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For the last six years the financial services sector has struggled to keep 

pace with the overwhelming growth in big data, cloud, analytics and data-

-science technologies. The situation reminds me of the music industry. 

Once you had pop, rock, R&B, blues and a few other distinct genres and 

it was simple – you knew what you did and didn’t like. Now, a new music 

genre emerges every three months, and such clear definitions are a thing 

of the past. Sound familiar?

Big data can’t simply be categorised as a branch of enterprise architecture, 

databases or analytics. It is a completely new IT genre with blending, 

processing and mutating of data at scale to create the 4Vs – volume, 

velocity, variety and veracity – and more. Big data forms a baseline 

platform, which brings us to the realisation that we are building something 

completely new – and much bigger. 

The impact of big data thinking is as profound as the emergence of a new 

programming language (and we are seeing a lot more of them too). It is 

giving rise to a new industry – one standing on the shoulders of giants. 

Within this new landscape we see sub-genres rapidly evolving around 

graph-databases, streaming, cloud and DevOps, all with at least 17 new  

ways of solving old problems. The curious thing about this ‘new industry’ is 

that it makes the old one obsolete, replacing it with something as disruptive 

as the IT revolution was in the past. I have no doubt that we are on the cusp 

of the ‘next big thing’ and that the future of financial services technology 

will be transformed by the power of data, cloud, streaming, machine- 

-learning and internet of things. More importantly, it will be fundamentally 

different, with more giants and more shoulders.

With so much to cover, collating this issue of Tech Spark was both challenging 

and exciting. In any market, the emergence of new capabilities that enable 

dramatically different ways of doing things creates huge opportunities for 

disruption and financial services is no exception (the latest example is 

of course blockchain). Only a year ago this story would have been very 

different. Of course, big challenges remain, not least hiring people with 

the right skills to tap the rich potential of new, existing and unrealised use 

cases. But with everything to play for, I hope that this publication will give 

you more insight and inspiration as you venture forward on your big data 

journey.

Neil Avery
CTO, Excelian 
Luxoft Financial Services
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nspired and encouraged by 

ThoughtWorks, we have created 

the first Excelian Tech Radar. It’s a 

snapshot from the last 12 months 

that captures our key industry observations 

based on work in capital markets with most 

of the tier one and tier two banks in London, 

North America and Asia-Pacific.

As a practice, we’re constantly looking to 

learn, lead and stay abreast of top technology 

trends – and separate the hype from the 

fact, while understanding how hype can fuel 

demand. 

I
On the Tech Radar, the category we’ve 

flagged as ‘hold’ means that we generally see 

this space as having matured sufficiently, that 

it has slowed and that other more creative 

and unique approaches could be explored. 

But as expected, the largest single group of 

technologies falls within the ‘to investigate’ 

category: this reflects a growing appetite for 

R&D investment. Some trends stand out as 

particularly noteworthy. 

 
Neil Avery
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The first wave of hype is around the universal appeal 

and uptake of Spark, which provides everything that 

was promised and beyond. What’s more, as one of the 

key innovations in the big data arena – Kafka being the 

other – it has really helped to drive big data adoption 

and shape its maturity as part of a viable business 

strategy. We also see innovation with Kafka K-Streams 

and Apache Beam pushing the streaming paradigm 

further forwards.

The second wave of hype is around lightweight 

virtualisation tool Docker. With its shiny application 

containers, it’s witnessed a two-year growth frenzy, 

mostly attracting hardcore tecchies with little more 

than three years in tech development. Who’d have 

thought infrastructure could have such appeal?

Finally, the biggest tsunami is blockchain. They say 

there’s a blockchain conference in the US every day. 

It’s therefore no surprise that early innovators are 

scrambling, Fintechs are all the rage and incumbents 

are joining the R3 consortium to embrace the threat 

rather than risk disruption from new players. It’s a two-

pronged hype cycle that we haven’t seen in a very long 

time, being industry led just as much as it is technology 

led.

THREE TECHS 
TO TRACK
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W weathered countless storms. But throughout 

the ups and downs, big data has continued 

to evolve into the all-pervasive force that it 

is today. So how did big data get so big and 

where’s the smart money on where it will it 

go from here?  

hen the genesis of Hadoop 

emerged from a Google file 

system paper published in 

2003, it was the seed that 

launched the big data technology revolution. 

Since then, the financial services sector has 

Neil Avery
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In 2008, the sector was rocked with the collapse of the global markets 

– triggering what became widely termed the credit crunch. Not since 

the 1929 Wall Street Crash had the financial community seen 12 months 

like it. Merrill Lynch, AIG, Freddie Mac, Fannie Mae, HBOS, Royal Bank 

of Scotland, Bradford & Bingley, Fortis, Hypo and Alliance & Leicester all 

had to be rescued from the brink of collapse. Lehman Brothers didn’t 

escape so lightly and filed for bankruptcy.

Since then, recovery has seen waves of regulation forced into 

institutions. Reporting and compliance is now an industry in itself, one 

which costs billions to run. As a result, for a long time financial services 

IT providers were so focused on reporting that it diverted their attention 

from innovation. But while MIFID 2, Frank-DODD, FRTB, C-CAR and 

other regulatory standards continued to impact the shape and pace of 

innovation, the mood was starting to change.

The last three years have seen a 

renaissance of IT innovation across 

the banks. The rate of adoption 

now allows companies to leverage 

technology not only for compliance 

and regulation, but to also benefit 

from additional data insights, data 

agility and a growing range of valuable 

use cases. 

Traditional innovation incumbents are 

FRESH IMPULSE 
FOR INNOVATION 

adopting data-warehouse replacements by using the de facto Hadoop 

standard. Having at last overcome many of its past challenges around 

performance, batch-style semantics and complexity, Hadoop is seen 

as a true data platform. It is the data lake where a plethora of tools 

are available to build any type of ecosystem and support multi-faceted 

views for different groups of users.

More recent financial services innovators are making a strong play for 

Apache Cassandra. It can leverage a less complex data environment 

and use some of its innovative data centre features to become cloud 

enabled. 

When Apache Spark was launched in 2012, it forcibly upstaged Apache 

Storm. It has emerged as the SQL for big data platforms and everyone 

has built a Spark connector including Cassandra, Couchbase, Hadoop, 

MongoDB, etc.

WHERE IT ALL 
BEGAN

GLOBAL 
TURMOIL

Google had been using the precursor 

technology to Hadoop in production 

for almost 10 years before publishing 

its 2003 paper. MapReduce was 

published in 2004 and finally, in 

January 2006, Hadoop was formally 

hatched from Nutch 107. The next 

two years witnessed a whirl of activity 

in the technology stack, paving the 

way to the first Hadoop Summit in 

March 2008. HBase, a columnar store 

based on Google’s BigTable had also 

emerged in 2007 and today forms the 

foundation for many NoSQL stores 

including Apache Cassandra. Although 

many anticipated rapid change in the 

way we develop technology, it wasn’t 

so clear back then where the change 

would come from and the central role 

that big data would come to play.
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So far, 2016 has been an exciting year 

for big data. In Europe and North 

America, Hadoop projects continue 

to run at scale. You’ll find Spark and 

Spark Streaming at the core of all 

projects. Particularly interesting is the 

expanding range of use cases – trade 

surveillance, fraud detection, market 

surveillance, real-time analytics and 

more. Banks feel more confident in 

extracting value from unstructured 

data using data lakes and there is an 

appetite to invest in technology that 

has proven its worth. A compelling 

example of this is the Wharf bank with 

more than 122 Hadoop clusters and 

over 60 staff running it day to day.

Many of the regulatory requirements 

and associated solutions have a 

natural implication for data collection, 

analysis and reporting. Rather than 

building bespoke database solutions, 

forward-looking institutions are 

increasingly leveraging data lakes 

– not only for compliance, but to 

drive innovation, which is once again 

becoming a true staple of financial 

services IT. 

Eight years after the global meltdown, we are finally seeing financial 

services technology efforts coming full circle, accompanied by 

unprecedented levels of innovation. Spark is being adopted as the 

core of many systems. Data platforms have no value without analytics 

and the move to a standard solution has further accelerated Spark 

development. As a result, Spark Streaming and SparkSQL continue to 

evolve and lower the barriers to entry. While no-one can forecast with 

great certainty what tomorrow holds, the following are all likely to play 

a key part in the foreseeable future.

   Streaming technologies like Spark Streaming fit well with the 

challenges of a Lambda architecture but, more importantly, Apache 

Kafka is now seen as the glue that enables disparate systems to 

function and scale. Like Spark, it has a streaming solution, Kafka 

K-Streams, which, as a result, will become part of many standard 

technology stacks. 

   Interactive notebooks that leverage the latest web technology and 

roll up visualisation with agile big data technology are now being 

adopted. Offering capabilities that until recently were impossible, 

they can now complete in seconds typical queries that would have 

previously taken 24 hours to run.

   Graph databases continue to be experimental for most, however, 

some very exciting proof of concepts are happening in this field. 

TinkerPop and Titan, along with the pioneer, Neo4J, continue to be 

applied to more and more use cases, including blockchain.

   Machine learning (ML) is probably the biggest technical innovation 

underway right now. Traditionally a realm of computer science, 

when combined with big data and analytics, machine learning 

creates a utopia that many system designers have long strived for, 

but without the conventional architecture. Indeed, it is the next 

progression from traditional analytics and, with seemingly infinite 

use cases, the field is exploding. Spark supports machine learning 

and has deployed a 1200 node deep learning neural net to manage 

most of its development activities. But ironically, it’s Google with 

TensorFlow that is pushing the boundaries – which seems to bring 

us rather serendipitously back to where it all began.

WHAT LIES 
AHEAD?

TODAY’S STATE  
OF PLAY
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To conclude, big data continues to 

become less about the doing and 

storing and more about the what if 

and analytics, in other words, deriving 

value from data and developing new 

and exciting use cases. Storing data 

WHERE WILL 
THE BIG MONEY BE?

was solved with the first generation platform, which, albeit fragmented 

and complex, proved its value. The second generation involved Spark. 

The maturation of that wave brought agility and simplification as key 

benefits. The pending wave of Fintech disruption – building around 

blockchain, mobile, digital, faster networks and cloud-first – are set 

to make the next ten years much more exciting than the last. So the 

big question now is where should you focus your efforts? Of course, 

there’s no easy answer, but I’d take a fairly safe guess that the learning 

machines are coming and the smart money will soon follow.

Data storage became more cost-

effective for storing data than paper

According to a study by P. Lyman 

and R. Varian in 1999 the world had 

produced approx. 1.5 exabytes of 

unique information

3 Vs – data volume, velocity and 

variety – mentioned for the first time 

in D. Laney paper

MapReduce published

Hbase emerged

First Hadoop Summit

Initial release of Apache Kafka 

as open source project

Apache Spark launched

Hadoop first mentioned in Google file 

system paper

Hadoop born from Nutch 107

Initial release of Apache Cassandra 

as  open source project

Global Financial Crisis

World’s information storage capacity 

grew at a compound annual growth 

rate of 25% per year between 1986-

2007

The term big data was used for the first 

time by M. Cox and D. Ellsworth
1996

2000 2001

2004

2007

March 
2008

2011
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2008

2011
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Case study

n 2015, Excelian was engaged to replace a critical end-of-day (EOD) and intraday 

rates marking system at a prominent Australian bank. Migration to a big data solution 

was not a foregone conclusion so complex considerations were involved when 

specifying the best technologies for the task.

Mark Perkins
Conrad Mellin 

Aleksandr Lukashev
Alexander Dovzhikov
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The new marking system had to meet a range of key 

criteria.

   User-friendly – create a flexible user interface so 

business users could easily define and persist rules 

about the source of raw data that constitutes a mark 

(ie whether it is data snapped from market data 

vendor systems or retrieved from a file/database 

saved to by traders) and perform automatic 

calculations on saved marks to produce new marks.

