
Binary Outcomes – Logistic Regression (Chapter 6) 

 

• 2 by 2 tables 

• Odds ratio, relative risk, risk difference 

• Binomial regression - the logistic, log and linear link functions 

• Categorical predictors - Continuous predictors 

• Estimation by maximum likelihood 

• Predicted probabilities 

• Separation (Quasi-separation) 

• Assessing model fit 



A binary outcome example: WCGS 
 

The Western Collaborative Group Study (WCGS): a large epidemiological 

study of coronary heart disease (CHD). 

Rosenman, R. H., Friedman, M., Straus, R., Wurm, M., Kositchek, R., Hahn, W. and 

Werthessen, N. T. (1964). A predictive study of coronary heart disease: the western 

collaborative group study. Journal of the American Medical Association, 189, 113–120. 

 

Outcome - 0/1: an indicator of CHD status 

Study question – Whether CHD rates are different between age groups (<50 

vs. >=50) 



2 by 2 tables (SAS) 
proc freq; 

 tables chd69 * bage_50/chisq cmh riskdiff; 

run; 

bage_50     chd69 

Frequency‚ 

Percent  ‚ 

Row Pct  ‚ 

Col Pct  ‚       0‚       1‚  Total 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       0 ‚   2104 ‚    145 ‚   2249 

         ‚  66.71 ‚   4.60 ‚  71.31 

         ‚  93.55 ‚   6.45 ‚ 

         ‚  72.63 ‚  56.42 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       1 ‚    793 ‚    112 ‚    905 

         ‚  25.14 ‚   3.55 ‚  28.69 

         ‚  87.62 ‚  12.38 ‚ 

         ‚  27.37 ‚  43.58 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

Total        2897      257     3154 

            91.85     8.15   100.00 

Statistics for Table of chd69 by bage_50 

 

Statistic                     DF       Value      Prob 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

Chi-Square                     1     30.3033    <.0001 

Likelihood Ratio Chi-Square    1     28.2000    <.0001 

Continuity Adj. Chi-Square     1     29.5164    <.0001 

Mantel-Haenszel Chi-Square     1     30.2937    <.0001 

Phi Coefficient                       0.0980 

Contingency Coefficient               0.0976 

Cramer's V                            0.0980 

 

 

       Fisher's Exact Test 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

Cell (1,1) Frequency (F)      2104 

Left-sided Pr <= F          1.0000 

Right-sided Pr >= F      7.622E-08 

 

Table Probability (P)    3.993E-08 

Two-sided Pr <= P        1.167E-07 



2 by 2 tables (SAS): risk estimates 
                           Column 1 Risk Estimates 

                                       (Asymptotic) 95%         (Exact) 95% 

                  Risk        ASE     Confidence Limits     Confidence Limits 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

Row 1           0.9355     0.0052     0.9254     0.9457     0.9246     0.9453 

Row 2           0.8762     0.0109     0.8548     0.8977     0.8530     0.8970 

Total           0.9185     0.0049     0.9090     0.9281     0.9084     0.9278 

Difference      0.0593     0.0121     0.0355     0.0830 

                        Difference is (Row 1 - Row 2) 

 

                           Column 2 Risk Estimates 

                                      (Asymptotic) 95%         (Exact) 95% 

                  Risk        ASE     Confidence Limits     Confidence Limits 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

Row 1           0.0645     0.0052     0.0543     0.0746     0.0547     0.0754 

Row 2           0.1238     0.0109     0.1023     0.1452     0.1030     0.1470 

Total           0.0815     0.0049     0.0719     0.0910     0.0722     0.0916 

Difference     -0.0593     0.0121    -0.0830    -0.0355 

                        Difference is (Row 1 - Row 2) 

 

• What is the rate of CHD in the younger group? What is the rate of CHD in 

the older group? 

• What is the difference in the rates of CHD between the two age groups? 



2 by 2 tables (SAS): odds ratio, risk ratio 
     Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 

Statistic    Alternative Hypothesis    DF       Value      Prob 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

    1        Nonzero Correlation        1     30.2937    <.0001 

    2        Row Mean Scores Differ     1     30.2937    <.0001 

    3        General Association        1     30.2937    <.0001 

 

            Estimates of the Common Relative Risk (Row1/Row2) 

Type of Study     Method                  Value     95% Confidence Limits 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

Case-Control      Mantel-Haenszel        2.0494       1.5806       2.6572 

  (Odds Ratio)    Logit                  2.0494       1.5806       2.6572 

Cohort            Mantel-Haenszel        1.0677       1.0394       1.0966 

  (Col1 Risk)     Logit                  1.0677       1.0394       1.0966 

Cohort            Mantel-Haenszel        0.5210       0.4122       0.6584 

  (Col2 Risk)     Logit                  0.5210       0.4122       0.6584 

 

 

• How was 2.04945 calculated and what is it? How was 1.0677 calculated 

and what is it? How was 0.521 calculated and what is it? 

• What is the relative rate of CHD if a person is <50 as compared to >50? 

• Is there a significant effect of age<50 over age>50? 
 



2 by 2 tables (Stata) 
. tabulate bage_50 chd69, all exact row col 

+-------------------+ 

| Key               | 

|-------------------| 

|     frequency     | 

|  row percentage   | 

| column percentage | 

+-------------------+ 

           |         chd69 

   bage_50 |         0          1 |     Total 

-----------+----------------------+---------- 

       <50 |     2,104        145 |     2,249  

           |     93.55       6.45 |    100.00  

           |     72.63      56.42 |     71.31  

-----------+----------------------+---------- 

      >=50 |       793        112 |       905  

           |     87.62      12.38 |    100.00  

           |     27.37      43.58 |     28.69  

-----------+----------------------+---------- 

     Total |     2,897        257 |     3,154  

           |     91.85       8.15 |    100.00  

           |    100.00     100.00 |    100.00  

 

 

 

 

 

 

 

 

 

 

          Pearson chi2(1) =  30.3033   Pr = 0.000 

 likelihood-ratio chi2(1) =  28.2000   Pr = 0.000 

               Cramér's V =   0.0980 

                    gamma =   0.3441  ASE = 0.058 

          Kendall's tau-b =   0.0980  ASE = 0.020 

           Fisher's exact =                 0.000 

   1-sided Fisher's exact =                 0.000 

 



Stata - Epitab “Tables for epidemiologists” 
. cc chd69 bage_50 // for case-control study (to obtain estimated OR) 

