
BIG DATA
TECHNOLOGY SPECIAL
TECH SPARK, H2 2016

Enterprise Blockchain
Accelerator: Join us!

Big data
in financial services:
past, present and future

Drive fast,
 flexible VaR
 aggregation
with Spark

28

6

36

C
O

N
TE

N
TS

INTRODUCTION

FINANCIAL SERVICES
BIG DATA USE CASES

BLOCKCHAIN

STREAMING AND
PERFORMANCE

TE
C

H
 S

PA
R

K
, H

2
20

16

3 Editorial

4 Financial services Tech Radar

6 Big data in financial services:
past, present and future

10 Case study: Banking on NoSQL
for global data distribution

15 Electronic trading and big data

19 Interactive notebooks for rapid big
data development

23 Seven golden rules for diving into
the data lake

36 Drive fast, flexible VaR aggregation with Spark

40 Data islands in the stream

44 Batch, stream and Dataflow:
what next for risk analytics?

50 Minimise data gridlocks with Mache

28 Enterprise Blockchain Accelerator: Join us!

32 Blockchain and graph: more than the
sum of their hype?

For the last six years the financial services sector has struggled to keep

pace with the overwhelming growth in big data, cloud, analytics and data-

-science technologies. The situation reminds me of the music industry.

Once you had pop, rock, R&B, blues and a few other distinct genres and

it was simple – you knew what you did and didn’t like. Now, a new music

genre emerges every three months, and such clear definitions are a thing

of the past. Sound familiar?

Big data can’t simply be categorised as a branch of enterprise architecture,

databases or analytics. It is a completely new IT genre with blending,

processing and mutating of data at scale to create the 4Vs – volume,

velocity, variety and veracity – and more. Big data forms a baseline

platform, which brings us to the realisation that we are building something

completely new – and much bigger.

The impact of big data thinking is as profound as the emergence of a new

programming language (and we are seeing a lot more of them too). It is

giving rise to a new industry – one standing on the shoulders of giants.

Within this new landscape we see sub-genres rapidly evolving around

graph-databases, streaming, cloud and DevOps, all with at least 17 new

ways of solving old problems. The curious thing about this ‘new industry’ is

that it makes the old one obsolete, replacing it with something as disruptive

as the IT revolution was in the past. I have no doubt that we are on the cusp

of the ‘next big thing’ and that the future of financial services technology

will be transformed by the power of data, cloud, streaming, machine-

-learning and internet of things. More importantly, it will be fundamentally

different, with more giants and more shoulders.

With so much to cover, collating this issue of Tech Spark was both challenging

and exciting. In any market, the emergence of new capabilities that enable

dramatically different ways of doing things creates huge opportunities for

disruption and financial services is no exception (the latest example is

of course blockchain). Only a year ago this story would have been very

different. Of course, big challenges remain, not least hiring people with

the right skills to tap the rich potential of new, existing and unrealised use

cases. But with everything to play for, I hope that this publication will give

you more insight and inspiration as you venture forward on your big data

journey.

Neil Avery
CTO, Excelian
Luxoft Financial Services

EDITORIAL

EDITORIAL BOARD Neil Avery | Andre Nedelcoux

EDITORIAL AND MARKETING TEAM Martyna Drwal | Lucy Carson | Alison Keepe

CONTRIBUTORS Deenar Toraskar | Mark Perkins | Conrad Mellin |

Raphael McLarens | Thomas Ellis | Ivan Cikic | Vasiliy Suvorov |

James Bowkett | Darren Voisey | Jamie Drummond |

Theresa Prevost | Aleksandr Lukashev | Alexander Dovzhikov

DESIGNED BY S4

TECH SPARK, H2 2016 | 3INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

nspired and encouraged by

ThoughtWorks, we have created

the first Excelian Tech Radar. It’s a

snapshot from the last 12 months

that captures our key industry observations

based on work in capital markets with most

of the tier one and tier two banks in London,

North America and Asia-Pacific.

As a practice, we’re constantly looking to

learn, lead and stay abreast of top technology

trends – and separate the hype from the

fact, while understanding how hype can fuel

demand.

I
On the Tech Radar, the category we’ve

flagged as ‘hold’ means that we generally see

this space as having matured sufficiently, that

it has slowed and that other more creative

and unique approaches could be explored.

But as expected, the largest single group of

technologies falls within the ‘to investigate’

category: this reflects a growing appetite for

R&D investment. Some trends stand out as

particularly noteworthy.

Neil Avery

4 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

N
eo

4J

O
ri

en
t D

B

D
S

G
ra

ph

Ti
ta

n

G
ra

ph

Goo
gl

e
Te

ns
or

Fl
ow

Apach
e

M
ahout

Spark M
L

M
L InfluxDB

Rethink DB

No SQL /

Store H2O

Databricks

Notebook

Apache Zepplin

Apache Beam

Presto

Mesos

Analytics

BigChainDB

RippleR3

Ethereum
Blockchain

Fabric 8
DockerKubernetes

Rancher

Container

Tech

Gr
id

St
re

am
in

g

M
on

go
D

B

O
ra

cl
e

Co
he

re
nc

e

Co
uc

hb
as

e

N
oS

Q
L

/

St
or

e

Dataflow

TensorFlow

Lambda

ML

Cloud

Google

AWS

Azure

IBM Symphony

HPC Server

Grid

Ap
ac

he
 N

ifi

Ch
ro

ni
cl

e
M

ap

an
d

Q
ue

ue

D
at

a
/ M

sg

Ap
ac

he
 F

lin
k

An
al

yt
ic

s

Reactiv
e

Micr
ose

rv
ice

s
Go la

ng
Ak

ka

Q
ue

ue
s

La
ng

 /
Pl

at
fo

rm

Messaging

0MQ

Apache Kafka

Redis

Cassandra

Hazelcast
Apache Spark /

Stream
ing / SQL

AnalyticsNoSQL /
Storage

Financial
Services

Tech Radar

 Investigate

Tr

ia
l

 A
do

pt
Hold

The first wave of hype is around the universal appeal

and uptake of Spark, which provides everything that

was promised and beyond. What’s more, as one of the

key innovations in the big data arena – Kafka being the

other – it has really helped to drive big data adoption

and shape its maturity as part of a viable business

strategy. We also see innovation with Kafka K-Streams

and Apache Beam pushing the streaming paradigm

further forwards.

The second wave of hype is around lightweight

virtualisation tool Docker. With its shiny application

containers, it’s witnessed a two-year growth frenzy,

mostly attracting hardcore tecchies with little more

than three years in tech development. Who’d have

thought infrastructure could have such appeal?

Finally, the biggest tsunami is blockchain. They say

there’s a blockchain conference in the US every day.

It’s therefore no surprise that early innovators are

scrambling, Fintechs are all the rage and incumbents

are joining the R3 consortium to embrace the threat

rather than risk disruption from new players. It’s a two-

pronged hype cycle that we haven’t seen in a very long

time, being industry led just as much as it is technology

led.

THREE TECHS
TO TRACK

TECH SPARK, H2 2016 | 5INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

W weathered countless storms. But throughout

the ups and downs, big data has continued

to evolve into the all-pervasive force that it

is today. So how did big data get so big and

where’s the smart money on where it will it

go from here?

hen the genesis of Hadoop

emerged from a Google file

system paper published in

2003, it was the seed that

launched the big data technology revolution.

Since then, the financial services sector has

Neil Avery

6 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

In 2008, the sector was rocked with the collapse of the global markets

– triggering what became widely termed the credit crunch. Not since

the 1929 Wall Street Crash had the financial community seen 12 months

like it. Merrill Lynch, AIG, Freddie Mac, Fannie Mae, HBOS, Royal Bank

of Scotland, Bradford & Bingley, Fortis, Hypo and Alliance & Leicester all

had to be rescued from the brink of collapse. Lehman Brothers didn’t

escape so lightly and filed for bankruptcy.

Since then, recovery has seen waves of regulation forced into

institutions. Reporting and compliance is now an industry in itself, one

which costs billions to run. As a result, for a long time financial services

IT providers were so focused on reporting that it diverted their attention

from innovation. But while MIFID 2, Frank-DODD, FRTB, C-CAR and

other regulatory standards continued to impact the shape and pace of

innovation, the mood was starting to change.

The last three years have seen a

renaissance of IT innovation across

the banks. The rate of adoption

now allows companies to leverage

technology not only for compliance

and regulation, but to also benefit

from additional data insights, data

agility and a growing range of valuable

use cases.

Traditional innovation incumbents are

FRESH IMPULSE
FOR INNOVATION

adopting data-warehouse replacements by using the de facto Hadoop

standard. Having at last overcome many of its past challenges around

performance, batch-style semantics and complexity, Hadoop is seen

as a true data platform. It is the data lake where a plethora of tools

are available to build any type of ecosystem and support multi-faceted

views for different groups of users.

More recent financial services innovators are making a strong play for

Apache Cassandra. It can leverage a less complex data environment

and use some of its innovative data centre features to become cloud

enabled.

When Apache Spark was launched in 2012, it forcibly upstaged Apache

Storm. It has emerged as the SQL for big data platforms and everyone

has built a Spark connector including Cassandra, Couchbase, Hadoop,

MongoDB, etc.

WHERE IT ALL
BEGAN

GLOBAL
TURMOIL

Google had been using the precursor

technology to Hadoop in production

for almost 10 years before publishing

its 2003 paper. MapReduce was

published in 2004 and finally, in

January 2006, Hadoop was formally

hatched from Nutch 107. The next

two years witnessed a whirl of activity

in the technology stack, paving the

way to the first Hadoop Summit in

March 2008. HBase, a columnar store

based on Google’s BigTable had also

emerged in 2007 and today forms the

foundation for many NoSQL stores

including Apache Cassandra. Although

many anticipated rapid change in the

way we develop technology, it wasn’t

so clear back then where the change

would come from and the central role

that big data would come to play.

TECH SPARK, H2 2016 | 7INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

So far, 2016 has been an exciting year

for big data. In Europe and North

America, Hadoop projects continue

to run at scale. You’ll find Spark and

Spark Streaming at the core of all

projects. Particularly interesting is the

expanding range of use cases – trade

surveillance, fraud detection, market

surveillance, real-time analytics and

more. Banks feel more confident in

extracting value from unstructured

data using data lakes and there is an

appetite to invest in technology that

has proven its worth. A compelling

example of this is the Wharf bank with

more than 122 Hadoop clusters and

over 60 staff running it day to day.

Many of the regulatory requirements

and associated solutions have a

natural implication for data collection,

analysis and reporting. Rather than

building bespoke database solutions,

forward-looking institutions are

increasingly leveraging data lakes

– not only for compliance, but to

drive innovation, which is once again

becoming a true staple of financial

services IT.

Eight years after the global meltdown, we are finally seeing financial

services technology efforts coming full circle, accompanied by

unprecedented levels of innovation. Spark is being adopted as the

core of many systems. Data platforms have no value without analytics

and the move to a standard solution has further accelerated Spark

development. As a result, Spark Streaming and SparkSQL continue to

evolve and lower the barriers to entry. While no-one can forecast with

great certainty what tomorrow holds, the following are all likely to play

a key part in the foreseeable future.

 Streaming technologies like Spark Streaming fit well with the

challenges of a Lambda architecture but, more importantly, Apache

Kafka is now seen as the glue that enables disparate systems to

function and scale. Like Spark, it has a streaming solution, Kafka

K-Streams, which, as a result, will become part of many standard

technology stacks.

 Interactive notebooks that leverage the latest web technology and

roll up visualisation with agile big data technology are now being

adopted. Offering capabilities that until recently were impossible,

they can now complete in seconds typical queries that would have

previously taken 24 hours to run.

 Graph databases continue to be experimental for most, however,

some very exciting proof of concepts are happening in this field.

TinkerPop and Titan, along with the pioneer, Neo4J, continue to be

applied to more and more use cases, including blockchain.

 Machine learning (ML) is probably the biggest technical innovation

underway right now. Traditionally a realm of computer science,

when combined with big data and analytics, machine learning

creates a utopia that many system designers have long strived for,

but without the conventional architecture. Indeed, it is the next

progression from traditional analytics and, with seemingly infinite

use cases, the field is exploding. Spark supports machine learning

and has deployed a 1200 node deep learning neural net to manage

most of its development activities. But ironically, it’s Google with

TensorFlow that is pushing the boundaries – which seems to bring

us rather serendipitously back to where it all began.

