
Ravi Sharda
Consultant Software Engineer
EMC, India Center of Excellence
Ravi.Sharda@emc.com

BIG DATA PROCESSING BEYOND
HADOOP AND MAPREDUCE

mailto:Ravi.Sharda@emc.com

2015 EMC Proven Professional Knowledge Sharing 2

Table of Contents

1. INTRODUCTION .. 5

2. INTERACTIVE QUERYING OVER HADOOP... 7

2.1. APACHE DRILL: LOW-LATENCY SELF-SERVICE DISTRIBUTED QUERY ENGINE........... 8

2.1.1. Overview .. 8

2.1.2. Architecture .. 9

2.1.3. Discussion ... 11

2.2. STINGER INITIATIVE: AN INITIATIVE TO IMPROVE APACHE HIVE’S PERFORMANCE

100X ... 12

2.2.1. Overview .. 12

2.2.2. Discussion ... 13

2.3. APACHE TEZ: A DISTRIBUTED EXECUTION ENGINE FOR INTERACTIVE JOBS 13

2.3.1. Background .. 13

2.3.2. Overview .. 14

3. ITERATIVE COMPUTATIONS ... 16

3.1. HALOOP: A MODIFIED VERSION OF HADOOP OPTIMIZED FOR ITERATIVE PROCESSING

 18

3.1.1. Overview .. 18

3.2. APACHE GIRAPH: BULK SYNCHRONOUS PARALLEL GRAPH PROCESSING 18

3.2.1. Background .. 18

3.2.2. Bulk Synchronous Parallel (BSP) Computing Model 19

3.2.3. Overview .. 20

4. MOVING BEYOND MAPREDUCE ... 22

2015 EMC Proven Professional Knowledge Sharing 3

4.1. YET-ANOTHER-RESOURCE-MANAGER (YARN) .. 22

4.1.1. Background: Workings of Pre-YARN Hadoop MR 22

4.1.2. Enter YARN ... 23

4.1.3. Discussion ... 24

4.2. APACHE SPARK: AN ALTERNATIVE CLUSTER COMPUTING PLATFORM 26

4.2.1. Overview .. 26

4.2.2. Architecture .. 26

4.2.3. Intersections of Spark and Hadoop .. 28

4.2.4. Discussion ... 28

5. CONCLUSION .. 29

6. ACKNOWLEDGEMENT ... 30

7 REFERENCES ... 32

2015 EMC Proven Professional Knowledge Sharing 4

Table of Figures

Figure 1 Functional Architecture – Apache Drill .. 9

Figure 2 Core Modules in a Drillbit ... 10

Figure 3 Apache Tez in Hadoop 2.0 Stack .. 14

Figure 4 Typical Dataflow in Iterative Processing with Hadoop MR 16

Figure 5 YARN's Role in the Hadoop Ecosystem ... 25

Disclaimer: The views, processes or methodologies published in this article are those of

the author. They do not necessarily reflect EMC Corporation’s views, processes or

methodologies.

2015 EMC Proven Professional Knowledge Sharing 5

1. Introduction

Hadoop and MapReduce (MR) have been de-facto standards for Big Data processing for

a long time now, so much so that they are seen by many as synonymous with “Big

Data”. With MR data processing model and Hadoop Distributed File System at its core,

Hadoop is great at storing and processing large amounts of data. It allows a programmer

to divide a larger problem into smaller mapper and reducer tasks that can be executed,

mostly in parallel, over a network of machines. Hadoop’s runtime hides much of the gory

details of distributed and parallel data processing from the programmer, such as

partitioning input data, breaking down MR jobs into individual tasks, scheduling the tasks

for parallel execution, co-locating processing to where the data is (to the extent

possible), monitoring the progress of tasks and jobs, handling partial errors and fault-

tolerance on unreliable commodity hardware, synchronizing results and tasks when

necessary, and so on.

As such, Hadoop and MR lower the entry barrier for Big Data processing, by making

data-intensive processing easy and cost-effective. Easy, because programmers need to

just write and deploy Mapper and Reducer tasks and Hadoop handles much of the

scaffolding. Cheap, because Hadoop MR jobs can work over commodity servers,

avoiding the need to deploy specialized (read costly) hardware.

MR and Hadoop are designed for “batch-oriented” processing of large-scale data

processing rather than for interactive use.

However, many classes of applications do require low-latency analysis. Consider for

example a credit card fraud detection application that requires real-time results, or a

Business Intelligence (BI) application serving results of ad-hoc queries to a user.

Similarly, interactive/exploratory querying, involving firing multiple queries that are

closely related to one another, isn’t served well by Hadoop MR. This is because Hadoop

fires new MR jobs and loads data from disks for each job irrespective of the data access

pattern and history. Factor this with high-latency execution of an individual MR job and

users’ general expectations of sub-second response times, and it’s easy to see why

interactive analysis with Hadoop MapReduce is seen as impractical.

2015 EMC Proven Professional Knowledge Sharing 6

Moreover, Hadoop MR is not suitable for computations involving iterative processing,

owing to the overheads of repeated fetching of data since Hadoop doesn’t store working

sets of data in memory. Iterative computations are common in many applications

including machine learning and graph processing algorithms.

This article provides an overview of various new and upcoming alternatives to Hadoop

MR, with a special focus on how they go about addressing the issues discussed earlier.

Some of these alternatives are at the infrastructure-level, replacing the guts of Hadoop

while keeping interface-level semantic compatibility with Hadoop. Others choose to re-

use existing Hadoop infrastructure, but provide a new higher level interface designed to

address some of the limitations discussed earlier. Prominent examples include: Apache

Spark, Apache Drill, Yet Another Resource Navigator (YARN), Apache Tez, HaLoop,

Apache Hama, Apache Giraph, and Open MPI.

