

BigInsights 4.2 and BigSQL Overview

Les King Director, Big Data, Analytics, Database & Cloud Data Services Solutions November, 2016 <u>Iking@ca.ibm.com</u> ca.linkedin.com/pub/les-king/10/a68/426

Les King

Director, Big Data, Analytics, Database and Cloud Data Services Solutions Analytics Division, IBM

Professor, Data Warehousing and DB2, Seneca College

lking@ca.ibm.com

ca.linkedin.com/pub/les-king/10/a68/426

Professional Highlights

- 23 years of Information Management, Database and Analytics
- Technical sales (current)
- Technical customer support
- Software development teams
- Product management
- Taught mathematics at University of Toronto
- Teaching data warehousing, big data and DB2 at Seneca College

Personal Highlights

- English / Irish background
- Sports: squash, down hill skiing
- Certified Advanced Open Water diver
- Two sons: Philip and Richard

BigInsights 4.2 Highlights

IBM Open Platform and BigInsights v4.2 *1H 2016 Roadmap Details*

Business Benefits

- Provide an <u>open and flexible</u> platform:
 - With enhanced tooling that enables data scientists to extract meaning and insight from large and often complex sets of data (Titan, Text Analytics on Spark)
 - With the resiliency and security platforms clients expect for their mission critical data and applications (Object store, Ranger)
 - That complies and is certified with the Open Data Platform Standards
- Shorten the <u>time to value</u> by reducing the complexity to access the data using SQL (Phoenix, Big SQL enhancements)

Capabilities

Titan Inclusion

Easily, map, and query relationships using Titan's graph database.
 Graphs are offer a better way to represent complex relationships like social networks.

Text Analytics on Spark

- Derive value from text files by running the Text Analytics Information Extraction Engine (AQL) natively within Spark.
- Ranger Inclusion
 - Centralized security platform for managing authorization, access control, auditing, and data protection for data stored in Hadoop
- Object Store Integration (Cloud)
 - Object stores are particularly useful for users who need to store a large number of relatively smaller data objects
- ODPi Certification
 - Certify based on the ODPi requirements and standards
- Phoenix Inclusion
 - Eases access to Hbase with a SQL interface & allowing inputs, outputs using standard JDBC APIs instead of HBase's Java client APIs.
- Big SQL Enhancements
 - 40% Performance gains for decision-support queries
 - Improve performance & usability of statistics via Auto Analyze
 - Enable Hive Impersonation options to pass-through user credentials

IBM Currency on Open Source Components

Functional Areas	Component Name	Version 4.2	HDP 2.4	Cloudera 5.6
	Flume	1.6.0	1.5.2	1.6.0
Data Acquisition	Kafka	0.9.0.0	0.9.0	0.9.0
	Sqoop	1.4.6	1.4.6	1.4.6
Coourity.	Knox	0.7.0	0.6.0	Proprietary
Security	Ranger	0.5.0	0.5.0	Sentry
Search	Solr	5.4.1	5.2.1	4.10.3
Format	Parquet	2.2.0	2.2.0	2.1.0
Format	Avro	1.7.7	1.7.7	1.7.6
No SQL	HBase	1.2.0	1.1.2	1.0.0
SOL	Hive	1.2.1	1.2.1	1.1.0
SQL	Spark	1.6.0	1.6.0	1.5.0
	Spark	1.6.0	1.6.0	1.5.0
Batch /Script	Pig	0.15.0	0.15.0	0.12.0
	MapReduce & Yarn	2.7.2	2.7.1	2.6.0
Schoduling	Oozie	4.2.0	4.2.0	4.1.0
Scheduling	Slider	0.90.2	0.80.0	
Machine Learning	Spark - MLlib	1.6.0	1,6.0	1.5.0
Graph	Spark – Graph X	1.6.0	1.6.0	1.5.0
Mamt/Monitoring	Ambari	2.2.0	2.2.1	Proprietary
Nigmt/Wonitoring	Zookeeper	3.4.6	3.4.6	3.4.5

100% open source code

- Commitment to currency: days, not months
- Includes Spark
- Founding member of the Open Data Platform, www.opendataplatform.com

Free for production use

- Decoupled Apache Hadoop from IBM analytics and data science technologies
- Production support offering available

Spark Leadership

- Latest currency on Spark (1.6 vs 1.5..x from competition
- HortonWorks has no Spark committers
- Unique Spark support offerings, IBM for a clear differentiation

NEW! BigSQL support on HDP – has now GA'd !!