   Fast – persist official marks to a lightweight storage 

layer able to handle high volumes with frequent 

changes while also distributing data globally, then 

save to recognised ‘sources of truth’ for auditors 

and historical analysis. It was accepted that retrieval 

from the ultimate official system – ie the Sybase 

relational database (RDBMS) or even tape – would 

take significantly longer.

   Auditable – enable auditors to play back the trail 

to see exactly where any given mark came from. 

This required long term storage capabilities to 

ensure records are persisted in accordance with 

regulations.

   Easy to inspect – ability to load ‘past-date’ rate data 

from the source of truth via the lightweight storage 

layer for inspection by users.

Almost 20 years old, the existing marking system was 

written in Sybase, C++, Python and Unix – technologies 

typically used by investment banks in the late 1990s and 

early 2000s. Until the 2008/9 global financial crisis, 

the solution could handle the prevailing low trade 

volumes. But as business became more flow driven, 

the framework struggled to scale to the globalised, 

high-volume trading model that has since evolved. 

Complex set-up made it hard for the business to 

directly maintain the configuration of rates, so it had to 

rely on additional technology to make changes, which 

pushed up time and costs. When combined with the 

additional expense of using Sybase to replicate the 

volumes of real-time data required worldwide, the 

total cost of ownership became prohibitive. A scarcity 

of C++ skills and its limitations for rapid development 

further compounded the problems. Faced with these 

challenges, the bank wanted to completely overhaul 

the system using technologies that could deliver the 

rapid development speed and scalability to meet its 

business needs.

KEY REQUIREMENTSTHE NEED FOR 
SPEED AND SCALE
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Every system has its pros and cons, and our experience 

with Cassandra on this project was no exception. By 

highlighting some of the key issues to anticipate, we 

hope that our insights will prove useful for anyone 

looking to switch to a NoSQL solution. Given that most 

developers have an RDBMS background, a significant 

shift in thinking is required from the application 

programming perspective. 

   Data integrity – it was vital to ensure consistency of 

data underpinning the cluster in different regions. 

Most modern NoSQL solutions deliver eventual 

consistency focused on data availability and 

partition tolerance. While this is how write operation 

performance is achieved, regional consistency was 

equally important. Cassandra extends the concept 

of eventual consistency by offering tuneable 

consistency. We allowed a write operation to 

succeed when 50%+1 nodes in a local data centre 

reported a successful completion of the operation, 

with other remote data centres set to be eventually 

consistent. 

   Query performance – Cassandra’s CQL query 

language is very similar to SQL. However, by 

comparison, CQL proved somewhat restrictive. So 

while Cassandra solves the problem of potentially 

time-consuming queries by forbidding anything at 

CQL level that can’t be executed in constant time, 

it transfers responsibility for query performance 

to the application code. Although this makes any 

query performance problems explicit, it requires 

significantly more effort from a developer.

   Latency – without indices, queries couldn’t be 

optimised to exploit the known structure of housed 

data. Secondary indices have worked well in classic 

relational database systems for years but only when 

underlying data was confined to a local server. In 

a distributed environment, secondary indices are 

not recommended as they may introduce latency. 

Cassandra indexes should only be used when data 

has low cardinality.

   Backwards compatibility – API changes between 

major Cassandra versions have broken builds and 

required some re-engineering of our internal code 

base. This could be both a development challenge 

and risk. However, Cassandra recently adopted a 

‘tick-tock’ release model, which may improve things.

The decision to employ a NoSQL solution seemed 

obvious given the need for a data lake/playground 

where large quantities of unstructured data can be 

quickly housed for temporary storage, accessed, 

modified and replicated globally before finally being 

written to the RDBMS where it would not be accessed 

frequently. 

Having considered the options, we chose Apache 

Cassandra for a variety of reasons.

   The appeal of a cost-effective open source (fix-or-

amend-it-yourself) solution. 

    NoSQL solutions typically have a flat database 

structure with no joins or indices, perfectly suited 

for the high volumes of data and performance 

level required to support the critical nature of EOD 

marking. 

   With a ring partitioning of the keys and data  

distributed equally among the cluster, the Cassandra 

model provides high resilience and maximum 

throughput. Although an existing cluster of high-

end hardware was used – which doesn’t exactly fit 

Cassandra’s commodity hardware mould – it was fit 

for purpose.

   Data filtering and manipulation was executed at 

Java application level, using a minimalist Cassandra 

query to retrieve or update the data.

   Creating a service layer above Cassandra to persist/

retrieve all data guarantees data quality by ensuring 

there is no direct data access or modification by 

users – which had been a regular feature of the old 

set-up.

   The availability of high-quality monitoring tools, 

such as DataStax OpsCenter, also increased 

confidence in the technology choice. As part of the 

DataStax Enterprise offering, OpsCenter has proven 

extremely powerful for rapidly understanding the 

state of the cluster and performing administrative 

tasks. 

ASSESSMENT AND 
ARCHITECTURE PRINCIPLES

NoSQL 
CHALLENGES
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CASSANDRA

DATA SERVICECLIENT APPLICATION

SYBASE

CASSANDRA VS SYBASE DATA LOAD

LATENCY, SECONDS

  Cassandra                           Sybase

0

960 1642 1740 3251 4994

2

4

6

8

Latency

Seconds 

   Global speed – while large volumes being moved 

worldwide still put tremendous pressure on the 

network, the speed of global data distribution has 

largely resolved the Sybase global replication issue.

   Open source – the benefits of Cassandra’s open 

source status are significant and enable easy 

pinpointing of bugs or potential enhancements, 

which has driven the bank to seek further open 

source solutions. 

   Real-time data – Cassandra’s underlying data model 

of fast, efficient hashmap storage has delivered the 

near real-time properties that users wanted.

   Ease of use – the ease of administering the system, 

especially for the initial set-up and addition of new 

nodes to expand the cluster has greatly enhanced 

the user experience.

In order to run a comparison of data store performance before (Sybase model) and after (Cassandra model), a test 

environment was set up with two databases containing the same data, as illustrated in Figure 1:

Figure 1. Sybase versus Cassandra test environment.

The data sets were loaded, different volumes of records from both databases were tested and times measured. In Figure 

2, a thousand records corresponds to roughly 1Mb of data in the database and on disk. In all cases the results showed 

that Cassandra significantly out-performed Sybase by a factor of three times or more.

Figure 2. Timings (# of records vs time).

BENEFITS OF SWITCHING 
TO NoSQL

SYBASE VERSUS 
CASSANDRA
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Migration from a relational database to a big data store 

is a major undertaking and it’s not always obvious that 

NoSQL will offer the best approach. Too often it can 

seem as if migration to a big data solution can readily 

resolve all existing RDBMS woes. However, it’s not a 

foregone conclusion and sometimes some fine-tuning 

of performance, or de-normalisation are all that is 

required. 

For this project, Cassandra was the best fit for the task, 

however, we highly recommend exploring all the 

big data technology options to make the best match 

for your next migration specification. Here are a few 

suggestions:

   Seriously consider the underlying data types you 

need to store, for example, column store versus 

document. Consider too the consistency and 

partition (CAP) theorem and de facto solutions. 

For instance, placing more weight on Consistency 

and Partition Tolerance might point to the suitability 

of MongoDB or Redis, whereas Availability and 

Partition Tolerance would suggest Cassandra or 

CouchDB.

   Bear in mind the benefits of a NoSQL solution that 

supports a rich query language. It will lessen the 

burden on developers with an RDBMS background 

and accelerate time to delivery.

   Finally, for mission-critical systems in an enterprise 

setting, you could consider a DataStax Enterprise 

solution. Its many advanced features can greatly 

improve production deployment, including the 

enhanced OpsCenter, caching and Spark master 

resilience, which are essential when running at 

scale. When combined with increased testing and 

integration with other key technologies, these 

powerful tools can greatly enhance a vanilla 

Cassandra deployment.

MATCH YOUR TECH CHOICE 
 TO MIGRATION NEEDS 
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apid advances in low-cost cloud 

infrastructure, the falling cost 

of big data toolkits and the rise 

of scalable, distributed, parallel 

computing are transforming the ability 

to carry out tasks that until recently were 

unfeasible and creating opportunities to 

bring disruptive new trading ideas to market. 

Capital markets have proved to be early 

adopters of technology in a range of areas. 

A good example of this was the rise of 

electronic equities trading in late 1990s, 

later extending to other asset classes such 

as futures and FX.  

In the last decade the technology arms race 

has gathered pace to improve performance 

in areas such as speed-to-market, asset 

coverage and algorithms. Away from the 

high-frequency trading world, with its 

narrow focus on reducing latency by micro- 

or nano-seconds, attention is turning to 

the potential of big data technologies to 

generate disruptive trade ideas and catch up 

with retail players in this space. 

R

Raphael 
McLarens
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US-based FinTech company Kensho 

(www.kensho.com) claims to have 

created the world’s first computational 

knowledge engine for investment 

professionals. It combines machine 

learning, unstructured data 

engineering and powerful analytics 

that marry masses of financial data, 

such as stock prices and economic 

forecasts, with information about 

world events to produce unique 

insights and analyses. Instead of using 

traditional drop-down menus to select 

particular products, currencies or 

date ranges, Kensho’s highly intuitive 

interface enables you to pose millions 

of different questions in plain English 

via Siri’s speech search or IBM’s 

Watson command-line search. 

Let’s take a scenario like a Fed rate 

hike, Chinese New Year or a natural 

disaster such as a hurricane. Kensho 

can rapidly assess which market 

sectors have performed better, for 

example, commodities or stocks, US 

or Europe and so forth. Within minutes 

it generates a detailed report of past 

performance trends – something that 

would take several analysts days or 

weeks to research through standard 

approaches. The benefits of this 

technology are already being utilised 

by big market players including 

Kensho backer and customer 

Goldman Sachs; JP Morgan; Bank of 

America; and CNBC which regularly 

uses it for market commentary.

Statistical analysis – once the domain of quants and mathematically 

inclined traders – used to be primarily focused on structured data. But 

given the rapid growth of unstructured data, big data technologies that 

use machine learning/artificial intelligence (AI) to filter and rationalise 

information offer game-changing potential.

Consider, for instance, the benefits of linking social media feeds into 

black-box style trading systems. In the past, several black-box trades 

were triggered erroneously when old news was broadcast by accident 

or a Twitter feed was hacked. For example, in April 2013, the Dow 

Jones dropped 143 points after a fake Associated Press tweet said the 

White House had been hit by two explosions1. The black-boxes had 

reacted purely to certain keywords on a few specific Twitter accounts. 

Fortunately, recent advances in machine learning and statistical 

analysis, enable scrutiny of a much broader data set to verify the latest 

breaking news story or at least assign probabilistic indicators around it.  

On the buy side, many hedge funds have been turning to more 

sophisticated mathematical models to drive their trading strategies, 

with several, such as Bridgewater, Two Sigma, Renaissance and Point72, 

investigating the benefits of big data. While naturally guarded about 

their plans, they hope the application of machine learning to masses of 

structured and unstructured data will give them an edge both over the 

previous generation of narrow quant models and, more importantly, 

the competition. The aim is not just to make research and analysis 

more efficient, but to design computer programs that can detect new 

patterns in the avalanche of data and generate new trade ideas.

Aidyia, a start-up based in Hong Kong, is mimicking evolutionary theory 

in its quest to optimise trading strategies. Another start-up, Sentient, is 

also using evolutionary computing to develop better models. A large 

set of predictive models are created by analysing various historic big 

data sets – including multi-language news feeds, exchange data, 

company accounts and macroeconomic indicators – to find potential 

correlations in key measures such as stock prices. These are constantly 

evaluated and the poor ones weeded out, while ‘genes’ from the 

successful models are used to seed the next population. Eventually, this 

produces a strong predictive model. Sentient claims that it now takes 

trading instructions on what stock to trade and when to enter/exit a 

position direct from its AI models. Crucially, because these self-learning 

systems are much more dynamic, they can adapt autonomously as 

markets evolve – faster than humans can. 