2015 EMC Proven Professional Knowledge Sharing 7

2. Interactive Querying over Hadoop

Parallel processing of map/reduce tasks and high-throughput access to data sets via

sequential reads enable Hadoop MR jobs to execute in minutes and hours; those jobs

would otherwise take days or months using serial processing steps over the same

dataset. This works well for batch-oriented jobs that run behind-the-scenes and do not

have low-latency expectations.

As such, even the simplest single-stage Hadoop MR job exhibits high latency – relative

to interactive response times of a second or less – regardless of the volume of data it

operates on and the number of nodes processing tasks in parallel. This is primarily

because of; a) Hadoop’s design emphasis on efficient processing of batch-oriented jobs,

and b) synchronization barriers inherent in its MapReduce programming model. These

are elaborated in greater detail in the following paragraphs.

Several aspects of Hadoop’s design explicitly emphasize efficiencies at scale for batch-

oriented applications/MR jobs. Batch-oriented MR jobs like ETL and aggregation often

involve running batch operations on large data sets, implying that the jobs make long

streaming reads from disks and large sequential writes to disks [Lin]. Such workloads

are better served by avoiding caching intermediate data or results in memory, and that’s

exactly what Hadoop File System (HDFS) does. Similarly, Hadoop stores intermediate

data produced during Map stage on disks, which in turn makes it easier to handle

failures at run time. However doing so also adds considerable performance overheads to

overall computation time, which is not much of an issue for batch-oriented jobs.

Hadoop’s MR programming model also lends itself to certain inherent latencies. For

example, Shuffle/reduce tasks can only commence after all of the Map tasks are

completed. Similarly, in a multi-stage application comprising of a chain of MR jobs, a job

must complete before the next in the chain can start executing [Rentachintala].

Many Big Data applications, like Business Intelligence (BI) dashboards, enterprise

reporting, big data visualization, ad-hoc reporting, interactive querying, fraud detection,

security threat detection, etc. are latency-sensitive. Some of these applications are

latency-sensitive simply because human users are responsible for triggering their

execution and tend to demand interactive response times of a sub-second or less. In

2015 EMC Proven Professional Knowledge Sharing 8

other cases, applications may be latency sensitive because the results must be used in-

line of a transaction and the transaction itself must complete quickly to be effective. A

credit card fraud detection system is an example of this, where a potential fraud may

need to be detected in-line of a payment transaction; since payment transactions bear

expectations of low-latency, it becomes incumbent on the fraud detection system to

compute its decision quickly.

If an individual MR job features high-latency, the problem is only further exacerbated in

multi-stage application comprising of a chain of Hadoop MR jobs.

Several solutions have come about, which address the high-latency problems of Hadoop

MR applications. Taking a cue from Google’s Dremel, Cloudera’s Impala and Apache

Drill take the approach of bypassing compilation of queries into Hadoop MR jobs (unlike

Hive’s approach) and instead break down the queries into smaller sub-queries – each of

which is executed in parallel. Hortonworks-led Stinger initiative takes the approach of

making changes to Hive to make it faster. Apache Tez follows the approach of arranging

tasks in a Directed Acyclic Graph (DAG) and optimizing their execution using DAG as

the unit of execution. We discuss some of these solutions in the following sub-sections.

2.1. Apache Drill: Low-Latency Self-Service Distributed Query Engine

2.1.1. Overview

Inspired by Google’s Dremel – a “technology for interactive analysis of Web-scale

datasets [Melnik]” – Apache Drill is a low-latency SQL query engine for big data sets

stored in a variety of data sources, including Hadoop. Apache Drill is not a “database”,

but is rather a SQL query layer over underlying data sources including Hadoop, NoSQL

databases (HBase, MongoDB, etc.), etc. [Hausenblas].

Unlike Hive, which compiles and executes SQL queries into MR jobs, Apache Drill takes

the approach of compiling user queries into query fragments that are executed directly

over data nodes and then assembling an aggregated response, building on ideas from

“shared-nothing” style parallel databases or Massively Parallel Processing (MPP)

databases to be specific.

2015 EMC Proven Professional Knowledge Sharing 9

Apache Drill graduated from an Apache Incubator to a Top-Level Project (TLP) in early

December 2014, which in turn signifies maturity of the technology and an active

community supporting the project. Not to mention, the website moved from

incubator.apache.org/drill to drill.apache.org, reflecting the change.

2.1.2. Architecture

The foundational component of Drill’s architecture is the “Drillbit” service. The following

figure depicts how a client application’s query is processed in Drill.

Figure 1: Functional Architecture – Apache Drill

The Drillbit service accepts and responds to client requests. In Hadoop cluster

environments, each of the data nodes that need to respond to Drill queries have the

Drillbit service installed and running.

2015 EMC Proven Professional Knowledge Sharing 10

A client user or an application issues a query to any of the Drillbit nodes through one of

its interfaces: command line shell (Drill Shell), Web UI (Drill Web UI), Open Database

Connectivity (ODBC)/Java Database Connectivity (JDBC) libraries or the C++

Application Programming Interface (API). Drill implements full ANSI SQL 2003: this

makes it easier for business users to perform interactive analysis as well as integration

with third party BI tools via compliant ODBC/JDBC drivers.

Once a Drillbit node accepts a request, it becomes responsible for driving the request

through completion including fetching a list of available Drillbit nodes in the cluster (from

ZooKeeper) and determining the appropriate nodes to execute the fragments of the

execution plan.

Figure 2: Core Modules in a Drillbit

The figure above illustrates the data flow through major modules within the Drillbit

service. A “Parser” module parses and transforms the incoming user query into a logical

plan. The logical plan represents the query as a dataflow program in a DAG, and

typically lives in memory in the form of Java objects [Hausenblas].