IBM Open Platform & BigInsights v4.2 2016 Packaging Changes

Objectives:

- Simple to understand and consume
- Adaptive to future market needs and growth
- Consistent cloud and on premise offerings

Packaging Changes

- Enterprise Management Module Package removed
 - Available for customers from Systems Group
- Big R & BigSheets deprecated
 - Functionality will not be removed until a suitable replacement is in place
 - Functionality for Big R will be contributed to Spark R and SystemML
- BigInsights Premium replaces Data Analyst and Data Scientist packages
 - Simplified packaging includes all "value-adds" as BigInsights Premium
- Basic Plan(pay-as-you-go model) in Bluemix under BigInsights for Apache Hadoop
 - IOP clusters on an hourly model.
 - · Value adds to be included later in the year
- Migration Path for existing customers to new parts
- Support for Linux on z System removed

IBM Open Platform and BigInsights 2016 On-Premise Packaging Changes

IBM Open Platform and BigInsights 2016 Cloud Packaging Changes

IBM Text Analytics – Providing Information Extraction Now On Spark

WANdisco Fusion

Continuous Availability & Performance

- LAN-speed read/write access to the same data at every location
- Data is replicated as it's ingested
- Delivers built-in continuous hot backup by default with automated failover and disaster recovery over LAN and WAN
 - DistCp solutions require scheduled backups outside of normal business hours due to resource contention.
 - DistCp solutions risk loss of data since last backup
- Install on top of live clusters without downtime
- Support for different distros and multiple versions of the same distro allows migration and upgrades across clusters and data centers without downtime.

100% Use of Compute Resources

- All clusters at all locations are fully readable and writeable
- No money wasted on read-only backup clusters
- Former backup clusters can be used to scale up deployments without spending more on hardware

Cluster Zoning

- Mix of hardware and storage to support a mix of applications requiring different SLAs
- Applications share data, not compute resources
- Isolates critical real-time applications from MapReduce and data ingest jobs

IBM Open Platform and BigInsights *Value-Add and Complementary Solutions*

IBM BigInsights Premium	IBM BigIntegrate	IBM BigQuality	IBM Big Match	IBM SPSS
 BigSQL – ANSI SQL and Spark Support Text Analytics - Information Extraction for unstructured data Premium Support Jump-Start Services 	 Data Stage Engine on YARN Data Integration Data Transformation Self-service Integration 	 Quality Stage Engine on YARN Data Cleansing Data Profiling Data Quality Monitoring 	 Big Match Engine on Spark Probabilistic Matching Unstructured Social Linking 360° Customer Analytics 	 Modeler with Spark Support Data Scientists Collaboration Analytic Server with Deployment Services for Hadoop and Spark

IBM Open Platform with Apache Hadoop and Spark

BigSQL 4.2 Overview

Common Analytics Engine

A Common Analytics SQL engine enabling true hybrid data warehousing solutions with portable analytics

- Application compatibility: Write once, run anywhere
- Operational compatibility: Reuse operational and housekeeping procedures
- Licensing: Flexible entitlements for business agility & cost-optimization
- Integration: Common Fluid Query capabilities for query federation and data movement
- Standardized analytics: Common programming model for in-DB analytics
- Ecosystem: One ISV product certification for all platforms

IBM Analytics

14

IBM. Ø

Common Analytics Engine

will offer clients *choice* in selecting the best (combination of) data stores to satisfy their hybrid data warehouse solution needs

Managed Public Cloud Service	Software-defined	Appliance	Custom Deployable Software	on BigInsights (managed & on-prem)
			IBM. DB2.	17472
 Elastic capacit 	y & pricing • SQL	& NOSQL capabilities	 In-memory p 	performance
 Fast time to de 	eployment, • Full N	IPP scalability	Native data	encryption
load and go	Applie	cation and analytic port	ability	orkload
 Built-in analytic 	cs • Hybri	d by design	managemer	t & monitoring
 IBM managed Agile, Simple Prebuild integration with other cloud data services Parallel data load powered by Aspera Elastic growth 	 On-prem or hosted Cost equivalent to Hadoop for structured data Utilizing existing Infrastructure Seamless scale-up and – out HW / OS-agnostic Combine compute / storage resources as needed 	 Appliance FPGA-powered performance Built-in disaster recovery In-place expansion Elastic resource consumption 	 IBM or Client- managed Analytics on operational data or ODS Custom deployment on broad range of operating systems Data Discovery and exploration Highly available and disaster recovery 	 IBM or Client- managed Data Lake or Day-0 archive Unstructured or hybrid data types Land data fast and apply instant analytics Data Discovery and exploration Data transformation
I	needed		needs	© 2016 IBM Corporation

SQL access for Hadoop: Why?

