## Binary Outcomes - Logistic Regression (Chapter 6)

- 2 by 2 tables
- Odds ratio, relative risk, risk difference
- Binomial regression - the logistic, log and linear link functions
- Categorical predictors - Continuous predictors
- Estimation by maximum likelihood
- Predicted probabilities
- Separation (Quasi-separation)
- Assessing model fit


## A binary outcome example: WCGS

The Western Collaborative Group Study (WCGS): a large epidemiological study of coronary heart disease (CHD).
Rosenman, R. H., Friedman, M., Straus, R., Wurm, M., Kositchek, R., Hahn, W. and Werthessen, N. T. (1964). A predictive study of coronary heart disease: the western collaborative group study. Journal of the American Medical Association, 189, 113-120.

Outcome - 0/1: an indicator of CHD status
Study question - Whether CHD rates are different between age groups (<50 vs. >=50)

## 2 by 2 tables (SAS)

proc freq;
tables chd69 * bage_50/chisq cmh riskdiff;
run;

| bage_50 | chd69 |  |  |
| :---: | :---: | :---: | :---: |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | 2104 | 145 | 2249 |
|  | 66.71 | 4.60 | 71.31 |
|  | 93.55 | 6.45 |  |
|  | 72.63 | 56.42 |  |
| 1 | 793 | 112 | 905 |
|  | 25.14 | 3.55 | 28.69 |
|  | 87.62 | 12.38 |  |
|  | 27.37 | 43.58 |  |
| Total | 2897 | 257 | 3154 |
|  | 91.85 | 8.15 | 100.00 |



## 2 by 2 tables (SAS): risk estimates



- What is the rate of CHD in the younger group? What is the rate of CHD in the older group?
- What is the difference in the rates of CHD between the two age groups?


## 2 by 2 tables (SAS): odds ratio, risk ratio



- How was 2.04945 calculated and what is it? How was 1.0677 calculated and what is it? How was 0.521 calculated and what is it?
- What is the relative rate of CHD if a person is $<50$ as compared to $>50$ ?
- Is there a significant effect of age<50 over age $>50$ ?


## 2 by 2 tables (Stata)

. tabulate bage_50 chd69, all exact row col
+---------------------


| Key |
| :-- |
| frequency |
| row percentage |
| column percentage |
|  |
| \begin{tabular}{ |
| \hline \multirow[b]{2}{*}{bage_50} \& \multicolumn{3}{ |

\hline \& 0 \& 1 \& Total <br>
\hline \multirow[t]{3}{*}{$<50$} \& 2,104 \& 145 \& 2,249 <br>
\hline \& 93.55 \& 6.45 \& 100.00 <br>
\hline \& 72.63 \& 56.42 \& 71.31 <br>
\hline \multirow[t]{3}{*}{$>=50$} \& 793 \& 112 \& 905 <br>
\hline \& 87.62 \& 12.38 \& 100.00 <br>
\hline \& 27.37 \& 43.58 \& 28.69 <br>
\hline \multirow[t]{3}{*}{Total} \& 2,897 \& 257 \& 3,154 <br>
\hline \& 91.85 \& 8.15 \& 100.00 <br>
\hline \& 100.00 \& 100.00 \& 100.00 <br>
\hline
\end{tabular}

| Pearson chi2 $(1)$ | $=30.3033$ | $\mathrm{Pr}=0.000$ |  |
| ---: | :--- | ---: | :--- |
| likelihood-ratio chi2 $(1)$ | $=28.2000$ | $\mathrm{Pr}=0.000$ |  |
| Cramér's $\mathrm{V}=$ | 0.0980 |  |  |
| gamma | $=0.3441$ | ASE $=0.058$ |  |
| Kendall's tau-b | $=0.0980$ | $\mathrm{ASE}=0.020$ |  |
| Fisher's exact | $=$ |  | 0.000 |
| 1-sided Fisher's exact | $=$ |  | 0.000 |

## Stata - Epitab "Tables for epidemiologists"



## Examining Odds Ratio, Risk Ratio and Risk Difference

We are interested in comparing: P (Outcome|Exposure 1) to P (Outcome|Exposure 0 ). When the outcome is binary the probability is the same as the expected value, hence if we let X represent exposure(s) of interest (e.g. different treatments in a clinical trial, exposure to a carcinogen), we compare $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=1)=\pi_{1}$ to $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=0)=\pi_{0}$. So $\pi_{1}$ is probability of the event given that $\mathrm{X}=1$ has occurred and $\pi_{0}$ is the probability of the event given that X $=0$ has occurred.

The relative risk (risk ratio) or relative rate (rate or prevalence ratio) is:

$$
\mathrm{RR}=\pi_{1} / \pi_{0}
$$

The risk (or rate or prevalence) difference, or absolute risk reduction is:

$$
\mathrm{RD}=\pi_{1}-\pi_{0}
$$

The odds ratio is:

$$
\mathrm{OR}=\frac{\pi_{1}}{1-\pi_{1}} / \frac{\pi_{0}}{1-\pi_{0}}
$$

## Comparing OR, RR, and RD

This table considers scenarios when $\mathrm{OR}=2$

| $\pi_{0}$ | Odds | $\pi_{1}$ | Odds | OR | RR | RD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .005 | 0.005025126 | 0.009950249 | 0.01005025 | 2 | 1.99 | .00495 |
| .03 | 0.03092784 | 0.05825243 | 0.06185567 | 2 | 1.94 | .0282 |
| .05 | 0.0526 | 0.0952381 | 0.1052 | 2 | 1.90 | .045 |
| .10 | 0.1111 | 0.1818182 | 0.2222 | 2 | 1.82 | .0818 |
| .2 | 0.25 | 0.33 | 0.5 | 2 | 1.65 | .13 |
| .5 | 1 | 0.67 | 2 | 2 | 1.34 | .17 |
| .8 | 4 | 0.89 | 8 | 2 | 1.11 | .09 |
| .9 | 9 | 0.95 | 18 | 2 | 1.06 | .05 |
| .98 | 49 | 0.99 | 98 | 2 | 1.01 | .01 |

NOTE: odds $=\pi /(1-\pi), \pi=$ odds $/($ odds +1$)$

- How does the RR differ from the OR across the different probabilities?
- How does the RD differ from the RR and OR?


## Comparing OR, RR, and RD



Figure 10.2: Absolute benefit as a function of risk of the event in a control subject and the relative effect (odds ratio) of the risk factor. The odds ratios are given for each curve.

From Chaprter 10 of Harrell F (2001) Regression Modeling Strategies With applications to linear models, logistic regression and survival analysis.

## Notes on OR, RR, and RD

- Notice when the risk is small, the risk is well approximated by the odds and hence the relative risk is well approximated by the odds ratio. This is why you will hear the following: "The OR approximates the RR for rare diseases".
- Notice that the risk difference becomes smaller as the rate is smaller, though the relative risk (and odds ratio) can remain large.
- As the risk becomes common (> $10 \%$ ), the OR greatly overestimates the RR.
- RR and RD are arguably more interpretable than OR, nevertheless the odds ratio is ubiquitous in Public Health and Medicine despite the tendency for people to interpret ORs as if they are RRs
- Recent push in medical and public health literature to get researchers to estimate RR and RD (see more push for RD in medical literature with some Guidelines for reporting only allowing RD rather than relative measures) rather than OR. (e.g. Spiegelman, D. und Hertzmark, Easy SAS Calculations for Risk or Prevalence Ratios and Differences, American Journal of Epidemiology, 2005, 162, 199-205.)
- NOTE: If data were collected from a case control study, then we cannot estimate risk (or risk ratios) from the data without some auxiliary information about overall prevalence in the population. But we can still estimate odds and hence odds ratios.