An “Optimizer” module, then transforms the logical plan into a physical plan that - among

other things - represents allocation of corresponding query fragments to individual Drillbit

2015 EMC Proven Professional Knowledge Sharing 11

nodes. By default, a cost-based optimizer is used, but there is also an extension point for

plugging-in other optimizers. The default cost-based optimizer takes several things into

account including topological and data locality considerations. For example, a query

fragment will ideally execute on the same data node that hosts the sub-set of the data

that it reads.

An “Execution” module within the driving Drillbit service then schedules execution of

query fragments according to the physical plan and keeps track of their execution

statuses.

Finally, the driving Drillbit node receives results from all the Drillbit nodes involved in

processing parts of the user query, collates/merges those results, and returns an

aggregated response to client users/applications.

2.1.3. Discussion

Low-latency access to data is a key requirement for workloads involving ad-hoc,

interactive, and exploratory data analysis over Hadoop-resident big data sets. What

design aspects of Apache Drill enable that?

First, by avoiding compiling queries into Hadoop MR jobs a number of performance

pitfalls of Hadoop MR are avoided. These include performance issues caused by barrier

synchronization steps and persistence steps in Hadoop MR. Examples of the former are:

waiting for completion of all Map tasks prior to commencement of shuffle reduce tasks,

or, waiting for completion of a job before executing the next job in a chain of multi-stage

jobs. Examples of the latter are: persistence of intermediate data between different

phases of a MR job to disk and corresponding de-serialization steps between different

phases.

Second, distributing queries into finer-grained query fragments throws up more

opportunities for optimizing query execution. For example, when Drill scans “whole

tables”, it spreads out scanning into smaller fragments that can be executed, which in

turn can be executed in parallel and largely operating over local data sets over a network

of Drillbit services.

2015 EMC Proven Professional Knowledge Sharing 12

Additionally, Apache Drill optimizes query execution for Columnar Storage and

execution. For example, when working with data persisted in columnar formats such as

Parquet, Drill avoids accessing columns that are not part of the query and processes

directly on columnar data avoiding row materialization [Bevens], lowering memory

footprints, and improving performance of BI/analytic queries. Moreover, vectorized

processing in Drill enables partitioning of data into “Record Batches”: Record Batches

form the unit of work for the query system which in turn lend themselves well to efficient

processing by leveraging “modern chip-technology with deep-pipelines CPUs [Bevens]”.

But that’s not all. Apache Drill also provides a query interface that allows a user to build

a query without knowing in advance what queries to issue. Support for ANSI SQL:2003

makes it easier for business users to leverage their pre-existing knowledge for

composing interactions with the system. Additionally, support for standard ANSI SQL

allows for integration with third party BI/analytics tools via standard ODBC/JDBC

interfaces and drivers.

2.2. Stinger Initiative: An Initiative to Improve Apache Hive’s

Performance 100X

2.2.1. Overview

Since its introduction, Apache Hive (along with its HiveQL interface) has become the de

facto SQL-like query interface for Hadoop, and is used primarily for large-scale

operational batch processing geared toward enterprise reporting, data mining, and data

preparation use cases. Hive compiles queries into Hadoop MR jobs and therefore

inherits much of the latency problems Hadoop MR jobs suffer.

An increasing demand for real-time and interactive analytical querying led to the

commencement of Hortonworks-led Stinger Initiative that had an initial aim of improving

Hive’s performance dramatically: reduce latency by 100x, to be specific.

While the initiative is not part of the Hadoop project ecosystem, improvements made as

part of the initiative go into pre-existing Hadoop projects, making the benefits available to

the community at large.

2015 EMC Proven Professional Knowledge Sharing 13

The original initiative is claimed to have largely met its objective. Stinger.next is a

continuation of the initiative with the aim of further improving performance of Hive as well

as introducing new SQL features that add to the analytical querying capability of Hive.

2.2.2. Discussion

Among the major changes made in the original Stinger initiative toward reducing

latencies of Hive queries were:

 Optimizing Hive query execution infrastructure so that queries can run much

faster. Examples of such changes include removing redundant operators from

Hive’s Map/Reduce plans, predicate pushdown (filtering at the storage layer,

rather than in the SQL frontend), vectorized query execution that batches

operations, caching of hot tables, introduction of in-memory joins, etc.

 A new column store-based file format for storage that enables better

performance of analytical queries.

 Drive evolution of Apache Tez for faster execution of MR jobs: Hive compiles

user queries into MR jobs, and making compiled MR jobs efficient has a direct

bearing on Hive’s performance. In fact, one may argue that Apache Tez was

born out of the requirements of this initiative. We discuss more on Tez in the next

section.

There are many more changes in the pipeline, which are expected to make Hive queries

even more efficient.

2.3. Apache Tez: A Distributed Execution Engine for Interactive Jobs

2.3.1. Background

As we already know, Hadoop MR programs are written using just two primary data

processing primitives: “map” and “reduce”. Every application running on Hadoop MR is

expressed using these primitives, ultimately yielding either a single MR job or a multi-

stage job comprising a chain of successive MR jobs.

2015 EMC Proven Professional Knowledge Sharing 14

One way to run a multi-stage application is to execute each job in a chain as a separate

MR job, leveraging no knowledge of what came before it in the chain. Doing so also

implies that any job in a chain must wait for all of the jobs that come before it to finish,

since there can be inter-job dependencies in a chain – dependencies such as output of

one job is input to another. But running a multi-stage application in a sequential fashion

like that can make it hugely inefficient.

An alternative approach to handling a multi-stage application is to represent such a

complex job as a Directed Acyclic Graph (DAG) and to execute the DAG as a whole unit.

A DAG, in this context, refers to a directed and acyclic graph of job steps (such as

map/reduce tasks) as vertices and producer/consumer connections as edges. Order of

execution of the steps is as per directionality of the graph edges. “Acyclic” property of a

DAG implies that there are no cycles in the graph.

2.3.2. Overview

Support for third-party ApplicationMasters in YARN/Hadoop 2.0 made it possible to plug-

in execution engines other than MapReduce (more on this later). Apache Tez leverages

that extension point to plug in a new execution engine that can handle traditional MR

jobs as well as DAG-based jobs.

