administrator of the United States’ Federal Emergency Management Agency (FEMA), 
illustrated what it actually means for a government agency to become a “sophisticated 
user of information.” In 2011, during a series of devastating tornadoes in the American 
mid-west, FEMA began monitoring Twitter and noticed an unusual number of different 
geographical locations being mentioned for tornado damage. Mr. Fugate proposed 
dispatching relief supplies to the long list of locations immediately and received 
pushback from his team who were concerned that they did not yet have an accurate 
estimate of the level of damage. His challenge was to get the staff to understand that the 
priority should be one of changing outcomes, and thus even if half of the supplies 
dispatched were never used and sent back later, there would be no chance of reaching 
communities in need if they were in fact suffering tornado damage already, without 
getting trucks out immediately. He explained, “if you’re waiting to react to the aftermath 
of an event until you have a formal assessment, you’re going to lose 12-to-24 
hours…Perhaps we shouldn’t be waiting for that. Perhaps we should make the 
assumption that if something bad happens, it’s bad. Speed in response is the most 
perishable commodity you have…We looked at social media as the public telling us 
enough information to suggest this was worse than we thought and to make decisions to 
spend [taxpayer] money to get moving without waiting for formal request, without 
waiting for assessments, without waiting to know how bad because we needed to change 
that outcome.” 83 Fugate also emphasised that using social media as an information source 
isn’t a precise science and the response isn’t going to be precise either. “Disasters are 
like horseshoes, hand grenades and thermal nuclear devices, you just need to be close—
preferably more than less,” he said.84 
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His point was that real-time information does not replace the quantitative statistical 
evidence which governments traditionally use for decision making, but if understood 
correctly, it can inform where further targeted investigation is necessary (in less time-
critical situations) or even inform immediate response if necessary (in disaster situations, 
such as tornadoes) and thus change outcomes like nothing else can.  
Abiding by these guiding principles should allow Big Data for Development to meet its 
ultimate objective: to help policymakers and development practitioners gain richer and 
timelier insights on the experiences of vulnerable communities and implement better-
informed and more agile interventions.  
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Concluding Remarks on the Future of Big Data for Development 
Big Data is a sea change that, like nanotechnology and quantum computing, will shape 
the twenty-first century. According to some experts, “[by] employing massive data-
mining, science can be pushed towards a new methodological paradigm which will 
transcend the boundaries between theory and experiment.” Another perspective frames 
this new ability to unveil stylised facts from large datasets as “the fourth paradigm of 
science”.85 

This paper does not claim that Big Data will simply replace the approaches, tools and 
systems that underpin development work. What it does say, however, is that Big Data 
constitutes an historic opportunity to advance our common ability to support and protect 
human communities by understanding the information they increasingly produce in 
digital forms.  
The question is neither “if,” nor “when,” but “how.” 

If we ask how much development work will be transformed in 5 to 10 years as Big Data 
expands into the field, the answer is not straightforward. Big Data will affect 
development work somewhere between significantly and radically, but the exact nature 
and magnitude of the change to come is difficult to project. First, because the new types 
of data that people will produce in ten years is unknown. Second, because the same 
uncertainty holds for computing capacities, given that Moore’s Lawxxxii with certainly not 
hold in an era of quantum computing. Third, because a great deal will depend on the 
future strategic decisions taken by a myriad of actors—chief of which are policymakers. 
Many open questions remain—including the potential misuse of Big Data, because 
information is power.  

If, however, we ask how Big Data for Development can fulfil its immense potential to 
enhance the greater good, then the answer is clearer. What is needed is both intent and 
capacity to be sustained and strengthened, on the basis of a full recognition of the 
opportunities and challenges. Specifically, its success hinges on two main factors. One is 
the level of institutional and financial support from public sector actors, and the 
willingness of private corporations and academic teams to collaborate with them, 
including by sharing data and technology and analytical tools. Two is the development 
and implementation of new norms and ontologies for the responsible use and sharing of 
Big Data for Development, backed by a new institutional architecture and new types of 
partnerships. 

Our hope is that this paper contributes to generating exchanges, debates and interest 
among a wide range of readers to advance Big Data for Development in the twenty-first 
century.  
	  
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
xxxii	  Moore’s Law (an observation made by Intel co-founder Gordon Moore in 1965) predicts that computer 
chips shrink by half in size, and processors double in complexity, every two years. It is often referred to as 
a rule of thumb for understanding exponential improvement; although some argue that the world will soon 
see a period where progress in technology outpaces Moore’s prediction of two-year cycles. 	  
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