
Big data in R

EPIC 2015

Big Data: the new 'The Future'

In which Forbes magazine finds common ground with Nancy Krieger (for the

first time ever?), by arguing the need for theory-driven analysis

This future brings money (?)

• NIH recently (2012) created the BD2K

initiative to advance understanding of disease

through 'big data', whatever that means

The V’s of ‘Big Data’

• Volume

– Tall data

– Wide data

• Variety

– Secondary data

• Velocity

– Real-time data

What is Big? (for this lecture)

• When R doesn’t work for you because you
have too much data

– i.e. High volume, maybe due to the variety of
secondary sources

• What gets more difficult when data is big?

– The data may not load into memory

– Analyzing the data may take a long time

– Visualizations get messy

– Etc.,

How much data can R load?

• R sets a limit on the most memory it will allocate from the operating

system

memory.limit()

?memory.limit

R and SAS with large datasets

• Under the hood:

– R loads all data into memory (by default)

– SAS allocates memory dynamically to keep data

on disk (by default)

– Result: by default, SAS handles very large datasets

better

Changing the limit

• Can use memory.size()to change R’s allocation limit. But…

– Memory limits are dependent on your configuration

• If you're running 32-bit R on any OS, it'll be 2 or 3Gb

• If you're running 64-bit R on a 64-bit OS, the upper limit is

effectively infinite, but…

• …you still shouldn’t load huge datasets into memory

– Virtual memory, swapping, etc.

• Under any circumstances, you cannot have more than (2^31)-1 =

2,147,483,647 rows or columns

• 2GB of memory used by R is not the same as

2GB on disk

– Overhead for R to keep track of your data

– Memory used for analysis, etc.

– Probably not more than about 500MB on disk

What is a 2GB (or 3GB) memory

limit?

Making this number meaningful

data(esoph)

object.size(esoph)

• Download BRFSS as XPT file and unzip to a local file

– URL: http://www.cdc.gov/brfss/annual_data/2013/files/LLCP2013XPT.ZIP

• Now open it using sasxport.get (from Hmisc)

library(Hmisc)

brfss <- sasxport.get(<PATH TO XPT FILE>)

dim(brfss)

object.size(brfss)

http://www.cdc.gov/brfss/annual_data/2013/files/LLCP2013XPT.ZIP
http://www.cdc.gov/brfss/annual_data/2013/files/LLCP2013XPT.ZIP

Too much data?

• Challenge: use logistic regression to look at

whether self-reported race/ethnicity predicts

having a health care plan:

brfss$has_plan <- brfss$hlthpln1 == 1

summary(glm(has_plan ~ as.factor(x.race),

data=brfss, family=binomial))

• This is reasonably quick, at least for me

Too much data?

• Let's look at odds of having a health care plan

by race using epitools:
library(epitools)

oddsratio(brfss$has_plan, as.factor(brfss$x.race))

• I see:
Error in fisher.test(xx) : FEXACT error 40.

Out of workspace.

• But… changing the amount of available

memory does not solve this

Suppose you have too much data…

• If your data is just too big, there are several

things you can do:

– Make the data smaller

– Get a bigger computer

– Access the data differently

– Split up the dataset for analysis

Option 1: Make the data smaller

• The best initial option is often
to ensure you really need to
deal with the problem

• Run your analysis on a slice of
the data – you may get all you
need in order to move forward

• Challenge: can you slice 500
random rows from brfss and
try computing an odds ratio?

Image from

http://localfoods.about.com/od/fishseafood/ss/Slice

Abalone_2.htm

Try a slice first

rows_to_select <- sample(1:nrow(brfss), 500, replace=F)

brfss_sample <- brfss[rows_to_select,]

oddsratio(brfss_sample$has_plan, as.factor(brfss_sample$x.race))

Option 1a: start with smaller data

• If your data come from a

database, you may be able

issuing a SQL query directly

from R to get just the

subset of the data you want.

– Look into the 'RODBC' or

'RMySQL' packages if this is

appropriate for your scenario

– (But I can't demo it without a

DB to connect to)

SQL is the lingua franca of

relational databases

Option 2: Get a bigger computer

• You may be lucky
enough to have budget
for a bigger PC

• More likely, get some
temporary space:

– Use one machine on the
high-performance cluster

– Rent some cloud
computing time (if IRB
allows)

Image from:

http://blog.longnow.org/02010/08/05/mainframe-

dark-age/

Glamorous computing power,

1962 edition

Option 3a: data table rather than data

frame

• data.table package

– Some optimizations to data frame, but slightly

different syntax

brfss_dt <- data.table(brfss)

object.size(brfss_dt)

object.size(brfss)

Option 3b: Buffer the data set on disk

• SAS-style

– ffdf object ff package

– Works a lot like a standard date frame, only

reading in data only on demand

– Quirky with respect to column types – proceed

with caution…

Option 4: split it up

• E.g. with big database.