WHAT LIES
AHEAD?

TODAY’S STATE
OF PLAY

8 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

To conclude, big data continues to

become less about the doing and

storing and more about the what if

and analytics, in other words, deriving

value from data and developing new

and exciting use cases. Storing data

WHERE WILL
THE BIG MONEY BE?

was solved with the first generation platform, which, albeit fragmented

and complex, proved its value. The second generation involved Spark.

The maturation of that wave brought agility and simplification as key

benefits. The pending wave of Fintech disruption – building around

blockchain, mobile, digital, faster networks and cloud-first – are set

to make the next ten years much more exciting than the last. So the

big question now is where should you focus your efforts? Of course,

there’s no easy answer, but I’d take a fairly safe guess that the learning

machines are coming and the smart money will soon follow.

Data storage became more cost-

effective for storing data than paper

According to a study by P. Lyman

and R. Varian in 1999 the world had

produced approx. 1.5 exabytes of

unique information

3 Vs – data volume, velocity and

variety – mentioned for the first time

in D. Laney paper

MapReduce published

Hbase emerged

First Hadoop Summit

Initial release of Apache Kafka

as open source project

Apache Spark launched

Hadoop first mentioned in Google file

system paper

Hadoop born from Nutch 107

Initial release of Apache Cassandra

as open source project

Global Financial Crisis

World’s information storage capacity

grew at a compound annual growth

rate of 25% per year between 1986-

2007

The term big data was used for the first

time by M. Cox and D. Ellsworth
1996

2000 2001

2004

2007

March
2008

2011

2012

2003

January
2006

2008

2008

2011

1997

TECH SPARK, H2 2016 | 9INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Case study

n 2015, Excelian was engaged to replace a critical end-of-day (EOD) and intraday

rates marking system at a prominent Australian bank. Migration to a big data solution

was not a foregone conclusion so complex considerations were involved when

specifying the best technologies for the task.

Mark Perkins
Conrad Mellin

Aleksandr Lukashev
Alexander Dovzhikov

I
10 | TECH SPARK, H2 2016 INTRODUCTION

FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

The new marking system had to meet a range of key

criteria.

 User-friendly – create a flexible user interface so

business users could easily define and persist rules

about the source of raw data that constitutes a mark

(ie whether it is data snapped from market data

vendor systems or retrieved from a file/database

saved to by traders) and perform automatic

calculations on saved marks to produce new marks.

 Fast – persist official marks to a lightweight storage

layer able to handle high volumes with frequent

changes while also distributing data globally, then

save to recognised ‘sources of truth’ for auditors

and historical analysis. It was accepted that retrieval

from the ultimate official system – ie the Sybase

relational database (RDBMS) or even tape – would

take significantly longer.

 Auditable – enable auditors to play back the trail

to see exactly where any given mark came from.

This required long term storage capabilities to

ensure records are persisted in accordance with

regulations.

 Easy to inspect – ability to load ‘past-date’ rate data

from the source of truth via the lightweight storage

layer for inspection by users.

Almost 20 years old, the existing marking system was

written in Sybase, C++, Python and Unix – technologies

typically used by investment banks in the late 1990s and

early 2000s. Until the 2008/9 global financial crisis,

the solution could handle the prevailing low trade

volumes. But as business became more flow driven,

the framework struggled to scale to the globalised,

high-volume trading model that has since evolved.

Complex set-up made it hard for the business to

directly maintain the configuration of rates, so it had to

rely on additional technology to make changes, which

pushed up time and costs. When combined with the

additional expense of using Sybase to replicate the

volumes of real-time data required worldwide, the

total cost of ownership became prohibitive. A scarcity

of C++ skills and its limitations for rapid development

further compounded the problems. Faced with these

challenges, the bank wanted to completely overhaul

the system using technologies that could deliver the

rapid development speed and scalability to meet its

business needs.

KEY REQUIREMENTSTHE NEED FOR
SPEED AND SCALE

TECH SPARK, H2 2016 | 11INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Every system has its pros and cons, and our experience

with Cassandra on this project was no exception. By

highlighting some of the key issues to anticipate, we

hope that our insights will prove useful for anyone

looking to switch to a NoSQL solution. Given that most

developers have an RDBMS background, a significant

shift in thinking is required from the application

programming perspective.

 Data integrity – it was vital to ensure consistency of

data underpinning the cluster in different regions.

Most modern NoSQL solutions deliver eventual

consistency focused on data availability and

partition tolerance. While this is how write operation

performance is achieved, regional consistency was

equally important. Cassandra extends the concept

of eventual consistency by offering tuneable

consistency. We allowed a write operation to

succeed when 50%+1 nodes in a local data centre

reported a successful completion of the operation,

with other remote data centres set to be eventually

consistent.

 Query performance – Cassandra’s CQL query

language is very similar to SQL. However, by

comparison, CQL proved somewhat restrictive. So

while Cassandra solves the problem of potentially

time-consuming queries by forbidding anything at

CQL level that can’t be executed in constant time,

it transfers responsibility for query performance

to the application code. Although this makes any

query performance problems explicit, it requires

significantly more effort from a developer.

 Latency – without indices, queries couldn’t be

optimised to exploit the known structure of housed

data. Secondary indices have worked well in classic

relational database systems for years but only when

underlying data was confined to a local server. In

a distributed environment, secondary indices are

not recommended as they may introduce latency.

Cassandra indexes should only be used when data

has low cardinality.

 Backwards compatibility – API changes between

major Cassandra versions have broken builds and

required some re-engineering of our internal code

base. This could be both a development challenge

and risk. However, Cassandra recently adopted a

‘tick-tock’ release model, which may improve things.

The decision to employ a NoSQL solution seemed

obvious given the need for a data lake/playground

where large quantities of unstructured data can be

quickly housed for temporary storage, accessed,

modified and replicated globally before finally being

written to the RDBMS where it would not be accessed

frequently.

Having considered the options, we chose Apache

Cassandra for a variety of reasons.

 The appeal of a cost-effective open source (fix-or-

amend-it-yourself) solution.

 NoSQL solutions typically have a flat database

structure with no joins or indices, perfectly suited

for the high volumes of data and performance

level required to support the critical nature of EOD

marking.

 With a ring partitioning of the keys and data

distributed equally among the cluster, the Cassandra

model provides high resilience and maximum

throughput. Although an existing cluster of high-

end hardware was used – which doesn’t exactly fit

Cassandra’s commodity hardware mould – it was fit

for purpose.

 Data filtering and manipulation was executed at

Java application level, using a minimalist Cassandra

query to retrieve or update the data.

 Creating a service layer above Cassandra to persist/

retrieve all data guarantees data quality by ensuring

there is no direct data access or modification by

users – which had been a regular feature of the old

set-up.

 The availability of high-quality monitoring tools,

such as DataStax OpsCenter, also increased

confidence in the technology choice. As part of the

DataStax Enterprise offering, OpsCenter has proven

extremely powerful for rapidly understanding the

state of the cluster and performing administrative

tasks.

ASSESSMENT AND
ARCHITECTURE PRINCIPLES

NoSQL
CHALLENGES

12 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

CASSANDRA

DATA SERVICECLIENT APPLICATION

SYBASE

CASSANDRA VS SYBASE DATA LOAD

LATENCY, SECONDS

 Cassandra Sybase

0

960 1642 1740 3251 4994

2

4

6

8

Latency

Seconds

 Global speed – while large volumes being moved

worldwide still put tremendous pressure on the

network, the speed of global data distribution has

largely resolved the Sybase global replication issue.

 Open source – the benefits of Cassandra’s open

source status are significant and enable easy

pinpointing of bugs or potential enhancements,

which has driven the bank to seek further open

source solutions.

 Real-time data – Cassandra’s underlying data model

of fast, efficient hashmap storage has delivered the

near real-time properties that users wanted.

 Ease of use – the ease of administering the system,

especially for the initial set-up and addition of new

nodes to expand the cluster has greatly enhanced

the user experience.

In order to run a comparison of data store performance before (Sybase model) and after (Cassandra model), a test

environment was set up with two databases containing the same data, as illustrated in Figure 1:

Figure 1. Sybase versus Cassandra test environment.

The data sets were loaded, different volumes of records from both databases were tested and times measured. In Figure

2, a thousand records corresponds to roughly 1Mb of data in the database and on disk. In all cases the results showed

that Cassandra significantly out-performed Sybase by a factor of three times or more.

Figure 2. Timings (# of records vs time).

BENEFITS OF SWITCHING
TO NoSQL

SYBASE VERSUS
CASSANDRA

TECH SPARK, H2 2016 | 13INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Migration from a relational database to a big data store

is a major undertaking and it’s not always obvious that

NoSQL will offer the best approach. Too often it can

seem as if migration to a big data solution can readily

resolve all existing RDBMS woes. However, it’s not a

foregone conclusion and sometimes some fine-tuning

of performance, or de-normalisation are all that is

required.

For this project, Cassandra was the best fit for the task,

however, we highly recommend exploring all the

big data technology options to make the best match

for your next migration specification. Here are a few

suggestions:

 Seriously consider the underlying data types you

need to store, for example, column store versus

document. Consider too the consistency and

partition (CAP) theorem and de facto solutions.

For instance, placing more weight on Consistency

and Partition Tolerance might point to the suitability

of MongoDB or Redis, whereas Availability and

Partition Tolerance would suggest Cassandra or

CouchDB.

 Bear in mind the benefits of a NoSQL solution that

supports a rich query language. It will lessen the

burden on developers with an RDBMS background

and accelerate time to delivery.

 Finally, for mission-critical systems in an enterprise

setting, you could consider a DataStax Enterprise

solution. Its many advanced features can greatly

improve production deployment, including the

enhanced OpsCenter, caching and Spark master

resilience, which are essential when running at

scale. When combined with increased testing and

integration with other key technologies, these

powerful tools can greatly enhance a vanilla

Cassandra deployment.

MATCH YOUR TECH CHOICE
 TO MIGRATION NEEDS

14 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

apid advances in low-cost cloud

infrastructure, the falling cost

of big data toolkits and the rise

of scalable, distributed, parallel

computing are transforming the ability

to carry out tasks that until recently were

unfeasible and creating opportunities to

bring disruptive new trading ideas to market.

Capital markets have proved to be early

adopters of technology in a range of areas.

A good example of this was the rise of

electronic equities trading in late 1990s,

later extending to other asset classes such

as futures and FX.

In the last decade the technology arms race

has gathered pace to improve performance

in areas such as speed-to-market, asset

coverage and algorithms. Away from the

high-frequency trading world, with its

narrow focus on reducing latency by micro-

or nano-seconds, attention is turning to

the potential of big data technologies to

generate disruptive trade ideas and catch up

with retail players in this space.

R

Raphael
McLarens

TECH SPARK, H2 2016 | 15INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

US-based FinTech company Kensho

(www.kensho.com) claims to have

created the world’s first computational

knowledge engine for investment

professionals. It combines machine

learning, unstructured data

engineering and powerful analytics

that marry masses of financial data,

such as stock prices and economic

forecasts, with information about

world events to produce unique

insights and analyses. Instead of using

traditional drop-down menus to select

particular products, currencies or

date ranges, Kensho’s highly intuitive

interface enables you to pose millions

of different questions in plain English

via Siri’s speech search or IBM’s

Watson command-line search.

Let’s take a scenario like a Fed rate

hike, Chinese New Year or a natural

disaster such as a hurricane. Kensho

can rapidly assess which market

sectors have performed better, for

example, commodities or stocks, US

or Europe and so forth. Within minutes

it generates a detailed report of past

performance trends – something that

would take several analysts days or

weeks to research through standard

approaches. The benefits of this

technology are already being utilised

by big market players including

Kensho backer and customer

Goldman Sachs; JP Morgan; Bank of

America; and CNBC which regularly

uses it for market commentary.

Statistical analysis – once the domain of quants and mathematically

inclined traders – used to be primarily focused on structured data. But

given the rapid growth of unstructured data, big data technologies that

use machine learning/artificial intelligence (AI) to filter and rationalise

information offer game-changing potential.

