Binary Adder

- sum of 2 binary numbers can be larger than either number
- need a "carry-out" to store the overflow
- Half-Adder
- 2 inputs (x and y) and 2 outputs (sum and carry)

x	y	s	c
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

half-adder symbol

Half-Adder Circuits

- Simple Logic
- using XOR gate

- Most Basic Logic
- NAND and NOR only circuits

	y	S	C
	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
$\begin{aligned} & s=x \oplus y \\ & c=x \cdot y \end{aligned}$			

(a) NAND2 logic

(b) NOR-based network

Take-home Questions:
Which of these 3 half-adders will be fastest? slowest? why??
Which has fewest transistors? Which transition has the critical delay?

Full-Adder

- When adding more than one bit, must consider the carry of the previous bit
- full-adder has a "carry-in" input
for every i-th bit
- Full-Adder Equation
- Full-Adder Truth Table

$+b_{i}$	$+b$
$c_{i+1} s_{i}$	$=$ carry-out, sum

$a_{i} \quad b_{i} c_{i}$	s c_{i+1}	
000	00	
010	10	$S_{i}=\mathrm{a}_{\mathrm{i}} \oplus \mathrm{b}_{\mathrm{i}} \oplus \mathrm{c}_{\mathrm{i}}$
100	10	$\mathrm{c}_{\mathrm{i}+1}=\mathrm{a}_{\mathrm{i}} \bullet \mathrm{b}_{\mathrm{i}}+\mathrm{c}_{\mathrm{i}} \bullet\left(\mathrm{a}_{\mathrm{i}} \oplus \mathrm{b}_{\mathrm{i}}\right)$
110	01	
$\begin{array}{lll}0 & 0 & 1\end{array}$	10	if not trying to 'reuse' the $\mathrm{a}_{\mathrm{i}} \oplus \mathrm{b}_{\mathrm{i}}$
$\begin{array}{lll}0 & 1 & 1\end{array}$	01	term from sum, can write
$1 \begin{array}{lll}1 & 0 & 1\end{array}$	0	$c_{i+1}=a_{i} \cdot b_{i}+c_{i} \bullet\left(a_{i}+b_{i}\right)$
111	11	

Full-Adder Circuits

Full-Adder Equations: $\mathrm{s}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \oplus \mathrm{b}_{\mathrm{i}} \oplus \mathrm{c}_{\mathrm{i}}$ and $\mathrm{c}_{\mathrm{i}+1}=\mathrm{a}_{\mathrm{i}} \cdot \mathrm{b}_{\mathrm{i}}+\mathrm{c}_{\mathrm{i}} \bullet\left(\mathrm{a}_{\mathrm{i}} \oplus \mathrm{b}_{\mathrm{i}}\right)$

- XOR-based FA

- HA-based FA

- Other FA Circuits
- a few others options are covered in the textbook

Full Adder Circuits

- AOI Structure FA

- implements following SOP equations

$$
\begin{aligned}
& c_{i+1}=a_{i} \cdot b_{i}+c_{i} \cdot\left(a_{i}+b_{i}\right) \\
& \bar{s}_{i}=\left(a_{i}+b_{i}+c_{i}\right) \cdot c_{i+1}+\left(a_{i} \cdot b_{i} \cdot c_{i}\right) \\
& \quad-\text { sum delayed from carry }
\end{aligned}
$$

- Transmission Gate FA
- sum and carry have about the same delay

Full Adder in CMOS

- Consider nMOS logic for c_out

$$
c_{i+1}=a_{i} \cdot b_{i}+c_{i} \cdot\left(a_{i}+b_{i}\right)
$$

- two "paths" to ground

(a) Standard nFET logi
- Mirror CMOS Full Adder
- carry out circuit

(b) Mirror circuit
- complete circuit

FA Using 2:1 MUX

- If we re-arrange the FA truth table
- can simplify the output (sum, carry) expressions

a_{i}	b_{i}	c_{i}	$a \oplus b$	s	c_{i+1}
0	0	0	0	0	0
1	1	0	0	0	1
0	0	1	0	1	0
1	1	1	0	1	1
0	1	0	1	1	0
1	0	0	1	1	0
0	1	1	1	0	1
1	0	1	1	0	1

