Binary Numbers Magic Trick

Math Circle
April 07 2013

Can you read people's mind?

- Pick a number from 1 to 63
- If your number appear in the card say yes, otherwise say no
- Let's guess which number you picked

What is the trick?

- Let's start with a simpler case:
- Pick a number from 1 to 3

	 	 		 	 	 					 						 Π				 		 								 	 	 	 	 	L
																	- 1																			ı
1						4		•									- 1									_	4	ı								
1						-		7	,								- 1										1	ı								
							4	7																												L
						1		_									1																			П
-						-			•								- 1											•								
-																	- 1																			
																	ı																			I.
																	- 1																			ı
1							_										- 1									_	_									
ı						4		٦	١								1								-	•		٦								
.							A	⋖									J											C								L
						_											- 1									_		Т								ı
1						1		J	,								- 1								•	•	_									
1																	- 1																			
																	┙																			I.

Can you guess the trick?

A little more complicated case

Pick a number from 1 to 7

4	2	1
5	3	3
6	6	5
7	7	7

Suppose you can only use 0 and 1 as your digits

- Suppose you can only use 0 and 1 in your number system. Can you express every number in terms of 0 and 1 only?
- Our ordinary numbers are called "base-10 number system" or "decimal" because....

$$798 = (7 \times 100) + (9 \times 10) + (8 \times 1)$$
$$= (7 \times 10 \times 10) + (9 \times 10) + (8 \times 1)$$
$$= (7 \times 10^{2}) + (9 \times 10^{1}) + (8 \times 10^{0})$$

Note that $10^0 = 1$, (any non-zero number) $^0 = 1$

Suppose you can only use 0 and 1

- In base-10 number system, digits are... 0,1,2,3,4,5,6,7,8,9
- In base- 2 number system, digits are...

$$7 = ? \times 2 \times 2 + ? \times 2 + ? \times 1$$

In base- 3 number system, digits are...

$$7 = ? \times 3 + ? \times 1$$

Binary Numbers

You can even have base – 12 number system (with your own creation of 2 more symbols)! However, base – 2 number system is particularly simple and useful as it is used in computer systems. Since there are only two modes - 0 (yes, on) and 1 (no, off) – this can be easily stored. Of course, every decimal number can be represented in a binary form.

Binary Numbers

A binary number is often written as:

$$(110)_2 = 1 \times 2 \times 2 + 1 \times 2 + 0 \times 1 = ?$$

Compare with

$$110 = 1 \times 10 \times 10 + 1 \times 10 + 0 \times 1 = 110$$

In fact, 110 in binary system is (1101110) ₂ So, how we convert a base-10 number into a binary number?

Let's try it! I need some volunteers!

So... how does this relate to our magic square?

Recall...

 	 	 	 	 	 					 	 	 	 	 	 J	 	 	 	 	 	 				 	 	 	 	 	
						4	_								١								4							
					-	7		1)						١								1	ı						
 							4	7							1								ı							
					1	4			ı						١								ı							
															١															
 															1															
															1															
								•							١															
						-	_	Į							١								4	2						
 						_		7)						1									7						
						•	_								١						,	•	_							
															١															
 	 	 	 	 											1															

Suppose you choose 2. Then you will say yes to the first square and no to the second square. Then yes translates to 1 and no translates to 0. Therefore, your number turns out to be:

$$1 \times 2 + 0 \times 1 = 2 = (??)_2$$

This also is the number you get by simply adding the first number of "yes" square(s).

A little more complicated...

4	2	1
<u></u>	_	3
5	3	3
6	6	5
7	7	7
/	/	/

- Suppose you choose 5.
- Then you will say yes(1), no(0), yes(1)

Which means...

$$1 \times 4 + 0 \times 2 + 1 \times 1 = 5 = (???)_2$$

- Again, this is the number you get by adding the first number of "yes" squares.
- Q. What is so special about the first number in each square?

Let's make our own magic squares!

- The first number in each square is a power of 2: $2^0=1$, $2^1=2$, $2^2=4$, $2^3=8$, $2^4=16$,..., $2^{10}=1024$ (is this a familiar number?).
- Yes or no corresponds to if your nth digit is 1 or 0. So if your number is 10 = (1010)₂, then you want to make sure 10 is in both 8-square and in 2-square. Of course, 10 should not be in other squares. How about 11?

Let's make mind-reading square for 1 – 15!

- First is to convert every numbers from 1 to 15 into binary numbers.
- Then put each number into "yes" squares according the rule

Let's check:

1	9
3	11
5	13
7	15

2	10
3	11
6	14
7	15

4	12
5	13
6	14
7	15

8	12
9	13
10	14
11	15

Now it's your turn to make the mind-reading square for 1-31! When you are done, play with your friends to make sure it is working.

Is this look familiar?

Compare your magic card with:

1 3 5 7	2 3 6 7	4 5 6 7	8 9 10 11	16 17 18 19
9 11 13	10 11 14	12 13 14	12 13 14	20 21 22
15 17 19	15 18 19	15 20 21	15 24 25	23 24 25
21 23 25	22 23 26	22 23 28	26 27 28	26 27 28
27 29 31	27 30 31	29 30 31	29 30 31	29 30 31

An algorithm to convert numbers faster!

- How can be convert a decimal number into a base-n number?
- How can we convert a number so large such as 209203 to a binary number efficiently?

Binary Arithmetic

- Just like base-10 numbers, binary numbers also can be added, subtracted, divided and multiplied. How can we do this?
- What is $(0.001)_2$ in decimal? Can you convert a number such as 2.45, 1/3 into a binary number?
- Why is there always equal number of binary numbers in each table?