- Data warehouse modernization is a leading Hadoop use case
 - Off-load "cold" warehouse data into queryready Hadoop platform
 - Explore / transform / analyze / aggregate social media data, log records, etc. and upload summary data to warehouse
- Limited availability of skills in MapReduce, Pig, etc.
- SQL opens the data to a much wider audience
 - Familiar, widely known syntax
 - Common catalog for identifying data and structure

Big data sources

Still imagesAideos

Respondents with active big data efforts were asked which data sources they currently collect and analyze. Each data point was collected independently. Total respondents for each data point range from 557 to 807.

344

 $Fgure \, \delta;$ Organizations are mainly using internal data sources for big data efforts

2012 Big Data @ Work Study surveying 1144 business and IT professionals in 95 countries

SQL-on-Hadoop landscape

The SQL-on-Hadoop landscape changes constantly!

- Being relatively new to the SQL game, they've generally had to compromise in one or more of these areas:
 - Speed
 - Robust SQL
 - Enterprise features
 - Interoperability
- Big SQL based on decades of IBM R&D investment in relational technology that addresses these areas

What is **Big SQL**?

Comprehensive, standard SQL

- SELECT: joins, unions, aggregates, subqueries . . .
- GRANT/REVOKE, INSERT ... INTO
- SQL procedural logic (SQL PL)
- Stored procs, user-defined functions
- IBM data server JDBC and ODBC drivers

Optimization and performance

- IBM MPP engine (C++) replaces Java MapReduce layer
- Continuous running daemons (no start up latency)
- Message passing allow data to flow between nodes without persisting intermediate results
- In-memory operations with ability to spill to disk (useful for aggregations, sorts that exceed available RAM)
- Cost-based query optimization with 140+ rewrite rules

Various storage formats supported

- Text (delimited), Sequence, RCFile, ORC, Avro, Parquet

17

- Data persisted in DFS, Hive, HBase
- No IBM proprietary format required

Integration with RDBMSs via LOAD, query federation

Big SQL architecture

Head (coordinator / management) node

- Listens to the JDBC/ODBC connections
- Compiles and optimizes the query
- Coordinates the execution of the query . . . Analogous to Job Tracker for Big SQL
- Optionally store user data in traditional RDBMS table (single node only). Useful for some reference data.
- Big SQL worker processes reside on compute nodes (some or all)
- Worker nodes stream data between each other as needed
- Workers can spill large data sets to local disk if needed
 - Allows Big SQL to work with data sets larger than available memory

Invocation options

 Command-line interface: Java SQL Shell (JSqsh)

 Web tooling (Data Server Manager)

 Tools that support IBM JDBC/ODBC driver

Creating a Big SQL table

Standard CREATE TABLE DDL with extensions

```
create hadoop table users
(
    id int not null primary key,
    office_id int null,
    fname varchar(30) not null,
    lname varchar(30) not null)
row format delimited
    fields terminated by '|'
stored as textfile;
```

Worth noting:

- "Hadoop" keyword creates table in DFS
- Row format delimited and textfile formats are default
- Constraints not enforced (but useful for query optimization)
- Examples in these charts focus on DFS storage, both within or external to Hive warehouse. HBase examples provided separately

Creating a View

Standard SQL syntax

create view my_users as
select fname, lname from biadmin.users
where id > 100;

Populating tables via LOAD

- Typically best runtime performance
- Load data from local or remote file system

```
load hadoop using file url
'sftp://myID:myPassword@myServer.ibm.com:22/install
    dir/bigsql/samples/data/GOSALESDW.GO_REGION_DIM.txt' with SOURCE PROPERTIES
    ('field.delimiter'='\t') INTO TABLE gosalesdw.GO_REGION_DIM overwrite;
```

 Loads data from RDBMS (DB2, Netezza, Teradata, Oracle, MS-SQL, Informix) via JDBC connection

```
load hadoop
using jdbc connection url 'jdbc:db2://some.host.com:portNum/sampledb'
with parameters (user='myID', password='myPassword')
from table MEDIA columns (ID, NAME)
where 'CONTACTDATE < ''2012-02-01'''
into table media_db2table_jan overwrite
with load properties ('num.map.tasks' = 10);
```


Populating tables via INSERT

INSERT INTO ... SELECT FROM ... – Parallel read and write operations

CREATE HADOOP TABLE IF NOT EXISTS big_sales_parquet (product_key INT NOT NULL, product_name VARCHAR(150), Quantity INT, order_method_en VARCHAR(90)) STORED AS parquetfile;

-- source tables do not need to be in Parquet format insert into big_sales_parquet SELECT sales.product_key, pnumb.product_name, sales.quantity, meth.order_method_en FROM sls_sales_fact sales, sls_product_dim prod,sls_product_lookup pnumb, sls_order_method_dim meth WHERE pnumb.product_language='EN' AND sales.product_key=prod.product_key AND prod.product_number=pnumb.product_number AND meth.order_method_key=sales.order_method_key and sales.quantity > 5500;

INSERT INTO ... VALUES(...)