Figure 3: Apache Tez in Hadoop 2.0 Stack

2015 EMC Proven Professional Knowledge Sharing 15

A key short-term goal of Tez is to provide an execution engine that allows for expressing

complex query plans generated by Hive in an expressive and efficient manner, and to

support deterministic optimizations and high performance execution at runtime. Using

Tez’s API for defining DAGs, Hive expresses its query plans in the form of DAGs.

Vertices represent Map or Reduce tasks and edges represent producer/consumer

relationships among the tasks. Each DAG represents a query plan and is on Tez as a

Tez job.

Executing a multi-stage job as a DAG has several benefits. One is that tasks

representing independent vertices, i.e. those that have no incoming edge, can run in

parallel (as opposed to sequential). Second, some of the scheduling overheads of

executing MR jobs individually can be avoided. Similarly, since all of the steps involved

in running a query can be fully represented in a DAG at runtime and the flow from step to

step can be determined upfront, the execution engine can keep intermediate results in

memory for as long as necessary, thereby improving the performance of the overall

query/job.

In summary, Tez (which in the Hindi language means speed) makes Hive queries (as

well as other types of jobs running on top of it, such as Pig jobs) much more efficient,

thereby supporting faster response times of analyzes.

2015 EMC Proven Professional Knowledge Sharing 16

3. Iterative Computations

Many data processing applications involve iterative computations where data is

processed iteratively until the computation satisfies some convergence criteria (also

called termination condition). Algorithms with iterative structures can be found in

domains such as machine learning, dimension reduction, link analysis, neural networks,

social network analysis, and network traffic analysis. Many of the algorithms in these

domains are really recursive structures, but the only way to express them in a

programming model like MR is in the form of iterative computations.

Hadoop, on its own, does not natively support iterative computations. Instead, to achieve

the effect of iterative computations, the application developer must implement such

computations as a program – a driver program or an external script or an external

workflow hosted on a workflow engine like Oozie – that implements its own iteration

logic, as illustrated in the following figure.

MR Job
Iteration #1HDFS

HDFS

 Read
HDFS

MR Job
Iteration #2 HDFS

HDFS

 Write

HDFS

 Read

HDFS

 Write

MR Job
Iteration #3HDFS

H
D

FS

 R
ea

d
HDFS

 Write

Figure 4: Typical Dataflow in Iterative Processing with Hadoop MR

The program would need to issue the same job afresh repeatedly until the relevant

termination condition is satisfied and orchestrate individual jobs across iteration

boundaries in a way where shared data is persisted to or read from the file system at

output and input points respectively.

2015 EMC Proven Professional Knowledge Sharing 17

Manual orchestration of iterative computations by stringing together a bunch of MR jobs

is ill-suited for iterative computations for the following reasons:

 First, it makes it much harder for application programmers to express such

computations efficiently.

 Scheduling overhead of individual MR jobs with respect to latencies means that

the overall application suffers more and more latencies in direct proportion to the

number of jobs involved in the chain.

 Even though much of the data is unchanged from iteration to iteration, the data

must still be serialized and written to disks at the end of iteration and read from

disks and re-processed in another – wasting I/O, network bandwidth, and CPU

resources [Bu].

 Checking for terminating condition at the end of each iteration may involve fixed-

point verification – i.e. checking that the results of the last two iterations haven’t

changed. While fixed-point verification would mean different things in different

iterative applications, it would typically involve running an additional MR job at

the end of each iteration for comparing the results, adding to performance

overhead.

There are a number of solutions that address these problems, including HaLoop, Giraph,

Twister, and iHadoop. We discuss some of these in the following sections.

Apache Spark – discussed later in this article – also addresses needs of iterative

computations, and it does so by providing programming abstractions that makes it easier

to express iterative computations, as well as by making such computations much more

efficient.

2015 EMC Proven Professional Knowledge Sharing 18

3.1. HaLoop: A Modified Version of Hadoop Optimized for Iterative

Processing

3.1.1. Overview

HaLoop is a modified version of Hadoop that extends MR paradigm for use in iterative

computations, along two major dimensions.

First, it provides programming abstractions for expressing iterative computations more

naturally, as opposed to the “stringing together of MR jobs” approach explained earlier. It

introduces new programming abstractions in the form of new functions such as a)

functions that allow defining loop bodies, like “AddMap” and “AddReduce”, b) functions

for checking termination conditions, like “SetFixedPointThreshold” and

“SetMaxNumOfIterations”, and c) functions that distinguish loop-variant and loop-

invariant data, like “AddStepInput” and “AddInvariantTable” [Li].

Second, it makes iterative computations a lot more efficient. It does so using

mechanisms such as ([Bu], [Li])

 Caching invariant data that is shared across iterations, and utilizing the cache to

avoid reading of that data from disks.

 Caching of fixed-point verification data, avoiding the need for spinning a separate

MR job just for that purpose.

 Using a new purpose-built loop-aware task scheduler that leverages data locality

to generate more efficient schedules for iterative computations.

Refer to [Bu, Li] for more details on the above.

3.2. Apache Giraph: Bulk Synchronous Parallel Graph Processing

3.2.1. Background

A Graph is simply a collection of nodes/vertices and edges/links. A vertex represents an

entity such as a person. An edge connects two vertices, representing a certain

2015 EMC Proven Professional Knowledge Sharing 19

relationship between the two edges – for example two persons who are friends of each

other. As such Graphs are efficient in expressing relationships among entities and widely

used in areas such as social network analysis.

Graph algorithms can be expressed as a chain of MR jobs where the entire state of the

graph is passed from one job to next. However, this approach can lead to poor

performance, like in the case of other types of iterative computations (discussed earlier).