1 The Telegraph ’Bogus’ AP tweet about explosion at the White House wipes 

billions off US markets, goo.gl/PhLT0s 

TRADING 
APPLICATIONS

RESEARCH  
APPLICATIONS
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PER CAPITA CHEESE CONSUMPTION

correlated with

NUMBER OF PEOPLE WHO DIED BY BECOMING TANGLED IN THEIR BEDSHEETS

Correlation: 94,71% (r=0,947091)
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While some people say these 

technologies will give them a 

probabilistic edge over the previous 

generation of strategies, it is essential 

to understand that technology alone 

cannot fully predict the markets – not 

SOME CAUTIONARY 
CONSIDERATIONS

Figure 1. The overfitting phenomenon in action.

even in theory. Other detractors believe there is still too much hype 

to determine if these approaches have yet uncovered anything truly 

original and whether spin is playing a part in rebranding some existing 

approaches as smart or AI-enabled.

There is still a need for human judgment alongside technology-based 

approaches. One potential drawback of machine learning algorithms, 

for example, is to mistakenly spot patterns where none exist. This 

phenomenon, described as overfitting, occurs when a correlation 

is found between unrelated datasets. The example below on cheese 

consumption neatly illustrates this point. 

It’s important to note that the ability to 

probe big data has only been possible 

thanks to the dramatic technology 

advances and enormous growth 

in low-cost cloud infrastructure, 

combined with the rapid rise of 

scalable, distributed, parallel 

computing. These have transformed 

the ability to carry out tasks with an 

ease and speed that were unfeasible 

a decade ago.

Take the case of Ufora, a specialist 

distributed computing start-up that 

recently made its software open 

source. Following the 2008 global 

financial crisis, Ufora’s founder had 

AN EVOLVING 
TECHNOLOGY LANDSCAPE

a painful experience while carefully re-factoring large amounts of 

‘infrastructure-optimised’ code to implement new models. This inspired 

him to set up Ufora and create a solution to produce more efficient 

code while enabling the code to be easily modified without impacting 

speed. 

Ufora’s platform can take in Python code and automatically parallelise 

it, then intelligently distribute the threads across a given cluster of local 

or Amazon Web Services (AWS) machines – effectively multi-threading 

it. It uses machine learning to understand how best to allocate and 

manage resources while the program is running, so can handle 

machine failures gracefully. One headline figure that demonstrates 

the power of this approach was when a conjugate gradient algorithm 

(iterative, numerical method) was applied to a matrix with one trillion 

elements. Within 45 minutes it had delivered a solution by leveraging 

Amazon Spot instances – essentially splitting the compute job up across 

500-1000 cores – for a cost of just $10. 
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The evolution of technology will 

continue to transform a range of 

industries, including financial services. 

Falling infrastructure costs and 

growing availability of mature software 

– including open source – are making 

the tools to manage big data far more 

efficient and affordable. Companies 

that still see IT purely as a support 

function. to the core business will 

become left behind. By contrast, firms 

that invest in big data innovation and 

develop a clear information strategy 

aligned to their overall business vision 

will be in a prime position to exploit  

the full potential of data as an 

increasingly important commodity.  

   Many banks and hedge funds are trying to use AI/machine learning 

as part of their big data strategy.

   The cost of big data toolsets is decreasing; even open source tech 

provides some useful self-learning algorithms.

   Financial services firms need to develop a clear information strategy 

to keep pace with the competition.

KEY TAKE-OUTS 
IN BRIEF

EXPLOIT THE TRUE  
POWER OF BIG DATA
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he latest web-

based notebooks are 

considered by some to 

be revolutionary and a true sign of 

maturity in the big data industry. By 

closing the gap between analytics, 

visualisation and data agility, they 

create a powerful platform for rapid 

application development that can 

leverage many new business benefits. 

T

Neil Avery
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Optimising agility has been a long-running technology 

goal: the ability to react fast and respond instantly to 

change is a key driver of competitive advantage. So, 

with the latest generation of notebooks coming on 

stream, the legacy notion that big data is slow and 

batch-oriented is being turned on its head. Using 

interactive notebooks as a platform for rapid application 

development (RAD) is setting a new benchmark for 

agile data analytics. And, for the financial services 

sector they combine the trusted flexibility of Excel with 

the power of big data.

First generation notebooks offered an interactive 

computational environment, in which you can combine 

code execution, rich text, mathematics, visualisation, 

rich media and collaboration. They proved very useful 

at the time in fulfilling the needs of reproducible 

research. However, because they run on a single 

desktop, with restricted storage and power, their use 

beyond academic circles has been limited. 

By contrast, the new generation notebooks are 

browser-based and utilise big data technology. As a 

result, they provide an agile, interactive experience 

similar to Excel but with the benefits of a visualisation 

layer that leverages analytics to process terabytes of 

data. The level of interaction enables real-time, ad hoc 

analysis which leads to greater business agility.

Traders, quants and other data-heavy roles within 

financial services can benefit from the notebook 

platform. For example, what-if analysis can easily 

be overlaid and executed on-demand to provide 

immediate feedback. Backtesting, analytic validation 

and other regular functions that may require a formal 

release to production can also now be done – as 

and when needed – and the results viewed simply by 

visiting a webpage. Other types of post-analytics are 

also possible. The open nature of the platform makes a 

plethora of options accessible to anyone with sufficient 

domain knowledge to derive data insights that were 

never previously available. 

The interactive notebook platform is achieved 

by providing a glue that combines the different  

technologies to create a rich, integrated, user-oriented 

environment that enables seamless collaboration. A 

layer on top of Spark – called SparkSQL – provides a 

user-friendly interface that allows expressions to be 

presented in familiar SQL-type syntax.

Agility is achieved by leveraging the power of the 

latest HTML5 runtime found within compatible browser 

platforms. Rich HTML features support inline script-

editing and real-time rendering using SVG graphics 

and powerful charting libraries such as D3 for dynamic 

data visualisation. 

Data flexibility is gained through the use of Spark, 

which can combine a variety of sources – including 

big data, NoSQL storage layers and files – and then 

execute Spark jobs on demand. Spark also integrates 

with cloud platforms, the entire Hadoop stack and 

every horizontally scaling data platform currently on 

the market. 

Power is again attributed to Spark and the data platform 

with the ability to execute distributed data-shuffling via 

MapReduce across thousands of nodes and process 

terabytes of data. 

BLENDING AGILITY, 
FLEXIBILITY AND POWER

BENEFITS FOR 
FINANCIAL SERVICES
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APACHE ZEPPELIN 

Apache Zeppelin is an Apache incubation project 

with Spark functionality at its core. With its multiple 

language back-end, Zeppelin is language-agnostic, so 

will likely attract more interpreters because they are 

easy to add via the API provided. Zeppelin’s built-in 

interpreters include Spark, SQL, Scala, Shell, Markup, 

Cassandra and many others. While it is very similar to 

Jupyter/IPython, the user interface is more appealing 

and it supports a richer range of interpreters as you 

can observe in Figure 1 below.

Figure 1, Apache Zeppelin provides a rich web environment to enable interactive data analytics.

Currently, the three most popular notebook platforms 

are Apache Zeppelin, Databricks (SaaS) and Jupyter 

(IPython), which all have many potential use cases:

POPULAR 
INTERACTIVE NOTEBOOKS

   Facilitate adoption of agile development 

   Enable data visualisation 

   Analyse what-if and ad hoc scenarios

   Prototype new applications

   Support an ETL pipeline

   De-risk big and fast data project deliveries.

DATABRICKS NOTEBOOK 

The Databricks notebook, illustrated in Figure 2 on the 

following page, is broadly similar to Zeppelin, however, 

being available as a cloud-based SaaS pay-per-use 

model (hosted by Databricks), it delivers all the benefits 

of lower up-front costs. Databricks, which was founded 

by the creators of Apache Spark, is continuously 

pushing the forefront of data analytics, which ensures 

its platform offers the most up-to-date Spark features.
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JUPYTER NOTEBOOK 

Promoting itself as offering open source, interactive 

data science and scientific computing across over 

40 programming languages, the Jupyter/IPython 

notebook is well funded and very popular in academic 

circles. Its growing list of academic backers includes 

the University of California, Berkeley and California 

State Polytechnic. In 2015 the Jupyter project received 

a $6million funding boost to extend its capabilities 

as a tool for collaborative data science, creation 

of interactive dashboards and rich documentation 

workflows.

Many thanks to Deenar Toraskar from ThinkReactive for his contribution to this article.

Figure 2. The cloud-based Databricks 

notebook offers the latest Spark 

functionality.

To conclude, the potential of web-based notebooks 

to support rapid application development is as 

revolutionary as Apache Spark itself. Many users 

already regard Zeppelin and similar tools as a data 

science studio. In practice, we see the power of 

notebooks as having an exciting future that will give 

businesses access to novel benefits that have not been 

available until recently. 

NEXT STEPS 
FOR NOTEBOOKS

Closing the gap between analytics, visualisation and 

data agility provides tight feedback cycles that can 

be leveraged to create many unique commercial 

advantages. Removing the layers of business analysis 

and data modelling means that analysts with complete 

domain knowledge can now gain rich insights and 

utilise notebook power that ultimately combines 

the flexibility of Excel with big data. Whatever comes 

next in notebook innovation, it seems clear that they 

have a big future as a dynamic platform for big data 

application development.
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ere at Excelian we are seeing 

more and more large financial 

institutions turn to data lakes 

to provide the centralised, 

malleable repository of data needed to react 

swiftly and cost-effectively to ever-changing 

regulatory and market demands. However, 

it’s not always plain sailing, so here we’ve 

flagged some of the key issues to consider 

before you dive in.

Data warehouses, with their rigid data 

storage structures, have tended to be slow 

to adapt to the new world order. Data lakes 

and associated big data technologies, on the 

other hand, offer an extremely powerful and 

agile tool that can deliver value fast while 

reducing cost. But although they offer great 

potential, difficulties in implementation 

and delivery can easily lead to a data lake 

becoming a data swamp. To help you avoid 

getting bogged down when planning your 

own data lake, we’ve pooled our experience 

to create a few top tips designed to keep you 

afloat. 

H

Thomas Ellis
Ivan Cikic
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Requirements for data lake implementations 

are extremely fluid, so, when it comes to project 

governance, we strongly advise running the project in 

an agile fashion. That means each iteration planning 

session will involve defining a minimum set of 

features to implement, deliver, integrate and test for 

exposure to end users. A project like this will inevitably 

require wide integration across the organisation. It’s 

therefore extremely important to establish high-level 

guidelines early on, along with early demonstrations of 

functionality and integration capability with end users.

Paramount to any good agile delivery is engagement 

with product owners and business stakeholders. At 

the outset, try to establish buy-in from the individuals 

within the business directly responsible for essential 

parts of the project. Making these stakeholders directly 

available to your implementation team will ensure 

prompt answers and a more accurate understanding 

of the requirements. Ideally, actions required to 

complete the enquiries from the team should be 

monitored and expedited. 

Key stakeholders will likely include:

   Product owner – the individual who develops the 

project vision and can direct it

   Data governance guardian – the person who 

understands the structure of data in the enterprise 

and how it flows 

   Infrastructure expert – an individual (preferably 

embedded with the team) responsible for managing 

the lake’s infrastructure, ie its environments, hosts, 

installation and customised distributions 

   Security – a business-facing individual who can 

develop requirements around security and user 

access at a global level

   End users – representatives from the teams likely to 

use the lake, whether supplying or extracting data 

to/from it.

RULE 1 
ENGAGE STAKEHOLDERS EARLY

RULE 2 
SET CLEAR GUIDELINES

RULE 3 
ADOPT A PHASED APPROACH

Consider running projects in a phased approach to 

continually build on the previous stages. Outlined 

below is a typical five-phase pattern that works well for 

us. 