 Not parallelized. 1 file per INSERT. Not recommended except for quick tests

CREATE HADOOP TABLE foo coll int, col2 varchar(10)); INSERT INTO foo VALUES (1, 'hello');

CREATE TABLE AS SELECT

- Create a Big SQL table based on contents of other table(s)
- Source tables can be in different file formats or use different underlying storage mechanisms

```
-- source tables in this example are external (just DFS files)
CREATE HADOOP TABLE IF NOT EXISTS sls_product_flat
  ( product_key INT NOT NULL
  , product_line_code INT NOT NULL
  , product_type_key INT NOT NULL
  , product_line_en VARCHAR(90)
  , product_line_de VARCHAR(90)
  )
as select product_key, d.product_line_code, product_type_key,
product_type_code, product_line_en, product_line_de
from extern.sls_product_dim d, extern.sls_product_line_lookup l
where d.product_line_code = l.product_line_code;
```


SQL capability highlights

Query operations

- Projections, restrictions
- UNION, INTERSECT, EXCEPT
- Wide range of built-in functions (e.g. OLAP)

Full support for subqueries

- In SELECT, FROM, WHERE and HAVING clauses
- Correlated and uncorrelated
- Equality, non-equality subqueries
- EXISTŠ, NOT EXISTS, IN, ANY, SOME, etc.

All standard join operations

- Standard and ANSI join syntax
- Inner, outer, and full outer joins
- Equality, non-equality, cross join support
- Multi-value join

Stored procedures, UDFs

- DB2 compatible SQL procedural logic
- Cursors, flow of control (if/then/else, error handling, ...), etc

SELECT

```
s_name,
   count(*) AS numwait
FROM
   supplier,
   lineitem 11,
   orders,
  nation
WHERE
   s_suppkey = l1.l_suppkey
   AND o_orderkey = 11.1_orderkey
   AND o_orderstatus = 'F'
   AND 11.1 receiptdate > 11.1 commitdate
   AND EXISTS (
      SELECT
      FROM
         lineitem 12
      WHERE
         12.1_orderkey = 11.1_orderkey
         AND 12.1_suppkey <> 11.1_suppkey
   AND NOT EXISTS (
      SELECT
      FROM
         lineitem 13
      WHERE
         13.1_orderkey = 11.1_orderkey
         AND 13.1_suppkey <> 11.1_suppkey
         AND 13.1_receiptdate >
                13.1_commitdate
   AND s nationkey = n nationkey
   AND n_name = ':1'
GROUP BY s_name
ORDER BY numwait desc, s_name;
```


Power of standard SQL

- Everyone loves performance numbers, but that's not the whole story
 - How much work do you have to do to achieve those numbers?
- A portion of our internal performance numbers are based upon industry standard benchmarks
- Big SQL is capable of executing
 - All 22 TPC-H queries without modification
 - All 99 TPC-DS queries without modification

Original Query

SELECT s_name, count(1) AS numwait FROM (SELECT s_name FROM me, I_orderkey, I_suppkey (SELECT s_name, t2.I_orderkey, I_suppkey, rs o count_suppkey, max_suppkey FROM s_name, l_orderkey, l_suppkey (SELECT I_orderkey, nation n count(distinct I_suppkey) as count_suppkey, supplier s max(I_suppkey) as max_suppkey **FROM lineitem** s.s_nationkey = n.n_nationkey ID n.n_name = 'INDONESIA' WHERE | receiptdate > | commitdate lineitem I GROUP BY I_orderkey) t2 s.s suppkey = I.I suppkey **RIGHT OUTER JOIN** RE I.I receiptdate > I.I commitdate) [1] (SELECT s_name, I_orderkey, I_suppkey $rderkey = 11.1_orderkey$ FROM orderstatus = 'F') 12 (SELECT s_name, t1.l_orderkey, l_suppkey, key = t1.I_orderkey) a count_suppkey, max_suppkey suppkey > 1) or ((count_suppkey=1) FROM <> max_suppkey))) 13 (SELECT I_orderkey, t2.I_orderkey) b count(distinct I_suppkey) as count_suppkey, pkey is null) max(I_suppkey) as max_suppkey key=1) AND (I_suppkey = max_suppkey))) c FROM lineitem GROUP BY I_orderkey) t1 J, s_name **Re-written query**