Consider, for instance, the benefits of linking social media feeds into

black-box style trading systems. In the past, several black-box trades

were triggered erroneously when old news was broadcast by accident

or a Twitter feed was hacked. For example, in April 2013, the Dow

Jones dropped 143 points after a fake Associated Press tweet said the

White House had been hit by two explosions1. The black-boxes had

reacted purely to certain keywords on a few specific Twitter accounts.

Fortunately, recent advances in machine learning and statistical

analysis, enable scrutiny of a much broader data set to verify the latest

breaking news story or at least assign probabilistic indicators around it.

On the buy side, many hedge funds have been turning to more

sophisticated mathematical models to drive their trading strategies,

with several, such as Bridgewater, Two Sigma, Renaissance and Point72,

investigating the benefits of big data. While naturally guarded about

their plans, they hope the application of machine learning to masses of

structured and unstructured data will give them an edge both over the

previous generation of narrow quant models and, more importantly,

the competition. The aim is not just to make research and analysis

more efficient, but to design computer programs that can detect new

patterns in the avalanche of data and generate new trade ideas.

Aidyia, a start-up based in Hong Kong, is mimicking evolutionary theory

in its quest to optimise trading strategies. Another start-up, Sentient, is

also using evolutionary computing to develop better models. A large

set of predictive models are created by analysing various historic big

data sets – including multi-language news feeds, exchange data,

company accounts and macroeconomic indicators – to find potential

correlations in key measures such as stock prices. These are constantly

evaluated and the poor ones weeded out, while ‘genes’ from the

successful models are used to seed the next population. Eventually, this

produces a strong predictive model. Sentient claims that it now takes

trading instructions on what stock to trade and when to enter/exit a

position direct from its AI models. Crucially, because these self-learning

systems are much more dynamic, they can adapt autonomously as

markets evolve – faster than humans can.

1 The Telegraph ’Bogus’ AP tweet about explosion at the White House wipes

billions off US markets, goo.gl/PhLT0s

TRADING
APPLICATIONS

RESEARCH
APPLICATIONS

16 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

PER CAPITA CHEESE CONSUMPTION

correlated with

NUMBER OF PEOPLE WHO DIED BY BECOMING TANGLED IN THEIR BEDSHEETS

Correlation: 94,71% (r=0,947091)

2000

C
h

e
e

se
 c

o
n

su
m

e
d

 Bedsheet tanglings Cheese consumed

Data sources: U.S. Departament of Agriculture and Centers for Disease Control & Prevention. Source: tylervigen.com

B
e

d
sh

e
e

t ta
n

g
lin

g
s

33lbs 800 deaths

31,5lbs 600 deaths

30lbs 400 deaths

28,5lbs 200 deaths

2000

2001

2001

2002

2002

2003

2003

2004

2004

2005

2005

2006

2006

2007

2007

2008

2008

2009

2009

While some people say these

technologies will give them a

probabilistic edge over the previous

generation of strategies, it is essential

to understand that technology alone

cannot fully predict the markets – not

SOME CAUTIONARY
CONSIDERATIONS

Figure 1. The overfitting phenomenon in action.

even in theory. Other detractors believe there is still too much hype

to determine if these approaches have yet uncovered anything truly

original and whether spin is playing a part in rebranding some existing

approaches as smart or AI-enabled.

There is still a need for human judgment alongside technology-based

approaches. One potential drawback of machine learning algorithms,

for example, is to mistakenly spot patterns where none exist. This

phenomenon, described as overfitting, occurs when a correlation

is found between unrelated datasets. The example below on cheese

consumption neatly illustrates this point.

It’s important to note that the ability to

probe big data has only been possible

thanks to the dramatic technology

advances and enormous growth

in low-cost cloud infrastructure,

combined with the rapid rise of

scalable, distributed, parallel

computing. These have transformed

the ability to carry out tasks with an

ease and speed that were unfeasible

a decade ago.

Take the case of Ufora, a specialist

distributed computing start-up that

recently made its software open

source. Following the 2008 global

financial crisis, Ufora’s founder had

AN EVOLVING
TECHNOLOGY LANDSCAPE

a painful experience while carefully re-factoring large amounts of

‘infrastructure-optimised’ code to implement new models. This inspired

him to set up Ufora and create a solution to produce more efficient

code while enabling the code to be easily modified without impacting

speed.

Ufora’s platform can take in Python code and automatically parallelise

it, then intelligently distribute the threads across a given cluster of local

or Amazon Web Services (AWS) machines – effectively multi-threading

it. It uses machine learning to understand how best to allocate and

manage resources while the program is running, so can handle

machine failures gracefully. One headline figure that demonstrates

the power of this approach was when a conjugate gradient algorithm

(iterative, numerical method) was applied to a matrix with one trillion

elements. Within 45 minutes it had delivered a solution by leveraging

Amazon Spot instances – essentially splitting the compute job up across

500-1000 cores – for a cost of just $10.

TECH SPARK, H2 2016 | 17INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

The evolution of technology will

continue to transform a range of

industries, including financial services.

Falling infrastructure costs and

growing availability of mature software

– including open source – are making

the tools to manage big data far more

efficient and affordable. Companies

that still see IT purely as a support

function. to the core business will

become left behind. By contrast, firms

that invest in big data innovation and

develop a clear information strategy

aligned to their overall business vision

will be in a prime position to exploit

the full potential of data as an

increasingly important commodity.

 Many banks and hedge funds are trying to use AI/machine learning

as part of their big data strategy.

 The cost of big data toolsets is decreasing; even open source tech

provides some useful self-learning algorithms.

 Financial services firms need to develop a clear information strategy

to keep pace with the competition.

KEY TAKE-OUTS
IN BRIEF

EXPLOIT THE TRUE
POWER OF BIG DATA

18 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

he latest web-

based notebooks are

considered by some to

be revolutionary and a true sign of

maturity in the big data industry. By

closing the gap between analytics,

visualisation and data agility, they

create a powerful platform for rapid

application development that can

leverage many new business benefits.

T

Neil Avery

TECH SPARK, H2 2016 | 19INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Optimising agility has been a long-running technology

goal: the ability to react fast and respond instantly to

change is a key driver of competitive advantage. So,

with the latest generation of notebooks coming on

stream, the legacy notion that big data is slow and

batch-oriented is being turned on its head. Using

interactive notebooks as a platform for rapid application

development (RAD) is setting a new benchmark for

agile data analytics. And, for the financial services

sector they combine the trusted flexibility of Excel with

the power of big data.

First generation notebooks offered an interactive

computational environment, in which you can combine

code execution, rich text, mathematics, visualisation,

rich media and collaboration. They proved very useful

at the time in fulfilling the needs of reproducible

research. However, because they run on a single

desktop, with restricted storage and power, their use

beyond academic circles has been limited.

By contrast, the new generation notebooks are

browser-based and utilise big data technology. As a

result, they provide an agile, interactive experience

similar to Excel but with the benefits of a visualisation

layer that leverages analytics to process terabytes of

data. The level of interaction enables real-time, ad hoc

analysis which leads to greater business agility.

Traders, quants and other data-heavy roles within

financial services can benefit from the notebook

platform. For example, what-if analysis can easily

be overlaid and executed on-demand to provide

immediate feedback. Backtesting, analytic validation

and other regular functions that may require a formal

release to production can also now be done – as

and when needed – and the results viewed simply by

visiting a webpage. Other types of post-analytics are

also possible. The open nature of the platform makes a

plethora of options accessible to anyone with sufficient

domain knowledge to derive data insights that were

never previously available.

The interactive notebook platform is achieved

by providing a glue that combines the different

technologies to create a rich, integrated, user-oriented

environment that enables seamless collaboration. A

layer on top of Spark – called SparkSQL – provides a

user-friendly interface that allows expressions to be

presented in familiar SQL-type syntax.

Agility is achieved by leveraging the power of the

latest HTML5 runtime found within compatible browser

platforms. Rich HTML features support inline script-

editing and real-time rendering using SVG graphics

and powerful charting libraries such as D3 for dynamic

data visualisation.

Data flexibility is gained through the use of Spark,

which can combine a variety of sources – including

big data, NoSQL storage layers and files – and then

execute Spark jobs on demand. Spark also integrates

with cloud platforms, the entire Hadoop stack and

every horizontally scaling data platform currently on

the market.

Power is again attributed to Spark and the data platform

with the ability to execute distributed data-shuffling via

MapReduce across thousands of nodes and process

terabytes of data.

BLENDING AGILITY,
FLEXIBILITY AND POWER

BENEFITS FOR
FINANCIAL SERVICES

20 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

APACHE ZEPPELIN

Apache Zeppelin is an Apache incubation project

with Spark functionality at its core. With its multiple

language back-end, Zeppelin is language-agnostic, so

will likely attract more interpreters because they are

easy to add via the API provided. Zeppelin’s built-in

interpreters include Spark, SQL, Scala, Shell, Markup,

Cassandra and many others. While it is very similar to

Jupyter/IPython, the user interface is more appealing

and it supports a richer range of interpreters as you

can observe in Figure 1 below.

Figure 1, Apache Zeppelin provides a rich web environment to enable interactive data analytics.

Currently, the three most popular notebook platforms

are Apache Zeppelin, Databricks (SaaS) and Jupyter

(IPython), which all have many potential use cases:

POPULAR
INTERACTIVE NOTEBOOKS

 Facilitate adoption of agile development

 Enable data visualisation

 Analyse what-if and ad hoc scenarios

 Prototype new applications

 Support an ETL pipeline

 De-risk big and fast data project deliveries.

DATABRICKS NOTEBOOK

The Databricks notebook, illustrated in Figure 2 on the

following page, is broadly similar to Zeppelin, however,

being available as a cloud-based SaaS pay-per-use

model (hosted by Databricks), it delivers all the benefits

of lower up-front costs. Databricks, which was founded

by the creators of Apache Spark, is continuously

pushing the forefront of data analytics, which ensures

its platform offers the most up-to-date Spark features.

TECH SPARK, H2 2016 | 21INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

JUPYTER NOTEBOOK

Promoting itself as offering open source, interactive

data science and scientific computing across over

40 programming languages, the Jupyter/IPython

notebook is well funded and very popular in academic

circles. Its growing list of academic backers includes

the University of California, Berkeley and California

State Polytechnic. In 2015 the Jupyter project received

a $6million funding boost to extend its capabilities

as a tool for collaborative data science, creation

of interactive dashboards and rich documentation

workflows.

Many thanks to Deenar Toraskar from ThinkReactive for his contribution to this article.

Figure 2. The cloud-based Databricks

notebook offers the latest Spark

functionality.

To conclude, the potential of web-based notebooks

to support rapid application development is as

revolutionary as Apache Spark itself. Many users

already regard Zeppelin and similar tools as a data

science studio. In practice, we see the power of

notebooks as having an exciting future that will give

businesses access to novel benefits that have not been

available until recently.

NEXT STEPS
FOR NOTEBOOKS

Closing the gap between analytics, visualisation and

data agility provides tight feedback cycles that can

be leveraged to create many unique commercial

advantages. Removing the layers of business analysis

and data modelling means that analysts with complete

domain knowledge can now gain rich insights and

utilise notebook power that ultimately combines

the flexibility of Excel with big data. Whatever comes

next in notebook innovation, it seems clear that they

have a big future as a dynamic platform for big data

application development.

22 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

ere at Excelian we are seeing

more and more large financial

institutions turn to data lakes

to provide the centralised,

malleable repository of data needed to react

swiftly and cost-effectively to ever-changing

regulatory and market demands. However,

it’s not always plain sailing, so here we’ve

flagged some of the key issues to consider

before you dive in.

Data warehouses, with their rigid data

storage structures, have tended to be slow

to adapt to the new world order. Data lakes

and associated big data technologies, on the

other hand, offer an extremely powerful and

agile tool that can deliver value fast while

reducing cost. But although they offer great

potential, difficulties in implementation

and delivery can easily lead to a data lake

becoming a data swamp. To help you avoid

getting bogged down when planning your

own data lake, we’ve pooled our experience

to create a few top tips designed to keep you

afloat.