PHASE I
PROJECT INITIATION

This includes all the tasks/set-up required before 

writing the first line of production code.

   Appropriate and install your preferred big data 

distribution technology (eg Cloudera/Hortonworks/

MapR) in your test environments and configure 

as closely as possible to your target production 

environment.

   Secure the test environments to the standards 

required – including configuration of Kerberos 

and synchronisation with any enterprise user 

directories eg LDAP/Active Directory.

   If the infrastructure for your test environments 

is unavailable, consider provisioning cloud 

instances and use these as systems integration 

test environments until your internal 

infrastructure is ready. Should test data 

confidentiality be a concern, anonymise or 

generate it.

Initially, work through each iteration with ‘just enough’ 

design up front, ideally using whiteboarding sessions 

with the entire development team. In this rapidly 

growing field, technology is constantly evolving, so it’s 

important to include all the different perspectives to 

justify why certain decisions were made.

Any elaboration of the high-level requirements made 

by the development team should be validated with the 

wider group of stakeholders at the earliest opportunity, 

so refinements can be made when it is still manageable 

to do so. 

And, while it may be tempting to migrate existing 

functionality directly onto the lake, caution is 

advised. Once you have established a known set of 

requirements, it’s worth first taking a fresh perspective 

to ensure that the design can use the features of the 

new environment. 

24  |   TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND 
PERFORMANCEBLOCKCHAIN



   Develop/configure a sandbox virtual machine 

(VM) instance that developers can run on their 

workstations. This should be a like-for-like copy 

of your test/target environment, including 

security – scaled down only to a single host.

   Obtain or develop a suite of generic tools to 

automate deployment of lake artefacts and 

deliverables to target environments, including 

developers’ sandbox VMs. These tools should use 

environment-based configuration to distribute and 

configure their deployments.

   Obtain or develop a suite of integration testing 

tools that make it easier for developers to build 

acceptance and integration tests against a target 

environment. These tools should interact with your 

targeted big data technologies (eg HDFS/HBase/

Hive) and make it easy to set them up and fill 

them with test data, as well as to tear them down. 

The integration tools should utilise the developed 

deployment tools at the earliest opportunity to 

ensure adequate and continuous testing.

   Install and configure build servers to perform 

continuous delivery and static code analysis. The 

build process should:

   Build and package the application and install it in 

a centralised artefact repository running all unit 

tests

   Raise any static analysis issues

   Deploy to a development test environment and 

run integration and acceptance tests

   On a successful run of the integration and 

acceptance tests, deploy to other systems 

integration test environments. This can either 

be automated or configured to provide push-

button deployment to other environments.

   Codify and document development standards and 

best practices, using IDE plug-ins to enforce them, 

eg SonarLint, Checkstyle.

PHASE II
INGESTION

In this phase, you will develop the interfaces required 

to obtain data from external systems and sources. It 

is likely that the end users’ analytics and extraction 

requirements are still being determined, so look to 

simply accept and retain raw data in an immutable 

machine readable format, eg via Apache Avro or 

Apache Parquet. Storing raw data this way provides 

options when you need to rerun analytics, present 

lake content, generate metadata and manage disaster 

recovery. Ensure that any processing done on ingested 

data is idempotent, then should the need arise, that 

data can be re-ingested as necessary.

As data starts to flow into the lake, it is important to 

generate and retain relevant metadata – including 

items such as lineage, type, any business-specific tags 

and validity. This metadata will be used in a variety of 

ways, including security and data discovery.

PHASE III 
DATA DISCOVERY AND SELF SERVICE

Once data is present in the lake, you need to make 

it available to potential end users. Initially, these will 

be power users and data scientists with the security 

clearance to interrogate raw data and derive analytic 

and extraction use cases from it. There are a number 

of options to facilitate this.

   Use your distribution’s data governance tool, for 

example, Cloudera Navigator or Apache Atlas. End 

users can use these to explore the data on offer and 

establish uses for it.

   Employ a third-party tool such as Waterline 

or Tableau. Third parties are producing some 

very interesting tools that interact with big data 

technologies to provide a rich data governance 

toolset.

   Provide power users with notebook access to search 

and analyse data on the lake. Apache Zeppelin, Hue 

and Spark notebooks enable advanced users to 

write snippets of code that directly interact with and 

display data.

   Build a custom solution – for instance, a simple user 

interface to effectively display your data catalogue 

and related metadata can be more than enough to 

interest end users.

Whatever data discovery route you opt for, be vigilant 

about security by ensuring it is sufficiently and 

appropriately locked down to enable only authorised 

access.
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PHASE IV 
ANALYTICS AND AGGREGATIONS

As end users’ analytics or data aggregation 

requirements become more refined, you can begin 

to develop them against the lake. Responsibility for 

developing analytics can be handled by either the data 

lake project team or end users themselves. If allowing 

end users to develop their own analytic solution, it’s 

important that they have the same like-for-like sandbox 

VM environment as the data lake developers and 

enough test data to develop their solution. Consider 

having data lake project team members ’consult’ 

with these end users to ensure they’re following best 

practice and their solution will be compatible with the 

lake. Ensure early integration with a test environment 

and that their analytics solution is segregated using its 

own application user, with appropriate authorisation 

rules in place.

When the data lake project team develops its own 

solution, constant communication with the end user is 

vital to validate and test what is being produced. 

PHASE V 
EXTRACTION

This phase, which can run concurrently with analytics 

and aggregation, is used to develop storage of any 

analytics or aggregation outputs in the lake using the 

most appropriate storage technology. Again, make this 

available to the end user by utilising an appropriate 

technology, for example, for a large batch file output, 

you could push to HDFS. Alternatively, for key value 

outputs with fairly low latency access patterns, store in 

HBase – and have clients pull using REST endpoints – 

or push data out onto a message bus.

As this data will probably be valuable to other end users, 

ensure that it is also published to your data discovery 

utilities, is suitably structured and that relevant security 

policies are in place.

Never underestimate the importance of security – 

and keep it front of mind at all times. It is imperative 

to secure your cluster using Kerberos. Due to its fiddly 

nature, all developers and support staff should become 

acquainted with it because it will be used to secure all 

environments, including the developers’ sandbox VMs. 

At the same time as developing your components, 

you’ll also need to build corresponding metrics. 

Developers are best placed to incorporate metrics 

while the components are being built, for example, 

providing JMX mbeans and publishing them using 

Jolokia, and logging to an appropriate log facility, 

for example SLF4j and Log4j 2. Distributors also offer 

impressive tooling functionality which should be 

utilised effectively. In conjunction with this, consider 

employing log/metric aggregation tools like Logscape, 

the ELK stack or Splunk.

RULE 4 
SAFEGUARD SECURITY

RULE 5 
PUT MONITORING IN PLACE

It’s vital to plan for business continuity, should your 

data lake be compromised. The data lake will largely 

become a repository of data with analytics running 

across it, so consider running another hot active site in 

parallel. All data is channelled to and ingested at both 

sites, and likewise all analytics and extractions also run 

synchronously. In addition, consider developing the 

capability to clean up state and replay. The process 

of ingesting raw data in the lake is idempotent, so in 

the event of a problem at a site, you can run a job to 

clean up the state of the problem confident that once 

it is resolved, the data can be replayed to generate the 

correct state.

RULE 6 
PLAN FOR DISASTER RECOVERY

You can create a security choke point by surrounding 

your cluster with a firewall and providing REST 

endpoint access via Knox. This will greatly reduce your 

attack surface while simplifying identity assertion and 

external auditing of communication with the lake. 

Each big data technology will come with its own 

authorisation tooling. Tools like Apache Ranger and 

Apache Sentry can manage this centrally for you. Of 

the two, Ranger has more features, including plug-

ins for centralised authorisation and audit for most of 

the big data technologies. Sentry has similar features 

with a much reduced scope, but is under active 

development. If your data is especially sensitive, 

consider using SSL communication between services 

and additional encryption for data at rest.
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Big data technologies are in a constant state of flux 

and innovation. There’s a fierce competition among 

distributors and vendors to see their tools adopted as 

the industry standard, so you’ll often see a high rate of 

change in preferred tooling, methodologies and best 

practice. With this in mind, it’s imperative that your 

developers stay at the top of their game. Consider 

creating opportunities for them to learn and share 

their knowledge and experience in ways that make 

their work more fulfilling and enjoyable.

These could include, for example:

   Lightning talks, lunch-and-learn sessions and 

technology roundtables with walk-throughs of 

developed components

   Team members running training labs for colleagues 

and users within the organisation to introduce them 

to new technologies

   Sending members to conferences and them 

reporting back with their findings and views on hot 

trends in the sector

   Encouraging developers to contribute to open 

source solutions.

RULE 7 
COMMIT TO BEST PRACTICE

As you’ll see, there’s a lot to think about when planning 

a data lake implementation. It’s a long article but we 

make no apology. In fact, it barely gets below the 

surface of the many crucial elements required for a 

successful data lake implementation. In summary, 

these are:

   Engage stakeholders early and identify key contacts 

in relevant teams to radically reduce decision-

making time

   Adopt agile methodology and ‘just enough’ high-

level design to ensure sound project governance

   Take a five-phase approach choosing from 

commonly used and emerging tools to best suit 

your needs 

   Put security first from the outset – it is a cross-

cutting concern that is often addressed too late

   Factor non-functional needs into your planning, eg 

disaster recovery, monitoring and best developer 

practices.

Of course, much of this may seem obvious, but it is 

often the obvious that gets overlooked and that’s when 

tech projects can start to flounder – especially in such 

a fast-moving, dynamic and exciting area where things 

are changing rapidly. However, guided by these key 

principles, you’ll be much better equipped to keep 

your head above water and ensure that your next data 

lake implementation goes swimmingly. 

GET SET 
TO DIVE IN 
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ver the last 18 months we 

have been avidly following 

developments in the blockchain 

space. For us and for many 

others, it began with an understanding of 

Bitcoin, the original blockchain model. With 

blockchain now firmly established as one of 

the most dynamic and disruptive forces in the 

tech arena, this month we are launching our 

Enterprise Blockchain Accelerator program. 

We hope you’ll join us on what promises to 

be an exciting journey…  

Although the elusive Satoshi Nakomoto, 

Bitcoin’s anonymous creator, did not use the 

term blockchain in his paper, his underlying 

distributed, shared and decentralised ledger 

technology was truly revolutionary and 

formed the basis for the original blockchain. 

As an add-only database shared and 

simultaneously maintained by the so-called 

‘miners’, it successfully enabled the world’s 

first fully digital, decentralised currency 

that is not administrated by any bank or 

government. 

O

Vasiliy Suvorov
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Since the first ‘genesis’ block was placed on the Bitcoin 

network in 2009, the world has seen roughly three 

waves of interest and investments in Bitcoin and, 

increasingly in blockchain, its enabling fabric. 

   Wave 1: The first wave was all about understanding 

the Bitcoin itself. 

   Wave 2: The second was about discovering the 

blockchain and building alternative ‘coins’ – various 

asset tracking and exchange mechanisms that 

leveraged the unique characteristics of the Bitcoin 

protocol and its mining network. 

   Wave 3: Once the limitations of the original design 

were understood, the arrival of the third wave 

brought next-generation blockchain designs based 

on ‘smart contracts’ – code snippets that are tightly 

integrated with a blockchain so that participants can 

add arbitrary business logic to each transaction. 

These next-generation designs also introduced 

newer network-wide synchronisation mechanisms 

also known as ‘consensus’.

The later designs ensured that data synchronisation 

across the whole network was not based on energy-

inefficient mining or, more formally, Bitcoin’s 

Proof-of-Work based process. In the meantime, 

innovation continued around transaction scalability, 

data confidentiality, identity management and 

interoperability.