A word about . . . performance

- TPC (Transaction Processing Performance Council)
 - Formed August 1988
 - Widely recognized as most credible, vendor-independent SQL benchmarks
 - TPC-H and TPC-DS are the most relevant to SQL over Hadoop
 - R/W nature of workload not suitable for HDFS

Hadoop-DS benchmark: BigInsights, Hive, Cloudera

- Run by IBM & reviewed by TPC certified auditor
- Based on TPC-DS. Key deviations
 - No data maintenance or persistence phases (not supported across all vendors)
- Common set of queries across all solutions
 - Subset that <u>all</u> vendors can successfully execute at scale factor
 - Queries are not cherry picked
- Most complete TPC-DS like benchmark executed so far
- Analogous to porting a relational workload to SQL on Hadoop

Hadoop-DS benchmark topology

CIQU

Big SQL 3.0 on BigInsights 3.0.0.1 - Parquet storage format

Impala 1.4 on CDH 5 - Parquet storage format 3 identical 17 node clusters deployed

Hardware spec (per node):

- RHEL 6.4
- IBM x3650 M4 BD: Intel e5-
- 2680@2.8GHz v2, 2 sockets,
- 10 cores each w/HT = 40 logical CPUs
- 128GB RAM, 1866MHz
- 10x3.5" HDD@2TB
- Dual port 10GbE

Workload:

- Hadoop-DS
- 10TB scale factor
- 1) Load data
- 2) Power run (single stream)
- 3) Throughput run (4 streams)

Hive 0.13 (Tez) on HortonWorks HDP 2.1 - ORC storage format

http://public.dhe.ibm.com/common/ssi/ecm/im/en/imw14800usen/IMW14800USEN.PDF

Works without modification

Minor modification

Not working

Extensive modification

Big SQL – IBM Runs 100% of SQL Queries

TPC-DS is an industry standard analytic SQL query benchmark These are the typical types of queries business analytic tools would generate IBM has spent over 2 decades building an optimized SQL engine for MPP environments

cloudera V1.4

	Query 34	Query 57
Query 02	Query 35	Query 65
Query:03	CLUSTY SE	Query 69
Query 04	Query 37	Thinky 22
QUERY CS.	CHANNY ME	Query 71
Query 06	Query 39	Guery 72
Guery 07	Query 40	Query 75
	Query 41	Query 74
Query 09	Culery 42	Oceanic 75
Query 10	Query 43	Query 76
Query 11	Cuery 44	Query 77
Query 12	Query 45	Query 78
Query 13	Query 48	QUARY 79
		Query 85
Query 13	Query 48	Query 81
		Query 82
	Query 50	Query 83
Query 18	Chiery 51	Query 84
Query 19	Query 52	Query 85
Query 20	Query 53	CERENT IS
Query 21	Query 54	CONTRACT.
Query 22	Query 55	Query 88
Query 23	Query 56	Query II9
Gilmy-J4	Children ST	Query 90
Clustry 25	Query 58	Query 91
Query 26	Query 39	Query 92
Query 27	Query 60	Query 95
Query 28	Query 61	Query 54
	Query 62	DURY TS
Othery 30	Query 63	Query 96
Query 31	Courses 64	Query 97
Query 32	Query 65	Query 98
Query 33	Query 66	Query 99

Query 01	Query 34	Charge 57
Query 02		
Query 63	Query 36	Query 69
Summer of the	Garry 37	Chiefer 70
Query 05	Query 38	Guery 71
Query 26	Query 39	Diamy 72
Guery 07	Query 40	Guery 73
	Query 41	Query 74
Query 09	Guery 42	Query 75
Query 10	Query 40	Dulery 76
Query 11	Cuery 44	Query 77
Query 12	Gianny 45	Query 78
		Query 79
Childry 34	Query 47	Query 80
	Cluberry 40	
Query 16	Query 49	Deserved S2
Query 17	Query 50	Query 83
Curery SI	Query 51	Query 84
Query 15	Query 52	
Query 20	Guery 53	Contery dis
Query 21		Query 87
Query 22	Query 55	Query 88
Sharety #1	Query 56	Clustery: 89
Courty 24	Query 57	Query 90
Query 25		Query 91
Guery 26	Query \$9	Query 92
Query 27	Query 60	Query 93
Query 38	Query 01	Query 94
Guery 29	Query 62	Query 95
	Query 63	Query 96
CHANNEY 21	Gibney 64	Guery 97
Query 32	Quiry 65	Query 98
Chipperv 33	Ouery 66	Ouers 99