## 2 by n tables

. tabulate agec chd69, all exact row col


| Pearson chi2 $(4)$ | $=46.6534$ | $\mathrm{Pr}=0.000$ |  |
| ---: | :--- | ---: | :--- |
| likelihood-ratio chi2 $(4)$ | $=44.9464$ | $\mathrm{Pr}=0.000$ |  |
| Cramér's $\mathrm{V}=0.1216$ |  |  |  |
| gamma $=0.2896$ | $\mathrm{ASE}=0.045$ |  |  |
| Kendall's tau-b | $=0.1012$ | $\mathrm{ASE}=0.016$ |  |
| Fisher's exact | $=$ |  | 0.000 |

## 2 by n table: test for trend

. tabodds chd69 agec


## Modeling binary outcomes

Since $Y_{i}$ is 0-1 we can model it with a Binomial distribution with parameter $\pi_{i}$.
So we have

$$
Y_{i} \mid X_{i} \sim \operatorname{Bin}\left(1, \pi_{i}\right)
$$

and we can model $\mathrm{E}\left(Y_{i} \mid X_{i}\right)=\pi_{i}$ as a function of predictor variables $X_{i}$ as

$$
\begin{aligned}
\pi_{i} & =\frac{\exp \left(X_{i} \beta\right)}{1+\exp \left(X_{i} \beta\right)} \quad \text { (logistic function) } \\
\pi_{i} & =\exp \left(X_{i} \boldsymbol{\beta}\right) \\
\pi_{i} & =X_{i} \boldsymbol{\beta}
\end{aligned}
$$

## Modeling binary outcomes

Since $\pi_{i}$ is a probability, we require $0 \leq \pi_{i} \leq 1$. Hence, there are restrictions on the acceptable values of $X_{i} \beta$ (except for the logistic function)


## Generalized linear modeling (GLM): Link functions

Given $Y_{i} \mid X_{i} \sim \operatorname{Bin}\left(1, \pi_{i}\right)$ with $\mathrm{E}\left(Y_{i} \mid X_{i}\right)=\pi_{i}=\mathrm{g}(\mathrm{X} \beta)$, we want to rewrite the relationship between $\pi$ and $X \beta$ so that $X \beta$ is on a side by itself equal to a nonlinear function of $\pi$. This inverse function is called the link function in generalized linear modeling.

- The link function for the logistic is: $\log \left(\frac{\pi}{1-\pi}\right)=X \beta$

We call $\log \left(\frac{\pi}{1-\pi}\right)$ the "logit link" and can write $\operatorname{logit}(\pi)=X \beta$.

- The link function for the exponential is: $\log (\pi)=\mathrm{X} \beta$ which we simply call the "log link".
- The link function for the $\pi=\mathrm{X} \beta$ is: $\mathrm{I}(\pi)=\mathrm{X} \beta$ which we call the "identity link" which means the relationship is already linear and we don't have to take any nonlinear function to make it linear.

Exponentiating coefficients in the Binomial-logistic model results in an Odds Ratio

Consider what happens when X is increased by 1 unit...

$$
\begin{array}{r}
\log \left(\frac{P(Y=1 \mid X)}{P(Y=0 \mid X)}\right)=X \beta \\
\log \left(\frac{P(Y=1 \mid X+1)}{P(Y=0 \mid X+1)}\right)=(X+1) \beta
\end{array}
$$

So taking the difference we have,

$$
\begin{array}{r}
\beta=\log \left(\frac{P(Y=1 \mid X+1)}{P(Y=0 \mid X+1)}\right)-\log \left(\frac{P(Y=1 \mid X)}{P(Y=0 \mid X)}\right) \\
=\log \left(\frac{\operatorname{odds}(Y \mid X+1)}{\operatorname{odds}(Y \mid X)}\right) \\
=\log (\text { odds ratio of Y given one unit increase in } \mathrm{X})
\end{array}
$$

Hence, if we take $\exp (\beta)$ we have odds ratio of Y given one unit increase in X .

Exponentiating coefficients in the Binomial-log model results in a Relative Risk

Consider what happens when X is increased by 1 unit...

$$
\begin{array}{r}
\log (P(Y=1 \mid X))=X \beta \\
\log (P(Y=1 \mid X+1))=(X+1) \beta
\end{array}
$$

So taking the difference we have,

$$
\begin{aligned}
\beta & =\log (P(Y=1 \mid X+1))-\log (P(Y=1 \mid X)) \\
& =\log \left(\frac{P(Y=1 \mid X+1)}{P(Y=1 \mid X)}\right) \\
& =\log (\text { relative risk of } \mathrm{Y} \text { given one unit increase in } \mathrm{X})
\end{aligned}
$$

Hence, if we take $\exp (\beta)$ we have relative risk of $Y$ given one unit increase in X.

Coefficients in the Binomial-identity model result in Risk Differences

Consider what happens when X is increased by 1 unit...

$$
\begin{array}{r}
P(Y=1 \mid X)=X \beta \\
P(Y=1 \mid X+1)=(X+1) \beta
\end{array}
$$

So taking the difference we have,

$$
\begin{aligned}
\beta & =P(Y=1 \mid X+1)-P(Y=1 \mid X) \\
& =\text { Difference in risk given a one unit increase in } \mathrm{X}
\end{aligned}
$$

## Binomial modeling in SAS

```
******* Logistic Binomial regression;
proc genmod data = wcgs descending;
    class bage_50 (ref = "0")/param = ref;
    model chd69 = bage_50/ dist = binomial link = logit type3;
    estimate "log(OR) age>=50 vs. <50" bage_50 1/exp;
run;
proc logistic data = wcgs descending;
    class bage_50 (ref = "0")/param = ref;
    model chd69 = bage_50;
run;
******* Log binomial regression;
proc genmod data = wcgs descending;
    class bage_50 (ref = "0")/param = ref;
    model chd69 = bage_50/ dist = binomial link = log type3;
    estimate "log(RR) age>=50 vs. <50" bage_50 1/exp;
run;
******** Linear Binomial regression;
proc genmod data = wcgs descending;
    class bage_50 (ref = "0")/param = ref;
    model chd69 = bage_50/ dist = binomial link = identity type3;
    estimate "RD age>=50 vs. <50" bage_50 1;
run;
```


## Details about syntax for Binomial modeling in SAS

A common feature of GENMOD and LOGISTIC is the descending option on the PROC statement, which means for response data coded $0 / 1$, SAS will analyze the probability of a response of ' 1 ' rather than the default level of ' 0 '. This option is an essential feature to recognize when interpreting the sign of estimated coefficients because interpretation would be completely opposite.

Potential confusion between the two procedures can arise from the CLASS statement. The defaults in the two procedures is different. To make them the same, we use the /param = ref option which allows us to specify whichever category we want to be the reference. By default Genmod would use the last category and fix to 0 , by default Logistic would use a coding that makes the sum of the coefficients across categories $=0$, which can lead to confusion when testing individual parameters.

## Binomial modeling in Stata: logit link

| Generalized linear models | No. of obs |  | 3154 |
| :---: | :---: | :---: | :---: |
| Optimization : ML | Residual df |  | 3152 |
|  | Scale parameter |  | 1 |
| Deviance $=1753.043713$ | (1/df) Deviance |  | . 5561687 |
| Pearson $\quad=\quad 3154$ | (1/df) Pearson |  | 1.000635 |
| Variance function: $V(u)=u^{*}(1-u)$ | [Bernoulli] |  |  |
| Link function : $\mathrm{g}(\mathrm{u})=\ln (\mathrm{u} /(1-\mathrm{u})$ ) | [Logit] |  |  |
|  | AIC | = | . 5570842 |
| Log likelihood = -876.5218566 | BIC |  | -23640.81 |


| chd69 | OIM |  |  | $\mathrm{P}>\|\mathrm{z}\|$ |  | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coef. | Std. Err. | z |  | [95\% Conf |  |
| bage_50 | . 7175375 | . 1325196 | 5.41 | 0.000 | . 4578039 | . 9772711 |
| _cons | -2.674862 | . 0858594 | -31.15 | 0.000 | -2.843143 | -2.50658 |



## Binomial modeling in Stata: log link



Note: match the estimated RR with previous output of 2 by 2 table.