Fast forward to the present and we are witnessing a 

fourth wave of blockchain investment. With it the 

unique characteristics of blockchains or, more broadly, 

distributed ledger technology (DLT), are being applied 

to real-world business cases. Today, business and 

technology opportunities to deploy blockchain/DLT 

solutions are being actively pursued by organisations 

from the open source community, industry and 

government-led alliances and associations, including 

industry incumbents like the Depository Trust  

& Clearing Corporation (DTCC).

It’s quite remarkable that technology which was 

invented to disrupt banking and money management 

as we know it, has been embraced by the financial 

services sector and, to a certain degree, the financial 

regulators – the very same people it was supposed 

to displace. In fact, the successive waves of interest 

described above were actually driven by the business 

leaders, a rare phenomenon for such a complex 

emerging technology. 

A BRIEF HISTORY 
OF BLOCKCHAIN

THE FOURTH 
WAVE
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It’s very likely that all of these applications and related 

blockchains will start to appear on the market as 

soon as 2017. Major corporate players are already 

announcing plans. It is also likely that between now 

and 2020, business model pivots, lessons learned and 

government regulation will drive standardisation and 

convergence. The early adopters are likely to be in the 

finance and logistics markets, followed by insurance 

and pharma. We also expect the internet of things 

to drive demand across all sectors, which will further 

accelerate the adoption of blockchain.

Looking further ahead to the 2020s, blockchain/DLT 

will start to become a mainstream IT component. 

Consequently, we can expect that many future 

systems will be built around integration of a handful 

of interoperable blockchains. Some of these will be 

public and decentralised, such as Ethereum, and 

some will be run by international consortia. Of course, 

there will also be completely private blockchain/

DLTs as standard, but these will mostly augment or 

even replace existing database technologies to meet 

specific intra-company needs.

WHAT’S AROUND 
THE BLOCK?

Along with many smart individuals and visionary 

companies, we see amazing potential for this 

technology. When applied correctly, it offers enormous 

scope to reduce costs, time and risk in financial 

markets. It could also enable truly innovative internet 

of things (IoT) applications, open up markets to new 

opportunities and drive new efficiencies by minimising 

or, in some cases, completely eliminating the need for 

intermediaries.

It’s important, however, to stress that a blockchain/

DLT approach is not a universal solution. Indeed, 

many applications will be better served by other 

well-established technologies, such as a NoSQL or 

relational database, micro-services architecture, 

business process management (BPM) solution or 

enterprise service bus (ESB).

Blockchain is undergoing a frenzy of innovation. In 

some ways, it’s a bit like the Cambrian Explosion – 

the short but highly significant period in the history 

of evolution when most of the major animal groups 

appeared. New blockchain/DLT variants are constantly 

emerging to fill every potential market niche, ranging 

from libertarian crypto-currencies to highly secure 

permission-based applications for private financial 

markets.

A WORLD OF  
OPPORTUNITIES
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How can we animate the immutable record so that events tigger actions?

How do we agree the immutable record of transactions?

What kind of assets will be in the transactions?

Which entities create and propagate transactions?

SHARED LEDGER APPLICATIONS

SHARED LEDGER
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Navigating this new landscape and the road ahead is 

not easy. We strongly believe that our customers will 

benefit from hype-free, independent advice based 

on a solid understanding of their business needs and 

processes combined with the expertise to select the 

best technology. 

To meet this requirement, we are delighted to announce 

the launch of our Enterprise Blockchain Accelerator 

program. We’ll share a range of resources, including 

technical articles in this and future issues of TechSpark, 

blog posts and invitations to join an upcoming series of 

in-depth webinars on blockchain/DLTs. 

With so much more to say on the subject, we’ll keep 

you informed with a range of insights into both the 

technical and business aspects of blockchains/DLTs. 

In the next issue, for example, I’ll take a closer look 

at what the future looks like for industry adoption and 

related challenges.

On page 32 of this issue, you can read the first technical 

feature in our new series, written by my colleague 

James Bowkett: ’Blockchain and graph, greater than 

the sum of their hype?’ In the meantime, we look 

forward to your company as we move forward on the 

blockchain journey. 

For more information on our Enterprise Blockchain 

Accelerator program, please contact James  

Bowkett (james.bowkett@excelian.com) or Neil Avery  

(neil.avery@excelian.com).

Our friends at Consult Hyperion have proposed a layered, modular approach to blockchain/DLT design study. This 

approach makes it easy to understand, or make, design trade-offs and perfectly match the resulting architecture to a 

specific set of use cases:

MAPPING  
THE ROUTE AHEAD

Figure 1. Consult Hyperion 4x4 model of the shared ledger technology.
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he buzz about blockchain 

technology is hard to ignore: 

it is mentioned in every other 

finance feature and is a standard 

item at any Fintech conference. In effect, 

its data structure is an encrypted temporal 

linked list of transactions, however, linked 

lists aren’t appropriate for random access. 

So we decided to integrate one much-hyped 

technology with one enjoying something of 

a renaissance – graph databases – to see if 

the whole adds up to more than the sum of 

its parts.

T

James Bowkett
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Integrating the two approaches creates a platform 

for immutable, confirmed transactions, with an 

appropriate fast index that allows you to report on the 

data within. In a standalone blockchain application you 

can only search sequentially for an asset or transaction. 

But leveraging graph enables you to easily track the 

source of assets held on the blockchain. This has many 

use cases, notably around checking authenticity, fraud 

prevention and detecting money laundering.

Graph is a good fit for transactional data because it 

allows you to model, query and visualise relationships 

between entities, in addition to the entities themselves. 

Such relationships may also contain attributes which 

can be used for later querying. Contrast this with a 

relational or document store where the relationships 

are often modelled as entities in a similar way to the 

entities themselves. Although this latter approach can 

and does work, graph allows for a more natural way to 

think about and model transactional data.

This article is an abridged version of a series of Excelian blog posts where you can find details about the code 

and more on the approach we used.

To explore in more detail how blockchain and graph work together in practice, we devised a prototype equity share issue 

using blockchain events to persist sell trades to graph database Neo4j. The architecture of this example is as follows:

BRINGING TO LIFE   
A BLOCKCHAIN-GRAPH MODEL

Having installed the necessary platforms – node.js, Neo4j, geth, Ethereum (and web3) – it is possible to write and 

deploy smart contracts written in Solidity, Ethereum’s smart contract language. Solidity is reminiscent of Go (Golang), 

but without the rich choice of APIs – for good reasons, as we will see. The contract is then deployed to the Ethereum 

network and run on every miner node within the Ethereum virtual machine – hence the restricted APIs – and the 

immutable record of ownership is created. 
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1. contract ShareClass { 
2.   string public name;
3.   uint8 public decimals;
4.   string public symbol;
5.   string public isin;
6.   string public description;
7. 
8.   /* the register of how many shares are owned by which account */
9.   mapping (address => uint256) public balanceOf;
10. 
11. /* Generates an event on the blockchain to notify clients */
12. event Transfer(address indexed from, address indexed to, uint256 value);
13. 
14. /* Initializes the shareclass for the instrument with initial 
15.    supply of all equity assigned to the issuer */
16.   function ShareClass(uint256 initialSupply,
17.                     string tokenName,
18.                     string isinId,
19.                     string desc,
20.                     uint8 decimalUnits,
21.                     string tokenSymbol) {
22.     // Give the creator all equities
23.     balanceOf[msg.sender] = initialSupply;  
24.     // Set the name for display purposes
25.     name = tokenName;                      
26.     // Amount of decimals for display purposes 
27.     decimals = decimalUnits;               
28.     // Set the symbol for display purposes
29.     symbol = tokenSymbol; 
30. isin = isinId;
31. description = desc;
32. }
33.
34. function transfer(address recipient, uint256 quantity) {
35. ensureSenderHasEnough(quantity);
36. balanceOf[msg.sender] -= quantity;
37. balanceOf[recipient] += quantity;
38. // Notify of transfer event:
39. Transfer(msg.sender, recipient, quantity);
40. }
41.
42. function ensureSenderHasEnough(uint256 quantity) private {
43. if (balanceOf[msg.sender] < quantity) throw;
44. }
45. }

1.  MATCH (owner:Account),(buyer:Account) 
2.  WHERE owner.address = ‘${ownerAddress}’ 
3.  AND buyer.address = ‘${buyerAddress}’ 
4.   CREATE (owner)-[ 
5. :SOLD_TO { amount:${amount}, tstamp:timestamp()}
6. ]->(buyer)

Analogous to a new share issue, the contract holds the register of how many shares in this issue are contained in each 

Ethereum wallet, plus information about the instrument itself, such as its ISIN. Each time the contract is traded, it will 

emit an event notification to all its listeners, that can be listened to using the web3 API in a node application. In this 

example, the transaction details will be stored in Neo4j, using the following Cypher code. 

This code finds the owner and buyer accounts (nodes) in Neo4j, then creates a new ‘sold_to’ relationship in the database. 

Using the Ethereum wallet, the following smart contract is deployed:
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Without any additional code or configuration, Neo4j then enables the following visualisation:

Our blockchain-graph equity share issue prototype, 

as described above, could be further extended and 

integrated with an identity or know-your-customer 

(KYC) service. This would make it easier to look up and 

identify each account holder for sending out annual 

shareholder reports or dividend payments. Because 

shareholders could manage their own identity and 

details for their different holdings in one place, the 

share issuer would be relieved of the burden of 

maintaining its own shareholder register.

In another scenario, we have identified a strong use 

case for fraud visualisation. With a few lines of Cypher, 

you can visualise centres of trading activity for targeted 

investigation – a functionality that is available out of 

the box. This makes graph, and Neo4j in particular, a 

compelling choice for data visualisation.

While blockchain offers undeniable benefits, 

legislation has a way to go to catch up with the pace 

of technical innovation in this area. For instance, the 

laws around property rights still need to be addressed, 

as does the issue of how to reverse an irreversible, 

immutable transaction, if it was in dispute. However, 

we can certainly expect the appropriate law changes 

to come in time. 

Looking beyond the hype, while there are compelling 

use cases for blockchain (or an immutable ledger) on 

its own, we see its real value being realised when used 

as a complementary technology with other storage 

techniques such as big data. As illustrated in our 

prototype, using blockchain in combination with graph 

can provide visualisation by modelling transactions in 

a form that best fits its transactional data model – so 

in turn creating additional value. In other words, the 

output could indeed add up to more than the sum of 

the parts. 

FUTURE POSSIBILITIES  
AND USE CASES

SUMMING UP

In the meantime, it’s clear that blockchain and its 

system of trust is enabling existing applications to 

work faster and more securely. It is also facilitating 

new distributed applications. For instance, Honduras 

has worked with Factom to build a blockchain-based 

land registry. This will deliver a secure, reliable and 

verifiable land registry. Although the project is still in 

its prototype stage, it highlights the value of the trust 

inherent in blockchain applications, especially in use 

cases where there is no pre-existing application.
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ith banks investing ever more 

resources to meet increasing 

regulatory reporting demands, 

Spark’s big data processing 

methodology offers compelling evidence of 

a dramatically different approach that could 

reduce the reporting burden while driving 

new operational efficiencies. 

Since 2008, FRTB, CCAR and BASEL 

requirements have inundated teams with 

untenable workloads and up to two-year 

backlogs. At the same time banks also need 

to prepare for more reporting changes 

and the anticipated switch from the long- 

W
-established Value-at-Risk (VaR) reporting 

measure to Expected Shortfall (ES). Despite 

this, many teams still rely on traditional ways 

to manage and warehouse their data. Big 

data, and more recently Spark, have come to 

prominence with analytic use cases that map 

onto traditional problems, but solve them in 

a very different way. Spark’s methodology 

provides a flexible and powerful processing 

stack that could transform the standard 

approach that many institutions are currently 

using. When applied to VaR it becomes  

a simple workflow of Spark tasks selecting, 

joining and filtering data, as we will explain.

Deenar Toraskar
Neil Avery
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VaR by counterparty Margining

VaR by trader Trader P&L 

VaR by desk Desk head

VaR by legal entity Finance/regulator

Contributory VaR/VaR drivers All/what drove VaR? 