                                                         Proportion 

                 |   Exposed   Unexposed  |      Total     Exposed 

-----------------+------------------------+------------------------ 

           Cases |       112         145  |        257       0.4358 

        Controls |       793        2104  |       2897       0.2737 

-----------------+------------------------+------------------------ 

           Total |       905        2249  |       3154       0.2869 

                 |      Point estimate    |    [95% Conf. Interval] 

                 |------------------------+------------------------ 

      Odds ratio |          2.04938       |    1.565101    2.677467 (exact) 

 Attr. frac. ex. |         .5120476       |    .3610636    .6265127 (exact) 

 Attr. frac. pop |         .2231492       | 

                 +------------------------------------------------- 

                               chi2(1) =    30.30  Pr>chi2 = 0.0000 

. cs chd69 bage_50 // for cohort study (to obtain estimated RD & RR) 

                 | bage_50                | 

                 |   Exposed   Unexposed  |      Total 

-----------------+------------------------+------------ 

           Cases |       112         145  |        257 

        Noncases |       793        2104  |       2897 

-----------------+------------------------+------------ 

           Total |       905        2249  |       3154 

            Risk |  .1237569    .0644731  |   .0814838 

                 |      Point estimate    |    [95% Conf. Interval] 

                 |------------------------+------------------------ 

 Risk difference |         .0592838       |    .0355493    .0830183  

      Risk ratio |         1.919512       |     1.51876     2.42601  

 Attr. frac. ex. |         .4790343       |    .3415682    .5878006  

 Attr. frac. pop |          .208762       | 

                 +------------------------------------------------- 

                               chi2(1) =    30.30  Pr>chi2 = 0.0000 



Examining Odds Ratio, Risk Ratio and Risk Difference 

We are interested in comparing: P(Outcome|Exposure 1) to 

P(Outcome|Exposure 0). When the outcome is binary the probability is the 

same as the expected value, hence if we let X represent exposure(s) of interest 

(e.g. different treatments in a clinical trial, exposure to a carcinogen), we 

compare E(Y |X = 1) = π1 to E(Y |X = 0) = π0. So π1 is probability of the event 

given that X = 1 has occurred and π0 is the probability of the event given that X 

= 0 has occurred.  

 

The relative risk (risk ratio) or relative rate (rate or prevalence ratio) is: 

RR = π1/π0  

The risk (or rate or prevalence) difference, or absolute risk reduction is: 

RD = π1 − π0 

The odds ratio is:  

OR = 
𝜋1

1−𝜋1

𝜋0

1−𝜋0
  

 



Comparing OR, RR, and RD 

This table considers scenarios when OR = 2 

 

 

 

 

 

 

 

 

 

 

 

NOTE: odds = π/(1 − π), π = odds/(odds + 1) 

• How does the RR differ from the OR across the different probabilities? 

• How does the RD differ from the RR and OR? 

 
 



Comparing OR, RR, and RD 

 

 

 

 

 

 

 

 

 

 

 

NOTE: odds = π/(1 − π), π = odds/(odds + 1) 

 

 

From Chaprter 10 of Harrell F (2001) Regression Modeling Strategies With applications 

to linear models, logistic regression and survival analysis. 

 

Figure 10.2: Absolute 

benefit as a function of risk 

of the event in a control 

subject and the relative 

effect (odds ratio) of the risk 

factor. The odds ratios are 

given for each curve.  



Notes on OR, RR, and RD 
• Notice when the risk is small, the risk is well approximated by the odds and 

hence the relative risk is well approximated by the odds ratio. This is why you 

will hear the following: “The OR approximates the RR for rare diseases”. 

• Notice that the risk difference becomes smaller as the rate is smaller, though the 

relative risk (and odds ratio) can remain large. 

• As the risk becomes common (> 10%), the OR greatly overestimates the RR. 

• RR and RD are arguably more interpretable than OR, nevertheless the odds ratio 

is ubiquitous in Public Health and Medicine despite the tendency for people to 

interpret ORs as if they are RRs 

• Recent push in medical and public health literature to get researchers to estimate 

RR and RD (see more push for RD in medical literature with some Guidelines 

for reporting only allowing RD rather than relative measures) rather than OR. 

(e.g. Spiegelman, D. und Hertzmark, Easy SAS Calculations for Risk or 

Prevalence Ratios and Differences, American Journal of Epidemiology, 2005, 

162, 199-205.) 

• NOTE: If data were collected from a case control study, then we cannot estimate 

risk (or risk ratios) from the data without some auxiliary information about 

overall prevalence in the population. But we can still estimate odds and hence 

odds ratios. 



2 by n tables 
. tabulate agec chd69, all exact row col 

           |         chd69 

      agec |         0          1 |     Total 

-----------+----------------------+---------- 

     35-40 |       512         31 |       543  

           |     94.29       5.71 |    100.00  

           |     17.67      12.06 |     17.22  

-----------+----------------------+---------- 

     41-45 |     1,036         55 |     1,091  

           |     94.96       5.04 |    100.00  

           |     35.76      21.40 |     34.59  

-----------+----------------------+---------- 

     46-50 |       680         70 |       750  

           |     90.67       9.33 |    100.00  

           |     23.47      27.24 |     23.78  

-----------+----------------------+---------- 

     51-55 |       463         65 |       528  

           |     87.69      12.31 |    100.00  

           |     15.98      25.29 |     16.74  

-----------+----------------------+---------- 

     56-60 |       206         36 |       242  

           |     85.12      14.88 |    100.00  

           |      7.11      14.01 |      7.67  

-----------+----------------------+---------- 

     Total |     2,897        257 |     3,154  

           |     91.85       8.15 |    100.00  

           |    100.00     100.00 |    100.00  

 

 

 

 

 

 

 

 

 

 

          Pearson chi2(4) =  46.6534   Pr = 0.000 

 likelihood-ratio chi2(4) =  44.9464   Pr = 0.000 

               Cramér's V =   0.1216 

                    gamma =   0.2896  ASE = 0.045 

          Kendall's tau-b =   0.1012  ASE = 0.016 

           Fisher's exact =                 0.000 



2 by n table: test for trend 
. tabodds chd69 agec 

-------------------------------------------------------------------------- 

      agec  |      cases     controls       odds      [95% Conf. Interval] 

------------+------------------------------------------------------------- 

      35-40 |         31          512    0.06055        0.04214   0.08700 

      41-45 |         55         1036    0.05309        0.04048   0.06963 

      46-50 |         70          680    0.10294        0.08049   0.13165 

      51-55 |         65          463    0.14039        0.10829   0.18200 

      56-60 |         36          206    0.17476        0.12265   0.24900 

-------------------------------------------------------------------------- 

Test of homogeneity (equal odds): chi2(4)  =    46.64 

                                  Pr>chi2  =   0.0000 

Score test for trend of odds:     chi2(1)  =    40.76 

                                  Pr>chi2  =   0.0000 

 

. tabodds chd69 agec, or 

--------------------------------------------------------------------------- 

        agec |  Odds Ratio       chi2       P>chi2     [95% Conf. Interval] 

-------------+------------------------------------------------------------- 

       35-40 |    1.000000          .           .              .          . 

