Binary Ionic Compounds

Review

 At your table, discuss how you determine the charge of atoms based on the group it is in.

• Group 1A?

Group 5A?

• Group 2A?

Group 6A?

• Group 3A?

Group 7A?

• Group B?

Review: Predicting Ionic Charges

Group 1A: Lose 1 electron to form 1+ ions

H1+ Li1+ Na1+ K1+ Rb1+

1 H 1.00794																	He 4.002602
Li	Be											B	ć	N	Ö	F	Ne
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11	12	1										13	14	15	16	17	18
Na 22.989770	Mg 24.3050	l										Al 26.981538	Si 28.0855	P 30.973761	S 32.066	Cl 35.4527	Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35.4527	36
K	Ca	Sc	Τi	Ÿ	Čr	Mn	Fe	Ĉo	Ñi	Ĉu	Zn	Ga	Ĝe	Ās	Se	Br	Kr
39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37 TO 1-	38	39 V	40	41 N.T.	42	43 TD-	44	45 D.1-	46 D.1	47	48	49 T	50	51 CTI-	52 TE	53 T	54
Rb 85,4678	Sr 87.62	Y 88.90585	Zr 91.224	Nb	Mo 95.94	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn 118.710	Sb 121.760	Te 127.60	1	Xe 131.29
55	56	57	72	92.90638 73	74	(98) 75	101.07 76	102.90550 77	106.42 78	107.8682 79	112.411 80	114.818 81	82	83	84	126.90447 85	86
Čs	Ba	La	Hf	Ta	W	Re	Os	Ír	Pt	Au	Hg	Τl	Pb	Bi	Po	Āt	Rn
132.9054		138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt			(227)		(289)				
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)	I	(287)		(289)]	

Group 2A: Loses 2 electrons to form 2+ ions

Be²⁺ Mg²⁺ Ca²⁺ Sr²⁺ Ba²⁺

1 H 1.00794	↓																He 4.002602
Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	Co 58.933200	Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$	31 Ga 69.723	Ge 72.61	AS 74.92160	34 Se 78.96	Br 79.904	Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	At (210)	Rn (222)
Fr (223)	88 Ra (226)	Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		(289) (287)		116 (289)		

B3+ AI3+ Ga3+

Group 3A: Loses 3 electrons to form 3+ ions

1 H 1.00794												↓					He 4.002602
Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	CO 58.933200	Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$	31 Ga 69.723	Ge 72.61	AS 74.92.160	34 Se 78.96	Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	Bi 208.98038	PO (209)	At (210)	Rn (222)
Fr (223)	88 Ra (226)	Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		116 (289)		

Neither! Group 4A elements rarely form ions (they tend to share)

Group 4A: Do they lose 4 electrons or gain 4 electrons?

1 H 1.00794													1				He 4.002602
3 Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	²⁶ Fe ^{55,845}	CO 58.933200	Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$	31 Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	Br 79.904	Kr 83.80
37 Rb 85.4678	38 Sr 87.62	Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	At (210)	Rn (222)
Fr (223)	88 Ra (226)	Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		116 (289)		

N³- Nitride

P³- Phosphide

As³- Arsenide

Group 5A: Gains 3 electrons to form 3-ions

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	Co 58.933200	Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$	31 Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	Y 88.90585	2r Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	Po (209)	85 At (210)	86 Rn (222)
Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		116 (289)		

O²- Oxide

S²- Sulfide

Se²⁻ Selenide

Group 6A: Gains 2 electrons to form

2-ions

1 H 1.00794															*		He 4.002602
Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415		25 Mn 54.938049	Fe 55.845	Co 58.933200	Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$	31 Ga ∞.723	Ge 72.61	33 As 74.92160	34 Se 78.96	Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	Y 88.90585	Zr 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)		45 Rh 102.90550		Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
Cs 132.90545	Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	At (210)	Rn (222)
Fr (223)	88 Ra (226)	Ac (227)	104 Rf (261)	Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		(289)		

F¹⁻ Fluoride Br¹⁻ Bromide Group 7A: Gains 1 electron to form Cl1- Chloride l1- lodide 1- ions

Не 4.002602 1.00794 Ne 14.00674 15.9994 18.998403 20.1797 Mg Ar 30.97376 28.0855 35,4527 39.948 Mn Fe Ni Zn Kr Co Cu Br Ga Ge AsCa 44.955910 51.9961 58.933200 72.6174.92.160 Sr Nb Mo Tc Pd CdSn Sb Xe Ru Rh Ag 107.8682 In 112.411 88.90585 101.07 114.818 121.760 126.90447 131.29 W Hf Hg 200.59 Βi La Ta Αt Rn Os Αu 137.327 138.9055 178.49 180.9479 183.84 186.207 190.23 192.217 195.078 196.9665 204.3833 207.2 208.98038 (209)(210)Db Rf Βh Ac Hs Μt (287)(289)

Group 8A: Stable noble gases do not form ions!