– Ask for 200 MB of records at a
time

– Analyze each

– Combine the results

– (This is analogous to map-
reduce/split-apply-combine,
which we’ll come back to)

• Can use computing clusters to
parallelize analysis

Split turns out the be the name of a

pretty-looking town in Croatia

http://www.split.info/

What if it’s just painfully slow?

• Sometimes you can
load the data, but
analyzing it is slow

• Two possibilities:

– Might be you don’t have
any memory left

– Or that there’s a lot of
work to do because the
data is big and you’re
doing it over and over

http://whatthehellisrosedoingnow.blogspot.com/201

2/04/weird-extinct-giant-sloth.html

You don’t have to embrace the sloth

If you don’t have any memory left

• Then you really have too much data, you just happen to be able to load it.

– Depending on your analysis, you may be able to create a new dataset

with just the subset you need, then remove the larger dataset from

your memory space.

rows <- [1:500]

columns <- [1:30]

subset <- bigdata[rows, columns]

rm(bigdata)

Image from: http://blog.lib.umn.edu/wlas0006/1001a/2011/10/a-

forgettable-momento.html

Maybe he could have just removed the larger dataset

If you’re doing a lot of computation

• First, profile (i.e. time your code)

• No, seriously: profile first

• It’s never what you think it is. Some examples of
performance issues you might not anticipate:

• Some modeling code defaults to bootstrapping confidence

intervals that you don’t care about with 1000 iterations per model

• You accidentally wrote the code so that it does some slow
operation for every column in your 5000 column dataset, then
selects the column you want rather than does the operation only
on the one you care about

• You so something for every line of your huge data frame and then
combine results using c() or rbind() rather than assigning to a pre-
allocated vector or matrix

Profiling

• Simple profiling

– Option 1:
system.time(<call>)

– Option 2:
start_time <- proc.time()

<call>

proc.time() – start_time

• Note: with option 2, you need to send all three commands to R at once

(i.e. highlight all three). Otherwise you’re including the time it takes to

send the command in your estimate of the time it takes to process it.

Image from :

www.therightperspective.org/2009/07/24/the-racial-

profiling-lie/

Not this kind of profiling

Inexplicable error in option 2

When testing this out, I sometimes saw:
Error: unexpected input in "proc.time() –"

On the second proc.time() call. When I executed the call again, I

didn’t see the error again. If you see this, you can do:

end_time <- proc.time()

end_time – start_time

to compute the elapsed time

Profiling challenge1

Load ggplot and the diamonds dataset. Model price as a function

of color, cut, depth, and clarity. Use system.time to see how long
the regression takes

library(ggplot)

data(diamonds)

system.time(lm(price~color+cut+depth+clarity, data=diamonds))

Note: User/System/Elapsed: when you use system.time, you

mostly just care about elapsed.

Profiling challenge 2

• Now use cut() to create a dichotomous high_price variable
that is true for any diamonds above the median price.

• Use logistic regression to model high_price as a function of
color, cut, depth, and clarity. Use system.time to see how
long the logistic regression takes.

diamonds$high_price <- cut(diamonds$price, 2)

system.time(glm(high_price~color+cut+depth+clarity,

 data=diamonds, family="binomial"))

• How does logistic regression compare to linear regression?

Another profiling example

• Do some operation on every row using apply (which
pre-allocates memory):

start_time <- proc.time()

apply(diamonds, 1, function(row) { row['color'] == 'E' })

proc.time() – start_time

• Do the same operation but build the response vector through
concatenation:

start_time <- proc.time()

e_diamonds <- c()

for (row in 1:nrow(diamonds)) {

 e_diamonds <- c(e_diamonds, diamonds[row, 'color'] == 'E')

}

e_diamonds

proc.time() - start_time

More advanced profiling options

• Rprof is a function in the utils library that creates an external file with

deep profiling results

• This is probably more than you need

• Some examples of using Rprof provided by Phil Spector:

http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/profilingEx.htm

l

Not the music producing/starlet murdering Phil Spector, presumably

http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/profilingEx.html
http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/profilingEx.html
http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/profilingEx.html
http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/profilingEx.html

No, it’s not a mistake, it’s just slow

• Okay, so you either need to

do it faster on one CPU, or

use more than one CPU

• Using more than one CPU is

called parallelizing

• Parallelization is very

powerful, but it makes things

less simple, which is bad.

Simple = fewer problems

Image from: http://www.bradleygauthier.com/blog/71-

technologies-and-resources-to-help-simplify-an-

entrepreneurs-life/

This doesn’t strike me as simple, but it came up on an image

search for simplify

Faster without parallelism

• Try the compiler package

– By default, R is an interpreted language, which means R

code gets turned into machine code every time you run

it.

– Compiling means translating the code you write into

something the machine interprets only once. There’s an

upfront cost, but it can be faster once compiled

– Can use compile() on a single function or enableJIT(),

which auto-compiles every function at first use

That wasn’t enough! I still want my

analysis to be done sooner
• It may be possible to get parallel results without explicitly

doing parallel programming.