Those problems are actually magnified in a big way in graph processing applications

because graph applications tend to have much larger number of iterations than non-

graph iterative processing.

3.2.2. Bulk Synchronous Parallel (BSP) Computing Model

It is difficult to discuss Giraph without delving into the Bulk Synchronous Parallel (BSP)

computing model, since Giraph is primarily based on that model. The following

paragraphs in this section provide a brief overview.

Introduced by Leslie Valiant in the 1980’s, BSP is a much older parallel computing model

that the popular MapReduce model.

In BSP, a program executes as a sequence of parallel supersteps separated by barrier

synchronization, each of which is comprised of three ordered phases [BSP]:

1. A local and concurrent computation phase, where each processor performs its

computation using values available locally (usually in memory), and requests

data transfers to/from other processors. This phase may overlap with the

communication phase.

2. A communication phase, where the BSP network delivers the data transfers

based on requests made during computation phase [Hassan].

3. A global barrier synchronization phase, which waits for all data transfers to

complete, making the transferred data available for the next superstep [Hassan].

Also, a processor that has entered the barrier waits for others to enter the barrier

too.

2015 EMC Proven Professional Knowledge Sharing 20

Once a processor has come out of the barrier it can operate independently on data it has

received through messages from other processors.

Apache Giraph, Apache Hama, and Stanford Graph Processing System (GPS), are

realizations of the BSP paradigm.

3.2.3. Overview

Apache Giraph (https://giraph.apache.org/) is arguably the most popular scalable and

large-scale graph processing framework. It is an open-source clone of Google’s Pregel,

and is designed to work on top of Hadoop: Giraph jobs are launched as normal Hadoop

MR jobs leveraging the underlying Hadoop infrastructure. Giraph is already in use at

companies like Facebook and PayPal in applications like network analysis involving

massive data sets (billions of vertices and edges).

Before the advent of YARN/Hadoop 2.0, Giraph used the underlying Hadoop MR

programming model, but with the introduction of YARN in Hadoop 2.0, Giraph is no

longer tied to the MR model that was inherently inefficient for large-scale graph

processing.

Giraph takes its input through sources such as HDFS or Hive tables as a graph

composed of vertices and edges (stored in the input source or adjacency matrix, etc.).

Depending on the application domain, vertices can be entities or program units. Like

Pregel, Giraph implements a vertex-oriented graph processing engine based on the BSP

parallel computing model.

Graph Computations are executed as a series of supersteps. Each vertex executes a

user-defined computing function, which does local computation (similar to the BSP

model) of data available at the vertex, using locally available data, such as data received

from other vertices, vertex, and outgoing edge values. Each vertex sends messages to

other vertices post execution passing any computational results to other vertices. Thus,

the program is designed from the local execution capability of the vertex, and message

passing between vertices without offering any inter-vertex data access. There is also a

barrier between consecutive supersteps, wherein messages from the current superstep

get delivered to the destination vertices, and they start computing after every vertex has

https://giraph.apache.org/

2015 EMC Proven Professional Knowledge Sharing 21

completed computing the current superstep. It is also possible to mutate the graph by

adding or removing vertices or edges, during a superstep. Computation halts after all the

vertices have voted to halt and there are no messages to be delivered.

Giraph’s vertex-oriented approach is a more natural way of modeling graph problems.

For example, an application developer implements a vertex, rather than MR jobs.

Giraph’s BSP implementation allows much of graph processing to occur in memory,

avoiding the need for launching too many MR jobs or reading from/writing to disks and

thereby making graph processing more performant than otherwise possible with Hadoop

MR.

2015 EMC Proven Professional Knowledge Sharing 22

4. Moving Beyond MapReduce

We have discussed several solutions that address limitations of Hadoop/MR. Arguably,

none of those solutions are as foundational as Hadoop YARN and Spark, especially with

respect to addressing many of the inherent limitations of Hadoop MR (some of which we

have discussed so far). The following sub-sections describe YARN and Spark, and how

they set out to solve those limitations.

4.1. Yet-Another-Resource-Negotiator (YARN)

4.1.1. Background: Workings of Pre-YARN Hadoop MR

As discussed earlier, Hadoop’s MR programming model and the distributed execution

engine greatly simplified processing of large-scale data sets. But as Hadoop became

more and more popular, some of its major limitations also came to the fore: a) the

computational inefficiencies of MR jobs, and b) scalability and reliability limitations

caused by the core design of the distributed computation engine. We discussed the

former in greater length under other sections of this document. Let’s delve into the latter,

in order to make sense of why and how YARN set out to solve those problems.

In Hadoop 1.x, clients launch MapReduce applications to a centralized JobTracker

process/daemon. The process accepts an MR application as a job from a client and

assigns parts of that job – Map and Reduce tasks – for execution on the “slave”

TaskTracker daemons spread across the shared cluster. To be able to do so, the

JobTracker keeps track of which of the TaskTrackers are alive, as well as, available Map

and Reduce slots on the Tasktracker. The JobTracker also monitors task execution on

TaskTrackers and makes the status and other details of the job available for clients. It

helps to think of the JobTracker as a “shared resource across jobs, across users

[Murthy]”. Each of the TaskTracker daemons spawn child processes for executing

individual tasks, and updates the TaskTracker with the status of tasks it runs.

Having a centralized JobTracker shared across jobs and users led to several scalability

and reliability issues - especially in large clusters. The next paragraphs in this sub-

section explain some of those issues.

2015 EMC Proven Professional Knowledge Sharing 23

A JobTracker keeps in-memory representations of a job and its tasks, including dynamic

values associated with them such as job counters and configurations, as well as static

values. Therefore, memory utilized as part of processing a job is practically unbounded

[Murthy]. Hence, memory consumed as part of a single memory-intensive job could

potentially lead to runaway memory usage, in turn leading in to JVM pauses and even

crashes. A JobTracker being a shared resource, if the JobTracker needed to be

restarted, the entire cluster would experience downtime. As such, limits to scalability

were encountered in large deployments, placing a practical limit of about a few thousand

nodes and about 40000 tasks running concurrently within a cluster..