## Binomial modeling in Stata: identity link

| Generalized linear models | No. of obs | $=$ | 3154 |
| :---: | :---: | :---: | :---: |
| Optimization : ML | Residual df |  | 3152 |
|  | Scale parameter |  | 1 |
| Deviance $=1753.043713$ | (1/df) Deviance |  | . 5561687 |
| Pearson $=3154$ | (1/df) Pearson |  | 1.000635 |
| Variance function: $\mathrm{V}(\mathrm{u})=u^{*}(1-u)$ | [Bernoulli] |  |  |
| Link function : $\mathrm{g}(\mathrm{u})=\mathrm{u}$ | [Identity] |  |  |
|  | AIC | = | . 5570842 |
| Log likelihood = -876.5218566 | BIC | = | -23640.81 |



Coefficients are the risk differences.

Note: match the estimated RD with previous output of 2 by 2 table.

## Predicted probabilities

- glm chd69 i.bage_50, family(binomial) link(logit)
. margins bage_50

| Delta-method |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bage_50 \| |  |  |  |  |  |  |
| 0 | . 0644731 | . 0051787 | 12.45 | 0.000 | . 054323 | . 0746232 |
| 1 \| | . 1237569 | . 0109464 | 11.31 | 0.000 | . 1023023 | . 1452115 |
| . glm chd69 i.bage_50, family(binomial) link(log) <br> . margins bage_50 |  |  |  |  |  |  |
|  | Margin | lta-metho Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Con | Interval] |
| bage_50 \| |  |  |  |  |  |  |
| 0 | . 0644731 | . 0051787 | 12.45 | 0.000 | . 054323 | . 0746232 |
| 1 \| | . 1237569 | . 0109464 | 11.31 | 0.000 | . 1023023 | . 1452115 |
| . glm chd69 i.bage_50, family(binomial) link(identity) <br> . margins bage_50 |  |  |  |  |  |  |
| \| |  | lta-metho |  |  |  |  |
| \| | Margin | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Con | Interval] |
| bage_50 \| |  |  |  |  |  |  |
| 0 | . 0644731 | . 0051787 | 12.45 | 0.000 | . 054323 | . 0746232 |
| 1 \| | . 1237569 | . 0109464 | 11.31 | 0.000 | . 1023023 | . 1452115 |

## Categorical predictor with $>2$ groups



| OIM |  |  |  |  |  | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| agec । |  |  |  |  |  |  |
| 1 | . 8768215 | . 2025406 | -0.57 | 0.569 | . 5575563 | 1.378903 |
| 2 | 1.70019 | . 3800504 | 2.37 | 0.018 | 1.097046 | 2.634935 |
| 3 | 2.318679 | . 5274963 | 3.70 | 0.000 | 1.484545 | 3.621494 |
| 4 | 2.886314 | . 7462298 | 4.10 | 0.000 | 1.738895 | 4.790864 |
| \| |  |  |  |  |  |  |
| _cons | . 0605469 | . 0111989 | -15.16 | 0.000 | . 0421358 | . 0870026 |

Note: match the estimated OR with previous output of 2 by $n$ table.
Note: Try to avoid choosing the smallest group as the reference group (inflate SE)

## Aggregated binary outcomes: grouped data

With only categorical predictors it is possible to aggregate the data across all possible combination of categories and input and analyze the data in aggregated form $-\operatorname{Bin}\left(n_{k}, \pi_{k}\right)$.
Recall that the sum of n independent Bernoulli events from a trial with same probability $\pi$ leads to the $\operatorname{Binomial}(n, \pi)$ distribution. That is, if $Y_{i} \sim \operatorname{Bin}\left(1, \pi_{i}\right)$ where $\pi_{i}=\pi_{k}$ for all $i$ in some group $k$ of size $n_{k}$, then $\sum_{i=1}^{n_{k}} Y_{i} \sim \operatorname{Bin}\left(n_{k}, \pi_{i}\right)$.
Data in aggregated Binomial form can be modeled in both Proc Logistic and Proc Genmod using the events/trials syntax in the model statement.
SAS:

```
data aggregate;
    input agegrp $ total totlechd;
    cards;
    <50 2249 145
    >=50 905 112
;
proc genmod data = aggregate;
    class agegrp(ref = "<50")/param = ref;;
    model totlechd / total = agegrp / dist = binomial link = logit type3;
    estimate "lnOR CG vs. SG" agegrp 1/exp;
run;
```

Stata:
blogit totalchd total agegrp, or

## Categorical/Continuous predictors

With categorical predictors and without any adjustment for other variables, model fits (maximized log-likelihood \& predicted probabilities) are the same across 3 different link functions since the form does not really come into the estimation (each category is its own dummy variable and hence can be perfectly fit by any of the 3 functions). Basically, with a categorical predictor and a dichotomous outcome, analysis mimic that for 2-way tables.

With a continuous predictor, the functional form matters and the different links will result in different fits to the data. A continuous predictor is assumed to be linearly related to the link function of the probability (for the identity link), but this means it is nonlinearly related to the probability by the logistic function (for the logit link) or the exponential function (for the log link).

## Controlling for other variables: behavior pattern

The WCGS study measured a number of potential predictors of coronary heart disease, including total serum cholesterol, diastolic and systolic blood pressure, smoking, age, body size, and behavior pattern. Suppose we want to control for potential confounding effect of behavior pattern ("A" vs "B").


| Statistics for Table of dibpat by bage_50 |  |  |  |
| :--- | ---: | ---: | ---: |
| Statistic | DF | Value | Prob |
| Chi-Square | 1 | 27.0485 | $<.0001$ |
| Likelihood Ratio Chi-Square | 1 | 27.1342 | $<.0001$ |
| Continuity Adj. Chi-Square | 1 | 26.6406 | $<.0001$ |
| Mantel-Haenszel Chi-Square | 1 | 27.0399 | $<.0001$ |
| Phi Coefficient |  | 0.0926 |  |
| Contingency Coefficient |  | 0.0922 |  |
| Cramer's V |  | 0.0926 |  |

## Behavior pattern vs. CHD

dibpat chd69

| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| :---: | :---: | :---: | :---: |
| 0 | 1486 | 79 | 1565 |
|  | 47.11 | 2.50 | 49.62 |
|  | 94.95 | 5.05 |  |
|  | 51.29 | 30.74 |  |
| 1 | 1411 | 178 | 1589 |
|  | 44.74 | 5.64 | 50.38 |
|  | 88.80 | 11.20 |  |
|  | 48.71 | 69.26 |  |
| Total | 2897 | 257 | 3154 |
|  | 91.85 | 8.15 | 100.00 |

Statistics for Table of dibpat by chd69

| Statistic | DF | Value | Prob |
| :--- | ---: | ---: | ---: |
| Chi-Square | 1 | 39.8975 | $<.0001$ |
| Likelihood Ratio Chi-Square | 1 | 40.8995 | $<.0001$ |
| Continuity Adj. Chi-Square | 1 | 39.0795 | $<.0001$ |
| Mantel-Haenszel Chi-Square | 1 | 39.8849 | $<.0001$ |
| Phi Coefficient |  | 0.1125 |  |
| Contingency Coefficient |  | 0.1118 |  |
| Cramer's V |  | 0.1125 |  |