H

Thomas Ellis
Ivan Cikic

TECH SPARK, H2 2016 | 23INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Requirements for data lake implementations

are extremely fluid, so, when it comes to project

governance, we strongly advise running the project in

an agile fashion. That means each iteration planning

session will involve defining a minimum set of

features to implement, deliver, integrate and test for

exposure to end users. A project like this will inevitably

require wide integration across the organisation. It’s

therefore extremely important to establish high-level

guidelines early on, along with early demonstrations of

functionality and integration capability with end users.

Paramount to any good agile delivery is engagement

with product owners and business stakeholders. At

the outset, try to establish buy-in from the individuals

within the business directly responsible for essential

parts of the project. Making these stakeholders directly

available to your implementation team will ensure

prompt answers and a more accurate understanding

of the requirements. Ideally, actions required to

complete the enquiries from the team should be

monitored and expedited.

Key stakeholders will likely include:

 Product owner – the individual who develops the

project vision and can direct it

 Data governance guardian – the person who

understands the structure of data in the enterprise

and how it flows

 Infrastructure expert – an individual (preferably

embedded with the team) responsible for managing

the lake’s infrastructure, ie its environments, hosts,

installation and customised distributions

 Security – a business-facing individual who can

develop requirements around security and user

access at a global level

 End users – representatives from the teams likely to

use the lake, whether supplying or extracting data

to/from it.

RULE 1
ENGAGE STAKEHOLDERS EARLY

RULE 2
SET CLEAR GUIDELINES

RULE 3
ADOPT A PHASED APPROACH

Consider running projects in a phased approach to

continually build on the previous stages. Outlined

below is a typical five-phase pattern that works well for

us.

PHASE I
PROJECT INITIATION

This includes all the tasks/set-up required before

writing the first line of production code.

 Appropriate and install your preferred big data

distribution technology (eg Cloudera/Hortonworks/

MapR) in your test environments and configure

as closely as possible to your target production

environment.

 Secure the test environments to the standards

required – including configuration of Kerberos

and synchronisation with any enterprise user

directories eg LDAP/Active Directory.

 If the infrastructure for your test environments

is unavailable, consider provisioning cloud

instances and use these as systems integration

test environments until your internal

infrastructure is ready. Should test data

confidentiality be a concern, anonymise or

generate it.

Initially, work through each iteration with ‘just enough’

design up front, ideally using whiteboarding sessions

with the entire development team. In this rapidly

growing field, technology is constantly evolving, so it’s

important to include all the different perspectives to

justify why certain decisions were made.

Any elaboration of the high-level requirements made

by the development team should be validated with the

wider group of stakeholders at the earliest opportunity,

so refinements can be made when it is still manageable

to do so.

And, while it may be tempting to migrate existing

functionality directly onto the lake, caution is

advised. Once you have established a known set of

requirements, it’s worth first taking a fresh perspective

to ensure that the design can use the features of the

new environment.

24 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

 Develop/configure a sandbox virtual machine

(VM) instance that developers can run on their

workstations. This should be a like-for-like copy

of your test/target environment, including

security – scaled down only to a single host.

 Obtain or develop a suite of generic tools to

automate deployment of lake artefacts and

deliverables to target environments, including

developers’ sandbox VMs. These tools should use

environment-based configuration to distribute and

configure their deployments.

 Obtain or develop a suite of integration testing

tools that make it easier for developers to build

acceptance and integration tests against a target

environment. These tools should interact with your

targeted big data technologies (eg HDFS/HBase/

Hive) and make it easy to set them up and fill

them with test data, as well as to tear them down.

The integration tools should utilise the developed

deployment tools at the earliest opportunity to

ensure adequate and continuous testing.

 Install and configure build servers to perform

continuous delivery and static code analysis. The

build process should:

 Build and package the application and install it in

a centralised artefact repository running all unit

tests

 Raise any static analysis issues

 Deploy to a development test environment and

run integration and acceptance tests

 On a successful run of the integration and

acceptance tests, deploy to other systems

integration test environments. This can either

be automated or configured to provide push-

button deployment to other environments.

 Codify and document development standards and

best practices, using IDE plug-ins to enforce them,

eg SonarLint, Checkstyle.

PHASE II
INGESTION

In this phase, you will develop the interfaces required

to obtain data from external systems and sources. It

is likely that the end users’ analytics and extraction

requirements are still being determined, so look to

simply accept and retain raw data in an immutable

machine readable format, eg via Apache Avro or

Apache Parquet. Storing raw data this way provides

options when you need to rerun analytics, present

lake content, generate metadata and manage disaster

recovery. Ensure that any processing done on ingested

data is idempotent, then should the need arise, that

data can be re-ingested as necessary.

As data starts to flow into the lake, it is important to

generate and retain relevant metadata – including

items such as lineage, type, any business-specific tags

and validity. This metadata will be used in a variety of

ways, including security and data discovery.

PHASE III
DATA DISCOVERY AND SELF SERVICE

Once data is present in the lake, you need to make

it available to potential end users. Initially, these will

be power users and data scientists with the security

clearance to interrogate raw data and derive analytic

and extraction use cases from it. There are a number

of options to facilitate this.

 Use your distribution’s data governance tool, for

example, Cloudera Navigator or Apache Atlas. End

users can use these to explore the data on offer and

establish uses for it.

 Employ a third-party tool such as Waterline

or Tableau. Third parties are producing some

very interesting tools that interact with big data

technologies to provide a rich data governance

toolset.

 Provide power users with notebook access to search

and analyse data on the lake. Apache Zeppelin, Hue

and Spark notebooks enable advanced users to

write snippets of code that directly interact with and

display data.

 Build a custom solution – for instance, a simple user

interface to effectively display your data catalogue

and related metadata can be more than enough to

interest end users.

Whatever data discovery route you opt for, be vigilant

about security by ensuring it is sufficiently and

appropriately locked down to enable only authorised

access.

TECH SPARK, H2 2016 | 25INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

PHASE IV
ANALYTICS AND AGGREGATIONS

As end users’ analytics or data aggregation

requirements become more refined, you can begin

to develop them against the lake. Responsibility for

developing analytics can be handled by either the data

lake project team or end users themselves. If allowing

end users to develop their own analytic solution, it’s

important that they have the same like-for-like sandbox

VM environment as the data lake developers and

enough test data to develop their solution. Consider

having data lake project team members ’consult’

with these end users to ensure they’re following best

practice and their solution will be compatible with the

lake. Ensure early integration with a test environment

and that their analytics solution is segregated using its

own application user, with appropriate authorisation

rules in place.

When the data lake project team develops its own

solution, constant communication with the end user is

vital to validate and test what is being produced.

PHASE V
EXTRACTION

This phase, which can run concurrently with analytics

and aggregation, is used to develop storage of any

analytics or aggregation outputs in the lake using the

most appropriate storage technology. Again, make this

available to the end user by utilising an appropriate

technology, for example, for a large batch file output,

you could push to HDFS. Alternatively, for key value

outputs with fairly low latency access patterns, store in

HBase – and have clients pull using REST endpoints –

or push data out onto a message bus.

As this data will probably be valuable to other end users,

ensure that it is also published to your data discovery

utilities, is suitably structured and that relevant security

policies are in place.

Never underestimate the importance of security –

and keep it front of mind at all times. It is imperative

to secure your cluster using Kerberos. Due to its fiddly

nature, all developers and support staff should become

acquainted with it because it will be used to secure all

environments, including the developers’ sandbox VMs.

At the same time as developing your components,

you’ll also need to build corresponding metrics.

Developers are best placed to incorporate metrics

while the components are being built, for example,

providing JMX mbeans and publishing them using

Jolokia, and logging to an appropriate log facility,

for example SLF4j and Log4j 2. Distributors also offer

impressive tooling functionality which should be

utilised effectively. In conjunction with this, consider

employing log/metric aggregation tools like Logscape,

the ELK stack or Splunk.

RULE 4
SAFEGUARD SECURITY

RULE 5
PUT MONITORING IN PLACE

It’s vital to plan for business continuity, should your

data lake be compromised. The data lake will largely

become a repository of data with analytics running

across it, so consider running another hot active site in

parallel. All data is channelled to and ingested at both

sites, and likewise all analytics and extractions also run

synchronously. In addition, consider developing the

capability to clean up state and replay. The process

of ingesting raw data in the lake is idempotent, so in

the event of a problem at a site, you can run a job to

clean up the state of the problem confident that once

it is resolved, the data can be replayed to generate the

correct state.

RULE 6
PLAN FOR DISASTER RECOVERY

You can create a security choke point by surrounding

your cluster with a firewall and providing REST

endpoint access via Knox. This will greatly reduce your

attack surface while simplifying identity assertion and

external auditing of communication with the lake.

Each big data technology will come with its own

authorisation tooling. Tools like Apache Ranger and

Apache Sentry can manage this centrally for you. Of

the two, Ranger has more features, including plug-

ins for centralised authorisation and audit for most of

the big data technologies. Sentry has similar features

with a much reduced scope, but is under active

development. If your data is especially sensitive,

consider using SSL communication between services

and additional encryption for data at rest.

26 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Big data technologies are in a constant state of flux

and innovation. There’s a fierce competition among

distributors and vendors to see their tools adopted as

the industry standard, so you’ll often see a high rate of

change in preferred tooling, methodologies and best

practice. With this in mind, it’s imperative that your

developers stay at the top of their game. Consider

creating opportunities for them to learn and share

their knowledge and experience in ways that make

their work more fulfilling and enjoyable.

These could include, for example:

 Lightning talks, lunch-and-learn sessions and

technology roundtables with walk-throughs of

developed components

 Team members running training labs for colleagues

and users within the organisation to introduce them

to new technologies

 Sending members to conferences and them

reporting back with their findings and views on hot

trends in the sector

 Encouraging developers to contribute to open

source solutions.

RULE 7
COMMIT TO BEST PRACTICE

As you’ll see, there’s a lot to think about when planning

a data lake implementation. It’s a long article but we

make no apology. In fact, it barely gets below the

surface of the many crucial elements required for a

successful data lake implementation. In summary,

these are:

 Engage stakeholders early and identify key contacts

in relevant teams to radically reduce decision-

making time

 Adopt agile methodology and ‘just enough’ high-

level design to ensure sound project governance

 Take a five-phase approach choosing from

commonly used and emerging tools to best suit

your needs

 Put security first from the outset – it is a cross-

cutting concern that is often addressed too late

 Factor non-functional needs into your planning, eg

disaster recovery, monitoring and best developer

practices.

Of course, much of this may seem obvious, but it is

often the obvious that gets overlooked and that’s when

tech projects can start to flounder – especially in such

a fast-moving, dynamic and exciting area where things

are changing rapidly. However, guided by these key

principles, you’ll be much better equipped to keep

your head above water and ensure that your next data

lake implementation goes swimmingly.

GET SET
TO DIVE IN

TECH SPARK, H2 2016 | 27INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

ver the last 18 months we

have been avidly following

developments in the blockchain

space. For us and for many

others, it began with an understanding of

Bitcoin, the original blockchain model. With

blockchain now firmly established as one of

the most dynamic and disruptive forces in the

tech arena, this month we are launching our

Enterprise Blockchain Accelerator program.

We hope you’ll join us on what promises to

be an exciting journey…

Although the elusive Satoshi Nakomoto,

Bitcoin’s anonymous creator, did not use the

term blockchain in his paper, his underlying

distributed, shared and decentralised ledger

technology was truly revolutionary and

formed the basis for the original blockchain.

As an add-only database shared and

simultaneously maintained by the so-called

‘miners’, it successfully enabled the world’s

first fully digital, decentralised currency

that is not administrated by any bank or

government.

O

Vasiliy Suvorov

28 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Since the first ‘genesis’ block was placed on the Bitcoin

network in 2009, the world has seen roughly three

waves of interest and investments in Bitcoin and,

increasingly in blockchain, its enabling fabric.

 Wave 1: The first wave was all about understanding

the Bitcoin itself.

 Wave 2: The second was about discovering the

blockchain and building alternative ‘coins’ – various

asset tracking and exchange mechanisms that

leveraged the unique characteristics of the Bitcoin

protocol and its mining network.