Similarly, if a Map or Reduce task consumed a lot of memory on a node, it may

negatively impact other processes like tasks running on behalf other jobs and even

Hadoop daemons like TaskTracker and DataNode. If the TaskTracker or the DataNode

goes down, the node becomes unusable as a Hadoop cluster resource.

4.1.2. Enter YARN

In Hadoop 1.0, as indicated in the previous sub-section, the JobTracker had two distinct

functions: resource management and Job scheduling/monitoring. These functions, with

Hadoop 2.x YARN architecture are now assigned to separate daemons.

Resource management functions in Hadoop 2.x are now fulfilled by a generic resource

management framework comprising of a global ResourceManager (RM) and a per-node

NodeManager (NM) - acting as RM’s slave.

 The RM is responsible for arbitrating division of resources among applications

running on the cluster.

 The NM is responsible for allocating containers to applications on the

computational nodes of the cluster, based on requests from the RM. It also

manages the containers’ life cycle, monitors them for resource usage, and

reports resource usage metrics back to the RM. Essentially, it is the focal point of

resource management on individual computational node in a Hadoop cluster.

2015 EMC Proven Professional Knowledge Sharing 24

Allocation of computational resources to applications – resources being memory, CPU,

disk and network – is done by a pluggable scheduler on the RM, of course, subject to

various constraints. The pluggable scheduler enables use of a variety of scheduling

algorithms such as those focused on specific use cases or programming models.

Note the reference to “application” as opposed to a job in the preceding paragraph. In

Hadoop 2.x, an “application” is either a job such as an individual MapReduce job, or a

collection of jobs organized as a Directed Acyclic Graph (DAG) of jobs [Wadkar].

Moreover, YARN introduces an application-specific ApplicationMaster that replaces the

older dedicated and single JobTracker, with respect to job-oriented functionality. It is

application-specific in the sense that when a user submits an application, an instance of

ApplicationMaster is started to coordinate the execution of that application, and all

application-framework specific code lies within the ApplicationMaster. Its functions

include: negotiating appropriate resource containers with the RM, monitoring the

containers (tasks), restarting failed tasks, speculatively running slow tasks, and so on.

Each application, via the per-application ApplicationMaster instance, gets its share of

resources via the “container” abstraction, which in turn is a result of a RM granting a

resource request made by it. Responsibilities for monitoring applications, restarting failed

tasks, and so on have now been shifted to ApplicationMaster. Each application having

its own instance of the ApplicationMaster implies that the ApplicationMaster by itself is

rarely a bottleneck.

4.1.3. Discussion

Prior to the advent of YARN/Hadoop 2.0, scheduling of jobs through

JobTracker/TaskTrackers was exclusively tied to the MR programming model: one could

only run MR jobs over data stored in HDFS.

YARN separated the resource management layer (RM, NM, and containers) from the

application layer (ApplicationMaster, etc.), paving the way for breaking the tie up

between Hadoop and its MapReduce programming model. YARN allows for plugging in

third-party ApplicationMasters. The ApplicationMaster itself is merely an instance of a

framework-specific library, and encapsulates all application framework-specific code.

2015 EMC Proven Professional Knowledge Sharing 25

The resource management layer (RM, NM, and containers) are oblivious to the type of

task. This makes it possible for an ApplicationMaster to run any type of task on a

container, not just the Map and Reduce tasks supported by the erstwhile

JobTracker/TaskTracker. For example, a graph-processing Giraph ApplicationMaster

can run a Giraph task instead. If one so desires, one may write a new ApplicationMaster

that runs whatever tasks that one feels necessary.

HDFS2
(Distributed File System)

YARN
(Cluster Resource Management)

Tez
(Execution

Engine)

Spark
(Cluster

Computing)

Solr
(Search)

Giraph
(Graph

Processing) Application Layer

Infrastructure Layer

MPI

Storm
(Stream

Processing)

HAMA
(Bulk Synchronous

Processing)

Client
Applications

Others...

Figure 5: YARN's Role in the Hadoop Ecosystem

Even the erstwhile MapReduce in Hadoop is now just an application that runs on YARN.

As such, YARN enables use of additional programming and computing models for

processing data stored in Hadoop, as shown in the above figure.

2015 EMC Proven Professional Knowledge Sharing 26

4.2. Apache Spark: An Alternative Cluster computing Platform

4.2.1. Overview

Apache Spark was initially designed for interactive and iterative applications where

keeping and processing data in-memory could make processing large data sets efficient,

both with respect to latency of execution and development time. In fact, performance

and ease of development remain its two key selling points to this day. We discuss these

in greater detail in later sub-sections.

It has steadily evolved as a general purpose cluster computing platform that can run a

variety of workloads - individually and in combination - within a single platform: these

include batch applications, ad-hoc and interactive querying, iterative algorithms, graph

processing algorithms, as well as stream processing. Moreover, the same API can be

used to invoke any of those workloads, greatly simplifying application development.

Many see Apache Spark as a vast improvement over Hadoop MR and consider it the

most likely successor of Hadoop. It started out as a research project at the University of

California, AMP Lab, but is now a widely-used open source project with a lot of

momentum as well as a thriving community with a growing list of contributors.

Accordingly, Spark attained Apache Top-Level Project status in February 2014. All major

vendors of Hadoop such as Cloudera, MapR, Hortonworks, Pivotal, and IBM bundle

Apache Spark in their distributions - a clear recognition of its maturity and momentum.

4.2.2. Architecture

At its core, Apache Spark introduces two main parallel programming abstractions:

Resilient Distributed Data Sets (RDD) and parallel operations over RDDs.