Cloudera V2.1

Chiefy GL	Query 34	Query 67
Query 02	Query 35	Query 68
Opery 03	Ouery 36	Query 69
Duery 04	Query 37	Query 70
Query 05		Query 7.
Ouery 06	CURTY 39	Osery 77
Query 07	Query 40	Query 73
Query 08	Query 41	Query 74
Query 09	Quary 12	Query 75
Query 10	Query 43	Query 76
Query 11	Query 44	Query 77
Query 12	Query 45	
Query 13	Query 46	Query 79
Query 14	Query 47	Query 80
Que y 15	Query 48	Query 51
Query 16	Query 49	Query 85
Query 17	Query 50	Query \$5
Query 18	Query 51	Query 84
Query 19	Query 52	Query 85
Query 20	Query 53	Query 86
Query 21	Query 54	Query 87
Othery 22	Curry 65	Query 88
Query 23	Query 56	Query 89
Query 24	Query 57	Query 90
Query 25	Query 58	Query 95
Query 26	Query 59	Query 92
Query 27	Query 60	Query 93
Query 28	Query 61	Query 94
Query 29	Query-62	Query 95
Query 30	Query 53	Query 96
Query D1	Query 64	Gutry 97
Query 32	Query 65	Query 98
Query 33	Query 66	Query 99

Regressions: Query 4 Query 18 Query 23 Query 77 Query 85

>5% of analytic queries regressed from V1.4 to V2.1

How will this impact your BA applications ?

© 2013 IBM (Corporation
--------------	-------------

IBM

Hadoop-DS benchmark single user performance 10TB

Big SQL is 3.6x faster than Impala and 5.4x faster than Hive 0.13

for single query stream using 46 common queries

Based on IBM internal tests comparing BigInsights Big SQL, Cloudera Impala and Hortonworks Hive (current versions available as of 9/01/2014) running on identical hardware. The test workload was based on the latest revision of the TPC-DS benchmark specification at 10TB data size. Successful executions measure the ability to execute queries a) directly from the specification without modification, b) after simple modifications, c) after extensive query rewrites. All minor modifications are either permitted by the TPC-DS benchmark specification or are of a similar nature. All queries were reviewed and attested by a TPC certified auditor. Development effort measured time required by a skilled SQL developer familiar with each system to modify queries so they will execute correctly. Performance test measured scaled query throughput per hour of 4 concurrent users executing a common subset of 46 queries across all 3 systems at 10TB data size. Results may not be typical and will vary based on actual workload, configuration, applications, queries and other variables in a production environment.

Cloudera, the Cloudera logo, Cloudera Impala are trademarks of Cloudera.

Hortonworks, the Hortonworks logo and other Hortonworks trademarks are trademarks of Hortonworks Inc. in the United States and other countries.

Hadoop-DS benchmark multi-user performance 10TB

With 4 streams, Big SQL is 2.1x faster than Impala and 8.5x faster than Hive 0.13

for 4 query streams using 46 common queries

Based on IBM internal tests comparing BigInsights Big SQL, Cloudera Impala and Hortonworks Hive (current versions available as of 9/01/2014) running on identical hardware. The test workload was based on the latest revision of the TPC-DS benchmark specification at 10TB data size. Successful executions measure the ability to execute queries a) directly from the specification without modification, b) after simple modifications, c) after extensive query rewrites. All minor modifications are either permitted by the TPC-DS benchmark specification or are of a similar nature. All queries were reviewed and attested by a TPC certified auditor. Development effort measured time required by a skilled SQL developer familiar with each system to modify queries so they will execute correctly. Performance test measured scaled query throughput per hour of 4 concurrent users executing a common subset of 46 queries across all 3 systems at 10TB data size. Results may not be typical and will vary based on actual workload, configuration, applications, queries and other variables in a production environment.

Cloudera, the Cloudera logo, Cloudera Impala are trademarks of Cloudera.

Hortonworks, the Hortonworks logo and other Hortonworks trademarks are trademarks of Hortonworks Inc. in the United States and other countries.