If $(A \oplus B=0)$,	SUM=Cin;	Cout=A;
Else,	SUM=Cin_bar;	Cout=Cin;

- Implementation
- use an XOR to make the decision ($\mathrm{a} \oplus \mathrm{b}=0$?)
- use a 2:1 MUX to select which equation/value of sum and carry to pass to the output

Binary Word Adders

- Adding 2 binary (multi-bit) words
- adding $2 n$-bit word produces an n-bit sum and a carry
- example: 4b addition
- Carry Bits

$$
\begin{array}{rl}
a_{3} a_{2} a_{1} a_{0} & 4 b \text { input } a \\
+b_{3} b_{2} b_{1} b_{0} & +4 b \text { input } b \\
\mathrm{c}_{4} \mathrm{~s}_{3} s_{2} s_{1} s_{0} & =\text { carry-out, } 4 b \text { sum }
\end{array}
$$

- binary adding of n-bits will produce an $n+1$ carry
- can be used as carry-in for next stage or as an overflow flag
- Cascading Multi-bit Adders
- carry-out from a binary word adder can be passed to next cell to add larger words
- example: 3 cascaded 4b binary adders for $12 b$ addition

Ripple Carry Adder

- To use single bit full-adders to add multi-bit words
- must apply carry-out from each bit addition to next bit addition
- essentially like adding 3 multi-bit words
- each c_{i} is generated from the i-1 addition
- c_{0} will be 0 for addition
- kept in equation for generality

$$
\begin{gathered}
c_{3} c_{2} c_{1} c_{0} \quad \text { carry-in bits } \\
a_{3} a_{2} a_{1} a_{0} \quad 4 b \text { input } a \\
+b_{3} b_{2} b_{1} b_{0}+4 b \text { input } b \\
\hline c_{4} s_{3} s_{2} s_{1} s_{0}= \\
=\text { carry-out, } 4 b \text { sum }
\end{gathered}
$$

- symbol for an $\underset{b}{b}$-bit adder

- Ripple-Carry Adder

- passes carry-out of each bit to carry-in of next bit
- for n-bit addition, requires n Full-Adders

Adder/Subtractor using R-C Adders

- Subtraction using 2's complements
- 2's complement of $X: X_{2 s}=\bar{X}+1$
- invert and add 1
- Subtraction via addition: Y - $X=Y+X_{2 s}$
- R-C Adder/Subtactor Cell
- control line, add_sub: $0=$ add, 1 = subtract
- XOR used to pass (add_sub=1) or invert (add_sub=0)
- set first carry-in, c_{0}, to 1 will add 1 for 2 's complement

$\mathrm{a}=\mathrm{add}$ sub

a	b	$a \oplus b$
0	0	0
0	1	1
1	0	$1 \overline{\mathrm{~b}}$
1	1	0

Ripple-Carry Adders in CMOS

- Simple to implement and connect for multi-bit addition
- but, they are very slow
- Worse-case delays in R-C Adders
- each bit in the cascade requires carry-out from the previous bit
- major speed limitation of R-C Adders
- delay depends somewhat on the type of FA implemented
- general assumptions
- worst delay in an FA is the sum
- but carry is more important due to cascade structure
- total delay is sum of delays to pass carry to final stage
- total delay for n-input R-C adder
$\mathrm{t}_{\mathrm{n}}=\mathrm{t}_{\mathrm{d}}\left(\mathrm{a}_{0}, \mathrm{~b}_{0} \Rightarrow \mathrm{c}_{1}\right)+(\mathrm{n}-2) \mathrm{t}_{\mathrm{d}}\left(\mathrm{c}_{\text {in }} \Rightarrow \mathrm{c}_{\text {out }}\right)_{r}+\mathrm{t}_{\mathrm{d}}\left(\mathrm{c}_{\text {in }} \Rightarrow\right.$ last stage delay: carry-in to sum