 Wave 3: Once the limitations of the original design

were understood, the arrival of the third wave

brought next-generation blockchain designs based

on ‘smart contracts’ – code snippets that are tightly

integrated with a blockchain so that participants can

add arbitrary business logic to each transaction.

These next-generation designs also introduced

newer network-wide synchronisation mechanisms

also known as ‘consensus’.

The later designs ensured that data synchronisation

across the whole network was not based on energy-

inefficient mining or, more formally, Bitcoin’s

Proof-of-Work based process. In the meantime,

innovation continued around transaction scalability,

data confidentiality, identity management and

interoperability.

Fast forward to the present and we are witnessing a

fourth wave of blockchain investment. With it the

unique characteristics of blockchains or, more broadly,

distributed ledger technology (DLT), are being applied

to real-world business cases. Today, business and

technology opportunities to deploy blockchain/DLT

solutions are being actively pursued by organisations

from the open source community, industry and

government-led alliances and associations, including

industry incumbents like the Depository Trust

& Clearing Corporation (DTCC).

It’s quite remarkable that technology which was

invented to disrupt banking and money management

as we know it, has been embraced by the financial

services sector and, to a certain degree, the financial

regulators – the very same people it was supposed

to displace. In fact, the successive waves of interest

described above were actually driven by the business

leaders, a rare phenomenon for such a complex

emerging technology.

A BRIEF HISTORY
OF BLOCKCHAIN

THE FOURTH
WAVE

TECH SPARK, H2 2016 | 29INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

It’s very likely that all of these applications and related

blockchains will start to appear on the market as

soon as 2017. Major corporate players are already

announcing plans. It is also likely that between now

and 2020, business model pivots, lessons learned and

government regulation will drive standardisation and

convergence. The early adopters are likely to be in the

finance and logistics markets, followed by insurance

and pharma. We also expect the internet of things

to drive demand across all sectors, which will further

accelerate the adoption of blockchain.

Looking further ahead to the 2020s, blockchain/DLT

will start to become a mainstream IT component.

Consequently, we can expect that many future

systems will be built around integration of a handful

of interoperable blockchains. Some of these will be

public and decentralised, such as Ethereum, and

some will be run by international consortia. Of course,

there will also be completely private blockchain/

DLTs as standard, but these will mostly augment or

even replace existing database technologies to meet

specific intra-company needs.

WHAT’S AROUND
THE BLOCK?

Along with many smart individuals and visionary

companies, we see amazing potential for this

technology. When applied correctly, it offers enormous

scope to reduce costs, time and risk in financial

markets. It could also enable truly innovative internet

of things (IoT) applications, open up markets to new

opportunities and drive new efficiencies by minimising

or, in some cases, completely eliminating the need for

intermediaries.

It’s important, however, to stress that a blockchain/

DLT approach is not a universal solution. Indeed,

many applications will be better served by other

well-established technologies, such as a NoSQL or

relational database, micro-services architecture,

business process management (BPM) solution or

enterprise service bus (ESB).

Blockchain is undergoing a frenzy of innovation. In

some ways, it’s a bit like the Cambrian Explosion –

the short but highly significant period in the history

of evolution when most of the major animal groups

appeared. New blockchain/DLT variants are constantly

emerging to fill every potential market niche, ranging

from libertarian crypto-currencies to highly secure

permission-based applications for private financial

markets.

A WORLD OF
OPPORTUNITIES

30 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

How can we animate the immutable record so that events tigger actions?

How do we agree the immutable record of transactions?

What kind of assets will be in the transactions?

Which entities create and propagate transactions?

SHARED LEDGER APPLICATIONS

SHARED LEDGER

C
O

N
SE

N
S

U
S

 C
O

M
P

U
TE

R

CONTRACT

CONSENSUS

CONTENT

COMMUNICATIONS

Navigating this new landscape and the road ahead is

not easy. We strongly believe that our customers will

benefit from hype-free, independent advice based

on a solid understanding of their business needs and

processes combined with the expertise to select the

best technology.

To meet this requirement, we are delighted to announce

the launch of our Enterprise Blockchain Accelerator

program. We’ll share a range of resources, including

technical articles in this and future issues of TechSpark,

blog posts and invitations to join an upcoming series of

in-depth webinars on blockchain/DLTs.

With so much more to say on the subject, we’ll keep

you informed with a range of insights into both the

technical and business aspects of blockchains/DLTs.

In the next issue, for example, I’ll take a closer look

at what the future looks like for industry adoption and

related challenges.

On page 32 of this issue, you can read the first technical

feature in our new series, written by my colleague

James Bowkett: ’Blockchain and graph, greater than

the sum of their hype?’ In the meantime, we look

forward to your company as we move forward on the

blockchain journey.

For more information on our Enterprise Blockchain

Accelerator program, please contact James

Bowkett (james.bowkett@excelian.com) or Neil Avery

(neil.avery@excelian.com).

Our friends at Consult Hyperion have proposed a layered, modular approach to blockchain/DLT design study. This

approach makes it easy to understand, or make, design trade-offs and perfectly match the resulting architecture to a

specific set of use cases:

MAPPING
THE ROUTE AHEAD

Figure 1. Consult Hyperion 4x4 model of the shared ledger technology.

TECH SPARK, H2 2016 | 31INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

he buzz about blockchain

technology is hard to ignore:

it is mentioned in every other

finance feature and is a standard

item at any Fintech conference. In effect,

its data structure is an encrypted temporal

linked list of transactions, however, linked

lists aren’t appropriate for random access.

So we decided to integrate one much-hyped

technology with one enjoying something of

a renaissance – graph databases – to see if

the whole adds up to more than the sum of

its parts.

T

James Bowkett

32 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

NODE.JS APP

WEB3.JS GETH.EXE

ETHEREUM-

WALLET.EXE

ETHEREUM TESTNET

BLOCKCHAIN

NEO4J
Insert into

uses

hooks into

Sends eventRegisters for events

Deploys contract
onto & facilitates transactions

Integrating the two approaches creates a platform

for immutable, confirmed transactions, with an

appropriate fast index that allows you to report on the

data within. In a standalone blockchain application you

can only search sequentially for an asset or transaction.

But leveraging graph enables you to easily track the

source of assets held on the blockchain. This has many

use cases, notably around checking authenticity, fraud

prevention and detecting money laundering.

Graph is a good fit for transactional data because it

allows you to model, query and visualise relationships

between entities, in addition to the entities themselves.

Such relationships may also contain attributes which

can be used for later querying. Contrast this with a

relational or document store where the relationships

are often modelled as entities in a similar way to the

entities themselves. Although this latter approach can

and does work, graph allows for a more natural way to

think about and model transactional data.

This article is an abridged version of a series of Excelian blog posts where you can find details about the code

and more on the approach we used.

To explore in more detail how blockchain and graph work together in practice, we devised a prototype equity share issue

using blockchain events to persist sell trades to graph database Neo4j. The architecture of this example is as follows:

BRINGING TO LIFE
A BLOCKCHAIN-GRAPH MODEL

Having installed the necessary platforms – node.js, Neo4j, geth, Ethereum (and web3) – it is possible to write and

deploy smart contracts written in Solidity, Ethereum’s smart contract language. Solidity is reminiscent of Go (Golang),

but without the rich choice of APIs – for good reasons, as we will see. The contract is then deployed to the Ethereum

network and run on every miner node within the Ethereum virtual machine – hence the restricted APIs – and the

immutable record of ownership is created.

TECH SPARK, H2 2016 | 33INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

1. contract ShareClass {
2. string public name;
3. uint8 public decimals;
4. string public symbol;
5. string public isin;
6. string public description;
7.
8. /* the register of how many shares are owned by which account */
9. mapping (address => uint256) public balanceOf;
10.
11. /* Generates an event on the blockchain to notify clients */
12. event Transfer(address indexed from, address indexed to, uint256 value);
13.
14. /* Initializes the shareclass for the instrument with initial
15. supply of all equity assigned to the issuer */
16. function ShareClass(uint256 initialSupply,
17. string tokenName,
18. string isinId,
19. string desc,
20. uint8 decimalUnits,
21. string tokenSymbol) {
22. // Give the creator all equities
23. balanceOf[msg.sender] = initialSupply;
24. // Set the name for display purposes
25. name = tokenName;
26. // Amount of decimals for display purposes
27. decimals = decimalUnits;
28. // Set the symbol for display purposes
29. symbol = tokenSymbol;
30. isin = isinId;
31. description = desc;
32. }
33.
34. function transfer(address recipient, uint256 quantity) {
35. ensureSenderHasEnough(quantity);
36. balanceOf[msg.sender] -= quantity;
37. balanceOf[recipient] += quantity;
38. // Notify of transfer event:
39. Transfer(msg.sender, recipient, quantity);
40. }
41.
42. function ensureSenderHasEnough(uint256 quantity) private {
43. if (balanceOf[msg.sender] < quantity) throw;
44. }
45. }

1. MATCH (owner:Account),(buyer:Account)
2. WHERE owner.address = ‘${ownerAddress}’
3. AND buyer.address = ‘${buyerAddress}’
4. CREATE (owner)-[
5. :SOLD_TO { amount:${amount}, tstamp:timestamp()}
6.]->(buyer)

Analogous to a new share issue, the contract holds the register of how many shares in this issue are contained in each

Ethereum wallet, plus information about the instrument itself, such as its ISIN. Each time the contract is traded, it will

emit an event notification to all its listeners, that can be listened to using the web3 API in a node application. In this

example, the transaction details will be stored in Neo4j, using the following Cypher code.

This code finds the owner and buyer accounts (nodes) in Neo4j, then creates a new ‘sold_to’ relationship in the database.

Using the Ethereum wallet, the following smart contract is deployed:

34 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Without any additional code or configuration, Neo4j then enables the following visualisation:

Our blockchain-graph equity share issue prototype,

as described above, could be further extended and

integrated with an identity or know-your-customer

(KYC) service. This would make it easier to look up and

identify each account holder for sending out annual

shareholder reports or dividend payments. Because

shareholders could manage their own identity and

details for their different holdings in one place, the

share issuer would be relieved of the burden of

maintaining its own shareholder register.

In another scenario, we have identified a strong use

case for fraud visualisation. With a few lines of Cypher,

you can visualise centres of trading activity for targeted

investigation – a functionality that is available out of

the box. This makes graph, and Neo4j in particular, a

compelling choice for data visualisation.

While blockchain offers undeniable benefits,

legislation has a way to go to catch up with the pace

of technical innovation in this area. For instance, the

laws around property rights still need to be addressed,

as does the issue of how to reverse an irreversible,

immutable transaction, if it was in dispute. However,

we can certainly expect the appropriate law changes

to come in time.

Looking beyond the hype, while there are compelling

use cases for blockchain (or an immutable ledger) on

its own, we see its real value being realised when used

as a complementary technology with other storage

techniques such as big data. As illustrated in our

prototype, using blockchain in combination with graph

can provide visualisation by modelling transactions in

a form that best fits its transactional data model – so

in turn creating additional value. In other words, the

output could indeed add up to more than the sum of

the parts.

FUTURE POSSIBILITIES
AND USE CASES

SUMMING UP

In the meantime, it’s clear that blockchain and its

system of trust is enabling existing applications to

work faster and more securely. It is also facilitating

new distributed applications. For instance, Honduras

has worked with Factom to build a blockchain-based

land registry. This will deliver a secure, reliable and

verifiable land registry. Although the project is still in

its prototype stage, it highlights the value of the trust

inherent in blockchain applications, especially in use

cases where there is no pre-existing application.

TECH SPARK, H2 2016 | 35INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

ith banks investing ever more

resources to meet increasing

regulatory reporting demands,

Spark’s big data processing

methodology offers compelling evidence of

a dramatically different approach that could

reduce the reporting burden while driving

new operational efficiencies.

Since 2008, FRTB, CCAR and BASEL

requirements have inundated teams with

untenable workloads and up to two-year

backlogs. At the same time banks also need

to prepare for more reporting changes

and the anticipated switch from the long-

W
-established Value-at-Risk (VaR) reporting

measure to Expected Shortfall (ES). Despite

this, many teams still rely on traditional ways

to manage and warehouse their data. Big

data, and more recently Spark, have come to

prominence with analytic use cases that map

onto traditional problems, but solve them in

a very different way. Spark’s methodology

provides a flexible and powerful processing

stack that could transform the standard

approach that many institutions are currently

using. When applied to VaR it becomes

a simple workflow of Spark tasks selecting,

joining and filtering data, as we will explain.