An RDD is a read-only, immutable and partitioned collection of objects, which can be

stored in memory or disk. An RDD is automatically split into multiple partitions, and data

represented by an RDD is automatically distributed across cluster nodes along the axis

of partition. Operations performed on an RDD are automatically parallelized over the

underlying data set along the partitioning axis.

2015 EMC Proven Professional Knowledge Sharing 27

All work is expressed as operations on RDD. Operations are of two types:

transformations and actions. Transformations are used to create new RDDs from old

ones. New RDDs can also be created by loading external files such as HDFS

InputFormats. Examples of “transformation” operations include:

 map(<func>) – returns a “new data set that is formed by passing each element of

the data set through function ‘func’ [Spark_Programming_Guide]”

 filter(<func>) – returns a “new dataset formed by passing each element of the

dataset through function func [Spark_Programming_Guide]”.

 join()

 groupBy().

Actions are used to compute something from the RDD, the results of which are returned

to the driver or stored on disk (such as HDFS). Examples of actions on RDDs include:

 reduce(<f>) – aggregates elements of the dataset using function f. According to

the Spark Programming Guide, this “function should be commutative and

associative so that it can be computed correctly in parallel”.

 count() – returns count of elements in the dataset

 save() – saves a data set onto disk

 collect() – returns the elements of the data set as is

 foreach()

Programmers write programs that start with defining one or more RDD through

transformations on data. These RDDs are then used in one or more actions arranged as

a dataflow pipeline. Additionally, programmers can choose to persist the RDDs, say for

use by other programs: RDDs marked for persistence are held in memory if enough

memory is available; otherwise they are spilled over to the disk.

2015 EMC Proven Professional Knowledge Sharing 28

Spark also provides users control over certain aspects of data persistence and

partitioning. For example, a user can choose whether an RDD is reused or whether to

store the RDD in memory or on disk. Similarly, a user may specify that an RDD’s data be

partitioned based on a certain key present in each of the data items in the RDD. Refer to

[Zaharia] for more details on the workings of the RDD.

In summary, Spark provides a general programming model that allows one to compose

an application combining RDDs as higher-level abstractions of data sets and operators

(like mappers, reducers, filters, group by’s, foreach, and so on) that perform a set of

actions on the RDDs.

4.2.3. Intersections of Spark and Hadoop

Like Hadoop, Apache Spark is a general-purpose cluster computing platform, and can

operate on its own. It is also compatible with Hadoop in the following ways:

 It can access data sets via Hadoop Input Formats such as sequence files, Avro,

Parquet, text files, etc., making it easy to transition from Hadoop ecosystem

solutions [Wadkar].

 It can operate as an alternative to MR in Hadoop, running seamlessly over

Hadoop 2.x YARN cluster, while leveraging Hadoop’s resource management and

data fabric (data over HDFS).

4.2.4. Discussion

Unlike Hadoop, Spark provides an abstraction (RDD) that allows users to leverage

distributed memory for caching results across multiple computations (multiple jobs).

Computations involved in interactive and exploratory querying, iterative processing, and

graph processing, all benefit from reusing cached data: shared data through in-memory

cache is much faster than sharing the same through disk writes, since writing to/reading

from disks tend to be much slower than writing to and reading from memory.

2015 EMC Proven Professional Knowledge Sharing 29

5. Conclusion

Hadoop, along with its primary programming model MapReduce (MR), has remained the

de-facto standard for processing large data sets for a long time. It is increasingly

recognized that Hadoop and MR by themselves are ill-suited for several types of

workloads in common use: interactive, ad-hoc and exploratory querying, iterative

computations, graph processing, stream processing, and so on.

Recognizing that Hadoop MR only goes only so far, both open-source and commercial

solutions have come up in the last few years, along interesting directions.

Some, like Apache Tez and Apache Giraph (non-YARN implementation) extend the

Hadoop platform while continuing to follow the MR model, to meet efficiency needs of

those workloads. Within this space, Apache Giraph takes the approach of implementing

a specialized parallel computing model BSP for making graph processing efficient at

scale.

Others like Apache Drill and Cloudera Impala bypass the MR model altogether. Impala

focused its efforts around efficient querying over data resident in Hadoop, while Apache

Drill is designed to work with multiple data sources such as Hadoop, NoSQL databases,

and others.

HaLoop takes a different approach: it is a modified version of Hadoop and extends MR

paradigm for use in iterative computations, which implies that changes made in Hadoop

are not automatically reflected in HaLoop.

With YARN, Hadoop underwent a rather substantial overhaul of its core execution

engine. YARN single-handedly opened up Hadoop for a diverse set of workloads and

programming models beyond just batch-oriented MR applications. Splitting up the core

execution engine and providing extension points for plugging in implementations of other

programming models and execution engines allowed them use of the underlying

Hadoop’s resource management and data fabric.

Apache Spark – seen by many as the most likely successor of Hadoop – took yet

another interesting direction of providing a more efficient and feature-rich cluster

2015 EMC Proven Professional Knowledge Sharing 30

computing platform that is seen as an alternative to Hadoop, while still complying with

Hadoop environments via YARN.

Overall, these are interesting times for those of us involved in the Big Data processing

world. With the “beyond Hadoop/MR” world taking several interesting directions, making

technology choices isn’t expected to get any easier – at least any time soon. But having

many choices for solving a given problem isn’t such a bad thing after all.

2015 EMC Proven Professional Knowledge Sharing 31

6. Acknowledgement

I gratefully acknowledge the contributions of David Broeckelman-Post in reviewing this

article. David is the Chief Architect of the Advanced Security Operations Portfolio at

RSA, The Security Division of EMC.