## Stratification by behavior pattern

| bage_50 | chd69 |  |  |
| :---: | :---: | :---: | :---: |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | 1132 | 50 | 1182 |
|  | 72.33 | 3.19 | 75.53 |
|  | 95.77 | 4.23 |  |
|  | 76.18 | 63.29 |  |
| 1 | 354 | 29 | 383 |
|  | 22.62 | 1.85 | 24.47 |
|  | 92.43 | 7.57 |  |
|  | 23.82 | 36.71 |  |
| Total | 1486 | 79 | 1565 |
|  | 94.95 | 5.05 | 100.00 |
| Chi-Square | $p-$ value $=0.0094$ |  |  |



## Multiple predictors model: GLM

```
. glm chd69 bage_50 dibpat, family(binomial) link(logit) eform
Generalized linear models No. of obs = 3154
Optimization : ML Residual df = 3151
```



| OIM |  |  |  |  |  | nterval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bage 50 | 1.909471 | . 2553643 | 4.84 | 0.000 | 1.469187 | 2.481699 |
| dibpat | 2.249161 | . 3172902 | 5.75 | 0.000 | 1.705851 | 2.965513 |
| _cons | . 0437069 | . 0054894 | -24.92 | 0.000 | . 0341698 | . 0559058 |

What is the interpretation of the estimated $\mathrm{OR}=1.909$ ?
How does the estimated OR change compared to the single predictor model?
Try to explain the direction of the change by the confounding/mediation effect.

## Multiple predictors model: logistic regression

| Logistic regression | Number of obs | $=$ | 3154 |
| :--- | :--- | :--- | :--- |
|  | LR chi2 2 ( $)$ | $=$ | 63.52 |
|  | Prob $>$ chi2 | $=$ | 0.0000 |
| Log likelihood $=-858.86171$ | Pseudo R2 | $=$ | 0.0357 |

chd69 | Odds Ratio Std. Err. $\quad$ P $>|z| \quad$ [95\% Conf. Interval]

| bage_50 \| | 1.909472 | .2553643 | 4.84 | 0.000 | 1.469188 | 2.481699 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| dibpat \| | 2.24916 | .3172901 | 5.75 | 0.000 | 1.705851 | 2.965513 |
| _cons \| | .0437069 | .0054894 | -24.92 | 0.000 | .0341698 | .0559058 |

NOTE these results are identical to using the GLM function on the previous page. Similar to the difference in SAS between using PROC LOGISTIC versus PROC GENMOD.

## Multiple predictors model: log link

| Generalized linear models | No. of obs | $=$ | 3154 |
| :---: | :---: | :---: | :---: |
| Optimization : ML | Residual df | = | 3151 |
|  | Scale parameter | $=$ | 1 |
| Deviance $=1717.702377$ | (1/df) Deviance | = | . 5451293 |
| Pearson $=3153.822736$ | (1/df) Pearson | = | 1.000896 |
| Variance function: V(u) = u* (1-u) | [Bernoulli] |  |  |
| Link function : $\mathrm{g}(\mathrm{u})=\ln (\mathrm{u})$ | [Log] |  |  |
|  | AIC | = | . 5465131 |
| Log likelihood = -858.8511883 | BIC | = | -23668.1 |



What is the adjusted RR of having CHD for a person in the older age group?
How does the OR compare to the RR here?

## Multiple predictors model: identity link

| Generalized linear models | No. of obs | = | 3154 |
| :---: | :---: | :---: | :---: |
| Optimization : ML | Residual df | = | 3151 |
|  | Scale parameter | $=$ | 1 |
| Deviance $=1720.103889$ | (1/df) Deviance | = | . 5458914 |
| Pearson $=3154$ | (1/df) Pearson | = | 1.000952 |
| Variance function: $\mathrm{V}(\mathrm{u})=\mathrm{u}^{*}(1-\mathrm{u})$ | [Bernoulli] |  |  |
| Link function : $\mathrm{g}(\mathrm{u})=\mathrm{u}$ | [Identity] |  |  |
|  | AIC | $=$ | . 5472745 |
| Log likelihood = -860.0519445 | BIC | = | -23665.7 |


| chd69 | OIM |  |  | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coef. | Std. Err. | z |  |  |  |
| bage_50 | . 0494105 | . 012024 | 4.11 | 0.000 | . 0258439 | . 0729771 |
| dibpat | . 0540685 | . 0096072 | 5.63 | 0.000 | . 0352387 | . 0728984 |
| cons | . 0401764 | . 0054209 | 7.41 | 0.000 | . 0295516 | . 0508013 |

Coefficients are the risk differences.
What is the adjusted RD for having CHD?
NOTICE that the log-likelihoods are not exactly the same across link functions. Choice of link function can matter for model fit.

## Predicted probabilities



After class: show how to calculate the predicted probability of CHD if a person was in the <50 age group and was with behavior patter "B" using the logit, $\log$ and identity models.

## Predicted probabilities

Here are the predicted probabilities of CHD based on the fit of the 3 different binomial regression models with main effects for age group and behavior pattern: (verify your calculations)

| dibpat | bage_50 | raw | logit | log | identity |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | $<50$ | .042301 | .0418766 | .0423275 | .0401764 |
| 1 | $<50$ | .089035 | .0895051 | .0890069 | .094245 |
| 0 | $>=50$ | .075718 | .0770284 | .0756396 | .089587 |
| 1 | $>=50$ | .159004 | .1580424 | .1590562 | .1436555 |

Using the numbers above, show how you can get the estimated ORs, RRs, and RDs in the logit, log, and identity model results, respectively.

## High birthweight example - a continuous predictor

How is a mother's gestational weight gain and baseline weight status related to the probability of the baby being born with a birthweight considered clinically in the High range (i.e. $>4000$ grams or $>8.8$ pounds).


## High birthweight versus mother's baseline weight status

4 categories of baseline weight status: 1 underweight, 2 normal weight, 3 overweight, 4 obese.


## Hight birthweight example: logistic regression (1)

```
proc logistic data = birthwgt2 descending;
    class c_baseline_bmi (ref = "2") /param = ref;
run;
\begin{tabular}{rrr} 
Response Profile & \\
Ordered & Total \\
Value & hibwt & Frequency \\
1 & 1 & 260 \\
2 & 0 & 1740
\end{tabular}
```

    model hibwt = totalweightgain c_baseline_bmi/expb;
    Probability modeled is hibwt=1.
Model Fit Statistics

|  |  | Intercept |
| :--- | ---: | ---: |
|  | Intercept | and |
| Only | Covariates |  |
| Criterion | 1547.547 | 1440.462 |
| AIC | 1553.148 | 1468.467 |
| SC | 1545.547 | 1430.462 |


| Testing Global Null Hypothesis: BETA=0 |  |  |  |
| :--- | ---: | ---: | ---: |
| Test | Chi-Square | DF | Pr $>$ ChiSq |
| Likelihood Ratio | 115.0847 | 4 | $<.0001$ |
| Score | 111.9801 | 4 | $<.0001$ |
| Wald | 97.3858 | 4 | $<.0001$ |