Carry Look-Ahead Adder

- CLA designed to overcome delay issue in R-C Adders
- eliminates the ripple (cascading) effect of the carry bits
- Algorithm based calculating all carry terms at once
- Introduces generate and propagate signals
- rewrite $c_{i+1}=a_{i} \cdot b_{i}+c_{i} \cdot\left(a_{i} \oplus b_{i}\right) \rightarrow c_{i+1}=g_{i}+c_{i} \cdot p_{i}$
- generate term, $g_{i}=a_{i} \cdot b_{i}$
- propagate term, $\boldsymbol{p}_{\mathrm{i}}=\mathrm{a}_{\mathbf{i}} \oplus \mathrm{b}_{\mathrm{i}}$
- approach: evaluate all g_{i} and p_{i} terms and use them to calculate all carry terms without waiting for a carry-out ripple
- All sum terms evaluated at once
- the sum of each bit is: $s_{i}=p_{i} \oplus c_{i}$
- Pros and Cons
- no cascade delays; outputs expressed in terms of inputs only
- requires complex circuits for higher bit-order adders (next slide)

Logic Circuits for a 4b CLA Adder

- Carry-out expressions for 4b CLA
$-c_{1}=g_{0}+c_{0} \bullet p_{0}, \quad c_{2}=g_{1}+c_{1} \bullet p_{1}, \quad c_{3}=g_{2}+c_{2} \bullet p_{2}, \quad c_{4}=g_{3}+c_{3} \cdot p_{3}$
- Expressed only in terms of known inputs
$-c_{2}=g_{1}+p_{1} \cdot\left(g_{0}+c_{0}{ }^{\circ} p_{0}\right)$
$-c_{3}=g_{2}+p_{2} \cdot\left[g_{1}+p_{1} \cdot\left(g_{0}+c_{0} \cdot p_{0}\right)\right]$
$-c_{4}=g_{3}+p_{3} \cdot\left\{g_{2}+p_{2} \cdot\left[g_{1}+p_{1} \cdot\left(g_{0}+c_{0} \bullet p_{0}\right)\right]\right\}$
- nested Sum-of-Products expressions
- gets more complex for higher bit adders
- Sums obtained by an XOR with carries

$$
\begin{aligned}
& g_{i}=a_{i} \cdot b_{i} \\
& p_{i}=a_{i} \oplus b_{i}
\end{aligned}
$$

CLA Carry Generation in Reduced CMOS

- Reduce logic by constructing a CMOS push-pull network for each carry term
- expanded carry terms
- $c_{1}=g_{0}+c_{0}{ }^{\circ} p_{0}$
- $c_{2}=g_{1}+g_{0}{ }^{\circ} p_{1}+c_{0}{ }^{\circ} P_{0}{ }^{\circ} P_{1}$
- $c_{3}=g_{2}+g_{1}{ }^{\circ} p_{2}+g_{0}{ }^{\circ} p_{1} \bullet p_{2}+c_{0}{ }^{\circ} p_{0}{ }^{\circ} p_{1}{ }^{\bullet} p_{2}$

- nFETs network for each carry term
- pFET pull-up not shown
- notice nested structure

(a) $c_{1} \log 1 c$

(b) c_{2} logic

(d) c_{4} logic

CLA in Advanced Logic Structures

- CLA algorithm better implemented in dynamic logic
- Dynamic Logic (jump to next slide)
- Dynamic Logic CLA Implementation
- multiple output domino logic (MODL)

Dynamic Logic -Quick Look

- Advantages: fewer transistors \& less power consumption
- General dynamic logic gate
- nFET logic evaluation network
- clocked "precharge" pull up pFET
- clocked disabling nFET
- Precharge stage
- clock-gated pull-up precharges output high
- logic array disabled
- Evaluation stage
- precharge pull-up disabled