Audited results

- Letters of attestation are available for both Hadoop-DS benchmarks at 10TB and 30TB scale
- InfoSizing, Transaction Processing Performance Council Certified Auditors verified both IBM results as well as results on Cloudera Impala and HortonWorks HIVE.
- These results are for a non-TPC benchmark. A subset of the TPC-DS Benchmark standard requirements was implemented

A word about . . . column masking

Data SELECT "*" FROM SAL_TBL ALTER	able access control *
EMP_NO FIRST_NAME SALARY 1 Steve 250000 2 churis 200000	(4a) Select as an EMPLOYEE
2 Chris 200000 3 Paula 1000000	CONNECT TO TESTDB USER newton SELECT "*" FROM SAL_TBL
1) Create and grant access and roles *	EMP_NO FIRST_NAME SALARY
CREATE ROLE MANAGER CREATE ROLE EMPLOYEE	1 Steve02 Chris03 Paula0
GRANT SELECT ON SAL_TBL TO USER socrates GRANT SELECT ON SAL_TBL TO USER newton	3 record(s) selected.
GRANT ROLE MANAGER TO USER socrates GRANT ROLE EMPLOYEE TO USER newton	
	4b) Select as a MANAGER
2) Create permissions *	CONNECT TO TESTDB USER socrates
CREATE MASK SALARY_MASK ON SAL_TBL FOR COLUMN SALARY RETURN CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER,'MANAGER') = 1 THEN SALARY ELSE 0.00	EMP_NO FIRST_NAME SALARY 1 Steve 250000 2 Chris 200000
END ENABLE	3 Paula 1000000 3 record(s) selected.

* Note: Steps 1, 2, and 3 are done by a user with SECADM authority.

A word about . . . row-based access control

Data SELECT "*" FROM BRANG EMP_NO FIRST_NAME 1 Steve 2 Chris 3 Paula	CH_TBL BRANCH_NAME Branch_B Branch_A Branch_A Branch_A	1) Create and grant access CREATE ROLE BRANCH_A_ROLE GRANT ROLE BRANCH_A_ROLE GRANT SELECT ON BRANCH_TB	and roles * TO USER newtor L TO USER new	า ton		
4 Craig 5 Pete 6 Stephanie 7 Julie 8 Chrissie	Branch_B Branch_A Branch_B Branch_B Branch_A	2) Create permissions * CREATE PERMISSION BRANCH_, FOR ROWS WHERE(VERIFY_ROL AND BRANCH_TBL.BRANCH_NAME = ENFORCED FOR ALL ACCESS ENABLE	A_ACCESS ON BF E_FOR_USER(SES 'Branch_A')	XANCH_TBL SSION_USER,'BR∕	ANCH_A_ROLE') = 1	
3) Enable access cont ALTER TABLE BRANCH_T	rol * BL ACTIVATE ROW ACC	ESS CONTROL	4) Select a CONNECT TO SELECT "*"	s Branch_A use TESTDB USER r FROM BRANCH_1	er newton FBL BRANCH NAME	
* Note: Steps 1, 2, an	d 3 are done by a ι	iser with SECADM authority.	4 record	2 Chris 3 Paula 5 Pete 8 Chrissie I(s) selected.	Branch_A Branch_A Branch_A Branch_A Branch_A	

A word about . . . data types

- Variety of primitives supported
 - TINYINT, INT, DECIMAL(p,s), FLOAT, REAL, CHAR, VARCHAR, TIMESTAMP, DATE, VARBINARY, BINARY, ...
 - Maximum 32K

Complex types

- ARRAY: ordered collection of elements of same type
- Associative ARRAY (equivalent to Hive MAP type): unordered collection of key/value pairs. Keys must be primitive types (consistent with Hive)
- ROW (equivalent to Hive STRUCT type) : collection of elements of different types
- Nesting supported for ARRAY of ROW (STRUCT) types
- Query predicates for ARRAY or ROW columns must specify elements of a primitive type

```
CREATE HADOOP TABLE mytable (id INT, info INT ARRAY[10]);
SELECT * FROM mytable WHERE info[8]=12;
```


A word about ... SerDes

Custom serializers / deserializers (SerDes)

- Read / write complex or "unusual" data formats (e.g., JSON)
- Commonly used by Hadoop community
- Developed by user or available publicly
- Users add SerDes to appropriate directory and reference SerDe when creating table

Example

select * from socialmedia-json;

A word about . . . query federation

- Data rarely lives in isolation
- Big SQL transparently queries heterogeneous systems
 - Join Hadoop to RDBMSs
 - Query optimizer understands capabilities of external system
 - Including available statistics
 - As much work as possible is pushed to each system to process

A word about . . . resource management

- Big SQL doesn't run in isolation
- Nodes tend to be shared with a variety of Hadoop services
 - HBase region servers
 - MapReduce jobs

- . . .