Deenar Toraskar
Neil Avery

36 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

VaR by counterparty Margining

VaR by trader Trader P&L

VaR by desk Desk head

VaR by legal entity Finance/regulator

Contributory VaR/VaR drivers All/what drove VaR?

USEVAR VIEWS

LONGER THE
TIME HORIZON

10 day 95% VaR for $1000

in GOOG is $60

1 day 95% VaR for $1000

of TWTR shares is $41

greater the VaR

greater the VaR

MORE VOLATILE
THE ASSET greater the VaR

HIGHER
THE CONFIDENCE
LEVEL

1 Day var for $1000 in goog at

a 99% confidence level is $31

Of all the regulatory reporting measures that need

to be managed, for almost 20 years VaR has been

the most widely adopted risk measure. It is used for

risk management, margin calculations, regulatory

reporting, capital charges and pre-trade decision

making. If you have a trading account or a betting

account, your broker or bookmaker is likely to use

VaR to calculate margin calls. VaR is used for hedge

optimisation, portfolio construction and to optimise

the tracking error of a portfolio against a recognised

benchmark. You can also use VaR to help make risk

versus return trade-off decisions when managing the

portfolio of assets in your pension fund.

VaR is equal to predicted worst loss over a target horizon

within a given confidence interval. For example, if you

hold $1000 worth of GOOG shares, one day VaR with

a 95% confidence level is $22.

WHAT IS
VALUE AT RISK (VAR)?

VaR is used in many contexts, with many different VaR users in a typical enterprise,

each with varied reporting needs, as this summary of a typical set of VaR users illustrates.

VAR REPORTING
CHALLENGES

TECH SPARK, H2 2016 | 37INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

It is important to note that VaR is not simply a linear

measure. For instance, the VaR of a portfolio containing

assets A and B does not equal the sum of the VaR of

asset A plus the VaR of asset B, as seen in the example

below.

VaR ($1000 GOOG + $1000 TWTR) != VaR($1000

GOOG) + VaR($1000 TWTR)

Therefore, SQL and traditional warehouses have

limited utility when the information that is being

reported cannot be aggregated in a linear way. As

well as VaR, many other important risk measures

such as counterparty credit risk fall into this category.

Typically, risk reporting warehouses pre-aggregate

VaR by all frequently used dimensions and use the

pre-aggregated values to report VaR. This helps to an

extent, but views are limited and fixed. To calculate

VaR along any other dimension, or for a custom set of

assets, users have to run a new VaR aggregation job on

the analytics engine and wait for the results to load in

the data warehouse again.

LIMITATIONS OF TRADITIONAL DATA
WAREHOUSES

While traditional data warehouses can be great for

reporting simple information that can be aggregated

in a linear way, they have their limitations:

 Reports are shallow schemas with limited analytical

capabilities

 Reporting is based on standard slice and dice

operations and simple aggregation functions

 Limited support is available for non-linear or semi-

-structured data such as vectors, matrices, maps

and nested structures

 Schemas are fixed, so new analytics and aggregations

require new views and schema changes

 There is limited support to run user-defined functions

or to call out to external analytical libraries, leading

to a limited set of analytics being pre-aggregated.

Big data technologies such as Spark SQL, Impala and

Hive can be combined with serialisation formats such

as Avro, Thrift, Protocol Buffers, Hive and HDFS, to build

a smart, high-definition, adaptive, high-performance

data warehouse.

 Smart thanks to embedded custom analytics for

aggregation and reporting that use Spark SQL and

Hive user defined functions (UDFs). UDFs allow

implementation of a domain specific language

(DSL) on the data warehouse by extending SQL.

UDFs can also call up external analytical libraries

 High definition due to the ability of persistence

formats such as Avro, Thrift, Protocol Buffers and

Hive Serdes to model complex domain objects via

rich type support

 Adaptive via the ability of Avro, Thrift, Protocol Buffers

and Hive Serdes to support evolvable schemas

 High performance through Spark’s capability for

fast, large-scale data processing using an advanced

DAG execution engine that supports cyclic data flow

and in-memory computing.

With this approach, you can ask any question or run any

reports with no need to request a custom analytical job,

giving you easy access to deeper insights on demand.

What’s more, Spark SQL allows you to store a high-

-definition view of your data in the data warehouse. So

instead of calculating a single VaR number based on

limited assumptions, you can store a complete view

of the trade in the warehouse, using a Hive Array data

type, including all historic PNL.

THE DAWN OF HIGH-DEFINITION
DATA WAREHOUSING

38 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

In addition to the benefits outlined above, the high-

-definition data warehouse approach offers a wide

range of features designed to optimise efficiency and

ease of use:

 The warehouse DSL is built on top of SQL, the most

popular data analysis language

 Spark SQL’s industry standard JDBC and ODBC

interfaces enable use of standard visualisation tools

like Tableau, ZoomDate, Qlik, Microstrategy

 Hundreds of standard Hive and community-

-contributed UDFs from the likes of Facebook

and Brickhouse can be used out of the box and

combined with custom UDFs

 Spark UDFs are concise, quick to implement and can

be unit-tested

 Spark UDFs offer ‘write-once, use-everywhere’

versatility for streaming jobs, batching jobs, REST

services, ad hoc queries and machine learning

 Polyglot persistence ensures that Spark SQL

supports a variety of data sources like HBase,

Cassandra and relational databases. This allows for

joins across data sources, so positions can come

from HDFS, time series from HBase or Cassandra

and business hierarchies and reference data from

a relational database.

The Basel Committee on Banking Supervision is

currently carrying out a fundamental review of the

trading book capital requirements (FRTB). A number

of weaknesses have been identified with using VaR

for determining regulatory capital requirements,

including its inability to capture tail risk.

Consequently, a move from VaR to Expected Shortfall

(ES) is being proposed. It will be the biggest and most

significant market risk regulatory change since the

introduction of VaR almost two decades ago and will

necessitate significant changes in the ways that banks

manage data.

A high-definition warehouse as described above would

allow you to calculate the new metrics required without

changing the warehouse. Also known as Conditional

Value at Risk (CVaR), ES is more sensitive to the shape

of the loss distribution in the tail, which means you can

make calculations on the fly by leveraging SparkSQL.

FOCUS ON
USER-FRIENDLY FEATURES

FLEXIBLE, FUTURE PROOF
AND READY FOR CHANGE

BENEFITS
BEYOND COMPLIANCE

Generally, when comparing the big data stack to

traditional warehouses, vendors have focused on the

cost savings. But in addition to reducing the burden

of regulatory reporting, the new generation big data

technologies offer the potential to build high-definition

data warehouses that give your users self-service

access to faster, deeper insights and deliver significant

competitive advantage.

A high-definition view of data maximises your ability

to obtain new insights. The ability to arbitrarily

mine a dataset creates opportunities for business

optimisation and new applications. Custom analytics

made available via user-defined functions make the

warehouse smarter, and transforms SQL into a DSL

form that can be viewed as a Spark script. Furthermore,

data engineering teams could be freed up to focus on

higher value functions, so saving additional time and

money.

The technology stack to support this approach is

available now. However, the rate of uptake in the

financial services sector to date has been slow. By

embracing new technologies such as Spark, you could

more readily ensure compliance, while reducing

development costs and saving on reporting resources

that could be reinvested into the business – so helping

to drive measurable commercial value.

TECH SPARK, H2 2016 | 39INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

hanks to its ability to

decouple systems and enable

interoperability, application

message broker software is prevalent in

the finance sector, forming the backbone

of trading platforms that distribute financial

events and information worldwide. Here we

take a look at how the recent beta phase

arrival of Apache Kafka K-Streams is making

waves and what the ripple effect might be.

T

Darren Voisey

40 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

A stream is an ordered, and potentially

infinite, sequence of data elements

made available over time. Examples

include website clicks and market

stock price changes.

Financial institutions are increasingly

adopting Apache Kafka to integrate

various big data platform components

and using it as a de facto messaging

standard. We are aware of at least

one bank where uptake has reached

such a level of maturity that it is now

offered as a shared service. However,

unlike RabbitMQ and ActiveMQ, Kafka

supports only basic messaging patterns.

So the question now is whether Apache

Kafka has the potential to do more and

if so, what next?

With Kafka often described as a

‘distributed log’, key differences from

the other messaging technologies

referenced here are as follows.

Most developers and architects will be familiar with application

messaging, especially the vanilla functionality of durable1 topics,

point-to-point channels2 and competing consumers3. Many will also

understand the extended routing and complex logic that can be

constructed via the advanced message queuing protocol (AMQP)

implementation supported by ActiveMQ and RabbitMQ.

While these technologies can be used to build asynchronous systems

that can scale horizontally, they also have limitations (architecture

compromises) that need to be considered. Notably:

 Each topic queue has to fit on a single node within a cluster

 Message ordering is not guaranteed

 Messages are delivered at least once, so duplicates can occur.

Most applications need to allow for these limitations. For example, if an

application keeps a running total of trades per minute, it will also have

to maintain a separate state to handle failure and restart, because all

read messages will have been removed from the queue.

This technology stack is typically seen in event-based remote procedure

call (RPC) types of systems, but the limitations listed above do muddy the

waters of what we would otherwise consider a perfect stream. However,

if you don’t need the complex routing, there is a viable alternative.

THE CURRENT
SITUATION

WHAT IS
A STREAM?

ENTER
APACHE KAFKA

 Scalability – topics can be sharded or partitioned according to

custom rules that permit data to be distributed across nodes in

a cluster, enabling horizontal scaling at topic level.

 Durability – instead of removing messages once read, removal

is based either on age or a custom compaction rule; so if your

compaction rule is ‘keep latest’, your queue can be effectively

a table.

 Accuracy – with message order guaranteed within each shard, you

can model a stream more accurately.

 Routing – bear in mind, however, that the framework provides

constrained routing logic, with no AMQP-type routing.

What makes queues with history so exciting is how much easier it

becomes for applications to restart and initialise themselves with no

need for separate journaling. Distributed queues can hold a lot of state

and they then act as storage: if we then shard according to business

needs, our ordering can be preserved. In other words, we have ordered

streams of data that scale.

TECH SPARK, H2 2016 | 41INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

KStream<String, StockTick> source = builder.stream(stringDeserializer,

payloadDeserializer, sourceTopic);

KTable<Windowed<String>, Long> ktable = source

 map((s, payload) -> {

 //generate a key based on the stock

 return new KeyValue<String, StockTick> (payload.stockCode, payload);

 })

 .aggregateByKey (() -> 0L

 (aggKey, payload, aggregate) -> {

 //the aggregation tool

 return Math.max(aggregate, payload.price);

 },TumblingWindows.of(“stock-maxprices”).with (500)

 ,stringSerializer, longSerializer, stringDeserializer, longDeserializer

);

ktable.to(“streams-output”, winowedStringSerializer, longSerializer);

The ability of Kafka queues to operate

as a persistence layer opens up

interesting new approaches to system

design. You can, for example, rely

on Kafka to act as a journal and,

through custom compaction, reduce

the amount of processing required

when initialising data from historical

records.

However, what about creating

projections on top of queues, in effect

deriving new streams of data from

underlying queues? This is where

Kafka K-Streams currently in pre-

release, fits in well. It provides a Java

library for building distributed stream

processing apps using Apache Kafka.

Your application components can

therefore derive and publish new

streams of data using one or more

Kafka queues for the source and

output. The durability – or persistence

– of the queue data then underpins

the components’ resilience and fault

tolerance.

The following example consumes a stream of stock prices and derives

the maximum price per stock per 500ms. Unlike some other stream

processing frameworks, Kafka K-Streams doesn’t use micro-batching,

so you can achieve processing in near real time.

The code below performs the following steps:

 Subscribes to a topic of stock prices, together with the classes, to

de-serialise the data

 Creates a new key value pair based on the stock code within the

message

 Aggregates by the stock code – in this example we keep a running

max

 Windows the results every 500ms

 Writes the results to a new topic called ‘streams-output’.

