## **Binary Adder**

- Binary Addition - single bit addition  $\frac{x \ y \ x+y (binary sum)}{0+0 = 0}$  0+1 = 1 1+0 = 1 1+1 = 10 (binary, i.e. 2 in base-10)
  - sum of 2 binary numbers can be larger than either number
  - need a "carry-out" to store the overflow
- Half-Adder
  - 2 inputs (x and y) and 2 outputs (sum and carry)





ECE 410, Prof. A. Mason

Lecture Notes 12.1

#### Half-Adder Circuits

- Simple Logic
  - using XOR gate



- Most Basic Logic
  - NAND and NOR only circuits



(a) NAND2 logic

(b) NOR-based network

Take-home Questions:

Which of these 3 half-adders will be fastest? slowest? why?? Which has fewest transistors? Which transition has the critical delay?



ECE 410, Prof. A. Mason

S

0

 $S = X \oplus Y$ 

 $C = X \bullet Y$ 

С

 $\mathbf{0}$ 

0

()

1

Y

0

1

0

1

#### Full-Adder

- When adding more than one bit, must consider the carry of the previous bit
  - full-adder has a "carry-in" input
- Full-Adder Equation
- Full-Adder Truth Table



$$s_i = carry-out, sum$$



 $C_{i+1}$ 



#### **Full-Adder Circuits**

Full-Adder Equations:  $s_i = a_i \oplus b_i \oplus c_i$  and  $c_{i+1} = a_i \bullet b_i + c_i \bullet (a_i \oplus b_i)$ 

• XOR-based FA







- Other FA Circuits
  - a few others options are covered in the textbook



#### **Full Adder Circuits**

AOI Structure FA
 implements following SOP equations

$$c_{i+1} = a_i \bullet b_i + c_i \bullet (a_i + b_i)$$
  
$$\overline{s}_i = (a_i + b_i + c_i) \bullet c_{i+1} + (a_i \bullet b_i \bullet c_i)$$

- sum delayed from carry



AND OR INV

- Transmission Gate FA
  - sum and carry have about the same delay





#### Full Adder in CMOS

Consider nMOS logic for c\_out
 c<sub>i+1</sub> = a<sub>i</sub> • b<sub>i</sub> + c<sub>i</sub> • (a<sub>i</sub> + b<sub>i</sub>)
 two "paths" to ground



(a) Standard nFET logi

 Mirror CMOS Full Adder Þ∙ b<sub>i</sub>  $\frac{1}{2} \stackrel{a_i}{\Rightarrow} a_i = b_i = 0$ - carry out circuit c<sub>i</sub>=0 and  $a_i + b_i = 0$  $V_{DD}$ c<sub>i</sub>=1 and a<sub>i</sub>=b<sub>i</sub>=1  $\vdash a_i$  $a_i + b_i = b_i$  $| \vdash b_i$  $\overline{c}_{i+1}$  $\overline{s}_i$  $s_i$ (b) Mirror circuit - complete circuit Prof. A. Mason Lecture Notes 12.6

# FA Using 2:1 MUX

- If we re-arrange the FA truth table
  - can simplify the output (sum, carry) expressions



- Implementation
  - use an XOR to make the decision ( $a \oplus b = 0$ ?)
  - use a 2:1 MUX to select which equation/value of sum and carry to pass to the output



## **Binary Word Adders**

- Adding 2 binary (multi-bit) words
  - adding 2 n-bit word produces an n-bit sum and a carry
  - example: <u>4b addition</u>  $a_3 a_2 a_1 a_0$ 4b input a +  $b_3 b_2 b_1 b_0$  + 4b input b
- Carry Bits

- $\overline{C_4 S_3 S_2 S_1 S_0}$ = carry-out, 4b sum
- binary adding of n-bits will produce an n+1 carry
- can be used as carry-in for next stage or as an overflow flag
- Cascading Multi-bit Adders
  - carry-out from a binary word adder can be passed to next cell to add larger words
  - example: 3 cascaded 4b binary adders for 12b addition