## Hight birthweight example: logistic regression (2)

Type 3 Analysis of Effects

|  | Wald |  |  |
| :--- | ---: | ---: | ---: |
| Effect | DF | Chi-Square | Pr $>$ ChiSq |
| totalweightgain | 1 | 59.3112 | $<.0001$ |
| c_baseline_bmi | 3 | 61.4573 | $<.0001$ |


|  |  |  | Standard | Wald |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Parameter | DF | Estimate | Error | Chi-Square | Pr $>$ ChiSq | Exp(Est) |
| Intercept | 1 | -3.5707 | 0.2190 | 265.8230 | $<.0001$ | 0.028 |
| totalweightgain | 1 | 0.0406 | 0.00527 | 59.3112 | $<.0001$ | 1.041 |
| c_baseline_bmi | 1 | 1 | -1.7757 | 0.5944 | 8.9254 | 0.0028 |
| c_baseline_bmi | 3 | 1 | 0.7550 | 0.1886 | 16.0255 | $<.0001$ |
| c_baseline_bmi | 4 | 1 | 1.0724 | 0.1613 | 44.1827 | $<.0001$ |


| Effect |  | Estimate | Confidence Limits |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| totalweightgain |  | 1.041 | 1.031 | 1.052 |  |
| c_baseline_bmi | 1 vs 2 | 0.169 | 0.053 | 0.543 |  |
| c_baseline_bmi | 3 | vs 2 | 2.128 | 1.470 | 3.079 |
| c_baseline_bmi | 4 | vs 2 | 2.922 | 2.130 | 4.009 |

- How many women had Hi birthweight babies?
- What is the test statistic value associated with the Hypothesis that there are No differences across baseline bmi categories?
- What is the OR associated with a 10 pound higher gain in totalweightgain?
- How do we interpret the last OR estimate $=2.922$ ? Is it stat sig?


## Fitted values on the link scale and the probability scale

- $\widehat{\operatorname{logit}(\pi)}=\widehat{\log \frac{\pi_{i}}{1-\pi_{i}}}=\mathbf{X}_{i} \hat{\boldsymbol{\beta}} \leftarrow$ on the logit scale
- $\hat{\pi}_{i}=\operatorname{logit}^{-1}\left(\mathbf{X}_{i} \hat{\boldsymbol{\beta}}\right)=\frac{\exp \left(X_{i} \hat{\boldsymbol{\beta}}\right)}{1+\exp \left(X_{i} \hat{\boldsymbol{\beta}}\right)} \leftarrow$ probability scale

Recall the high birthweight example. We regressed high birthweight on both mother's total weight gain AND mother's baseline BMI category. $\operatorname{logit}(\pi)=-3.57+0.0405 *$ totwtgain $-1.776 *$ underwt $+0.755 *$ overwt $+1.072 *$ obese



Compare the differences between what a change in the predictors means on the two different scales.

## Interpreting the intercept

$\operatorname{logit}(\pi)=-3.57+0.0405 *$ totwtgain $-1.776 *$ underwt $+0.755 *$ overwt $+1.072 *$ obese What does the intercept represent? Back transform it.

## Intercept Term in Case-Control Study

- Case-control studies collect a fixed number of cases and controls, whose ratio is typically different from population disease prevalence.
- Let $Z$ indicate whether a subject is sampled or not. The probability of sampling a case $\rho_{1}=P(Z=1 \mid Y=1)$, and the probability of sampling a control $\rho_{0}=P(Z=1 \mid Y=0)$.

$$
P(Y=1 \mid z=1, x)=\frac{P(Z=1 \mid y=1, x) P(Y=1 \mid x)}{\sum_{j=0}^{1} P(Z=1 \mid y=j, x) P(Y=j \mid x)} \quad \text { (Bayes' theorem) }
$$

- Assume $P(Y=1 \mid x)$ follows the logistic model, and the sampling probabilities does not depend on $x$. Then,

$$
P(Y=1 \mid z=1, x)=\frac{\rho_{1} \exp (\alpha+\beta x)}{\rho_{0}+\rho_{1} \exp (\alpha+\beta x)}
$$

and

$$
\begin{aligned}
\operatorname{logit}[P(Y=1 \mid z=1, x)] & =\left[\alpha+\log \left(\rho_{1} / \rho_{0}\right)\right]+\beta x \\
& =\alpha^{*}+\beta x
\end{aligned}
$$

## Hight birthweight example: Stata output

. logistic hibwt totalweightgain ib2.c_baseline_bmi /* "ib2." tells Stata that bmi==2 is the reference(base) level */

| Logistic regression | Number of obs | $=$ | 2000 |
| :--- | :--- | :--- | :--- |
|  | LR chi2(4) | $=$ | 115.08 |
| Log likelihood $=-715.23104$ | Prob $>\operatorname{chi2}$ | $=$ | 0.0000 |
|  | Pseudo R2 | $=$ | 0.0745 |


old version:

- char c_baseline_bmi[omit] 2
. xi: logistic hibwt totalweightgain i.c_baseline_bmi


## Estimation by Maximum Likelihood

- Given independent data $Y=Y_{1}, \ldots Y_{n}$ and $X=\mathbf{X}_{1} \ldots \mathbf{X}_{n}$, where $Y$ is the outcome of interest and $\mathbf{X}$ are predictors, and given a parametric model for $Y_{i} \mid X_{i}$, we can form the likelihood function.
- Generally we can write the model for $Y_{i} \mid X_{i}$ as $Y_{i} \mid X_{i} \sim \operatorname{Distr}\left(\boldsymbol{\Theta}, X_{i}\right)$ where $\boldsymbol{\Theta}$ represents a set of unknown parameters and Dist represents some specific distribution family, e.g. normal, binomial, Poisson, gamma.
- The likelihood is the joint distribution of the observations viewed as a function of the parameters,

$$
\begin{gathered}
\text { Likelihood } L(\boldsymbol{\Theta} \mid Y ; X)=\prod_{i=1}^{n} f\left(Y_{i} \mid X_{i} ; \boldsymbol{\Theta}\right) \\
\log \text { Likelihood } \ell(\boldsymbol{\Theta} \mid Y ; X)=\sum_{i=1}^{n} f\left(Y_{i} \mid X_{i} ; \boldsymbol{\Theta}\right)
\end{gathered}
$$

- The goal is to find $\Theta$ which maximizes this (log)likelihood function since intuitively that value would be the value of the parametric distribution most likely to have been the one that generated the data.


## Maximizing the likelihood

- This goal of maximizing the likelihood is accomplished using calculus which provides tools for maximizing functions. The derivative of the log likelihood is taken with respect to the parameter vector $\Theta$ and set equal to 0 . The derivative of the log likelihood is called the score function.
- The maximum likelihood estimates are found by solving the score function which will yield the values that maximize the likelihood assuming the likelihood is unimodal. In general this solution must be found numerically (no closed form).
- Problems can occur when likelihood function is multimodal (only find local maximum rather than global maximum) or when the maximum is found along the boundary of the parameter space.
- We use the hat notation, $\widehat{\Theta}$, to indicate the MLEs of $\Theta$.
- The second derivative of the log likelihood is called the information and is used in creating standard errors.


## The likelihood for logistic regression

Given the model

$$
\begin{gathered}
Y_{i} \mid X_{i} \sim \operatorname{Bin}\left(1, \pi_{i}\right) \\
\pi_{i}=\frac{\exp \left(X_{i} \boldsymbol{\beta}\right)}{1+\exp \left(X_{i} \boldsymbol{\beta}\right)}
\end{gathered}
$$

and given n independent observations $\left(Y_{i}, \mathbf{X}_{i}\right)$

$$
\begin{aligned}
L(\boldsymbol{\beta} \mid Y, X) & =\prod_{i=1}^{n} \pi_{i}^{Y_{i}}\left(1-\pi_{i}\right)^{1-Y_{i}} \\
& =\prod_{i=1}^{n}{\frac{\exp \left(X_{i} \boldsymbol{\beta}\right)^{Y_{i}}}{1+\exp \left(X_{i} \boldsymbol{\beta}\right)} \frac{1}{1+\exp \left(X_{i} \boldsymbol{\beta}\right)}}^{1-Y_{i}} \\
\ell(\boldsymbol{\beta} \mid Y, X) & =\sum_{i=1}^{n} Y_{i} \log \left(\frac{\exp \left(X_{i} \boldsymbol{\beta}\right)}{1+\exp \left(X_{i} \boldsymbol{\beta}\right)}\right)+\left(1-Y_{i}\right) \log \left(\frac{1}{1+\exp \left(X_{i} \boldsymbol{\beta}\right)}\right)
\end{aligned}
$$

Take derivative of this function w.r.t $\boldsymbol{\beta}$ set equal to zero and solve in order to obtain MLE's for $\boldsymbol{\beta}$, ie $\hat{\boldsymbol{\beta}}$.