- logic array enabled \& if true, discharges output
- Dynamic operation: output not always valid

Manchester Carry Generation Concept

- Alternative structure for carry evaluation
- define carry in terms of control signals such that
- only one control is active at a given time
- implement in switch-logic
- Consider single bit FA truth table
- p OR g is high in 6 of 8 logic states
- p and g are not high at the same time
- introduce carry-kill, k
- on/high when neither p or g is high
- carry_out always 0 when $k=1$

a_{i}	b_{i}	c_{i}	c_{i+1}	p_{i}	g_{i}	k_{i}
0	0	0	0	0	0	1
0	1	0	0	1	0	0
1	0	0	0	1	0	0
1	1	0	1	0	1	0
0	0	1	0	0	0	1
0	1	1	1	1	0	0
1	0	1	1	1	0	0
1	1	1	1	0	1	0

- only one control signal (p, g, k) is active for each state

generate	$g_{i}=a_{i} \cdot b_{i}$
propagate	$p_{i}=a_{i} \oplus b_{i}$
carry-kill	$k_{i}=a_{i}+b_{i}$

Manchester Carry Generation Concept

- Switch-logic implementation of truth table
-3 independent control signals g, p, k
- express carry_out in terms of g, p, k

$$
\begin{aligned}
& \text { if } g=1 \rightarrow c_{i+1}=1 \\
& \text { if } p=1 \rightarrow c_{i+1}=c_{i} \\
& \text { if } k=1 \rightarrow c_{i+1}=0
\end{aligned}
$$

- implement in switch-logic
- only one switch ON at any time

a_{i}	b_{i}	c_{i}	c_{i+1}	p_{i}	$g_{i} k_{i}$	
0	0	0	0	0	0	1
0	1	0	0	1	0	0
1	0	0	0	1	0	0
1	1	0	1	0	1	0
0	0	1	0	0	0	1
0	1	1	1	1	0	0
1	0	1	1	1	0	0
1	1	1	1	0	1	0

Static CMOS Manchester Implementation

- Manchester carry generation circuit
- Static CMOS
- modify for inverting logic
- input $\rightarrow c_{i _}$bar \& output $\rightarrow c_{i+1 _}$bar
- New truth table
- Possible implementation
$-\overline{c_{i+1}}=1$ if $g_{i}=0$
$-\overline{c_{i+1}}=0$ if $g_{i}=1$ AND $p_{i}=0$
$-\overline{c_{i+1}}=\overline{c_{i}}$ if $p_{i}=1$
- but $g_{i}=0$ here. problem?

a_{i}	b_{i}	$\overline{c_{i}}$	$\overline{c_{i+1}}$	p_{i}	g_{i}
0	0	1	1	0	0
0	1	1	1	1	0
1	0	1	1	1	0
1	1	1	0	0	1
0	0	0	1	0	0
0	1	0	0	1	0
1	0	0	0	1	0
1	1	0	0	0	1

- carry-kill is not needed

Static CMOS Manchester Implementation

- Textbook Circuit Implementation
$-\overline{c_{i+1}}=1$ if $g_{i}=0$
$-\overline{c_{i+1}}=0$ if $g_{i}=1$ AND $p_{i}=0$
$-\overline{c_{i+1}}=\overline{c_{i}}$ if $p_{i}=1$
- error
- when $g_{i}=0, p_{i}=1, \overline{c_{i}}=0, \overline{c_{i+1}} \rightarrow 0$
- pulled low through M1
- but M4 pulls it high
- Possible Correction?
- insert switch in pull-up path to disable when $\bar{c}_{i}=0$
- solves error when $g_{i}=0, p_{i}=1, c_{i}=0 \rightarrow c_{i+1}=0$
- but introduces error when $g_{i}=0, p_{i}=1, \bar{c}_{i}=0 \rightarrow \overline{c_{i+1}}=1$
- M4 can not pull high since new nMOS cuts off path