KAFKA K-STREAMS
IN PRACTICE

EVOLVING
DESIGN

This code is based on the early preview of Kafka K-Streams, with more comprehensive documentation provided by its

developers at Confluent at http://docs.confluent.io/2.1.0-alpha1/streams/index.html

42 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

The examples and tests included

within the Kafka source code proved

invaluable during our research for

this article. We were impressed at

how succinct and easy to understand

the API was to use. In fact, our main

frustration was that RocksDB, the

default local state store used by

Kafka K-Streams, isn’t supported on

MS Windows, our work development

environment.

So what are the likely benefits if you decide to go with Kafka K-Streams?

If your organisation is already using Kafka, then it’s worth starting to

look at it as a way to reduce your application logic, especially as it

doesn’t need additional infrastructure. And, if you are performing this

type of logic with AMQP, Kafka and Kafka K-Streams could simplify your

architecture and provide better scale and resilience.

To sum up, therefore, Kafka K-Streams enables you to simplify your

application messaging and create new data islands in the stream as

follows:

 Derive new streams of data by joining, aggregating and filtering

existing topics

 Reduce your application logic by using the Kafka K-Streams DSL

 Provide resilience and recoverability by building on Apache Kafka.

For more on Kafka K-Streams architecture, this might prove useful:

http://docs.confluent.io/2.1.0-alpha1/streams/architecture.html

SHOULD YOU GO
WITH THE FLOW?

OUR
ASSESSMENT

1 http://www.enterpriseintegrationpatterns.com/patterns/messaging/DurableSubscription.html

2 http://www.enterpriseintegrationpatterns.com/patterns/messaging/PointToPointChannel.html

3 http://www.enterpriseintegrationpatterns.com/patterns/messaging/CompetingConsumers.html

TECH SPARK, H2 2016 | 43INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

n recent times banks have

relied on compute grids to run

risk analytics. However, this

long-established batch paradigm is being

challenged by streaming, which is on the

cusp of replacing compute grids as we know

them. Here we explore the evolution of

streaming and evaluate some of the leading

approaches, with a particular focus on

Google’s Dataflow.

I

Neil Avery

44 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Historically, risk analytics using a compute grid

comprised of a job referencing trade IDs and a set of

measures (greeks) sent to each compute core: there

could be several millions of these tasks. Compute grids

typically range in size from 500 compute cores; many

have 10,000; and some up to 80,000 compute cores.

Most systems process a business line’s analytics as

a batch for end-of-day processing, which might take 12

hours to complete. Some systems perform bank-wide

aggregations to calculate exposure or analyse other

factors that span all business lines. These systems

represent a large portion of data centre estate and are

classically bound to the server/task compute model.

In recent years many banks have invested in data lake

platforms, which has triggered a shift from traditional

MapReduce jobs to real-time streaming. Providing that

it can scale and support sufficiently rich semantics, the

streaming approach brings many benefits. Currently,

we see Spark Streaming as the industry standard, and

Kafka, a horizontally scalable messaging platform, is

generally used as the datapipe that feeds into Spark

Streaming for the execution phase. The streaming

model has further evolved with the 2015 launch of

Google’s Dataflow, which presents an opportunity for

fast and agile data processing while also replacing

compute grids with streaming, as we will explain.

PHASE I
LIMITATIONS OF COMPUTE-BOUND RISK
ENGINES

End-of-day batch jobs on a compute grid will submit

millions of tasks; execution will involve long running

analytics with multiple workflows, forking, joining

and handling transient data for reuse in the series of

domain/analytic derived workflow patterns. They are a

fundamental operational requirement for calculating

all kinds of insights about trade positions, risk, etc.

Increasingly they are used for regulatory reporting

requirements or more generally for calculating close-

-of-business prices/positioning/reports and setting

up start-of-day processes. However, as well as taking

hours to complete, they are not real-time. They are

part of the T-3 process. Instrument and risk complexity

often drives the quantity and duration of individual

tasks comprising the overall job.

SITUATION
SNAPSHOT

You could think of it like this:

Trade -> for each risk measure/greek –> Curve data ->

for each Tenor-blip -> calculate.

Combine this with credit valuation adjustment (CVA)

or C-CAR and we move up the complexity curve.

Depending on the business sector and instrument, the

complexity required to drive ticking prices, real-time

streams and ad hoc analysis make batch orientation

unsuitable or even impossible. The process is too slow

and cumbersome. Risk engines can sometimes be

written to execute periodic micro-batches, however,

they don’t operate in real-time and only execute every

five minutes.

PHASE II
HOW LAMBDA LINKS
COMPUTE-BOUND AND REAL-TIME

In 2014 the Lambda architecture was introduced. It

works on the idea that combining an approximation

of streaming results with pre-generated batch

results makes it possible to create a real-time view.

Unfortunately, most streaming algorithms are based

on sketching semantics which provide approximation

rather than absolute correctness – consider, for

example, Top-N, HyperLogLog and others1. As a result

of this approximation, Lambda can’t deliver sufficiently

accurate results (batch parity). By the time streamed

data has been batch-(re)processed, the (re)derived

output will have changed, creating a system of

eventual consistency2. The alternative is to retrigger

a partial evaluation, but although this may serve

a purpose, there is also scope to lose the real-

-time elements for which the Lambda approach was

introduced.

PHASE III
DATA LAKES, LAMBDA AND THE DUALITY
DILEMMA

The other major problem with the Lambda architecture

is that you have to maintain two systems, adding more

complexity to an already complicated situation. Data

lakes can be viewed as part of a Lambda system: they

represent a duality, but can also serve tasks similar to

the compute analytics grid. Data lakes generally use

Spark Streaming to consume, enrich and process data

in real-time. However, these systems offer many of

the business benefits associated with data agility and

speed, for example, enabling traders and analysts to

execute ‘what-if’ scenario analysis using an interactive

notebook.

TECH SPARK, H2 2016 | 45INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

PHASE IV
STREAMING GOES SOLO WITH KAPPA

Kappa throws the Lambda two-system notion out of

the door – duality has too many challenges. Kappa’s

approach is simplistic, in that the idea is to store all

the source data within Kafka, then when you need

a new version of the data, you replay the stream.

Parallelism is required to scale out, but the need to

deal with complex workflows may prove too much and

make this approach impossible. While Kafka’s Hadoop

integration provides powerful leverage over HDFS

and Hive, etc, the problem with the Kappa approach

is the complexity of the analytics and their execution

speed, for example, some analytics can take 10 hours

to complete. This is a point we’ll come back to.

In the first wave of streaming platforms, Spark

Streaming, Storm, Samza, Flink and Kafka K-Streams

have all been dominant. All have contributed to our

current value proposition of streaming use cases.

However, the typical workload is only to stream

a single parallel set of tasks. Storm and Samza support

more elaborate workflows but they don’t enable rich

coordination in data-driven functional style. A classic

workload would be massively parallel streaming

analytics that process large volumes of data such as

click-streams or ticking prices.

In many financial services use cases, gathering the

data required for analytics can be expensive. However,

organising data into channels for scale-out via fast

10G Ethernet combined with scalable workflows can

potentially overcome repeated chattiness.

Key features of the white paper4 include a complete set

of core principles, including:

 Windowing – various models to support unaligned

event-time windows

 Triggering – reaction and response to data triggers

 Incremental processing – to support retractions

and updates to the window.

It should also be noted that although the framework

provides a model that enables a simple expression

of parallel computation in a way that is independent

of the underlying execution engine, tasks will remain

computationally expensive and may take several

hours to evaluate a risk measure.

We should also clarify that when we refer to a batch,

we simply mean a stream of data with a known start

and end – it is bounded data. Streaming without a start

point or end point is called unbounded data.

The ground-breaking publication of Google’s Dataflow

model in 20153 established the first complete working

framework for streaming. Leveraging its experience

with MillWheel and FlumeJava, Google provided

a comprehensive working model to execute streaming

in its Google cloud. A batch is unified within the model

and executed using a stream. In terms of resource

management, the Dataflow model is geared towards

hands-free DevOps. Because it runs in the cloud,

Dataflow also makes it easy to optimise efficiency and

control costs without the need to worry about resource

THE FIRST WAVE
OF STREAMING PLATFORMS

CAN YOU ADAPT A COMPUTE
GRID JOB TO RUN AS A STREAM?

GOOGLE DATAFLOW:
THE FUTURE OF STREAMING

tuning. For instance, the number of processing nodes

you need is provisioned elastically to match your

precise requirements, so you don’t need to worry

about tuning the number of processing nodes. What’s

more, Dataflow’s programming model is functionally

biased when compared to the topological or classic

MapReduce model. This allows you to shape execution

paths and workflow according to the underlying data at

execution time.

Nonetheless, there remains a point of contention: is

it more expensive to ship data or to scale compute?

For example: a Monte Carlo simulation requires you to

scale compute – in other words to process thousands

of calculations on the same data with differing

parameters. Conversely, building a curve model that

can be used for subsequent calculations requires

shipping yield, credit curves and volatility surfaces for

a complex instrument to a single node.

46 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

INPUT PCOLLECTION

PCOLLECTION
OF BIGQUERY
TABLE ROWS

PCOLLECTION
OF BIGQUERY
TABLE ROWS

BIGQUERY BIGQUERY

PCOLLECTION
OF ’A’ NAMES

PCOLLECTION
OF ’B’ NAMES

PCOLLECTION OUTPUT
Transform

Big QueryIO.
Read

Big QueryIO.
Read

Transform A:
ParDo that
gets names

that start
with ’A’

Transform B:
ParDo that
gets names

that start
with ’B’

Transform A: ParDo that
gets names that start

with ’A’,
Side output: names

that start with ’B’.

Transform Transform

OUTPUT
PCOLLECTION:

’A’ NAMES

SIDE OUTPUT
PCOLLECTION:

’B’ NAMES

Dataflow is a native product on the Google cloud

platform, which has evolved to a point where you can

build almost anything using three key services:

 Dataflow DF (routing and processing)

 BigTable BT (NoSQL storage)

 BigQuery BQ (query)

To convert an existing compute batch workflow to

Dataflow you will need to build a Dataflow pipeline

model as follows:

BigQuery-input -> transform -> PCollection (BigQuery

rows) -> Transform (ParDo) -> output

DATAFLOW IMPLEMENTATION:
BATCH TO STREAM

The key steps involved are to:

 Source data from BigQuery and/or cloud storage

 Iterate the PCollection for each item and apply

one or more transformations (ParDo) and apply an

analytic or enrichment

 Merge PCollections together to flatten or join

(CoGroupByKey) data.

The above scenario gives you a classic source -> fork ->

join pattern. However, Dataflow is so powerful that you

can model any kind of pipeline/workflow in code, no

matter how elaborate, as illustrated on the diagrams

below.

Figure 1. A sequential pipeline showing Dataflow components in relation to each other.

Figure 2. Forking the stream. Figure 3. Joining data from different streams.

Once the pipeline is built into an artefact (including the QuantLib), it is deployed to the cloud using Dataflow managed

services to convert the pipeline into an execution graph.

TECH SPARK, H2 2016 | 47INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Dataflow Spark

gameEvents

 [... input ...]

 [... filter ...]

 .apply(„AddEventTimestamps”,

WithTimestamps.of((GameActionInfo i)

 -> new Instant(i.getTimestamp())))

 .apply(„FixedWindowsTeam”,

Window.<GameActionInfo>into(

FixedWindows.of(Duration.standardMinu-

tes(windowDuration))))

 .apply(„ExtractTeamScore”, new

ExtractAndSumScore(„team”))

 [... output ...];

gameEvents

 [... input ...]

 [... filter ...]

 .mapToPair(event -> new

Tuple2<WithTimestamp<String>, Integer>(

WithTimestamp.create(event.getTeam(),

 (event.getTimestamp() /

windowDuration) *

windowDuration),

 event.getScore()))

 .reduceByKey(new SumScore());

 [... output ...];

The Dataflow model provides windowing as part of the

formal notation. As a result, comparing the two side by

side shows Dataflow’s clean readability versus Spark’s

somewhat complex code block.