## Hypothesis testing from maximum likelihood theory

Given some hypothesis: $H_{0}: \Theta=\Theta_{0}$

- Likelihood ratio test - ratio of the likelihood at the hypothesized parameter value (under the null) to the likelihood of the data at the MLEs. Typically the likelihood ratio is defined as -2 time log likelihood ratio, i.e.

$$
\begin{aligned}
L R & =-2 \log \frac{L_{\boldsymbol{\Theta}_{0}}}{L_{\hat{\boldsymbol{\Theta}}}} \\
& =-2 \ell_{\boldsymbol{\Theta}_{0}}+2 \ell_{\hat{\boldsymbol{\Theta}}}
\end{aligned}
$$

Compare this value to a Chi-square distribution with d.f. equal to the number of parameters being constrained.

- Wald Test - generalization of the Z or t statistics. It is a function of the difference between the MLE and the $\boldsymbol{\Theta}_{0}$ divided by some estimate of the standard error of the MLE.

$$
W=\frac{\hat{\Theta}-\Theta_{0}}{\text { s.e. }(\hat{\Theta})}
$$

- Score Test - measures how far away from zero the score function is when evaluated at the $H_{0}$. Typically it is standardized by the information.


## High birthweight example - Overall Model tests

The value of the Model Fit Statistics are only meaningful when they are compared across models. By default SAS will compare the model with no predictors (Intercept only) to the full model you have specified (Intercept and Covariates). Here the model has totalwtgain (1 d.f.) and baseline BMI status (3 d.f).

Model Fit Statistics

|  |  | Intercept |
| :--- | ---: | ---: |
|  | Intercept | and |
| Only | Covariates |  |
| Criterion | 1547.547 | 1440.462 |
| AIC | 1553.148 | 1468.467 |
| SC | 1545.547 | 1430.462 |


| Testing Global Null Hypothesis: BETA=0 |  |  |  |
| :--- | ---: | ---: | ---: |
| Test | Chi-Square | DF | Pr $>$ ChiSq |
| Likelihood Ratio | 115.0847 | 4 | $<.0001$ |
| Score | 111.9801 | 4 | $<.0001$ |
| Wald | 97.3858 | 4 | $<.0001$ |

*. 1545.547-1430.462 = 115.085
The tests of global null hypothesis are like the overall model F-test in ANOVA

## Confidence intervals - Wald or likelihood ratio based

- Wald tests are computationally faster than likelihood ratio test
- SAS and Stata create Wald confidence intervals by default. Estimate +1.96 * S.E.
- Adding the option CLodds $=$ PL to the model statement in SAS will provide the "profile likelihood confidence intervals". These confidence intervals based on the likelihood ratio test
- Hauck and Donner (1977) Wald's test as applied to hypotheses in logit analysis. Journal of the American Statistical Association, 72:851-863 notice that the Wald CI can be too large especially when there are strong effects.
- LR confidence intervals considered better. With larger samples they will be very similarly (asymptotically the same).


## Problem of Separation in Logistic Regression

- An identifiability problem that can arise in logistic regression, called separation, occurs when a predictor or a combination of predictors are perfectly aligned with the outcome such that $\mathrm{y}=0$ for ALL values of that predictor beyond some point and $\mathrm{y}=1$ for ALL values of that predictor less than some point.
- Often occurs in small or sparse samples with highly predictive covariates.
- Simples case is in the analysis of a $2 \times 2$ table with one zero cell count.
- For a continuous predictor, separation can be demonstrated by:

- For a categorical predictor separation means that in some category (or with multiple predictors, in some combination of categories) all individuals in that category either have a 1 or 0 .
- Leads to non-convergence of the likelihood and/or infinite parameter estimates.


## Solutions to the problem of Separation

## Classical solution

Drop the predictor or somehow aggregate levels. Leave problematic predictors in but only report results for predictors without separation problem.

## Modern solution

See the website http://www.meduniwien.ac.at/msi/biometrie/programme/fl/ "Logistic regression using Firth's bias reduction: a solution to the problem of separation in logistic regression". Heinze and Ploner, 2004 put together a SAS MACRO (\%fl) and also an R package (logistf()) that uses a penalized maximum likelihood method to obtain estimates. In Stata, install user-written command -firthlogit-.

## Summarizing predictive ability in logistic regression

- An intuitive measure is the error rate - the proportion of cases for which the prediction of $\hat{y}_{i}$ is the same as $y_{i}$. Depends on the cutoff value chosen to define "positive" prediction.
- A natural choice is to take

$$
\left\{\begin{array}{l}
\hat{y}_{i}=1 \text { if } \hat{\pi}_{i} \geq \hat{p}  \tag{1}\\
\hat{y}_{i}=0 \text { if } \hat{\pi}_{i}<\hat{p}
\end{array}\right.
$$

where $\hat{p}$ is the overall proportion of 1s in the sample. That is, $\hat{p}=\bar{Y}$.

- Comparing $\hat{y}_{i}$ to $y_{i}$ yields a $2 \times 2$ table. The error rate is the proportion of observations on the off-diagonal
- To get this in SAS, use the ctable option after the model statement, can get error rate for any cutoff value
- To get this in STATA, can use the postestimation option - estat class, cut ( ) and give the cutoff value you want inside the parentheses of the cut command.


## Classification table: Stata output

| Logistic model for hibwt |  |  |
| :---: | :---: | :---: |
| ----- True |  |  |
| Classified \| D | ~D | Total |
| 89 | 239 | 328 |
| 171 | 1501 | 1672 |
| Total \| 260 | 1740 | 2000 |
| Classified + if predicted $\operatorname{Pr}(\mathrm{D})$ >= . 2 |  |  |
| True D defined as hibwt ! $=0$ |  |  |
| Sensitivity | $\operatorname{Pr}(+\mid$ D $)$ | 34.23\% |
| Specificity | $\operatorname{Pr}(-\mid \sim D)$ | 86.26\% |
| Positive predictive value | $\operatorname{Pr}(\mathrm{D} \mid+)$ | 27.13\% |
| Negative predictive value | $\operatorname{Pr}(\sim \mathrm{D} \mid-)$ | 89.77\% |
| False + rate for true ~D | $\operatorname{Pr}(+\mid \sim D)$ | 13.74\% |
| False - rate for true D | $\operatorname{Pr}(-\mid$ D $)$ | 65.77\% |
| False + rate for classified + | $\operatorname{Pr}(\sim \mathrm{D} \mid+)$ | 72.87\% |
| False - rate for classified | $\operatorname{Pr}(\mathrm{D} \mid-)$ | 10.23\% |
| Correctly classified |  | 79.50\% |