# **Ripple Carry Adder**

- To use single bit full-adders to add multi-bit words
  - must apply carry-out from each bit addition to next bit addition
  - essentially like adding 3 multi-bit words
    - each  $c_i$  is generated from the i-1 addition
  - $c_0$  will be 0 for addition
    - kept in equation for generality

n

- symbol for an n-bit adder

Adder

n

n

 $c_n$ 

**Ripple-Carry Adder** 





- passes carry-out of each bit to carry-in of next bit
  - for n-bit addition, requires n Full-Adders

#### Adder/Subtractor using R-C Adders

- Subtraction using 2's complements
  - 2's complement of X:  $X_{2s} = \overline{X+1}$ 
    - invert and add 1
  - Subtraction via addition:  $Y X = Y + X_{2s}$
- R-C Adder/Subtactor Cell
  - control line, add\_sub: 0 = add, 1 = subtract
  - XOR used to pass (add\_sub=1) or invert (add\_sub=0)
  - set first carry-in,  $c_0$ , to 1 will add 1 for 2's complement





Lecture Notes 12.10

## **Ripple-Carry Adders in CMOS**

- Simple to implement and connect for multi-bit addition
  but, they are very slow
- Worse-case delays in R-C Adders
  - each bit in the cascade requires carry-out from the previous bit
    - major speed limitation of R-C Adders
  - delay depends somewhat on the type of FA implemented,
  - general assumptions
    - worst delay in an FA is the sum
      - but carry is more important due to cascade structure
    - total delay is sum of delays to pass carry to final stage
    - total delay for n-input R-C adder



Lecture Notes 12.11

basic FA

circuit

a<sub>i</sub> b<sub>i</sub>

## Carry Look-Ahead Adder

- CLA designed to overcome delay issue in R-C Adders
  - eliminates the ripple (cascading) effect of the carry bits
- Algorithm based calculating all *carry* terms at once
- Introduces generate and propagate signals
  - rewrite  $c_{i+1} = a_i \bullet b_i + c_i \bullet (a_i \oplus b_i) \rightarrow c_{i+1} = g_i + c_i \bullet p_i$ 
    - generate term,  $\mathbf{g}_i = \mathbf{a}_i \cdot \mathbf{b}_i$
    - propagate term, p<sub>i</sub> = a<sub>i</sub> ⊕ b<sub>i</sub>
  - approach: evaluate all  $g_i$  and  $p_i$  terms and use them to calculate all carry terms without waiting for a carry-out ripple
- All *sum* terms evaluated at once
  - the sum of each bit is:  $\mathbf{s}_i = \mathbf{p}_i \oplus \mathbf{c}_i$
- Pros and Cons
  - no cascade delays; outputs expressed in terms of inputs only





ECE 410, Prof. A. Mason

Lecture Notes 12.13

## **CLA Carry Generation in Reduced CMOS**

- Reduce logic by constructing a CMOS push-pull network for each carry term
  - expanded carry terms
    - $c_1 = g_0 + c_0 \cdot p_0$
    - $c_2 = g_1 + g_0 \cdot p_1 + c_0 \cdot p_0 \cdot p_1$
    - $c_3 = g_2 + g_1 \cdot p_2 + g_0 \cdot p_1 \cdot p_2 + c_0 \cdot p_0 \cdot p_1 \cdot p_2$
    - $c_4 = g_3 + g_2 \cdot p_3 + g_1 \cdot p_2 \cdot p_3 + g_0 \cdot p_1 \cdot p_2 \cdot p_3 + c_0 \cdot p_0 \cdot p_1 \cdot p_2 \cdot p_3$
- nFETs network for each carry term



#### **CLA in Advanced Logic Structures**

- CLA algorithm better implemented in dynamic logic
- Dynamic Logic (jump to next slide)
- Dynamic Logic CLA Implementation
  - multiple output domino logic (MODL)