In the code section below, blue represents where the

data is being processed (windowing), while yellow

represents what is being processed.

On the other hand, because the Spark model lacks a

formal notion of event-time windowing, we have to

intermingle the what and where portions of the code5.

THE DATAFLOW
MODEL IN CODE

Dataflow is executed as a managed SLA on Google’s

cloud platform, so is covered by the following service

level agreement (SLA):

 You can carry out up to 25 concurrent Dataflow jobs

per cloud platform project

 Processing job requests are currently limited to

10Mb in size or smaller

 The services limit the maximum compute engines

according to work type. Batch executes using 1000

instances of ‘n1-standard-1’, whereas streaming

mode executes using up 4000 compute engine

instances of ‘n1-standard-4’.

CLOUD EXECUTION
SERVICE LEVEL AGREEMENT

48 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

We are planning to convert an open source batch-

-oriented workload to Dataflow. Part of the exercise

will be to identify performance challenges seen

in this space, for example, relating to data locality

and intermediate/transient data, and to establish

performance metrics.

FUTURE
RESEARCH

APACHE BEAM:
DATAFLOW ON-PREMISE

Google open-sourced Apache Beam as its contribution

to the community to provide an on-premise Dataflow

alternative. It is essentially the Dataflow API with

runners implemented using Flink, Spark and Google

cloud Dataflow. More interestingly, it is Google’s first

open-source contribution of this kind – by contrast,

previous innovations like HDFS used the more hands-

-off ‘throw a white paper over the wall’ approach on

the basis that someone else would pick up the idea and

run with it.

Apache Beam enables you to operate the same

expressive runtime-defined stream processing model.

However, you are limited to on-premise, statically

sized deployments commandeered by Zookeeper. You

therefore won’t have access to the compute resources

available when leveraging cloud elasticity.

The vision for Apache Beam is to support a unified

programming model for:

 End users who want to write pipelines in a familiar

language

 SDK writers who want to make Beam concepts

available in new languages

 Runner writers who have a distributed processing

environment and want to support Beam pipelines.

As we have seen, the dominance of compute grids

in financial services is being challenged by a major

transition to streaming. Yet again, the leading

innovators are providing direction on how we will

move from a compute or server-oriented paradigm

to one that is stream-oriented and server-free. While

Lambda and Kappa have produced solutions to the

challenge of providing real-time information, the

inherent duality and constraints in their streaming

models limit practical application.

Only now, with the advent of the Dataflow model, are

we seeing a viable streaming solution with the potential

to replace the largest financial services workloads and

move them to a new paradigm built around real-time

analytics, where batch is a subset. The challenge now

is to prove to the incumbents that this migration path

from batch to stream is indeed possible and practical.

We’ll be watching with interest.

WHAT WILL DATAFLOW
DELIVER AND WHEN?

1 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

2 https://www.oreilly.com/ideas/questioning-the-lambda-architecture

3 http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

4 http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

5 https://cloud.google.com/dataflow/blog/dataflow-beam-and-spark-comparison#hourly-team-scores-windowing

TECH SPARK, H2 2016 | 49INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

n recent months we have been

adding features to one of our

main use cases for Mache –

our open source cache solution

for taming bottlenecks in grid applications.

I Mache is opening up exciting opportunities

to dramatically improve network efficiency,

clearing the way to more valuable big data

applications.

James Bowkett
Jamie Drummond

50 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

COMPUTE TASKS

COMPUTE NODE

DATA STORE REPLICAS

First, let’s briefly recap on why we developed Mache.

Financial services – particularly investment banks –

have always relied heavily on large-scale compute

grids. But recently, organisations have been switching

from traditional in-memory data grids to NoSQL

products with the scalability to process vast volumes

of data quickly.

Mache combines a scale-out NoSQL layer with a near

cache to create a scalable platform that can be relied

on to handle the most intensive data applications.

In other words, Mache decouples applications from

messaging and storage. And, with the addition of a

new REST API, Mache makes storage perform less like

a native database and more like a service.

By separating the data layer, the local cache allows

data sharing between processes. This in turn enables

applications to adopt a more micro-services style

architecture. Consequently, by reducing database

contention from competing applications, decoupling

enables you to service more requests, thus reducing

network load and congestion. However, it leaves the

storage layer free for tuning by your application suite

as required.

Among the key benefits we see for Mache are its wide

range of integrations. These include:

 Messaging and invalidation – it integrates equally

well with Kafka, ActiveMQ/JMS and RabbitMQ

 Big data and storage – it has been tested with

Cassandra, Mongo DB and Couchbase

 Client platforms – a new REST interface allows

Mache to serve value objects via JSON to virtually

any client application stack.

So let’s take a look at the issues around network latency

and saturation in a little more detail.

With a conventional grid architecture, the number of

requests can overwhelm the network and increase

latency.

NETWORK
LATENCY

Figure 1. Typical grid architecture.

Latency can be difficult to comprehend because

network workload and complexity can vary greatly. It

is well understood that as the network load increases,

the variation of data can also increase greatly and, as a

result, the mean response time will also rise.

TECH SPARK, H2 2016 | 51INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

1000000

100000

10000

1000

100

10

1

0 20 40 60 80 100

Transactions/second

C
a

ch
e

 L
a

te
n

cy
 (

m
se

cs
)

120 140 160 180 200

Common data access patterns have a large number of

nodes. Therefore, by reducing the number of network

requests by a factor of the number of tasks per node,

caching can significantly reduce latency.

Figure 2. Cache latency and invalidation performance rises as the number of connections grow.

Figure 2 below shows the impact on cache latency of

increasing transactions in a local test environment.

This data, often seen under stress test conditions, will

not surprise anyone who has measured loads in larger

networks.

Network throughput is a finite resource. As we increase

the number of cores in a grid, the amount of network

bandwidth available to each core decreases. This

is clearly illustrated in Figure 3, which displays the

linear allocation of a 10 Gbyte/s network (1.25 Gbyte/

sec theoretical) across compute cores and the time

needed to load 350 Mb of data with increasing numbers

of data store replicas.

NETWORK
SATURATION

52 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

 Throughput Time (without Mache)

To
ta

l t
h

ro
u

g
h

p
u

t
(G

b
yt

e
/s

)

Ti
m

e
 (

s)

Data store replicas

DATA 10GIGE WITH 10,000 COMPUTE NODES AND A 350 MB PAYLOAD

0 0

10

100

20

200
30

40 300

50
400

60

70
500

80 600

0 10 20 30 40 50 60 70

Figure 3. Data store replica shows that as data throughput rises, network efficiency falls.

By reducing contention for bandwidth, Mache delivers

multiple benefits.

 Reduce data duplication: tasks within a grid node can

query the local Mache service in any access pattern

required, helping to avoid database hot spots and

the repeated need to send duplicate data across an

overstretched network.

 Enable data sharing: multiple processes within the

same grid node can share the same data, negating

the need to send the same data across the network

more than once.

 Enhance data affinity: because Mache can stay

active between multiple job executions, with careful

grid partitions, nodes can process the same data

throughout the batch pipeline.

HOW MACHE
IMPROVES EFFICIENCY

 Reduce queries: because a larger subset of

the dataset can be cached, tasks no longer use

individual queries or require query optimisation.

 Improve scheduling: Mache provides existent

caching across tasks, so demands on grid bandwidth

will be less ad hoc and can be better planned, for

example, according to a refresh schedule.

 Eliminate binary bundling: the language-agnostic

REST interface decouples storage from the process,

as well as from the client-side language. With many

applications written in Java, .NET and more recently

Go, REST also decouples code from the NoSQL

vendor platform. So when it comes to deployment

and upgrades, eliminating the need to bundle

client-side binaries is a blessing.

TECH SPARK, H2 2016 | 53INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

48 individual data connections across the network:

No data sharing, other than accidental temporal

query locality at the DB.

48 individual data

connections across the

network

48 individual data connections over the local

loopback connection: Data shared and connections

concentrated from one application.

select * from

market_data where

data_key = ’?’

select * from

market_data where

data_key in (’?’, ’?’)

GET http://localhost

mache/market_data/5

(via local loopback)

48 COMPUTE TASKS

1 COMPUTE NODE

48 COMPUTE TASKS

1 COMPUTE NODE

MACHE REST SERVICE

Cluster

shards

Cluster

shards

Figure 4. Comparison of a conventional compute approach with 48 task connections to the data cluster versus a single Mache-

enabled one.

Consider a scenario where a compute grid has to

process market data and calculate the PNL for a given

portfolio of trades. This is typically achieved by splitting

the trades into smaller groups and creating a task per

group. Tasks are then queued on a compute grid to

execute as quickly as possible, with the results collated

later in post-processing.

Historically, each node had to connect and download

the required data from a data store. The approach can

be simple to implement and the power of the compute

grid is harnessed effectively. However, with ever-

-increasing volumes of data, task run time rises as the

network soon reaches capacity. Most applications will

try and cache the data locally within the requesting

process.

Without Mache every compute task needs direct access

to the data store. This greatly increases network traffic,

which reduces throughput and increases latency.

Typically, many tasks are scheduled at once, further

compounding the problems. For instance, if 100 tasks

A SMARTER WAY
TO SCALE REQUESTS

start concurrently and all require the latest copy of

the data, the network can suddenly get saturated. Akin

to a denial of service attack, the event can cause grid

nodes to appear offline. The issue then escalates as

the grid attempts to heal, while network infrastructure

struggles to manage the load.

Even with a 10 Gbytet/s network, the maximum

throughput is 1.25 Gbyte/s. With growing regulatory

reporting requirements, compute grids need to scale

to tens of thousands of cores, while at the same time

coping with the explosive growth of market data over

recent years1. With this in mind, it is easy to see how

having all processes directly accessing the database

does not scale.

In the same way that application developers try

to increase performance by designing ‘machine-

-sympathetic’ applications that attempt to increase

cache locality, what they actually need to design are

‘network-sympathetic’ architectures that can scale

across thousands of compute nodes.

54 | TECH SPARK, H2 2016 INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

Mache can be accessed via a Java virtual machine

(JVM) process or via the REST language-agnostic

protocol. As can be seen in Figure 4, within a Mache

model only a single database call is required versus

a call for each separate task in the conventional

approach. Mache retains the latest copy of the data

in its memory so that it can be accessed by all tasks.

Furthermore, the Mache API abstracts the connection

to the data store. This means that any updates to the

underlying data store are automatically synchronised,

freeing up the developer to focus on task execution.

To date, the project has been a great success and is

generating a lot of interest from the open source

software (OSS) community. It’s great to see the broad

appeal of many of the key Mache features for many

application architectures. Notable among these are

the ability to dedupe data into a localised service;

binary decoupling from storage layer binaries and the

potential for NoSQL and near-caching. The coming

months we aim to roll out a webinar series that will

include a presentation of Mache with DataStax and its

roadmap.

Building on the encouraging results so far, our team

here at Excelian will continue to promote Mache as

a key contribution to the open source community. It

neatly complements our industry expertise and will

enable the adaptation of NoSQL to many use cases

within the financial services sector.

Find out more, view or download the code from:

https://github.com/Excelian/Mache

FOCUS
ON THE FUTURE

MACHE
IN PRACTICE

1 http://www.nanex.net/aqck2/4625.html

TECH SPARK, H2 2016 | 55INTRODUCTION
FINANCIAL SERVICES
BIG DATA USE CASES

STREAMING AND
PERFORMANCEBLOCKCHAIN

 How do you see big data impacting on your business?

 Are you forward thinking with your big data strategy?

 What does your technology stack look like now?

What will it look like in two years’ time?

 Can big data work with blockchain?

 Are you ready for streaming and machine learning?

You may know your company strategy, but are you as sure about your competitors?

We would like to invite you to take

part in a completely anonymous and

closed survey which will bring together

multiple views and experiences of the

big data landscape.

Once all surveys have been

completed and analysed, we will

share all learnings with those involved

and provide a current status of the

industry – which provides valuable

insights for you to leverage in your

strategy for the years to come.

Why take part?

1. Contribute to the industry knowledge share

2. Benchmark your company against your competition

3. Receive a copy of the full research findings along with your final

position

 If you would like to get involved, please email

 techspark@excelian.com and we will be in touch.