## Classification table: SAS output

The LOGISTIC Procedure
Classification Table

| Prob | Correct |  | Incorrect |  | Percentages |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Non- |  |  |  | Sensi- | Speci- | False | False |
|  | Event |  | Event |  | Correct |  |  |  |  |
| 0.000 | 260 | 0 | 1740 | 0 | 13.0 | 100.0 | 0.0 | 87.0 |  |
| 0.020 | 259 | 110 | 1630 | 1 | 18.5 | 99.6 | 6.3 | 86.3 | 0.9 |
| 0.040 | 258 | 163 | 1577 | 2 | 21.1 | 99.2 | 9.4 | 85.9 | 1.2 |
| 0.060 | 251 | 311 | 1429 | 9 | 28.1 | 96.5 | 17.9 | 85.1 | 2.8 |
| 0.080 | 239 | 534 | 1206 | 21 | 38.7 | 91.9 | 30.7 | 83.5 | 3.8 |
| 0.100 | 208 | 805 | 935 | 52 | 50.7 | 80.0 | 46.3 | 81.8 | 6.1 |
| 0.120 | 180 | 1020 | 720 | 80 | 60.0 | 69.2 | 58.6 | 80.0 | 7.3 |
| 0.140 | 157 | 1183 | 557 | 103 | 67.0 | 60.4 | 68.0 | 78.0 | 8.0 |
| 0.160 | 130 | 1327 | 413 | 130 | 72.9 | 50.0 | 76.3 | 76.1 | 8.9 |
| 0.180 | 101 | 1421 | 319 | 159 | 76.1 | 38.8 | 81.7 | 76.0 | 10.1 |
| 0.200 | 88 | 1501 | 239 | 172 | 79.5 | 33.8 | 86.3 | 73.1 | 10.3 |

Note: 1. can use pprob=(list) option to specify list of cutoff points, e.g., model hibwt = totalweightgain c_baseline_bmi/ ctable pprob = (.13);
2. SAS uses (approximate) leave-one-observation-out approach to calculate the classification table, which is expected to be a more valid assessment of prediction. Therefore the SAS output might be different from Stata output.

## Classification table: using all samples

```
proc logistic ...; output out=z predicted=fitted_prob; run;
data check; set z;
    yhat = 0;
    if fitted_prob >= . 20 then yhat = 1;
run;
proc freq data = check;
    tables yhat*hibwt;
run;
yhat hibwt
\begin{tabular}{l|r|r|r}
\begin{tabular}{l} 
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & & \\
\hline
\end{tabular}
```


## Classification Table

- Prediction:

$$
\hat{y}=\left\{\begin{array}{ll}
1, & \text { if } \hat{\pi}_{i}>\pi_{0} \\
0, & \text { if } \hat{\pi}_{i} \leq \pi_{0}
\end{array} \quad \text { for some cutoff } \pi_{0}\right.
$$

- Classification Table:


Sensitivity $=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN}) ; \quad$ Specificity $=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})$.

- Receiver Operating Characteristic (ROC) curve: plot of sensitivity against 1 -specificity (i.e., false positive), for possible cutoff $\pi_{0}$.


## Summarizing predictive ability in logistic regression

## Better measures:

- $\mathrm{R}^{2}$ or max-rescaled $\mathrm{R}^{2}$ - function of the likelihood ratio test. Unlike linear regression it is not necessarily the case that more predictors lead to higher $\mathrm{R}^{2}$ values. The maximum possible value of generalized $\mathrm{R}^{2}$ is not 1.0 as it is for linear regression. Max-rescaled $\mathrm{R}^{2}$ divides by this maximum value to fix this so its maximum is 1 . Reference Nagelkerke (1991) Biometrika for this $\mathrm{R}^{2}$ value.
- c index - rank correlation across pairs of observations between the predicted probability and the actual responses. Equivalent to the area under a receiver operating characteristic (ROC) curve. The larger the area under the curve (AUC), the better the predictions. Maximum is 1.0 , and an area of 0.5 implies random predictions. Harrell (2001) (Regression Modeling strategies) gives a guideline of C exceeding 0.80 as implying useful predictability of the model. Output by default in Proc LOGISTIC, Output with logistic postestimation option: lroc in Stata.
- AIC is only useful as a comparative fit index and is a penalized function of the log-likelihood, penalized by the number of parameters in the model when comparing two models, smaller values are better (in SAS).


## Receiver Operating Characteristic (ROC) curve



Area under ROC curve $=0.7031$
Stata:
. lroc
area under ROC curve $=0.7031$
SAS:
Percent Concordant

| 69.9 | Somers' D | 0.406 |  |
| ---: | :--- | :--- | :--- |
| 29.3 | Gamma | 0.410 |  |
| 0.9 | Tau-a | 0.092 |  |
| 452400 | c | $0.703 \quad<-$ area under ROC curve |  |

An annotated explanation of the above values under "Association of Predicted Probabilities" can be found at https://www.ats.ucla.edu/stat/sas/output/SAS_logit_output.htm

## More on ROC curve

1. If this curve was simply a diagonal straight line then the AUC would be .50 meaning the sensitivity and specificity were never larger than simply one minus the other, meaning the prediction was no better than a simple coin flip at fixed probabilities.
2. On the other hand, as the curve bends closer and closer to the upper left hand corner, the AUC goes to 1 indicating perfect prediction (100\% sensitivity and $100 \%$ specificity).

## Linear trends in 0-1 outcomes for categorical predictors

Cochran-Armitage Trend Test: test for LINEAR trend in categorical predictor for $0-1$ outcome data. For simple unadjusted relationship, test is performed on 2 by K table where K is the number of categories and $\mathrm{H}_{a}$ is that $\pi_{1} \leq \pi_{2} \leq \ldots \leq$ $\pi_{K}$ with at least one strict inequality (or visa versa $\geq$ ). In linear probability model:

$$
\pi_{j}=\alpha+\beta s_{j}, \quad j=1, \ldots, K
$$

This is to test for $\mathrm{H}_{0}: \beta=0$.

The test is the same as treating categories as a continuous score with equal spaced increments in a simple logistic regression and using the overall Score test.

Can get this test in SAS Proc Freq using the /trend option or of course you can get it using logistic regression (but it won't be called the "Cochran-Armitage Trend Test" in the output).

## Linear trends in 0-1 outcomes for categorical predictors

```
proc freq;
    tables c_baseline_bmi*hibwt / trend;
run;
```

Statistics for Table of c_baseline_bmi by hibwt
Cochran-Armitage Trend Test

| Statistic $(\mathrm{Z})$ | -6.5035 |
| :--- | ---: |
| One-sided $\mathrm{Pr}<\mathrm{Z}$ | $<.0001$ |
| Two-sided $\mathrm{Pr}>\|\mathrm{Z}\|$ | $<.0001$ |

=================================================================12
proc logistic data = birthwgt2 descending;
model hibwt = c_baseline_bmi;
run;
Testing Global Null Hypothesis: BETA=0

| Test | Chi-Square | DF | Pr $>$ ChiSq |  |
| :--- | ---: | ---: | ---: | :--- |
| Likelihood Ratio | 42.0261 | 1 | $<.0001$ |  |
| Score | 42.2960 | 1 | $<.0001$ | $<--(-6.5035)^{\wedge} 2=42.296$ |
| Wald | 40.9012 | 1 | $<.0001$ |  |

*. In Stata, install - ptrend- command for trend test
. ptrendi $31591 \backslash 958502 \backslash 542573 \backslash 1084744$
Chi2(1) for trend $=\quad 42.296, \operatorname{pr}>$ chi2 $=0.0000$

## Goodness of Fit

The Pearson statistic is:

$$
\sum_{i=1}^{n} \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{v\left(\hat{\mu}_{i}\right)}
$$

$$
\text { where } \hat{\mu}_{i}=E\left(\widehat{Y \mid X}_{i}\right) \text { and } v()=\operatorname{Var}\left(Y \mid X_{i}\right)
$$

The Residual Deviance statistic is:

$$
2[\log \mathrm{~L}(\text { saturated model })-\log \mathrm{L}(\text { the current model })]
$$

These do not work properly for logistic regression except when there are only a few categorical predictors leading to aggregated data with large cell counts. Their validity relies on the assumption of large numbers of observations in binomial cells and both tests show unsatisfactory behaviour with sparse data. In fact with continuous predictors they can be shown to be completely meaningless (since continuous predictors lead to only one observation within every cell - sparse data). These statistics are NOT output by SAS when using Proc Logistic or Proc Genmod when the binomial distribution is specified (although they are output when Poisson distribution is specified). On the other hand, these statistics are output by Stata in the glm output even for binomial distribution.