## Dynamic Logic -Quick Look

Advantages: fewer transistors & less power consumption



### Manchester Carry Generation Concept

- Alternative structure for carry evaluation
  - define carry in terms of control signals such that
    - only one control is active at a given time
  - implement in switch-logic
- Consider single bit FA truth table
  - p OR g is high in 6 of 8 logic states
    - $\cdot$  *p* and *g* are not high at the same time
  - introduce carry-kill, k
    - $\boldsymbol{\cdot}$  on/high when neither p or g is high
    - carry\_out always 0 when k=1
  - only one control signal (p, g, k) is active for each state

| $\boldsymbol{a}_i$ | b <sub>i</sub> | C <sub>i</sub> | <i>C</i> <sub><i>i</i>+1</sub> | $p_i$ | $\boldsymbol{g}_i$ | k <sub>i</sub> |
|--------------------|----------------|----------------|--------------------------------|-------|--------------------|----------------|
| 0                  | 0              | 0              | 0                              | 0     | 0                  | 1              |
| 0                  | 1              | 0              | 0                              | 1     | 0                  | 0              |
| 1                  | 0              | 0              | 0                              | 1     | 0                  | 0              |
| 1                  | 1              | 0              | 1                              | 0     | 1                  | 0              |
| 0                  | 0              | 1              | 0                              | 0     | 0                  | 1              |
| 0                  | 1              | 1              | 1                              | 1     | 0                  | 0              |
| 1                  | 0              | 1              | 1                              | 1     | 0                  | 0              |
| 1                  | 1              | 1              | 1                              | 0     | 1                  | 0              |

| generate   | $g_i = a_i \bullet b_i$                                    |
|------------|------------------------------------------------------------|
| propagate  | $\textbf{p}_i \texttt{=} \textbf{a}_i \oplus \textbf{b}_i$ |
| carry-kill | $k_i = \overline{a_i + b_i}$                               |



#### Manchester Carry Generation Concept

- Switch-logic implementation of truth table
  - 3 independent control signals g, p, k
  - express carry\_out in terms of g, p, k

 $\begin{array}{l} \text{if } g = 1 \rightarrow c_{i+1} = 1 \\ \text{if } p = 1 \rightarrow c_{i+1} = c_i \\ \text{if } k = 1 \rightarrow c_{i+1} = 0 \end{array}$ 

- implement in switch-logic
  - only one switch ON at any time



| generate   | $g_i = a_i \bullet b_i$                                    |
|------------|------------------------------------------------------------|
| propagate  | $\textbf{p}_i \texttt{=} \textbf{a}_i \oplus \textbf{b}_i$ |
| carry-kill | $k_i = \overline{a_i + b_i}$                               |



## Static CMOS Manchester Implementation

- Manchester carry generation circuit
- Static CMOS
  - modify for inverting logic
    - input  $\rightarrow c_{i}$  bar & output  $\rightarrow c_{i+1}$  bar
- New truth table
- Possible implementation
  - $-\overline{c_{i+1}} = 1$  if  $g_i = 0$
  - $-\overline{c_{i+1}} = 0$  if  $g_i=1$  AND  $p_i=0$
  - $-\overline{c_{i+1}} = \overline{c_i}$  if  $p_i = 1$ 
    - but g<sub>i</sub>=0 here. problem?
  - carry-kill is not needed







#### Manchester Implementation

Corrected Manchester Carry Generation Circuit



## Manchester Implementation



#### CLA for Wide Words

- number of terms in the carry equation increases with the width of the binary word to be added
  - gets overwhelming (and slow) with large binary words
- one method is to break wide adders into smaller blocks
  - e.g., use 4b blocks (4b is common, but could be any number)
  - must create block generate and propagate signals to carry information to the next block
    - $g_{[i,i+3]} = g_{i+3} + g_{i+2} \cdot p_{i+3} + g_{i+1} \cdot p_{i+2} \cdot p_{i+3} + g_i \cdot p_{i+1} \cdot p_{i+2} \cdot p_{i+3}$