Manchester Implementation

- Corrected Manchester Carry Generation Circuit
- truth table organized by p_{i}
- if $p_{i}=0$
$-\overline{c_{i+1}}=g_{i}\left(\right.$ NOT $\left.g_{i}\right)$
- block c_{i}, pass VDD or GND
- if $p_{i}=1$
$-\overline{c_{i+1}}=\overline{c_{i}}$
- pass ci, block VDD \& GND

alternative design:

- do not add pMOS M3
- make W of M1
significantly larger than W of M4
$\rightarrow \mathrm{C}_{\mathrm{i}}$ will override VDD

Manchester Implementation

- Dynamic Logic Circuit
- evaluate when $\phi=1$
- c_{i+1} stays high unless

$$
\cdot g_{i}=1\left(c_{i+1} \rightarrow 0\right) \text { or } p_{i}=1\left(c_{i+1} \rightarrow c_{i}\right)
$$

- 4b Dynamic Manchester Carry Generation
- minor ripple delay
- threshold drop on propagate
- very few transistors

single bit carry generation in dynamic logic

internal output, $\mathrm{c}_{\mathrm{i}+1}$ dynamically pulled high
propagate
pulled low (generate)

a_{i}	b_{i}	$\overline{c_{i}}$	$\overline{c_{i+1}}$	p_{i}	g_{i}
0	0	1	1	0	0
0	1	1	1	1	0
1	0	1	1	1	0
	1	1	0	0	1
0	0	0	1	0	0
0	1	0	0	1	0
1	0	0	0	1	0
1	1	0	0	0	1

CLA for Wide Words

- number of terms in the carry equation increases with the width of the binary word to be added
- gets overwhelming (and slow) with large binary words
- one method is to break wide adders into smaller blocks
- e.g., use 4b blocks (4b is common, but could be any number)
- must create block generate and propagate signals to carry information to the next block
- $g_{[i, i+3]}=g_{i+3}+g_{i+2} \bullet p_{i+3}+g_{i+1} \bullet p_{i+2} \bullet p_{i+3}+g_{i} \bullet p_{i+1} \bullet p_{i+2} \bullet p_{i+3}$
- $p_{[i, i+3]}=p_{i}{ }^{\circ} p_{i+1}{ }^{\circ} p_{i+2}{ }^{\circ} p_{i+3}$
- for block i thru $i+3$ of an n-sized adder ${ }^{[n-1]}$

16b Adder Using 4b CLA Blocks

- Create SUMs from outputs of this circuit

Other Adder Implementations

- Alternative implementations for high-speed adders
- Carry-Skip Adder
- quickly generate a carry under certain conditions and skip the carry-generation block
- recall $c_{i+1}=g_{i}+c_{i} \cdot p_{i}, g_{i}=a_{i} \cdot b_{i}, p_{i}=a_{i} \oplus b_{i}$
- note generation of p_{i} is more complex (XOR) than g_{i} (AND)
- so, generate p_{i} and check $c_{i} p_{i}$ case, skip g_{i} generation if $c_{i} p_{i}=1$
- Carry-Select Adder
- uses multiple adder blocks to increase speed
- take a lot of chip area
- Carry-Save Adder
- parallel FA, 3 inputs and 2 outputs
- does not add carry-out to next bit (thus no ripple)
- carry is saved for use by other blocks
- useful for adding more than 2 numbers

Fully Differential Full Adder

- (a) sum-generate circuit
- (b) carry generate circuit

(b)

Multiplier Basics

- Single-Bit Binary Multiplication
$-0 \times 0=0,0 \times 1=0,1 \times 0=0,1 \times 1=1$
- same result as logic AND operation (1b output, no carry!)
- Multiple-Bit Multiplication
- n-bit word TIMES an n-bit word give $2 n$-bit product
- 4b example
- 16 single-bit multiplies
- multiply each bit of a by each bit of b
- shift products for summing
note: can multiply by 2 by shifting the word to the left by one, multiply by 4 by left-shift twice, 8 three times, etc.