## Goodness of Fit - Hosmer Lemeshow test

A solution to the problems associated with the Pearson and Residual Deviance for binomial regression comes from the Hosmer Lemeshow test which groups the data before forming a chi-square type statistic.

The Hosmer-Lemeshow Statistic is a measure of lack of fit in a logistic regression model. Hosmer and Lemeshow recommend partitioning the observations into 10 equal sized groups according to their predicted probabilities. The test then computes a chi-square statistic from observed and expected frequencies in each of the 10 quantiles. The null is that the observed frequencies equal the expected frequencies, hence if we do NOT reject the null then we are saying the model is well-fitting, i.e. there is no significant difference between observed and model-predicted values.

In SAS: Get this statistics use the /lackfit option
In STATA: use the postestimation option: lfit, group(10) table

## Goodness of Fit: SAS output

proc logistic data = birthwgt2 descending;
class c_baseline_bmi (ref = "2") /param = ref;
model hibwt = totalweightgain c_baseline_bmi/rsq ctable pprob = (.13) lackfit;
output out=z predicted =fitted_prob;
run;

| Partition for the Hosmer and Lemeshow Testhibwt $=1 \quad$ hibwt $=0$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Group | Total | Observed | Expected | Observed | Expected |
| 1 | 209 | 5 | 4.96 | 204 | 204.04 |
| 2 | 199 | 9 | 11.75 | 190 | 187.25 |
| 3 | 200 | 7 | 15.24 | 193 | 184.76 |
| 4 | 199 | 25 | 17.76 | 174 | 181.24 |
| 5 | 188 | 17 | 19.42 | 171 | 168.58 |
| 6 | 208 | 29 | 24.98 | 179 | 183.02 |
| 7 | 205 | 25 | 29.12 | 180 | 175.88 |
| 8 | 205 | 46 | 34.74 | 159 | 170.26 |
| 9 | 199 | 45 | 42.28 | 154 | 156.72 |
| 10 | 188 | 52 | 59.75 | 136 | 128.25 |

Hosmer and Lemeshow Goodness-of-Fit Test

| Chi-Square | DF | Pr $>$ ChiSq |
| ---: | ---: | ---: |
| 16.5844 | 8 | 0.0347 |

## Goodness of Fit: Stata output

. estat gof, group(10) table
Logistic model for hibwt, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)


Note: SAS and Stata outputs are different because they handle the ties differently.

## Goodness of Fit: interpretation

The Null hypothesis being tested here is that the model matches the data. So finding a $p$-value $<.05$ means we would reject that the model is fitting well. One thing this lack of fit could be indicating is missing covariates...if we add another covariate to the model, age_lmp, we find the following:
Hosmer and Lemeshow Goodness-of-Fit Test

| Chi-Square | DF | $\mathrm{Pr}>$ ChiSq |
| ---: | ---: | ---: |
| 10.8758 | 8 | 0.2088 |

Also, the AIC with age_lmp added is 1430.036 (smaller than the value previously, 1440.462) and, as expected, the c-index is larger 0.716.

Here are the estimated OR with age_lmp added to the model. Notice there is no qualitative differences in terms of the estimates for totalweightgain and c_baseline_bmi.
Odds Ratio Estimates

|  |  |  | Point | $95 \%$ Wald |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Effect |  |  | Estimate |  | Confidence Limits |
| totalweightgain |  |  | 1.044 | 1.033 | 1.055 |
| c_baseline_bmi | 1 | vs 2 | 0.186 | 0.058 | 0.598 |
| c_baseline_bmi | 3 | vs 2 | 2.183 | 1.506 | 3.165 |
| c_baseline_bmi | 4 | vs 2 | 2.939 | 2.139 | 4.038 |
| age_lmp |  |  | 1.047 | 1.021 | 1.075 |

## Goodness of Fit - Hosmer Lemeshow test

NOTE: This test is known to be highly dependent on the actual groupings (the number of groups) and cutoff value used when conducting the test. It also tends to detect small differences when the sample size is large. VGSM reccommend using it cautiously.
NOTE: This test does not have anything to do with whether regression coefficients are significant or whether there is high predictability (e.g. high cstatistic) in the model.
From: "A comparison of goodness-of-fit tests for the logistic regression model" by DS Hosmer, T Hosmer, SL Cessie, and S Lemeshow Statistics in Med., VOL. 16, 965-980 (1997)
In the context of logistic regression the overall goodness of fit is assessing all of the following (not any one specifically)

- The logit transformation is the correct function linking covariates with the conditional mean $\mathrm{X} \beta$
- The linear predictor is correct, i.e. we do not need to include additional variables, transformation of variables, or interactions of variables
- The variance is Bernoulli, i.e. $\operatorname{var}(\mathrm{Y} \mid \mathrm{X})=\pi(\mathrm{X})(1-\pi(\mathrm{X}))$


## Interactions in models with 0-1 outcomes

SAS will not produce odds ratios when you include an interaction in a logistic regression. Stata will still produce odds ratios which are simply the exponential of the estimated coefficients.
-- We cannot interpret the coefficient of one predictor as a log odds ratio without specifying value of the other predictor.
-- Since the predictor X is involved in both main and interaction terms, $\mathrm{OR}(\mathrm{Y} \mid \mathrm{X})=\operatorname{odds}(\mathrm{Y} \mid \mathrm{X}+1) /$ odds $(\mathrm{Y} \mid \mathrm{X})$ needs to be computed using both the estimated coefficients for main and interaction terms.

Complete seminar about how to do this: Statistical Computing Seminars Visualizing Main Effects and Interactions for Binary Logit Models in Stata http://www.ats.ucla.edu/stat/stata/seminars/stata_vibl/default.htm

## Interactions: age group * presence of arcus senilis



Interpretation of the interaction term is similar to that in linear regression model. Instead of difference in the slope, it is now the difference in $\log$ (Odds Ratio). For example,

$$
\begin{aligned}
& \log \left[\frac{P(1,0,0)}{1-P(1,0,0)}\right]-\log \left[\frac{P(0,0,0)}{1-P(0,0,0)}\right]=\beta_{1}=0.648 \\
& \log \left[\frac{P(1,1,1)}{1-P(1,1,1)}\right]-\log \left[\frac{P(0,1,0)}{1-P(0,1,0)}\right]=\beta_{1}+\beta_{3}=0.056
\end{aligned}
$$

## Interactions: component odds ratios

Table 6.13. Component Odds Ratios for Arcus-Age Interaction Model

| Odds ratio | Groups compared |
| :--- | :--- |
| $\exp \left(\beta_{1}\right)=1.91$ | arcus vs. no arcus, age 39-49 |
| $\exp \left(\beta_{1}+\beta_{3}\right)=1.06$ | arcus vs. no arcus, age $50-59$ |
| $\exp \left(\beta_{2}\right)=2.44$ | age $50-59$ vs. age $39-49$, no arcus |
| $\exp \left(\beta_{2}+\beta_{3}\right)=1.35$ | age $50-59$ vs. age $39-49$, arcus |
| $\exp \left(\beta_{1}+\beta_{2}+\beta_{3}\right)=2.58$ | arcus and age $50-59$ vs. no arcus and ages $39-49$ |

## Interactions: categorical and continuous predictors



Fig. 6.2. Log Odds of CHD and Age for Individuals With and Without Arcus Senilis