#### 16b Adder Using 4b CLA Blocks





## Other Adder Implementations

- Alternative implementations for high-speed adders
- Carry-Skip Adder
  - quickly generate a carry under certain conditions and skip the carry-generation block
    - recall  $c_{i+1} = g_i + c_i \cdot p_i, g_i = a_i \cdot b_i, p_i = a_i \oplus b_i$
    - note generation of  $p_i$  is more complex (XOR) than  $g_i$  (AND)
      - so, generate  $p_i$  and check  $c_i p_i$  case, skip  $g_i$  generation if  $c_i p_i = 1$
- Carry-Select Adder
  - uses multiple adder blocks to increase speed
  - take a lot of chip area
- Carry-Save Adder
  - parallel FA, 3 inputs and 2 outputs
  - does not add carry-out to next bit (thus no ripple)
    - carry is saved for use by other blocks
  - useful for adding more than 2 numbers



## Fully Differential Full Adder

- (a) sum-generate circuit
- (b) carry generate circuit



(a)





## **Multiplier Basics**

- Single-Bit Binary Multiplication
  - $-0 \times 0 = 0$ ,  $0 \times 1 = 0$ ,  $1 \times 0 = 0$ ,  $1 \times 1 = 1$
  - same result as logic AND operation (1b output, no carry!)
- Multiple-Bit Multiplication
  - n-bit word TIMES an n-bit word give 2n-bit product
  - 4b example
    - 16 single-bit multiplies
      - multiply each bit of **a** by each bit of **b**
    - shift products for summing

**note**: can multiply by 2 by shifting the word to the left by one, multiply by 4 by left-shift twice, 8 three times, etc.

| t o            | f <b>a</b> b | by each     | 1 bit            | of <b>b</b>                   |                       |                |                               |              |
|----------------|--------------|-------------|------------------|-------------------------------|-----------------------|----------------|-------------------------------|--------------|
|                |              |             |                  | $a_3$                         | $a_2$                 | a <sub>1</sub> | ao                            | multiplicand |
| summing        |              |             | × b <sub>3</sub> | $b_2$                         | <i>b</i> <sub>1</sub> | <i>b</i> 0     | multiplier                    |              |
|                |              |             |                  | a3 b0                         | $a_2 b_0$             | $a_1 b_0$      | a <sub>0</sub> b <sub>0</sub> |              |
|                |              | +           | $a_3 b_1$        | $a_2 b_1$                     | $a_1 b_1$             | $a_0 b_1$      |                               |              |
|                |              | $+ a_3 b_2$ | $a_2 b_2$        | $a_1 b_2$                     | $a_0 b_2$             |                |                               |              |
| +              | a3 b3        | a2 b3       | $a_1 b_3$        | a <sub>0</sub> b <sub>3</sub> |                       |                |                               |              |
| p <sub>7</sub> | <i>р</i> 6   | $p_5$       | $p_4$            | $p_3$                         | $p_2$                 | $p_1$          | $p_0$                         | product      |
|                |              |             |                  |                               |                       |                |                               |              |



ECE 410, Prof. A. Mason

Lecture Notes 12.27

## **Implementing Multiplier Circuits**

- Multiplication Sequence
  - organization of ANDs and ADDs





a<sub>1</sub> b<sub>0</sub>

 $a_2 b_0$ 

 $a_0 b_0$ 

# Signed Multiplication: Booth Encoding

- Signed Numbers +m=m
  - 2's complement -m = 2 m
- Ex: 3-bit signed numbers  $3 = 0 \ 1 \ 1$  2+3 = 5 = 2-(-3) $=> 1 \ 0 \ 1 = -3$

- Booth Encoding
  - evaluate number 2-bits at a time
  - generate 'action' based on 2-bit sequence



-1: a sequence of "10"0: no change in sequence1: a sequence of "01"