       41-45 |    0.876822       0.32       0.5692      0.557454   1.379156 

       46-50 |    1.700190       5.74       0.0166      1.095789   2.637958 

       51-55 |    2.318679      14.28       0.0002      1.479779   3.633160 

       56-60 |    2.886314      18.00       0.0000      1.728069   4.820876 

--------------------------------------------------------------------------- 



Modeling binary outcomes 

Since Yi is 0-1 we can model it with a Binomial distribution with parameter πi. 

So we have 

 

 

and we can model E(Yi |Xi) = πi as a function of predictor variables Xi as 



Modeling binary outcomes 

Since πi is a probability, we require 0 ≤ πi ≤ 1. Hence, there are restrictions 

on the acceptable values of Xi β (except for the logistic function) 

 



Generalized linear modeling (GLM): Link functions 

Given Yi |Xi ∼ Bin(1, πi) with E(Yi |Xi) = πi = g(Xβ), we want to rewrite the 

relationship between π and Xβ so that Xβ is on a side by itself equal to a 

nonlinear function of π. This inverse function is called the link function in 

generalized linear modeling. 

• The link function for the logistic is: 𝑙𝑜𝑔
𝜋

1−𝜋
= 𝑋𝛽 

We call 𝑙𝑜𝑔
𝜋

1−𝜋
 the “logit link” and can write logit(π) = Xβ. 

 

• The link function for the exponential is: log(π) = Xβ 

which we simply call the “log link”. 

 

• The link function for the π = Xβ is: I(π) = Xβ 

which we call the “identity link” which means the relationship is already 

linear and we don’t have to take any nonlinear function to make it linear. 



Exponentiating coefficients in the Binomial-logistic model 

results in an Odds Ratio 

Consider what happens when X is increased by 1 unit... 

 

 

 

 

So taking the difference we have, 

 

 

 

 

 

Hence, if we take exp(β) we have odds ratio of Y given one unit increase in X. 



Exponentiating coefficients in the Binomial-log model 

results in a Relative Risk 

Consider what happens when X is increased by 1 unit... 

 

 

 

So taking the difference we have, 

 

 

 

 

 

Hence, if we take exp(β) we have relative risk of Y given one unit increase in 

X. 



Coefficients in the Binomial-identity model result in Risk 

Differences 

Consider what happens when X is increased by 1 unit... 

 

 

 

So taking the difference we have, 

 

 

 

 

 



Binomial modeling in SAS 
******* Logistic Binomial regression; 

proc genmod data = wcgs descending; 

 class bage_50 (ref = "0")/param = ref; 

 model chd69 = bage_50/ dist = binomial link = logit type3; 

 estimate "log(OR) age>=50 vs. <50" bage_50 1/exp; 

run; 

proc logistic data = wcgs descending; 

 class bage_50 (ref = "0")/param = ref; 

 model chd69 = bage_50; 

run; 

 

******* Log binomial regression; 

proc genmod data = wcgs descending; 

 class bage_50 (ref = "0")/param = ref; 

 model chd69 = bage_50/ dist = binomial link = log type3; 

 estimate "log(RR) age>=50 vs. <50" bage_50 1/exp; 

run; 

 

******** Linear Binomial regression; 

proc genmod data = wcgs descending; 

 class bage_50 (ref = "0")/param = ref; 

 model chd69 = bage_50/ dist = binomial link = identity type3; 

 estimate "RD age>=50 vs. <50" bage_50 1; 

run; 



Details about syntax for Binomial modeling in SAS 

A common feature of GENMOD and LOGISTIC is the descending option on 

the PROC statement, which means for response data coded 0/1, SAS will 

analyze the probability of a response of ’1’ rather than the default level of ’0’. 

This option is an essential feature to recognize when interpreting the sign of 

estimated coefficients because interpretation would be completely opposite. 

 

Potential confusion between the two procedures can arise from the CLASS 

statement. The defaults in the two procedures is different. To make them the 

same, we use the /param = ref option which allows us to specify whichever 

category we want to be the reference. By default Genmod would use the last 

category and fix to 0, by default Logistic would use a coding that makes the 

sum of the coefficients across categories = 0, which can lead to confusion when 

testing individual parameters. 



Binomial modeling in Stata: logit link 
. glm chd69 bage_50, family(binomial) link(logit) 

Generalized linear models                          No. of obs      =      3154 

Optimization     : ML                              Residual df     =      3152 

                                                   Scale parameter =         1 

Deviance         =  1753.043713                    (1/df) Deviance =  .5561687 

Pearson          =         3154                    (1/df) Pearson  =  1.000635 

Variance function: V(u) = u*(1-u)                  [Bernoulli] 

Link function    : g(u) = ln(u/(1-u))              [Logit] 

                                                   AIC             =  .5570842 

Log likelihood   = -876.5218566                    BIC             = -23640.81 

------------------------------------------------------------------------------ 

             |                 OIM 

       chd69 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 |   .7175375   .1325196     5.41   0.000     .4578039    .9772711 

       _cons |  -2.674862   .0858594   -31.15   0.000    -2.843143    -2.50658 

------------------------------------------------------------------------------ 

 

. logistic chd69 bage_50 

Logistic regression                               Number of obs   =       3154 

                                                  LR chi2(1)      =      28.20 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -876.52186                       Pseudo R2       =     0.0158 

------------------------------------------------------------------------------ 

       chd69 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 |   2.049379   .2715829     5.41   0.000     1.580598    2.657194 

       _cons |   .0689163   .0059171   -31.15   0.000     .0582423    .0815466 

------------------------------------------------------------------------------ 



Binomial modeling in Stata: log link 
. glm chd69 bage_50, family(binomial) link(log) 

Generalized linear models                          No. of obs      =      3154 

Optimization     : ML                              Residual df     =      3152 

                                                   Scale parameter =         1 

Deviance         =  1753.043713                    (1/df) Deviance =  .5561687 

Pearson          =         3154                    (1/df) Pearson  =  1.000635 

Variance function: V(u) = u*(1-u)                  [Bernoulli] 

Link function    : g(u) = ln(u)                    [Log] 

                                                   AIC             =  .5570842 

Log likelihood   = -876.5218566                    BIC             = -23640.81 

------------------------------------------------------------------------------ 

             |                 OIM 

       chd69 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 |   .6520711   .1194802     5.46   0.000     .4178943    .8862479 

       _cons |  -2.741507   .0803238   -34.13   0.000    -2.898939   -2.584075 

------------------------------------------------------------------------------ 

 

. di exp(_b[bage_50])  // estimated RR 

1.9195123 

 

 

 

 

 

Note: match the estimated RR with previous output of 2 by 2 table. 
 