- Big SQL can be constrained to limit its footprint on the cluster
 - CPU utilization
 - Memory utilization
- Resources are automatically adjusted based upon workload
 - Always fitting within constraints
 - Self-tuning memory manager that re-distributes resources across components dynamically
 - default WLM concurrency control for heavy queries

A word about . . . high availability

Big SQL master node high availability

- Scheduler automatically restarted upon failure
- Catalog changes replicated to warm standby instance
- Warm standby automatically takes over if the primary fails

Worker node failure leads to black listing / auto resubmission

A word about . . . application portability

- Big SQL adopts IBM's standard Data Server Client Drivers
 - Robust, standards compliant ODBC, JDBC, and .NET drivers
 - Same driver used for DB2 LUW, DB2/z and Informix
- Putting the story together....
 - Big SQL shares a common SQL dialect with DB2
 - Big SQL shares the same client drivers with DB2

- Data warehouse augmentation just got easier
- Integration with popular third party tools just got easier

A word about ... HBase support

Big SQL with HBase – basic operations

- Create tables and views
- LOAD / INSERT data
- Query data with full SQL breadth

- . . .

HBase-specific design points

- Column mapping
- Dense / composite columns
- FORCE KEY UNIQUE option
- Salting option
- Secondary indexes

—

Details covered in separate presentation

A word about . . . Hive compatibility

 Big SQL can directly define and execute Hive User Defined Functions (UDF's)

CREATE FUNCTION MyHiveUDF (ARG1 VARCHAR(20), ARG2 INT) RETURNS INT SPECIFIC MYHIVEUDF **PARAMETER STYLE HIVE** EXTERNAL NAME 'com.myco.MyHiveUDF' DETERMINISTIC LANGUAGE JAVA

Native implementations of key Hive built-in functions

- get_json_object() Installable native UDF
- json_tuple() Installable native UDF
- from_utc_timestamp() Provided as a Big SQL built-in
- to_utc_timestamp() Provided as a Big SQL built-in

A word about ... YARN Integration

Hadoop 2.0 introduced YARN for comprehensive resource management

- Dynamically manages cluster resources
- Works across heterogeneous cluster services
- Allocates CPU and memory resources based upon a
 - given application's current needs

Big SQL integrates with YARN via the Slider project

- YARN chooses suitable hosts for Big SQL worker nodes
- Big SQL resources are accounted for by YARN
- Size of the Big SQL cluster may dynamically grow or shrink as needed
- Configured by user (not by installation default)

SparkSQL

- Provide for relational queries expressed in SQL, HiveQL and Scala
- Seamlessly mix SQL queries with Spark programs
- DataFrame/Dataset provide a single interface for efficiently working with structured data including Apache Hive, Parquet and JSON files
- Leverages Hive frontend and metastore
 - Compatibility with Hive data, queries, and UDFs
 - HiveQL limitations may apply
 - Not ANSI SQL compliant
 - Little to no query rewrite optimization, automatic memory management or sophisticated workload management
- Graduated from alpha status with Spark 1.3
 - DataFrames API marked as experimental
- Standard connectivity through JDBC/ODBC

Big SQL and Spark

- What is Apache Spark?
 - Fast, general-purpose engine for working with Big Data
 - Part of IBM Open Platform for Apache Hadoop
 - Popular built-in libraries for machine learning, query, streaming, etc.

Data in Big SQL accessible through Spark

- Big SQL meta data in HCatalog
- Big SQL tables use common Hadoop file formats
- Spark SQL provides access to structured data

Approach (BigInsights 4.x)

- From Big SQL: CREATE HADOOP TABLE . . . in Hive warehouse or over DFS directory
- From Spark:
 - Create HiveContext
 - Issue queries (Hive syntax) directly against Big SQL tables
 - Invoke Spark transformations and actions as desired, including those specific to other Spark libraries (e.g., MLlib)

Demo – SPSS, Cognos, DB2 BLU, BigInsights, BigSQL

https://www.youtube.com/watch?v=zIRWt4XdTcM

More Information

https://bigdatauniversity.com/

BigInsights 4.2 and BigSQL Overview

Les King Director, Big Data, Analytics, Database & Cloud Data Services Solutions November, 2016 <u>Iking@ca.ibm.com</u> ca.linkedin.com/pub/les-king/10/a68/426