 $0\ 1\ 1\ 0\ 1 = (13)_{10} = [\ 1^*2^4 + \mathbf{0}^*2^3 - \mathbf{1}^*2^2 + \mathbf{1}^*2^1 - \mathbf{1}^*2^0]$ 



Benefit: Number of shift-add reduces if long seq. of "1" or "0"

#### 4b x 4b Booth Multiplication

| A | $= m_3 I$      | / m x :<br>m <sub>2</sub> m <sub>1</sub><br>0 1 x | Rules:<br>Start with product $A = 0$<br>Examine $r_n$ , $r_{n-1}$<br>$0 \ 0$ : shift R right |             |                                                  |
|---|----------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|--------------------------------------------------|
| n | r <sub>n</sub> | <b>r</b> <sub>n-1</sub>                           | Action                                                                                       | A = 0 0 0 0 | 0 1 : add M (A+M)<br>shift A right               |
| 0 | 1              | 0                                                 | Sub M (A-M)                                                                                  | 1011        | 1 0 : sub M (A-M)                                |
|   |                |                                                   | Shift Rt                                                                                     | 11011       | - shift A right<br>1 1 : shift A right           |
| 1 | 1              | 1                                                 | Shift Rt                                                                                     | 111011      | 111011                                           |
| 2 | 0              | 1                                                 | Add M (A+M)                                                                                  | 001111 ←    | $\frac{0101}{001111}$                            |
|   |                |                                                   | Shift Rt                                                                                     | 0001111     |                                                  |
| 3 | 1              | 0                                                 | Sub M (A-M)                                                                                  | 1100111=-25 | $ \begin{array}{c} 00011111 \\1011 \end{array} $ |
|   |                |                                                   |                                                                                              |             |                                                  |



ECE 410, Prof. A. Mason

Lecture Notes 12.30

## Arithmetic/Logic Unit Structure

- ALU performs basic arithmetic and logic functions in a single block
  - core unit in a microprocessor
- Basic n-bit ALU
  - Inputs
    - 2 n-bit inputs
    - carry in
    - function selects
  - Outputs
    - 1 n-bit result
    - carry out
    - status outputs







#### **ALU Arithmetic Components**





## **ALU Logic Components**

- Logic Block
  - implements logic functions
  - NOT
  - AND
  - OR
  - XOR
- Date Movement
  - somewhere in the ALU
    - or in the register file
  - shift
  - rotate



| S <sub>1</sub> | S <sub>0</sub> | Output    | Operation |
|----------------|----------------|-----------|-----------|
| 0              | 0              | G≖A∧B     | AND       |
| 0              | 1              | G = A ∨ B | OR        |
| 1              | 0              | G = A⊕ B  | XOR       |
| 1              | 1              | G = Ā     | NOT       |

#### Example 1-bit Logic Block



## **Example ALU Organization & Function**

- Example ALU Bit Slice
  - implementation of one bit



Example Function Table

Operation Select

| S2                                                   | S <sub>1</sub>                            | So                                             | Cin                                                          | Operation                                                                                                                                                                             | Function                                                                                                                                                  |                                                                             |
|------------------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 32<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1 | 0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0 | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br><b>X</b><br><b>X</b> | G = A<br>G = A + 1<br>G = A + B<br>$G = A + \overline{B} + 1$<br>$G = A + \overline{B} + 1$<br>$G = A + \overline{B} + 1$<br>G = A - 1<br>G = A<br>$G = A \wedge B$<br>$G = A \vee B$ | Transfer A<br>Increment A<br>Addition<br>Add with carry input of 1<br>A plus 1's complement of B<br>Subtraction<br>Decrement A<br>Transfer A<br>AND<br>OR | function set for<br>a simple ALU<br>function determined<br>by select inputs |
| 1                                                    | 1                                         | 0<br>1                                         | X<br>X                                                       | $G = A \oplus B$ $G = \overline{A}$                                                                                                                                                   | XOR<br>NOT (1's complement)                                                                                                                               |                                                                             |