Binomial modeling in Stata: identity link 
. glm chd69 bage_50, family(binomial) link(identity) 

Generalized linear models                          No. of obs      =      3154 

Optimization     : ML                              Residual df     =      3152 

                                                   Scale parameter =         1 

Deviance         =  1753.043713                    (1/df) Deviance =  .5561687 

Pearson          =         3154                    (1/df) Pearson  =  1.000635 

Variance function: V(u) = u*(1-u)                  [Bernoulli] 

Link function    : g(u) = u                        [Identity] 

                                                   AIC             =  .5570842 

Log likelihood   = -876.5218566                    BIC             = -23640.81 

------------------------------------------------------------------------------ 

             |                 OIM 

       chd69 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 |   .0592838   .0121097     4.90   0.000     .0355493    .0830183 

       _cons |   .0644731   .0051787    12.45   0.000      .054323    .0746232 

------------------------------------------------------------------------------ 

Coefficients are the risk differences. 

 

 

 

 

 

 

 

Note: match the estimated RD with previous output of 2 by 2 table. 



Predicted probabilities 
. glm chd69 i.bage_50, family(binomial) link(logit) 

. margins bage_50 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 | 

          0  |   .0644731   .0051787    12.45   0.000      .054323    .0746232 

          1  |   .1237569   .0109464    11.31   0.000     .1023023    .1452115 

------------------------------------------------------------------------------ 

. glm chd69 i.bage_50, family(binomial) link(log) 

. margins bage_50 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 | 

          0  |   .0644731   .0051787    12.45   0.000      .054323    .0746232 

          1  |   .1237569   .0109464    11.31   0.000     .1023023    .1452115 

------------------------------------------------------------------------------ 

. glm chd69 i.bage_50, family(binomial) link(identity) 

. margins bage_50 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 | 

          0  |   .0644731   .0051787    12.45   0.000      .054323    .0746232 

          1  |   .1237569   .0109464    11.31   0.000     .1023023    .1452115 

------------------------------------------------------------------------------ 

 

 



Categorical predictor with >2 groups 
. glm chd69 i.agec, family(binomial) link(logit) eform 

Generalized linear models                          No. of obs      =      3154 

Optimization     : ML                              Residual df     =      3149 

                                                   Scale parameter =         1 

Deviance         =  1736.297321                    (1/df) Deviance =  .5513805 

Pearson          =         3154                    (1/df) Pearson  =  1.001588 

Variance function: V(u) = u*(1-u)                  [Bernoulli] 

Link function    : g(u) = ln(u/(1-u))              [Logit] 

                                                   AIC             =   .553677 

Log likelihood   = -868.1486603                    BIC             = -23633.39 

------------------------------------------------------------------------------ 

             |                 OIM 

       chd69 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        agec | 

          1  |   .8768215   .2025406    -0.57   0.569     .5575563    1.378903 

          2  |    1.70019   .3800504     2.37   0.018     1.097046    2.634935 

          3  |   2.318679   .5274963     3.70   0.000     1.484545    3.621494 

          4  |   2.886314   .7462298     4.10   0.000     1.738895    4.790864 

             | 

       _cons |   .0605469   .0111989   -15.16   0.000     .0421358    .0870026 

------------------------------------------------------------------------------ 

 

Note: match the estimated OR with previous output of 2 by n table. 

Note: Try to avoid choosing the smallest group as the reference group (inflate 

SE) 



Aggregated binary outcomes: grouped data 

With only categorical predictors it is possible to aggregate the data across all 

possible combination of categories and input and analyze the data in aggregated 

form - Bin(nk, πk). 

Recall that the sum of n independent Bernoulli events from a trial with same 

probability π leads to the Binomial(n, π) distribution. That is, if Yi ∼ Bin(1, πi) 

where πi = πk for all i in some group k of size nk, then  𝑌𝑖
𝑛𝑘
𝑖=1 ~𝐵𝑖𝑛 𝑛𝑘 , 𝜋𝑖 . 

Data in aggregated Binomial form can be modeled in both Proc Logistic and 

Proc Genmod using the events/trials syntax in the model statement. 

SAS: 
data aggregate; 

 input agegrp $ total totlechd; 

 cards; 

 <50 2249 145 

 >=50 905 112 

; 

proc genmod data = aggregate; 

 class agegrp(ref = "<50")/param = ref;; 

 model totlechd / total = agegrp / dist = binomial link = logit type3; 

 estimate "lnOR CG vs. SG" agegrp 1/exp;  

run; 

Stata: 
blogit totalchd total agegrp, or 



Categorical/Continuous predictors 

With categorical predictors and without any adjustment for other variables, 

model fits (maximized log-likelihood & predicted probabilities) are the same 

across 3 different link functions since the form does not really come into the 

estimation (each category is its own dummy variable and hence can be 

perfectly fit by any of the 3 functions). Basically, with a categorical predictor 

and a dichotomous outcome, analysis mimic that for 2-way tables. 

 

With a continuous predictor, the functional form matters and the different links 

will result in different fits to the data. A continuous predictor is assumed to be 

linearly related to the link function of the probability (for the identity link), but 

this means it is nonlinearly related to the probability by the logistic function 

(for the logit link) or the exponential function (for the log link). 