2015 EMC Proven Professional Knowledge Sharing 32

7. References

[Grolinger] Grolinger, Katarina, et. al., “Challenges for MapReduce in Big Data”,

Proc. of the IEEE 10th 2014 World Congress on Services (SERVICES

2014), Alaska, USA, June 27-July 2, 1014

[Metz] Metz, Cade. “Open Source Superstar Rewrites Future of Big Data”,

June 2013, retrieved from

http://www.wired.com/2013/06/yahooamazonamplabspark/all/

[Leskovec] Leskovec, Jure; Rajaraman, Anand; D. Ullman, Jeffrey. “Mining of

Massive Datasets”

[Loshin] David Loshin, Big Data analytics - From Strategic Planning to

Enterprise Integration with Tools, Techniques, NoSQL and Graph,

Morgan Kaufmann

[Jorgensen] Jorgensen et al., Adam. Microsoft Big Data Solutions. John Wiley &

Sons. © 2014

[FacebookScheduli

ng]

Under the Hood: Scheduling MapReduce jobs more efficiently with

Corona, https://www.facebook.com/notes/facebook-

engineering/under-the-hood-scheduling-mapreduce-jobs-more-

efficiently-with-corona/10151142560538920, Nov. 2012

[Olson_MRSpark] Mike Olson, MapReduce and Spark, (Retrieved from

http://vision.cloudera.com/mapreduce-spark/ in Jan. 2015)

[Elmeleegy] Khaled Elmeleegy, Piranha: Optimizing Short Jobs in Hadoop,

Proceedings of the VLDB Endowment, Vol. 6, No. 11, 2013

[Ekanayake] Jaliya Ekanayake et. al., “Twister: A Runtime for Iterative

MapReduce”, retrieved from http://www.iterativemapreduce.org/hpdc-

camera-ready-submission.pdf on January 4th, 2015

http://www.wired.com/2013/06/yahooamazonamplabspark/all/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
http://vision.cloudera.com/mapreduce-spark/
http://www.iterativemapreduce.org/hpdc-camera-ready-submission.pdf
http://www.iterativemapreduce.org/hpdc-camera-ready-submission.pdf

2015 EMC Proven Professional Knowledge Sharing 33

[Lublinsky] http://www.infoq.com/articles/ApacheYARN Boris Lublinsky

[Murthy] Arun C. Murthy et. al., “Apache Hadoop YARN: Moving Beyond

MapReduce and Batch processing with Apache Hadoop 2”, Addison-

Wesley, 2014

[Wadkar] Wadkar, Sameer, Jason Venner, and Madhu Siddalingaiah. "Chapter

2 - Hadoop Concepts". Pro Apache Hadoop, Second

Edition. Apress. 2014

[Agneeswaran] Vijay Srinivas Agneeswaran, Big Data Analytics Beyond Hadoop:

Real-Time Applications with Storm, Spark, and More Hadoop

Alternative

[Hausenblas] Michael Hausenblas and Jacques Nadeau, “Apache Drill: Interactive

Ad-Hoc Analysis at Scale”, DOI: 10.1089/big.2013.0011

[Melnik] Sergey Melnik et. al., “Dremel: Interactive Analysis of WebScale

Datasets”, Proceedings of the VLDB Endowment, Vol. 3, No. , 2010

[Rentachintala] Neeraja Rentachintala, “Building Highly Flexible, High Performance

query engines - Highlights from Apache Drill project”, retrieved from

http://www.slideshare.net/MapRTechnologies/apache-con-for-upload

in Jan 2015

[Bevens] Bridget Bevens, “Performance” (in Architecture Highlights), retrieved

from https://cwiki.apache.org/confluence/display/DRILL/Performance

in Jan 2015

[Zaharia] Matei Zaharia et. al., “Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for

In-Memory Cluster Computing”, retrieved from

https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf in

Jan 2015

http://www.infoq.com/articles/ApacheYARN
http://www.slideshare.net/MapRTechnologies/apache-con-for-upload
https://cwiki.apache.org/confluence/display/DRILL/Performance
https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

2015 EMC Proven Professional Knowledge Sharing 34

[Spark_Programmin

g_Guide]

http://spark.apache.org/docs/latest/programming-guide.html

[Lin] Jimmy Lin and Chris Dyer, “Data-Intensive Text Processing with

MapReduce”

[Olson] Mile Olson, http://vision.cloudera.com/mapreduce-

spark/#sthash.oKNfd4BB.dpuf

[Bu] Yingyi Bu et. al., “HaLoop: Efficient Iterative Data Processing on

Large Clusters”, VLDB Endowment, Vol. 3, No. 1, 2010

[Li] Feng Li, et. al., “Distributed Data Management Using MapReduce”,

ACM Computing Surveys, Volume 46 Issue 3, January 2014

[Malewicz] Grzegorz Malewicz, et. al., “Pregel: A System for Large-Scale Graph

Processing” SIGMOD’10, ACM

[BSP] “The BSP Programming Model” (retrieved from

http://groups.csail.mit.edu/cag/bayanihan/papers/javapdc99/html/node

2.html in Jan 2015)

[Hassan] M. Al Hajj Hassan, M. Bamha, “Parallel Processing of “Group-By Join”

Queries on Shared Nothing Machines”, Software and Data

Technologies, Communications in Computer and Information Science

Volume 10, 2008, pp 230-241

[TezDesign] Tez Design v1.1, https://issues.apache.org/jira/browse/TEZ-65

http://spark.apache.org/docs/latest/programming-guide.html
http://vision.cloudera.com/mapreduce-spark/#sthash.oKNfd4BB.dpuf
http://vision.cloudera.com/mapreduce-spark/#sthash.oKNfd4BB.dpuf
http://groups.csail.mit.edu/cag/bayanihan/papers/javapdc99/html/node2.html
http://groups.csail.mit.edu/cag/bayanihan/papers/javapdc99/html/node2.html
https://issues.apache.org/jira/browse/TEZ-65

2015 EMC Proven Professional Knowledge Sharing 35

EMC believes the information in this publication is accurate as of its publication

date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC

CORPORATION MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND

WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND

SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires

an applicable software license.