USEVAR VIEWS

LONGER THE 
TIME HORIZON 

10 day 95% VaR for $1000 

in GOOG is $60

1 day 95% VaR for $1000 

of TWTR shares is $41 

greater the VaR

greater the VaR

MORE VOLATILE 
THE ASSET  greater the VaR

HIGHER 
THE CONFIDENCE 
LEVEL

1 Day var for $1000 in goog at 

a 99% confidence level is $31

Of all the regulatory reporting measures that need 

to be managed, for almost 20 years VaR has been 

the most widely adopted risk measure. It is used for 

risk management, margin calculations, regulatory 

reporting, capital charges and pre-trade decision 

making. If you have a trading account or a betting 

account, your broker or bookmaker is likely to use 

VaR to calculate margin calls. VaR is used for hedge 

optimisation, portfolio construction and to optimise 

the tracking error of a portfolio against a recognised 

benchmark. You can also use VaR to help make risk 

versus return trade-off decisions when managing the 

portfolio of assets in your pension fund. 

VaR is equal to predicted worst loss over a target horizon 

within a given confidence interval. For example, if you 

hold $1000 worth of GOOG shares, one day VaR with  

a 95% confidence level is $22.

WHAT IS  
VALUE AT RISK (VAR)?

VaR is used in many contexts, with many different VaR users in a typical enterprise,  

each with varied reporting needs, as this summary of a typical set of VaR users illustrates.

VAR REPORTING 
CHALLENGES 
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It is important to note that VaR is not simply a linear 

measure. For instance, the VaR of a portfolio containing 

assets A and B does not equal the sum of the VaR of 

asset A plus the VaR of asset B, as seen in the example 

below.

VaR ($1000 GOOG + $1000 TWTR) != VaR($1000 

GOOG) + VaR($1000 TWTR)

Therefore, SQL and traditional warehouses have 

limited utility when the information that is being 

reported cannot be aggregated in a linear way. As 

well as VaR, many other important risk measures 

such as counterparty credit risk fall into this category. 

Typically, risk reporting warehouses pre-aggregate 

VaR by all frequently used dimensions and use the 

pre-aggregated values to report VaR. This helps to an 

extent, but views are limited and fixed. To calculate 

VaR along any other dimension, or for a custom set of 

assets, users have to run a new VaR aggregation job on 

the analytics engine and wait for the results to load in 

the data warehouse again.  

LIMITATIONS OF TRADITIONAL DATA 
WAREHOUSES

While traditional data warehouses can be great for 

reporting simple information that can be aggregated 

in a linear way, they have their limitations:

   Reports are shallow schemas with limited analytical 

capabilities 

   Reporting is based on standard slice and dice 

operations and simple aggregation functions 

   Limited support is available for non-linear or semi- 

-structured data such as vectors, matrices, maps 

and nested structures 

   Schemas are fixed, so new analytics and aggregations 

require new views and schema changes 

   There is limited support to run user-defined functions 

or to call out to external analytical libraries, leading 

to a limited set of analytics being pre-aggregated.

Big data technologies such as Spark SQL, Impala and 

Hive can be combined with serialisation formats such 

as Avro, Thrift, Protocol Buffers, Hive and HDFS, to build 

a smart, high-definition, adaptive, high-performance 

data warehouse.

   Smart thanks to embedded custom analytics for 

aggregation and reporting that use Spark SQL and 

Hive user defined functions (UDFs). UDFs allow 

implementation of a domain specific language 

(DSL) on the data warehouse by extending SQL. 

UDFs can also call up external analytical libraries

   High definition due to the ability of persistence 

formats such as Avro, Thrift, Protocol Buffers and 

Hive Serdes to model complex domain objects via 

rich type support 

   Adaptive via the ability of Avro, Thrift, Protocol Buffers 

and Hive Serdes to support evolvable schemas  

   High performance through Spark’s capability for 

fast, large-scale data processing using an advanced 

DAG execution engine that supports cyclic data flow 

and in-memory computing. 

With this approach, you can ask any question or run any 

reports with no need to request a custom analytical job, 

giving you easy access to deeper insights on demand. 

What’s more, Spark SQL allows you to store a high- 

-definition view of your data in the data warehouse. So 

instead of calculating a single VaR number based on 

limited assumptions, you can store a complete view 

of the trade in the warehouse, using a Hive Array data 

type, including all historic PNL.

THE DAWN OF HIGH-DEFINITION  
DATA WAREHOUSING
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In addition to the benefits outlined above, the high-

-definition data warehouse approach offers a wide 

range of features designed to optimise efficiency and 

ease of use:

   The warehouse DSL is built on top of SQL, the most 

popular data analysis language

   Spark SQL’s industry standard JDBC and ODBC 

interfaces enable use of standard visualisation tools 

like Tableau, ZoomDate, Qlik, Microstrategy 

   Hundreds of standard Hive and community- 

-contributed UDFs from the likes of Facebook 

and Brickhouse can be used out of the box and 

combined with custom UDFs

   Spark UDFs are concise, quick to implement and can 

be unit-tested

   Spark UDFs offer ‘write-once, use-everywhere’ 

versatility for streaming jobs, batching jobs, REST 

services, ad hoc queries and machine learning

   Polyglot persistence ensures that Spark SQL  

supports a variety of data sources like HBase, 

Cassandra and relational databases. This allows for 

joins across data sources, so positions can come 

from HDFS, time series from HBase or Cassandra 

and business hierarchies and reference data from  

a relational database. 

The Basel Committee on Banking Supervision is 

currently carrying out a fundamental review of the 

trading book capital requirements (FRTB). A number 

of weaknesses have been identified with using VaR 

for determining regulatory capital requirements, 

including its inability to capture tail risk. 

Consequently, a move from VaR to Expected Shortfall 

(ES) is being proposed. It will be the biggest and most 

significant market risk regulatory change since the 

introduction of VaR almost two decades ago and will 

necessitate significant changes in the ways that banks 

manage data.

A high-definition warehouse as described above would 

allow you to calculate the new metrics required without 

changing the warehouse. Also known as Conditional 

Value at Risk (CVaR), ES is more sensitive to the shape 

of the loss distribution in the tail, which means you can 

make calculations on the fly by leveraging SparkSQL.

FOCUS ON 
USER-FRIENDLY FEATURES

FLEXIBLE, FUTURE PROOF  
AND READY FOR CHANGE

BENEFITS 
BEYOND COMPLIANCE

Generally, when comparing the big data stack to 

traditional warehouses, vendors have focused on the 

cost savings. But in addition to reducing the burden 

of regulatory reporting, the new generation big data 

technologies offer the potential to build high-definition 

data warehouses that give your users self-service 

access to faster, deeper insights and deliver significant 

competitive advantage.

A high-definition view of data maximises your ability 

to obtain new insights. The ability to arbitrarily 

mine a dataset creates opportunities for business 

optimisation and new applications. Custom analytics 

made available via user-defined functions make the 

warehouse smarter, and transforms SQL into a DSL 

form that can be viewed as a Spark script. Furthermore, 

data engineering teams could be freed up to focus on 

higher value functions, so saving additional time and 

money.

The technology stack to support this approach is 

available now. However, the rate of uptake in the 

financial services sector to date has been slow. By 

embracing new technologies such as Spark, you could 

more readily ensure compliance, while reducing 

development costs and saving on reporting resources 

that could be reinvested into the business – so helping 

to drive measurable commercial value.  
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hanks to its ability to 

decouple systems and enable 

interoperability, application 

message broker software is prevalent in 

the finance sector, forming the backbone 

of trading platforms that distribute financial 

events and information worldwide. Here we 

take a look at how the recent beta phase 

arrival of Apache Kafka K-Streams is making 

waves and what the ripple effect might be. 

T

Darren Voisey
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A stream is an ordered, and potentially 

infinite, sequence of data elements 

made available over time. Examples 

include website clicks and market 

stock price changes.  

Financial institutions are increasingly 

adopting Apache Kafka to integrate 

various big data platform components 

and using it as a de facto messaging 

standard. We are aware of at least 

one bank where uptake has reached 

such a level of maturity that it is now 

offered as a shared service. However, 

unlike RabbitMQ and ActiveMQ, Kafka 

supports only basic messaging patterns. 

So the question now is whether Apache 

Kafka has the potential to do more and 

if so, what next? 

With Kafka often described as a 

‘distributed log’, key differences from 

the other messaging technologies 

referenced here are as follows.

Most developers and architects will be familiar with application 

messaging, especially the vanilla functionality of durable1 topics, 

point-to-point channels2 and competing consumers3. Many will also 

understand the extended routing and complex logic that can be 

constructed via the advanced message queuing protocol (AMQP) 

implementation supported by ActiveMQ and RabbitMQ.

While these technologies can be used to build asynchronous systems 

that can scale horizontally, they also have limitations (architecture 

compromises) that need to be considered. Notably:

   Each topic queue has to fit on a single node within a cluster

   Message ordering is not guaranteed

   Messages are delivered at least once, so duplicates can occur.

Most applications need to allow for these limitations. For example, if an 

application keeps a running total of trades per minute, it will also have 

to maintain a separate state to handle failure and restart, because all 

read messages will have been removed from the queue.

This technology stack is typically seen in event-based remote procedure 

call (RPC) types of systems, but the limitations listed above do muddy the 

waters of what we would otherwise consider a perfect stream. However, 

if you don’t need the complex routing, there is a viable alternative. 

THE CURRENT 
SITUATION

WHAT IS 
A STREAM?

ENTER 
APACHE KAFKA

   Scalability – topics can be sharded or partitioned according to 

custom rules that permit data to be distributed across nodes in  

a cluster, enabling horizontal scaling at topic level.

   Durability – instead of removing messages once read, removal 

is based either on age or a custom compaction rule; so if your 

compaction rule is ‘keep latest’, your queue can be effectively  

a table.

    Accuracy – with message order guaranteed within each shard, you 

can model a stream more accurately.

   Routing – bear in mind, however, that the framework provides 

constrained routing logic, with no AMQP-type routing.

What makes queues with history so exciting is how much easier it 

becomes for applications to restart and initialise themselves with no 

need for separate journaling. Distributed queues can hold a lot of state 

and they then act as storage: if we then shard according to business 

needs, our ordering can be preserved. In other words, we have ordered 

streams of data that scale.
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KStream<String, StockTick> source = builder.stream(stringDeserializer, 

payloadDeserializer, sourceTopic);

KTable<Windowed<String>, Long> ktable = source

  map((s, payload) -> {

     //generate a key based on the stock

     return new KeyValue<String, StockTick> (payload.stockCode, payload);

  })

  .aggregateByKey (() -> 0L

   (aggKey, payload, aggregate) -> {

      //the aggregation tool

      return Math.max(aggregate, payload.price);

   },TumblingWindows.of(“stock-maxprices”).with (500)

   ,stringSerializer, longSerializer, stringDeserializer, longDeserializer

  );

ktable.to(“streams-output”, winowedStringSerializer, longSerializer);

The ability of Kafka queues to operate 

as a persistence layer opens up 

interesting new approaches to system 

design. You can, for example, rely 

on Kafka to act as a journal and, 

through custom compaction, reduce 

the amount of processing required 

when initialising data from historical 

records. 

However, what about creating 

projections on top of queues, in effect 

deriving new streams of data from 

underlying queues? This is where 

Kafka K-Streams currently in pre-

release, fits in well. It provides a Java 

library for building distributed stream 

processing apps using Apache Kafka. 

Your application components can 

therefore derive and publish new 

streams of data using one or more 

Kafka queues for the source and 

output. The durability – or persistence 

– of the queue data then underpins 

the components’ resilience and fault 

tolerance.

The following example consumes a stream of stock prices and derives 

the maximum price per stock per 500ms. Unlike some other stream 

processing frameworks, Kafka K-Streams doesn’t use micro-batching, 

so you can achieve processing in near real time. 