 



Controlling for other variables: behavior pattern 

The WCGS study measured a number of potential predictors of coronary heart 

disease, including total serum cholesterol, diastolic and systolic blood pressure, 

smoking, age, body size, and behavior pattern.  Suppose we want to control for 

potential confounding effect of behavior pattern (“A” vs “B”). 

 dibpat     bage_50 
 

Frequency‚ 

Percent  ‚ 

Row Pct  ‚ 

Col Pct  ‚       0‚       1‚  Total 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       0 ‚   1182 ‚    383 ‚   1565 

         ‚  37.48 ‚  12.14 ‚  49.62 

         ‚  75.53 ‚  24.47 ‚ 

         ‚  52.56 ‚  42.32 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       1 ‚   1067 ‚    522 ‚   1589 

         ‚  33.83 ‚  16.55 ‚  50.38 

         ‚  67.15 ‚  32.85 ‚ 

         ‚  47.44 ‚  57.68 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

Total        2249      905     3154 

            71.31    28.69   100.00 

 

 

 

Statistics for Table of dibpat by bage_50 

 

Statistic                     DF       Value      Prob 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

Chi-Square                     1     27.0485    <.0001 

Likelihood Ratio Chi-Square    1     27.1342    <.0001 

Continuity Adj. Chi-Square     1     26.6406    <.0001 

Mantel-Haenszel Chi-Square     1     27.0399    <.0001 

Phi Coefficient                       0.0926 

Contingency Coefficient               0.0922 

Cramer's V                            0.0926 



Behavior pattern vs. CHD 

dibpat     chd69 

 

Frequency‚ 

Percent  ‚ 

Row Pct  ‚ 

Col Pct  ‚       0‚       1‚  Total 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       0 ‚   1486 ‚     79 ‚   1565 

         ‚  47.11 ‚   2.50 ‚  49.62 

         ‚  94.95 ‚   5.05 ‚ 

         ‚  51.29 ‚  30.74 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       1 ‚   1411 ‚    178 ‚   1589 

         ‚  44.74 ‚   5.64 ‚  50.38 

         ‚  88.80 ‚  11.20 ‚ 

         ‚  48.71 ‚  69.26 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

Total        2897      257     3154 

            91.85     8.15   100.00 

 

 

Statistics for Table of dibpat by chd69 

 

Statistic                     DF       Value      Prob 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

Chi-Square                     1     39.8975    <.0001 

Likelihood Ratio Chi-Square    1     40.8995    <.0001 

Continuity Adj. Chi-Square     1     39.0795    <.0001 

Mantel-Haenszel Chi-Square     1     39.8849    <.0001 

Phi Coefficient                       0.1125 

Contingency Coefficient               0.1118 

Cramer's V                            0.1125 



Stratification by behavior pattern 

dibpat=0 

 

bage_50     chd69 

Frequency‚ 

Percent  ‚ 

Row Pct  ‚ 

Col Pct  ‚       0‚       1‚  Total 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       0 ‚   1132 ‚     50 ‚   1182 

         ‚  72.33 ‚   3.19 ‚  75.53 

         ‚  95.77 ‚   4.23 ‚ 

         ‚  76.18 ‚  63.29 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       1 ‚    354 ‚     29 ‚    383 

         ‚  22.62 ‚   1.85 ‚  24.47 

         ‚  92.43 ‚   7.57 ‚ 

         ‚  23.82 ‚  36.71 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

Total        1486       79     1565 

            94.95     5.05   100.00 

 

Chi-Square  p-value = 0.0094 

dibpat=1 

 

bage_50     chd69 

Frequency‚ 

Percent  ‚ 

Row Pct  ‚ 

Col Pct  ‚       0‚       1‚  Total 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       0 ‚    972 ‚     95 ‚   1067 

         ‚  61.17 ‚   5.98 ‚  67.15 

         ‚  91.10 ‚   8.90 ‚ 

         ‚  68.89 ‚  53.37 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       1 ‚    439 ‚     83 ‚    522 

         ‚  27.63 ‚   5.22 ‚  32.85 

         ‚  84.10 ‚  15.90 ‚ 

         ‚  31.11 ‚  46.63 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

Total        1411      178     1589 

            88.80    11.20   100.00 

 

Chi-Square  p-value < 0.0001 



Multiple predictors model: GLM 
. glm chd69 bage_50 dibpat, family(binomial) link(logit) eform 

Generalized linear models                          No. of obs      =      3154 

Optimization     : ML                              Residual df     =      3151 

                                                   Scale parameter =         1 

Deviance         =  1717.723418                    (1/df) Deviance =   .545136 

Pearson          =   3157.01249                    (1/df) Pearson  =  1.001908 

Variance function: V(u) = u*(1-u)                  [Bernoulli] 

Link function    : g(u) = ln(u/(1-u))              [Logit] 

                                                   AIC             =  .5465198 

Log likelihood   = -858.8617089                    BIC             = -23668.08 

------------------------------------------------------------------------------ 

             |                 OIM 

       chd69 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 |   1.909471   .2553643     4.84   0.000     1.469187    2.481699 

      dibpat |   2.249161   .3172902     5.75   0.000     1.705851    2.965513 

       _cons |   .0437069   .0054894   -24.92   0.000     .0341698    .0559058 

------------------------------------------------------------------------------ 

 

What is the interpretation of the estimated OR = 1.909? 

How does the estimated OR change compared to the single predictor model? 

Try to explain the direction of the change by the confounding/mediation effect. 



Multiple predictors model: logistic regression 
. logistic chd69 bage_50 dibpat 

Logistic regression                               Number of obs   =       3154 

                                                  LR chi2(2)      =      63.52 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -858.86171                       Pseudo R2       =     0.0357 

------------------------------------------------------------------------------ 

       chd69 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 |   1.909472   .2553643     4.84   0.000     1.469188    2.481699 

      dibpat |    2.24916   .3172901     5.75   0.000     1.705851    2.965513 

       _cons |   .0437069   .0054894   -24.92   0.000     .0341698    .0559058 

------------------------------------------------------------------------------ 

 

NOTE these results are identical to using the GLM function on the previous 

page. Similar to the difference in SAS between using PROC LOGISTIC 

versus PROC GENMOD. 



Multiple predictors model: log link 
. glm chd69 bage_50 dibpat, family(binomial) link(log) eform 

Generalized linear models                          No. of obs      =      3154 

Optimization     : ML                              Residual df     =      3151 

                                                   Scale parameter =         1 

Deviance         =  1717.702377                    (1/df) Deviance =  .5451293 

Pearson          =  3153.822736                    (1/df) Pearson  =  1.000896 

Variance function: V(u) = u*(1-u)                  [Bernoulli] 

Link function    : g(u) = ln(u)                    [Log] 

                                                   AIC             =  .5465131 

Log likelihood   = -858.8511883                    BIC             =  -23668.1 

------------------------------------------------------------------------------ 

             |                 OIM 

       chd69 | Risk Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 |   1.787009   .2131373     4.87   0.000     1.414502    2.257615 

      dibpat |   2.102816   .2747188     5.69   0.000     1.627786    2.716471 

       _cons |   .0423275   .0050018   -26.76   0.000     .0335766    .0533592 

------------------------------------------------------------------------------ 

 

What is the adjusted RR of having CHD for a person in the older age group? 

How does the OR compare to the RR here? 