	ı																*
1 H 1.00794		_															He 4.002602
3 Li 6941	4 Be 9.012182											B 10.811	C 12,0107	7 N 14.00674	8 O 15.9994	9 F 18.998403	10 Ne 20,1797
n Na	Mg											13 Al 26.981538	Si	15 P 30.973761	16 S	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	Co 58.933200	Ni 58.6934	Cu 63.546	$\mathop{Zn}_{\scriptscriptstyle{65.39}}^{\scriptscriptstyle{30}}$	31 Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	85 At (210)	86 Rn (222)
Fr (223)	88 Ra (226)	Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		116 (289)		

Group B elements: transition metals have multiple charges and are harder to predict

Iron (II) = Fe^{2+} Iron (III) = Fe^{3+}

1 H 1.00794																	He 4.002602
Li 6.941	4 Be 9.012182					1						B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	Mg 24.3050											13 Al 26.981538	Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mil 54.9380 9	Fe 55.845	27 Co 38.933200	Ni 58.6934	Cu 63.546	Zn 65.39	31 Ga ∞.723	Ge 72.61	AS 74.92160	34 Se 78.96	Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	85 At (210)	Rn (222)
Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	(277)		114 (289) (287)		116 (289)		

• Common Ion Charges 3- 2- 1-Ag Re Os

- A. Making compounds to balance charge
 - 1. charges should always add up to zero
 - 2. Add subscripts to show # of ions
 - 3. Write cation first and anion second

- A. Making compounds to balance charge
 - *4. Ex: Strontium and Fluorine

$$Sr = 2 + (group 2A) F = 1 - (group 7A)$$

$$SrF_2 = 0$$

subscripts show the # of ions

• Ex: Calcium and Phosphorous

White boards please

*Your Turn:

- -Lithium and Bromine
- -Calcium and Iodine
- -Oxygen and Barium

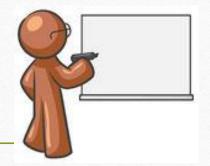
- · CaI2
- BaO

- 1. Name the cation first
 - a. Metals with multiple charges use roman numerals to show the charge on the metal (mostly transition metals)
 - Ex: Iron (II) is Fe2+

- 2. Name the anion second
 - a) Monatomic change ending to -ide
 - b) Polyatomic- name stays the same

• 3. To determine which is the cation and which is the anion, draw a line after the metal or ammonium (NH_4)

3. Examples


- CaCl₂ NaBr
- K_3N

- = Calcium chloride
- = Sodium bromide
- = potassium nitride

Your Turn

Na₂O

sodium oxide

 Ca_3N_2

Calcium Nitride

AICI₃

Aluminum chloride

C. Name to Formula

potassium chloride

 $K^+ CI^- \Rightarrow KCI$

magnesium Sulfide Mg²⁺ S^{2−} ⇒ MgS

C. Name to Formula

Aluminum oxide

 $AI^{3+}O^{2-} \Rightarrow AI_2O_3$

Al³⁺ O²⁻ O²⁻

D. Multi-Charge (Transition) Metals

- Roman numerals are only used if the metal has more than one possible charge. Use the periodic chart of charges.
- Do not use roman numerals for single charge transition metals (ex: AgCl = silver chloride)

NUMERALS 1-10

$$1 = I 6 = VI$$

 $2 = II 7 = VII$
 $3 = III 8 = VIII$
 $4 = IV 9 = IX$
 $5 = V 10 = X$

Remember the Magic Triangle

12.0107

14.00674

15.9994

16

If it is a metal (left of the stair case) in group 1A or 2A or in the magic triangle it has only one charge and

does not need roman numerals

									2+	1 24.98 538	28.0855	1 30.973761	32.066
21 SC 955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	CO 58.933200	28 Ni 58.6934	Cu 63.546	30 Z11 65.39	Ga Ga Ba	+ 32 Ge 72.61	AS 74.92160	34 Se 78.96
39 Y .90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	A5 A5 107.8682	28+ Cd 112.411	4 In 114.818	+ 50 Sn 118.710	51 Sb 121.760	52 Te 127.60
57 La .8.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	84 Po (209)
89	104	105	106	107	108	109	110	111	112		114		116

Examples: Write formula or Name

```
1. Iron (II) Sulfide Fe<sup>2+</sup> S<sup>2-</sup>

Separate Sepa
```

2. Gold (III) oxide Au3+ O2-

CuBr₂ = Copper (II) Bromide

When naming compounds with multi-charge metals, you must work backwards to determine the charge

Copper (I) =
$$Cu^+$$

Copper (II) = Cu^{2+}

FeO = Iron (II) Oxide

Fe? O²-

When naming compounds with multi-charge metals, you must work backwards to determine the charge

Fe₂S₃ = Iron (III) Sulfide

Fe? S²Fe? S²S²-

When naming compounds with multi-charge metals, you must work backwards to determine the charge