Sint?

Implementing Multiplier Circuits

- Multiplication Sequence

- organization of AND and ADDs
- 4x4 Array

Multiplier Circuit

- Bb output

Signed Multiplication: Booth Encoding

- Signed Numbers $+m=m$
- 2's complement
- Booth Encoding

$$
\begin{array}{ll}
+\mathrm{m}=\mathrm{m} \\
-\mathrm{m}=2-\mathrm{m}
\end{array} \quad \begin{aligned}
& \text { Ex: 3-bit signed numbers } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& 2=011=5=2-(-3) \\
& \\
& =>101=-3
\end{aligned}
$$

- evaluate number 2-bits at a time
- generate 'action' based on 2-bit sequence

-1: a sequence of " 10 "
0 : no change in sequence
1: a sequence of " 01 "

$$
01101=(13)_{10}=\left[1 * 2^{4}+0 * 2^{3}-1^{*} 2^{2}+1^{*} 2^{1}-1^{*} 2^{0}\right]
$$

Benefit: Number of shift-add reduces if long seq. of " 1 " or " 0 "

4b $\times 4 b$ Booth Multiplication

Multiply m x r:
$A=m_{3} m_{2} m_{1} m_{0} \times r_{3} r_{2} r_{1} r_{0}$
Ex: $0101 \times 1011\left(5^{*}-5=-25\right)$

Rules:

Start with product A = 0
Examine $\mathrm{r}_{\mathrm{n}}, \mathrm{r}_{\mathrm{n}-1}$
00 : shift R right

Arithmetic/Logic Unit Structure

- ALU performs basic arithmetic and logic functions in a single block
- core unit in a microprocessor
- Basic n-bit ALU
- Inputs
- 2 n-bit inputs
- carry in
- function selects
- Outputs
- 1 n-bit result
- carry out
- status outputs
- minus, zero, etc.

ALU Arithmetic Components

- ALU Components
- Arithmetic Block
- Logic Block
- Date Movement
- sometimes done in register file
- Arithmetic Block
- implements arithmetic functions
- add
- subtract
- increment/decrement
- sometimes
- multiply
- divide

ALU Logic Components

- Logic Block
- implements logic functions
- NOT
- AND
- OR
- XOR
- Date Movement
- somewhere in the ALU
- or in the register file
- shift
- rotate

S_{1}	S_{0}	Output	Operation
0	0	$G=A \wedge B$	$A N D$
0	1	$G=A \vee B$	$O R$
1	0	$G=A \oplus B$	XOR
1	1	$G=\bar{A}$	NOT

Example 1-bit Logic Block

Example ALU Organization \& Function

- Example ALU Bit Slice
- implementation of one bit
- Example Function Table

Operation Select

S_{2}	\mathbf{S}_{1}	S_{0}	$c_{\text {in }}$	Operation	Function	
0	0	0	0	$G=A$	Transfer A	
0	0	0	1	$G=A+1$	Increment A	
0	0	1	0	$G=A+B$	Addition	function set for
0	0	1	1	$G=A+B+1$	Add with carry input of 1	a simple ALU
0	1	0	0	$G=A+\bar{B}$	A plus 1's complement of B	a simple ALU
0	1	0	1	$G=A+\bar{B}+1$	Subtraction	
0	1	1	0	$G=A-1$	Decrement A	function determined
0	1	1	1	$G=A$	Transfer A	
1	0	0	X	$G=A \wedge B$	AND	by select inputs
1	0	1	X	$G=A \vee B$	OR	
1	1	0	X	$G=A \oplus B$	XOR	
1	1	1	X	$G=\bar{A}$	NOT (1's complement)	