Multiple predictors model: identity link 
. glm chd69 bage_50 dibpat, family(binomial) link(identity) 

Generalized linear models                          No. of obs      =      3154 

Optimization     : ML                              Residual df     =      3151 

                                                   Scale parameter =         1 

Deviance         =  1720.103889                    (1/df) Deviance =  .5458914 

Pearson          =         3154                    (1/df) Pearson  =  1.000952 

Variance function: V(u) = u*(1-u)                  [Bernoulli] 

Link function    : g(u) = u                        [Identity] 

                                                   AIC             =  .5472745 

Log likelihood   = -860.0519445                    BIC             =  -23665.7 

------------------------------------------------------------------------------ 

             |                 OIM 

       chd69 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bage_50 |   .0494105    .012024     4.11   0.000     .0258439    .0729771 

      dibpat |   .0540685   .0096072     5.63   0.000     .0352387    .0728984 

       _cons |   .0401764   .0054209     7.41   0.000     .0295516    .0508013 

------------------------------------------------------------------------------ 

Coefficients are the risk differences. 

 

What is the adjusted RD for having CHD? 

NOTICE that the log-likelihoods are not exactly the same across link 

functions. Choice of link function can matter for model fit. 
 



Predicted probabilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

After class: show how to calculate the predicted probability of CHD if a 

person was in the <50 age group and was with behavior patter “B” using 

the logit, log and identity models. 
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Predicted probabilities 

Here are the predicted probabilities of CHD based on the fit of the 3 different 

binomial regression models with main effects for age group and behavior 

pattern: (verify your calculations) 

       dibpat   bage_50       raw      logit        log   identity   
         0       <50   .042301   .0418766   .0423275   .0401764   

         1       <50   .089035   .0895051   .0890069    .094245   

         0      >=50   .075718   .0770284   .0756396    .089587   

         1      >=50   .159004   .1580424   .1590562   .1436555 

 

Using the numbers above, show how you can get the estimated ORs, RRs, and 

RDs in the logit, log, and identity model results, respectively. 



High birthweight example - a continuous predictor 

How is a mother’s gestational weight gain and baseline weight status related to 

the probability of the baby being born with a birthweight considered clinically 

in the High range (i.e. > 4000 grams or > 8.8 pounds). 



High birthweight versus mother’s baseline weight status 

4 categories of baseline weight status: 1 underweight, 2 normal weight, 3 

overweight, 4 obese. 



Hight birthweight example: logistic regression (1) 
proc logistic data = birthwgt2 descending; 

 class c_baseline_bmi (ref = "2") /param = ref; 

 model hibwt = totalweightgain c_baseline_bmi/expb; 

run; 

 

Response Profile 

 Ordered                      Total 

   Value        hibwt     Frequency 

       1            1           260 

       2            0          1740 

Probability modeled is hibwt=1. 

 

Model Fit Statistics 

                             Intercept 

              Intercept            and 

Criterion          Only     Covariates 

AIC            1547.547       1440.462 

SC             1553.148       1468.467 

-2 Log L       1545.547       1430.462 

 

Testing Global Null Hypothesis: BETA=0 

Test                 Chi-Square       DF     Pr > ChiSq 

Likelihood Ratio       115.0847        4         <.0001 

Score                  111.9801        4         <.0001 

Wald                    97.3858        4         <.0001 

 

 



Hight birthweight example: logistic regression (2) 
Type 3 Analysis of Effects 

                                 Wald 

Effect               DF    Chi-Square    Pr > ChiSq 

totalweightgain       1       59.3112        <.0001 

c_baseline_bmi        3       61.4573        <.0001 

 

                                       Standard          Wald 

Parameter            DF    Estimate       Error    Chi-Square    Pr > ChiSq    Exp(Est) 

Intercept             1     -3.5707      0.2190      265.8230        <.0001       0.028 

totalweightgain       1      0.0406     0.00527       59.3112        <.0001       1.041 

c_baseline_bmi  1     1     -1.7757      0.5944        8.9254        0.0028       0.169 

c_baseline_bmi  3     1      0.7550      0.1886       16.0255        <.0001       2.128 

c_baseline_bmi  4     1      1.0724      0.1613       44.1827        <.0001       2.922 

 

                  Odds Ratio Estimates 

                             Point          95% Wald 

Effect                    Estimate      Confidence Limits 

totalweightgain              1.041       1.031       1.052 

c_baseline_bmi  1 vs 2       0.169       0.053       0.543 

c_baseline_bmi  3 vs 2       2.128       1.470       3.079 

c_baseline_bmi  4 vs 2       2.922       2.130       4.009 

 

• How many women had Hi birthweight babies? 

• What is the test statistic value associated with the Hypothesis that there are No differences across baseline 

bmi categories? 

• What is the OR associated with a 10 pound higher gain in totalweightgain? 

• How do we interpret the last OR estimate = 2.922? Is it stat sig? 



Fitted values on the link scale and the probability scale 

 

 

 

Recall the high birthweight example. We regressed high birthweight on both 

mother’s total weight gain AND mother’s baseline BMI category. 

logit(π) = -3.57+0.0405∗totwtgain−1.776∗underwt+0.755∗overwt+1.072∗obese 

 

 

 

 

 

 

 

 

Compare the differences between what a change in the predictors means on the 

two different scales. 



Interpreting the intercept 

 

logit(π) = -3.57+0.0405∗totwtgain−1.776∗underwt+0.755∗overwt+1.072∗obese 

What does the intercept represent? Back transform it. 



Intercept Term in Case-Control Study 

• Case-control studies collect a fixed number of cases and controls, whose 

ratio is typically different from population disease prevalence.   

• Let Z indicate whether a subject is sampled or not.  The probability of 

sampling a case ρ1 = P(Z=1|Y=1), and the probability of sampling a control 

ρ0 = P(Z=1|Y=0). 

 

 

 

• Assume P(Y = 1 | x) follows the logistic model, and the sampling 

probabilities does not depend on x. Then,  
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Hight birthweight example: Stata output 
. logistic hibwt totalweightgain ib2.c_baseline_bmi        

/* "ib2." tells Stata that bmi==2 is the reference(base) level */ 

 

Logistic regression                               Number of obs   =       2000 

                                                  LR chi2(4)      =     115.08 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -715.23104                       Pseudo R2       =     0.0745 

 

--------------------------------------------------------------------------------- 

          hibwt | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

totalweightgain |   1.041433   .0054899     7.70   0.000     1.030728    1.052248 

                | 

 c_baseline_bmi | 

             1  |   .1693707   .1006664    -2.99   0.003      .052835    .5429432 

             3  |   2.127668   .4012924     4.00   0.000      1.47015    3.079259 

             4  |   2.922298   .4714581     6.65   0.000     2.130096    4.009128 

                | 

          _cons |   .0281374   .0061622   -16.30   0.000     .0183176    .0432215 

--------------------------------------------------------------------------------- 

 

old version: 

. char c_baseline_bmi[omit] 2 

. xi: logistic hibwt totalweightgain i.c_baseline_bmi 

 



Estimation by Maximum Likelihood 

 



Maximizing the likelihood 

• This goal of maximizing the likelihood is accomplished using calculus 

which provides tools for maximizing functions. The derivative of the log 

likelihood is taken with respect to the parameter vector Θ and set equal to 

0. The derivative of the log likelihood is called the score function. 

• The maximum likelihood estimates are found by solving the score 

function which will yield the values that maximize the likelihood assuming 

the likelihood is unimodal. In general this solution must be found 

numerically (no closed form). 