The code below performs the following steps:

   Subscribes to a topic of stock prices, together with the classes, to 

de-serialise the data

   Creates a new key value pair based on the stock code within the 

message

   Aggregates by the stock code – in this example we keep a running 

max

   Windows the results every 500ms

   Writes the results to a new topic called ‘streams-output’.

KAFKA K-STREAMS 
IN PRACTICE

EVOLVING 
DESIGN

This code is based on the early preview of Kafka K-Streams, with more comprehensive documentation provided by its 

developers at Confluent at http://docs.confluent.io/2.1.0-alpha1/streams/index.html 
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The examples and tests included 

within the Kafka source code proved 

invaluable during our research for 

this article. We were impressed at 

how succinct and easy to understand 

the API was to use. In fact, our main 

frustration was that RocksDB, the 

default local state store used by 

Kafka K-Streams, isn’t supported on 

MS Windows, our work development 

environment.

So what are the likely benefits if you decide to go with Kafka K-Streams? 

If your organisation is already using Kafka, then it’s worth starting to 

look at it as a way to reduce your application logic, especially as it 

doesn’t need additional infrastructure. And, if you are performing this 

type of logic with AMQP, Kafka and Kafka K-Streams could simplify your 

architecture and provide better scale and resilience. 

To sum up, therefore, Kafka K-Streams enables you to simplify your 

application messaging and create new data islands in the stream as 

follows: 

   Derive new streams of data by joining, aggregating and filtering 

existing topics

   Reduce your application logic by using the Kafka K-Streams DSL

   Provide resilience and recoverability by building on Apache Kafka.

For more on Kafka K-Streams architecture, this might prove useful: 

http://docs.confluent.io/2.1.0-alpha1/streams/architecture.html 

SHOULD YOU GO 
WITH THE FLOW?

OUR 
ASSESSMENT

1  http://www.enterpriseintegrationpatterns.com/patterns/messaging/DurableSubscription.html

2 http://www.enterpriseintegrationpatterns.com/patterns/messaging/PointToPointChannel.html

3 http://www.enterpriseintegrationpatterns.com/patterns/messaging/CompetingConsumers.html
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n recent times banks have 

relied on compute grids to run 

risk analytics. However, this 

long-established batch paradigm is being 

challenged by streaming, which is on the 

cusp of replacing compute grids as we know 

them. Here we explore the evolution of 

streaming and evaluate some of the leading 

approaches, with a particular focus on 

Google’s Dataflow. 

I

Neil Avery
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Historically, risk analytics using a compute grid 

comprised of a job referencing trade IDs and a set of 

measures (greeks) sent to each compute core: there 

could be several millions of these tasks. Compute grids 

typically range in size from 500 compute cores; many 

have 10,000; and some up to 80,000 compute cores. 

Most systems process a business line’s analytics as  

a batch for end-of-day processing, which might take 12 

hours to complete. Some systems perform bank-wide 

aggregations to calculate exposure or analyse other 

factors that span all business lines. These systems 

represent a large portion of data centre estate and are 

classically bound to the server/task compute model.

In recent years many banks have invested in data lake 

platforms, which has triggered a shift from traditional 

MapReduce jobs to real-time streaming. Providing that 

it can scale and support sufficiently rich semantics, the 

streaming approach brings many benefits. Currently, 

we see Spark Streaming as the industry standard, and 

Kafka, a horizontally scalable messaging platform, is 

generally used as the datapipe that feeds into Spark 

Streaming for the execution phase. The streaming 

model has further evolved with the 2015 launch of 

Google’s Dataflow, which presents an opportunity for 

fast and agile data processing while also replacing 

compute grids with streaming, as we will explain.

PHASE I
LIMITATIONS OF COMPUTE-BOUND RISK
ENGINES

End-of-day batch jobs on a compute grid will submit 

millions of tasks; execution will involve long running 

analytics with multiple workflows, forking, joining 

and handling transient data for reuse in the series of 

domain/analytic derived workflow patterns. They are a 

fundamental operational requirement for calculating 

all kinds of insights about trade positions, risk, etc. 

Increasingly they are used for regulatory reporting 

requirements or more generally for calculating close-

-of-business prices/positioning/reports and setting 

up start-of-day processes. However, as well as taking 

hours to complete, they are not real-time. They are 

part of the T-3 process. Instrument and risk complexity 

often drives the quantity and duration of individual 

tasks comprising the overall job. 

SITUATION  
SNAPSHOT

You could think of it like this: 

Trade -> for each risk measure/greek –> Curve data -> 

for each Tenor-blip -> calculate. 

Combine this with credit valuation adjustment (CVA) 

or C-CAR and we move up the complexity curve.

Depending on the business sector and instrument, the 

complexity required to drive ticking prices, real-time 

streams and ad hoc analysis make batch orientation 

unsuitable or even impossible. The process is too slow 

and cumbersome. Risk engines can sometimes be 

written to execute periodic micro-batches, however, 

they don’t operate in real-time and only execute every 

five minutes.

PHASE II
HOW LAMBDA LINKS
COMPUTE-BOUND AND REAL-TIME

In 2014 the Lambda architecture was introduced. It 

works on the idea that combining an approximation 

of streaming results with pre-generated batch 

results makes it possible to create a real-time view. 

Unfortunately, most streaming algorithms are based 

on sketching semantics which provide approximation 

rather than absolute correctness – consider, for 

example, Top-N, HyperLogLog and others1. As a result 

of this approximation, Lambda can’t deliver sufficiently 

accurate results (batch parity). By the time streamed 

data has been batch-(re)processed, the (re)derived 

output will have changed, creating a system of  

eventual consistency2. The alternative is to retrigger 

a partial evaluation, but although this may serve 

a purpose, there is also scope to lose the real- 

-time elements for which the Lambda approach was 

introduced.

PHASE III
DATA LAKES, LAMBDA AND THE DUALITY 
DILEMMA

The other major problem with the Lambda architecture 

is that you have to maintain two systems, adding more 

complexity to an already complicated situation. Data 

lakes can be viewed as part of a Lambda system: they 

represent a duality, but can also serve tasks similar to 

the compute analytics grid. Data lakes generally use 

Spark Streaming to consume, enrich and process data 

in real-time. However, these systems offer many of 

the business benefits associated with data agility and 

speed, for example, enabling traders and analysts to 

execute ‘what-if’ scenario analysis using an interactive 

notebook. 
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PHASE IV
STREAMING GOES SOLO WITH KAPPA

Kappa throws the Lambda two-system notion out of 

the door – duality has too many challenges. Kappa’s 

approach is simplistic, in that the idea is to store all 

the source data within Kafka, then when you need 

a new version of the data, you replay the stream. 

Parallelism is required to scale out, but the need to 

deal with complex workflows may prove too much and 

make this approach impossible. While Kafka’s Hadoop 

integration provides powerful leverage over HDFS 

and Hive, etc, the problem with the Kappa approach 

is the complexity of the analytics and their execution 

speed, for example, some analytics can take 10 hours 

to complete. This is a point we’ll come back to.

In the first wave of streaming platforms, Spark 

Streaming, Storm, Samza, Flink and Kafka K-Streams 

have all been dominant. All have contributed to our 

current value proposition of streaming use cases. 

However, the typical workload is only to stream 

a single parallel set of tasks. Storm and Samza support 

more elaborate workflows but they don’t enable rich 

coordination in data-driven functional style. A classic 

workload would be massively parallel streaming 

analytics that process large volumes of data such as 

click-streams or ticking prices.

In many financial services use cases, gathering the 

data required for analytics can be expensive.  However, 

organising data into channels for scale-out via fast 

10G Ethernet combined with scalable workflows can 

potentially overcome repeated chattiness.

Key features of the white paper4 include a complete set 

of core principles, including: 

   Windowing – various models to support unaligned 

event-time windows

   Triggering – reaction and response to data triggers

   Incremental processing – to support retractions 

and updates to the window.

It should also be noted that although the framework 

provides a model that enables a simple expression 

of parallel computation in a way that is independent 

of the underlying execution engine, tasks will remain 

computationally expensive and may take several 

hours to evaluate a risk measure. 

We should also clarify that when we refer to a batch, 

we simply mean a stream of data with a known start 

and end – it is bounded data. Streaming without a start 

point or end point is called unbounded data.

The ground-breaking publication of Google’s Dataflow 

model in 20153 established the first complete working 

framework for streaming. Leveraging its experience 

with MillWheel and FlumeJava, Google provided 

a  comprehensive working model to execute streaming 

in its Google cloud. A batch is unified within the model 

and executed using a stream. In terms of resource 

management, the Dataflow model is geared towards 

hands-free DevOps. Because it runs in the cloud, 

Dataflow also makes it easy to optimise efficiency and 

control costs without the need to worry about resource 

THE FIRST WAVE
OF STREAMING PLATFORMS

CAN YOU ADAPT A COMPUTE
GRID JOB TO RUN AS A STREAM?

GOOGLE DATAFLOW:
THE FUTURE OF STREAMING

tuning. For instance, the number of processing nodes 

you need is provisioned elastically to match your 

precise requirements, so you don’t need to worry 

about tuning the number of processing nodes. What’s 

more, Dataflow’s programming model is functionally 

biased when compared to the topological or classic 

MapReduce model. This allows you to shape execution 

paths and workflow according to the underlying data at 

execution time.

Nonetheless, there remains a point of contention: is 

it more expensive to ship data or to scale compute? 

For example: a Monte Carlo simulation requires you to 

scale compute – in other words to process thousands 

of calculations on the same data with differing 

parameters. Conversely, building a curve model that 

can be used for subsequent calculations requires 

shipping yield, credit curves and volatility surfaces for 

a complex instrument to a single node.
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Dataflow is a native product on the Google cloud 

platform, which has evolved to a point where you can 

build almost anything using three key services:

   Dataflow DF (routing and processing)

   BigTable BT (NoSQL storage)

   BigQuery BQ (query)

To convert an existing compute batch workflow to 

Dataflow you will need to build a Dataflow pipeline 

model as follows:

BigQuery-input -> transform -> PCollection (BigQuery 

rows) -> Transform (ParDo) -> output

DATAFLOW IMPLEMENTATION: 
BATCH TO STREAM

The key steps involved are to:

   Source data from BigQuery and/or cloud storage 

   Iterate the PCollection for each item and apply 

one or more transformations (ParDo) and apply an 

analytic or enrichment 

   Merge PCollections together to flatten or join 

(CoGroupByKey) data. 

The above scenario gives you a classic source -> fork -> 

join pattern. However, Dataflow is so powerful that you 

can model any kind of pipeline/workflow in code, no 

matter how elaborate, as illustrated on the diagrams 

below. 

Figure 1. A sequential pipeline showing Dataflow components in relation to each other.

Figure 2. Forking the stream. Figure 3. Joining data from different streams.

Once the pipeline is built into an artefact (including the QuantLib), it is deployed to the cloud using Dataflow managed 

services to convert the pipeline into an execution graph.
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Dataflow Spark

gameEvents

  [... input ...]

  [... filter ...]

  .apply(„AddEventTimestamps”, 

WithTimestamps.of((GameActionInfo i)

    -> new Instant(i.getTimestamp())))

  .apply(„FixedWindowsTeam”, 

Window.<GameActionInfo>into(

FixedWindows.of(Duration.standardMinu-

tes(windowDuration))))

  .apply(„ExtractTeamScore”, new 

ExtractAndSumScore(„team”))

  [... output ...];

gameEvents

  [... input ...]

  [... filter ...]

  .mapToPair(event -> new 

Tuple2<WithTimestamp<String>, Integer>(

WithTimestamp.create(event.getTeam(),

      (event.getTimestamp() / 

windowDuration) * 

windowDuration),

    event.getScore()))

  .reduceByKey(new SumScore());

  [... output ...];

The Dataflow model provides windowing as part of the 

formal notation. As a result, comparing the two side by 

side shows Dataflow’s clean readability versus Spark’s 

somewhat complex code block.