– Plyr

• aaply:like apply, but with an option to parallelize

– Foreach

• Lets you write for loops that can be parallelized

(assuming only effect of code is the return value)

– Multicore

• If you have a machine with a multi-core processor,

the multicore apply functions (e.g. mclapply) can

farm some set of the data on which the apply is

being called to the other core to speed up the

process

• Multicore also has functions for more detailed

parallel programming, which can make things fast

but forces you to confront concurrency issues

Image from:

http://knowyourmeme.com/memes

/honey-badger

Honey Badger don’t give a

%*^$% what makes it faster

Dang, it’s still not enough: I have to go

parallel for reals

Image from http://support.sas.com/rnd/scalability/connect/piping.html

• Parallel processing is basically farming out subtasks to independent

processors, then merging results

• Concurrency issues:

• How do you know when subsections of a task are independent?

• How do you know when you are done?

• New classes of potential mistakes: Race conditions, mutual exclusion,

and deadlocks

True parallel programming: pdbR

• Programming with Big Data in R project

– www.r-pdb.org

• Packages designed to help use R for analysis of

really really big data on high-performance

computing clusters

• Beyond the scope of this class, and probably of

nearly all epidemiology

http://www.r-pdb.org/
http://www.r-pdb.org/
http://www.r-pdb.org/

How much can be parallelized?

Image from: http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg

Quick introduction to MapReduce

• The technology behind 60% of what Google does (and about a million

other web applications do)

• Two phase algorithm:

– Map (farm out parallelizable task to many machines)

– Reduce (combine results)

• It used to be that really understanding map/reduce model & underlying

technologies (e.g. Hadoop) => big $$$$ in salary.

– 2015 Update: this is still true

MapReduce in R

• MapReduce library in R:

library(mapReduce);

mapReduce(map, reduce, data)

• But you have to think about what the map function is and what the reduce
function is.

• Can test on your machine (may speed things a little), but more importantly:
mapReduce package has support for farming out to cloud services like
Amazon Elastic Map-Reduce, etc.
– Note: IRBs may not like cloud computing.

– Not sure mapReduce package it can be hooked up to our HPC

• Takeaway: if you think your data needs MapReduce scale processing, talk to me;
I’d like to explore it further

Side note: the no R infrastructure

MapReduce

• I had a 6000 row, 10000 column table and wanted to compute

ROC curves for (almost) every column

– Wrote code to compute ROC curves for n columns and

write the result to disks

– Executed for 300 columns at a time on high-performance

cluster

– Then wrote code to combine those results

• I didn’t think about it this way at the time, but this is basically

a manual map/reduce

High-performance computing cluster

• Basically a bunch of servers that you

can use for scalable analysis

– I’ve used the cluster at the

Morningside campus

– There is an Uptown cluster, but

I’ve never used it

 Image from:

http://www.gamexeon.com/forum/h

ardware-lobby/50639-super-

computer-system-tercepat-dunia-

warning-gambarnya-besar-besar.html

Glamorous computing power,

201? edition

Summary

• Big data presents opportunity, but is also a pain in the

neck

• Computing power mitigates some of the pain

• Because big data is “the future”, there’s a lot of

interest around how we’ll handle it, but technologies

and systems are still getting figured out

References

• Large Datasets and You:

http://www.mattblackwell.org/files/papers/bigdata.pdf

• FasteR! HigheR! StrongeR! - A Guide to Speeding Up R Code for Busy

People: http://www.noamross.net/blog/2013/4/25/faster-talk.html

• Scalable Strategies for Computing with Massive Data:

http://www.slideshare.net/fullscreen/joshpaulson/big-memory/1

• Taking R to the Limit, Part II: Working with Large Datasets:

http://www.bytemining.com/wp-content/uploads/2010/08/r_hpc_II.pdf

http://www.mattblackwell.org/files/papers/bigdata.pdf
http://www.mattblackwell.org/files/papers/bigdata.pdf
http://www.mattblackwell.org/files/papers/bigdata.pdf
http://www.noamross.net/blog/2013/4/25/faster-talk.html
http://www.noamross.net/blog/2013/4/25/faster-talk.html
http://www.noamross.net/blog/2013/4/25/faster-talk.html
http://www.slideshare.net/fullscreen/joshpaulson/big-memory/1
http://www.slideshare.net/fullscreen/joshpaulson/big-memory/1
http://www.slideshare.net/fullscreen/joshpaulson/big-memory/1
http://www.slideshare.net/fullscreen/joshpaulson/big-memory/1
http://www.bytemining.com/wp-content/uploads/2010/08/r_hpc_II.pdf
http://www.bytemining.com/wp-content/uploads/2010/08/r_hpc_II.pdf
http://www.bytemining.com/wp-content/uploads/2010/08/r_hpc_II.pdf
http://www.bytemining.com/wp-content/uploads/2010/08/r_hpc_II.pdf
http://www.bytemining.com/wp-content/uploads/2010/08/r_hpc_II.pdf

