
 
BIG FOUR AND THE RULE OF THREE
LINKED LISTS

Problem Solving with Computers-II

The Big Four (review)
2

1. Constructor

2. Destructor

3. Copy Constructor

4. Copy Assignment

Constructor (review)
void foo(){
 Complex p;
 Complex* q = new Complex;
 Complex w{10, 5};
}

How many times is the constructor
called in the above code?
A. Never
B. Once
C. Two times
D. Three times

Destructor (review)

The destructor of which of the objects is called after foo()
returns?
A.p
B.q
C. *q
D.None of the above

void foo(){
 Complex p;

Complex *q = new Complex;
}

Copy constructor (review)
• In which of the following cases is the copy constructor called?

A. Complex p1; Complex p2{1, 2};
B. Complex p1{1, 2}; Complex p2{p1};
C. Complex *p1 = new Complex{2, 3};
 Complex p2 = *p1;
D. B&C
E. A, B & C

double foo(Complex p){
 return p.conjugate(10);

}
int main(){

Complex q{1, 2};
foo(q);

}

Which of the following special methods is called when passing
parameters to foo()?
A. Parameterized constructor
B. Copy constructor
C. Copy assignment
D. Destructor

Linked Lists
7

Linked List

Array List 10 20

 0

 30

What is the key difference between the two?

 0 0

Questions you must ask about any data structure:
8

• What operations does the data structure support?
 A linked list supports the following operations:

1. Insert (a value to the head)
2. Append (a value to the tail)
3. Delete (a value)
4. Search (for a value)
5. Min
6. Max
7. Print all values

• How do you implement each operation?
• How fast is each operation?

Linked-list as an Abstract Data Type (ADT)
class LinkedList {
public:
 LinkedList();
 ~LinkedList();
 // other public methods

private:
 struct Node {
 int info;
 Node* next;
 };
 Node* head;
 Node* tail;
};

RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly
define all three:
1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:
1. What is the behavior of these defaults?
2. What is the desired behavior ?
3. How should we over-ride these methods?

void test_append_0(){
LinkedList ll;
ll.append(10);

 ll.print();
}

What is the result of running the above code?
A. Compiler error
B. Memory leak
C. Prints 10
D. None of the above

Assume:
* Default destructor
* Default copy constructor
* Default copy assignment

Behavior of default copy constructor
l1 : 1 -> 2- > 5 -> null
void test_default_copy_constructor(LinkedList& l1){

// Use the copy constructor to create a copy of l1

}

Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

* What is the default behavior?
* Is the default behavior correct ?
* How do we change it?

Behavior of default copy assignment
l1 : 1 -> 2- > 5 -> null

void default_assignment_1(LinkedList& l1){
LinkedList l2;
l2 = l1;

}

* What is the default behavior?
Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

Behavior of default copy assignment
void test_default_assignment_2(){
 LinkedList l1, l2;
 l1.append(1);
 l1.append(2)

l2.append(10);
l2.append(20);
l2 = l1;
l2.print()

}

Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

What is the result of running the above code?
A. Segmentation fault
B. Prints 1 , 2
C. Both A and B
D. None of the above

Behavior of default copy assignment
void test_default_assignment_2(){
 LinkedList l1;
 l1.append(1);
 l1.append(2)
 LinkedList l2{l1};

l2.append(10);
l2.append(20);
l2 = l1;
l2.print()

}
Assume:
* Overloaded destructor
* Overloaded copy constructor
* Default copy assignment

What is the result of running the above code?
A. Segmentation fault
B. Memory leak
C. Both A and B
D. None of the above

Overloading Binary Comparison Operators

void isEqual(const LinkedList & lst1, const LinkedList &lst2){
 if(lst1 == lst2)

 cout<<“Lists are equal”<<endl;
else
 cout<<“Lists are not equal”<<endl;

}

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

Next time
• Linked Lists contd.
• GDB