In the code section below, blue represents where the 

data is being processed (windowing), while yellow 

represents what is being processed.

On the other hand, because the Spark model lacks a 

formal notion of event-time windowing, we have to 

intermingle the what and where portions of the code5. 

THE DATAFLOW
MODEL IN CODE

Dataflow is executed as a managed SLA on Google’s 

cloud platform, so is covered by the following service 

level agreement (SLA):

   You can carry out up to 25 concurrent Dataflow jobs 

per cloud platform project

   Processing job requests are currently limited to 

10Mb in size or smaller

   The services limit the maximum compute engines 

according to work type. Batch executes using 1000 

instances of ‘n1-standard-1’, whereas streaming 

mode executes using up 4000 compute engine 

instances of ‘n1-standard-4’.

CLOUD EXECUTION 
SERVICE LEVEL AGREEMENT
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We are planning to convert an open source batch- 

-oriented workload to Dataflow. Part of the exercise 

will be to identify performance challenges seen 

in this space, for example, relating to data locality 

and intermediate/transient data, and to establish 

performance metrics.

FUTURE 
RESEARCH

APACHE BEAM:
DATAFLOW ON-PREMISE

Google open-sourced Apache Beam as its contribution 

to the community to provide an on-premise Dataflow 

alternative. It is essentially the Dataflow API with 

runners implemented using Flink, Spark and Google 

cloud Dataflow. More interestingly, it is Google’s first 

open-source contribution of this kind – by contrast, 

previous innovations like HDFS used the more hands-

-off ‘throw a white paper over the wall’ approach on  

the basis that someone else would pick up the idea and 

run with it. 

Apache Beam enables you to operate the same 

expressive runtime-defined stream processing model. 

However, you are limited to on-premise, statically 

sized deployments commandeered by Zookeeper. You 

therefore won’t have access to the compute resources 

available when leveraging cloud elasticity.

The vision for Apache Beam is to support a unified 

programming model for:

   End users who want to write pipelines in a familiar 

language 

   SDK writers who want to make Beam concepts 

available in new languages

   Runner writers who have a distributed processing 

environment and want to support Beam pipelines.

As we have seen, the dominance of compute grids 

in financial services is being challenged by a major 

transition to streaming. Yet again, the leading 

innovators are providing direction on how we will 

move from a compute or server-oriented paradigm 

to one that is stream-oriented and server-free.  While 

Lambda and Kappa have produced solutions to the 

challenge of providing real-time information, the 

inherent duality and constraints in their streaming 

models limit practical application. 

Only now, with the advent of the Dataflow model, are 

we seeing a viable streaming solution with the potential 

to replace the largest financial services workloads and 

move them to a new paradigm built around real-time 

analytics, where batch is a subset. The challenge now 

is to prove to the incumbents that this migration path 

from batch to stream is indeed possible and practical. 

We’ll be watching with interest.

WHAT WILL DATAFLOW
DELIVER AND WHEN?

1  https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

2 https://www.oreilly.com/ideas/questioning-the-lambda-architecture

3 http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

4 http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

5 https://cloud.google.com/dataflow/blog/dataflow-beam-and-spark-comparison#hourly-team-scores-windowing
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n recent months we have been 

adding features to one of our 

main use cases for Mache – 

our open source cache solution 

for taming bottlenecks in grid applications. 

I Mache is opening up exciting opportunities 

to dramatically improve network efficiency, 

clearing the way to more valuable big data 

applications.

James Bowkett
Jamie Drummond

50  |   TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND 
PERFORMANCEBLOCKCHAIN



COMPUTE TASKS

COMPUTE NODE

DATA STORE REPLICAS

First, let’s briefly recap on why we developed Mache. 

Financial services – particularly investment banks – 

have always relied heavily on large-scale compute 

grids. But recently, organisations have been switching 

from traditional in-memory data grids to NoSQL 

products with the scalability to process vast volumes 

of data quickly. 

Mache combines a scale-out NoSQL layer with a near 

cache to create a scalable platform that can be relied 

on to handle the most intensive data applications. 

In other words, Mache decouples applications from 

messaging and storage. And, with the addition of a 

new REST API, Mache makes storage perform less like 

a native database and more like a service. 

By separating the data layer, the local cache allows 

data sharing between processes. This in turn enables 

applications to adopt a more micro-services style 

architecture. Consequently, by reducing database 

contention from competing applications, decoupling 

enables you to service more requests, thus reducing 

network load and congestion. However, it leaves the 

storage layer free for tuning by your application suite 

as required. 

Among the key benefits we see for Mache are its wide 

range of integrations. These include:

   Messaging and invalidation – it integrates equally 

well with Kafka, ActiveMQ/JMS and RabbitMQ

   Big data and storage – it has been tested with 

Cassandra, Mongo DB and Couchbase

   Client platforms – a new REST interface allows 

Mache to serve value objects via JSON to virtually 

any client application stack. 

So let’s take a look at the issues around network latency 

and saturation in a little more detail.

With a conventional grid architecture, the number of 

requests can overwhelm the network and increase 

latency. 

NETWORK
LATENCY

Figure 1. Typical grid architecture.

Latency can be difficult to comprehend because 

network workload and complexity can vary greatly. It 

is well understood that as the network load increases, 

the variation of data can also increase greatly and, as a 

result, the mean response time will also rise.
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Common data access patterns have a large number of 

nodes. Therefore, by reducing the number of network 

requests by a factor of the number of tasks per node, 

caching can significantly reduce latency.

Figure 2. Cache latency and invalidation performance rises as the number of connections grow.

Figure 2 below shows the impact on cache latency of 

increasing transactions in a local test environment. 

This data, often seen under stress test conditions, will 

not surprise anyone who has measured loads in larger 

networks.

Network throughput is a finite resource. As we increase   

the number of cores in a grid, the amount of network 

bandwidth available to each core decreases. This 

is clearly illustrated in Figure 3, which displays the 

linear allocation of a 10 Gbyte/s network (1.25 Gbyte/

sec theoretical) across compute cores and the time 

needed to load 350 Mb of data with increasing numbers 

of data store replicas. 

NETWORK
SATURATION
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Figure 3. Data store replica shows that as data throughput rises, network efficiency falls.

By reducing contention for bandwidth, Mache delivers 

multiple benefits.

   Reduce data duplication: tasks within a grid node can 

query the local Mache service in any access pattern 

required, helping to avoid database hot spots and 

the repeated need to send duplicate data across an 

overstretched network.

   Enable data sharing: multiple processes within the 

same grid node can share the same data, negating 

the need to send the same data across the network 

more than once.

   Enhance data affinity: because Mache can stay 

active between multiple job executions, with careful 

grid partitions, nodes can process the same data 

throughout the batch pipeline.

HOW MACHE
IMPROVES EFFICIENCY

   Reduce queries: because a larger subset of 

the dataset can be cached, tasks no longer use 

individual queries or require query optimisation.

    Improve scheduling: Mache provides existent 

caching across tasks, so demands on grid bandwidth 

will be less ad hoc and can be better planned, for 

example, according to a refresh schedule.

    Eliminate binary bundling: the language-agnostic 

REST interface decouples storage from the process, 

as well as from the client-side language. With many 

applications written in Java, .NET and more recently 

Go, REST also decouples code from the NoSQL 

vendor platform. So when it comes to deployment 

and upgrades, eliminating the need to bundle 

client-side binaries is a blessing.
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48 individual data connections across the network:

No data sharing, other than accidental temporal 

query locality at the DB.

48 individual data 

connections across the 

network

48 individual data connections over the local 

loopback connection: Data shared and connections 

concentrated from one application.

select * from

market_data where

data_key = ’?’

select * from

market_data where

data_key in (’?’, ’?’)

GET http://localhost

mache/market_data/5

(via local loopback)

48 COMPUTE TASKS

1 COMPUTE NODE

48 COMPUTE TASKS

1 COMPUTE NODE

MACHE REST SERVICE

Cluster

shards

Cluster

shards

Figure 4. Comparison of a conventional compute approach with 48 task connections to the data cluster versus a single Mache-

enabled one.

Consider a scenario where a compute grid has to 

process market data and calculate the PNL for a given 

portfolio of trades. This is typically achieved by splitting 

the trades into smaller groups and creating a task per 

group. Tasks are then queued on a compute grid to 

execute as quickly as possible, with the results collated 

later in post-processing.

Historically, each node had to connect and download 

the required data from a data store. The approach can 

be simple to implement and the power of the compute 

grid is harnessed effectively. However, with ever- 

-increasing volumes of data, task run time rises as the 

network soon reaches capacity. Most applications will 

try and cache the data locally within the requesting 

process.

Without Mache every compute task needs direct access 

to the data store. This greatly increases network traffic, 

which reduces throughput and increases latency. 

Typically, many tasks are scheduled at once, further 

compounding the problems. For instance, if 100 tasks 

A SMARTER WAY  
TO SCALE REQUESTS

start concurrently and all require the latest copy of 

the data, the network can suddenly get saturated. Akin 

to a denial of service attack, the event can cause grid 

nodes to appear offline. The issue then escalates as 

the grid attempts to heal, while network infrastructure 

struggles to manage the load. 

Even with a 10 Gbytet/s network, the maximum 

throughput is 1.25 Gbyte/s. With growing regulatory 

reporting requirements, compute grids need to scale 

to tens of thousands of cores, while at the same time 

coping with the explosive growth of market data over 

recent years1. With this in mind, it is easy to see how 

having all processes directly accessing the database 

does not scale. 

In the same way that application developers try 

to increase performance by designing ‘machine- 

-sympathetic’ applications that attempt to increase 

cache locality, what they actually need to design are 

‘network-sympathetic’ architectures that can scale 

across thousands of compute nodes. 
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Mache can be accessed via a Java virtual machine 

(JVM) process or via the REST language-agnostic 

protocol. As can be seen in Figure 4, within a Mache 

model only a single database call is required versus 

a call for each separate task in the conventional 

approach. Mache retains the latest copy of the data 

in its memory so that it can be accessed by all tasks. 

Furthermore, the Mache API abstracts the connection 

to the data store. This means that any updates to the 

underlying data store are automatically synchronised, 

freeing up the developer to focus on task execution.

To date, the project has been a great success and is 

generating a lot of interest from the open source 

software (OSS) community. It’s great to see the broad 

appeal of many of the key Mache features for many 

application architectures. Notable among these are 

the ability to dedupe data into a localised service; 

binary decoupling from storage layer binaries and the 

potential for NoSQL and near-caching. The coming 

months we aim to roll out a webinar series that will 

include a presentation of Mache with DataStax and its 

roadmap. 

Building on the encouraging results so far, our team 

here at Excelian will continue to promote Mache as 

a key contribution to the open source community. It 

neatly complements our industry expertise and will 

enable the adaptation of NoSQL to many use cases 

within the financial services sector. 

Find out more, view or download the code from:  

https://github.com/Excelian/Mache  

FOCUS 
ON THE FUTURE

MACHE 
IN PRACTICE

1  http://www.nanex.net/aqck2/4625.html
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   How do you see big data impacting on your business?

   Are you forward thinking with your big data strategy?

   What does your technology stack look like now?  

What will it look like in two years’ time?

   Can big data work with blockchain?

   Are you ready for streaming and machine learning?

You may know your company strategy, but are you as sure about your competitors?

We would like to invite you to take 

part in a completely anonymous and 

closed survey which will bring together 

multiple views and experiences of the 

big data landscape. 

Once all surveys have been 

completed and analysed, we will 

share all learnings with those involved 

and provide a current status of the 

industry – which provides valuable 

insights for you to leverage in your 

strategy for the years to come. 

Why take part?

1.  Contribute to the industry knowledge share

2.  Benchmark your company against your competition

3.  Receive a copy of the full research findings along with your final 

position

   If you would like to get involved, please email 

             techspark@excelian.com and we will be in touch.