• Problems can occur when likelihood function is multimodal (only find local 

maximum rather than global maximum) or when the maximum is found 

along the boundary of the parameter space. 

• We use the hat notation, Θ , to indicate the MLEs of Θ. 

• The second derivative of the log likelihood is called the information and is 

used in creating standard errors. 



The likelihood for logistic regression 

 



Hypothesis testing from maximum likelihood theory 

 



High birthweight example - Overall Model tests 

The value of the Model Fit Statistics are only meaningful when they are 

compared across models. By default SAS will compare the model with no 

predictors (Intercept only) to the full model you have specified (Intercept and 

Covariates). Here the model has totalwtgain (1 d.f.) and baseline BMI status (3 

d.f). 
 

Model Fit Statistics 

                             Intercept 

              Intercept            and 

Criterion          Only     Covariates 

AIC            1547.547       1440.462 

SC             1553.148       1468.467 

-2 Log L       1545.547       1430.462 

 

Testing Global Null Hypothesis: BETA=0 

Test                 Chi-Square       DF     Pr > ChiSq 

Likelihood Ratio       115.0847        4         <.0001 

Score                  111.9801        4         <.0001 

Wald                    97.3858        4         <.0001 

 

*. 1545.547-1430.462 = 115.085 

 

The tests of global null hypothesis are like the overall model F-test in ANOVA 

 



Confidence intervals - Wald or likelihood ratio based 

• Wald tests are computationally faster than likelihood ratio test 

• SAS and Stata create Wald confidence intervals by default. Estimate +- 

1.96 * S.E. 

– Adding the option CLodds = PL to the model statement in SAS will 

provide the “profile likelihood confidence intervals”. These confidence 

intervals based on the likelihood ratio test 

• Hauck and Donner (1977) Wald’s test as applied to hypotheses in logit 

analysis. Journal of the American Statistical Association, 72:851-863 

notice that the Wald CI can be too large especially when there are strong 

effects. 

• LR confidence intervals considered better. With larger samples they will be 

very similarly (asymptotically the same). 
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Problem of Separation in Logistic Regression 

• An identifiability problem that can arise in logistic regression, called 

separation, occurs when a predictor or a combination of predictors are 

perfectly aligned with the outcome such that y = 0 for ALL values of that 

predictor beyond some point and y = 1 for ALL values of that predictor less 

than some point. 

• Often occurs in small or sparse samples with highly predictive covariates. 

• Simples case is in the analysis of a 2 × 2 table with one zero cell count. 

• For a continuous predictor, separation can be demonstrated by: 

 

 

 

 

• For a categorical predictor separation means that in some category (or with 

multiple predictors, in some combination of categories) all individuals in 

that category either have a 1 or 0. 

• Leads to non-convergence of the likelihood and/or infinite parameter 

estimates. 



Classical solution 

Drop the predictor or somehow aggregate levels. Leave problematic predictors 

in but only report results for predictors without separation problem. 

 

Modern solution 

See the website http://www.meduniwien.ac.at/msi/biometrie/programme/fl/ 

“Logistic regression using Firth’s bias reduction: a solution to the problem of 

separation in logistic regression”. Heinze and Ploner, 2004 put together a SAS 

MACRO (%fl) and also an R package (logistf()) that uses a penalized 

maximum likelihood method to obtain estimates. In Stata, install user-written 

command -firthlogit-. 

 

Solutions to the problem of Separation 

http://www.meduniwien.ac.at/msi/biometrie/programme/fl/
http://www.meduniwien.ac.at/msi/biometrie/programme/fl/


Summarizing predictive ability in logistic regression 



. estat class, cutoff(.2) 

Logistic model for hibwt 

              -------- True -------- 

Classified |         D            ~D  |      Total 

-----------+--------------------------+----------- 

     +     |        89           239  |        328 

     -     |       171          1501  |       1672 

-----------+--------------------------+----------- 

   Total   |       260          1740  |       2000 

 

Classified + if predicted Pr(D) >= .2 

True D defined as hibwt != 0 

-------------------------------------------------- 

Sensitivity                     Pr( +| D)   34.23% 

Specificity                     Pr( -|~D)   86.26% 

Positive predictive value       Pr( D| +)   27.13% 

Negative predictive value       Pr(~D| -)   89.77% 

-------------------------------------------------- 

False + rate for true ~D        Pr( +|~D)   13.74% 

False - rate for true D         Pr( -| D)   65.77% 

False + rate for classified +   Pr(~D| +)   72.87% 

False - rate for classified -   Pr( D| -)   10.23% 

-------------------------------------------------- 

Correctly classified                        79.50% 

-------------------------------------------------- 

 

Classification table: Stata output 



The LOGISTIC Procedure 

                          Classification Table 

          Correct      Incorrect                Percentages 

 Prob          Non-          Non-           Sensi-  Speci-  False  False 

Level  Event  Event  Event  Event  Correct  tivity  ficity   POS    NEG 

 

0.000    260      0   1740      0     13.0   100.0     0.0   87.0     . 

0.020    259    110   1630      1     18.5    99.6     6.3   86.3    0.9 

0.040    258    163   1577      2     21.1    99.2     9.4   85.9    1.2 

0.060    251    311   1429      9     28.1    96.5    17.9   85.1    2.8 

0.080    239    534   1206     21     38.7    91.9    30.7   83.5    3.8 

0.100    208    805    935     52     50.7    80.0    46.3   81.8    6.1 

0.120    180   1020    720     80     60.0    69.2    58.6   80.0    7.3 

0.140    157   1183    557    103     67.0    60.4    68.0   78.0    8.0 

0.160    130   1327    413    130     72.9    50.0    76.3   76.1    8.9 

0.180    101   1421    319    159     76.1    38.8    81.7   76.0   10.1 

0.200     88   1501    239    172     79.5    33.8    86.3   73.1   10.3 

... 

Note: 1. can use pprob=(list) option to specify list of cutoff points, e.g., 

  model hibwt = totalweightgain c_baseline_bmi/ ctable pprob = (.13); 

2. SAS uses (approximate) leave-one-observation-out approach to calculate the 

classification table, which is expected to be a more valid assessment of 

prediction. Therefore the SAS output might be different from Stata output. 

Classification table: SAS output 



proc logistic ...; output out=z predicted=fitted_prob; run; 

data check; set z; 

 yhat = 0; 

 if fitted_prob >= .20 then yhat = 1; 

run; 

proc freq data = check; 

 tables yhat*hibwt;  

run; 

 

yhat      hibwt 

Frequency‚ 

Percent  ‚ 

Row Pct  ‚ 

Col Pct  ‚       0‚       1‚  Total 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       0 ‚   1501 ‚    171 ‚   1672 

         ‚  75.05 ‚   8.55 ‚  83.60 

         ‚  89.77 ‚  10.23 ‚ 

         ‚  86.26 ‚  65.77 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

       1 ‚    239 ‚     89 ‚    328 

         ‚  11.95 ‚   4.45 ‚  16.40 

         ‚  72.87 ‚  27.13 ‚ 

         ‚  13.74 ‚  34.23 ‚ 

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

Total        1740      260     2000 

            87.00    13.00   100.00 

Classification table: using all samples 



Classification Table 

True Negative False Negative 

False Positive True Positive 
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• Classification Table: 

      

  

 

 

 

 

 Sensitivity = TP/(TP+FN);   Specificity = TN/(TN+FP). 

• Receiver Operating Characteristic (ROC) curve: plot of sensitivity against 

1-specificity (i.e., false positive), for possible cutoff π0. 
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Better measures: 

• R2 or max-rescaled R2 - function of the likelihood ratio test. Unlike linear 

regression it is not necessarily the case that more predictors lead to higher R2 

values. The maximum possible value of generalized R2 is not 1.0 as it is for 

linear regression. Max-rescaled R2 divides by this maximum value to fix this 

so its maximum is 1. Reference Nagelkerke (1991) Biometrika for this R2 

value. 

• c index - rank correlation across pairs of observations between the predicted 

probability and the actual responses. Equivalent to the area under a receiver 

operating characteristic (ROC) curve. The larger the area under the curve 

(AUC), the better the predictions. Maximum is 1.0, and an area of 0.5 

implies random predictions. Harrell (2001) (Regression Modeling strategies) 

gives a guideline of C exceeding 0.80 as implying useful predictability of 

the model. Output by default in Proc LOGISTIC, Output with logistic 

postestimation option: lroc in Stata. 

• AIC is only useful as a comparative fit index and is a penalized function of 

the log-likelihood, penalized by the number of parameters in the model - 

when comparing two models, smaller values are better (in SAS). 

Summarizing predictive ability in logistic regression 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stata: 
. lroc 

area under ROC curve   =   0.7031 

SAS:  
Percent Concordant      69.9    Somers' D    0.406 

Percent Discordant      29.3    Gamma        0.410 

Percent Tied             0.9    Tau-a        0.092 

Pairs                 452400    c            0.703  <-- area under ROC curve 

 

An annotated explanation of the above values under “Association of Predicted Probabilities” can 

be found at https://www.ats.ucla.edu/stat/sas/output/SAS_logit_output.htm 

Receiver Operating Characteristic (ROC) curve 
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1. If this curve was simply a diagonal straight line then the AUC would be 

.50 meaning the sensitivity and specificity were never larger than simply 

one minus the other, meaning the prediction was no better than a simple 

coin flip at fixed probabilities.  

 

2. On the other hand, as the curve bends closer and closer to the upper left 

hand corner, the AUC goes to 1 indicating perfect prediction (100% 

sensitivity and 100% specificity). 

More on ROC curve 



Cochran-Armitage Trend Test: test for LINEAR trend in categorical predictor 

for 0-1 outcome data.  For simple unadjusted relationship, test is performed on 

2 by K table where K is the number of categories and Ha is that π1 ≤ π2 ≤ . . . ≤ 

πK with at least one strict inequality (or visa versa ≥). In linear probability 

model: 

𝜋𝑗 = 𝛼 + 𝛽𝑠𝑗 ,  𝑗 = 1, … , 𝐾 

This is to test for H0: β=0. 

 

The test is the same as treating categories as a continuous score with equal 

spaced increments in a simple logistic regression and using the overall Score 

test.  

 

Can get this test in SAS Proc Freq using the /trend option or of course you can 

get it using logistic regression (but it won’t be called the ”Cochran-Armitage 

Trend Test” in the output). 

Linear trends in 0-1 outcomes for categorical predictors 



proc freq; 

 tables c_baseline_bmi*hibwt / trend; 

run; 

 

Statistics for Table of c_baseline_bmi by hibwt 

Cochran-Armitage Trend Test 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

Statistic (Z)       -6.5035 

One-sided Pr <  Z    <.0001 

Two-sided Pr > |Z|   <.0001 

=============================================================== 

proc logistic data = birthwgt2 descending; 

 model hibwt = c_baseline_bmi; 

run; 

 

Testing Global Null Hypothesis: BETA=0 

Test                 Chi-Square       DF     Pr > ChiSq 

Likelihood Ratio        42.0261        1         <.0001 

Score                   42.2960        1         <.0001 <--(-6.5035)^2 = 42.296 

Wald                    40.9012        1         <.0001 

 

*. In Stata, install –ptrend- command for trend test 
. ptrendi 3 159 1 \ 95 850 2 \ 54 257 3 \ 108 474 4 

Chi2(1) for trend =      42.296,  pr>chi2 = 0.0000 

Linear trends in 0-1 outcomes for categorical predictors 



The Pearson statistic is: 

 

 

 

The Residual Deviance statistic is: 

 2[logL(saturated model) − logL(the current model)] 
 

These do not work properly for logistic regression except when there are only 

a few categorical predictors leading to aggregated data with large cell counts. 

Their validity relies on the assumption of large numbers of observations in 

binomial cells and both tests show unsatisfactory behaviour with sparse data. 

In fact with continuous predictors they can be shown to be completely 

meaningless (since continuous predictors lead to only one observation within 

every cell - sparse data). These statistics are NOT output by SAS when using 

Proc Logistic or Proc Genmod when the binomial distribution is specified 

(although they are output when Poisson distribution is specified). On the other 

hand, these statistics are output by Stata in the glm output even for binomial 

distribution. 

Goodness of Fit 



A solution to the problems associated with the Pearson and Residual Deviance 

for binomial regression comes from the Hosmer Lemeshow test which groups 

the data before forming a chi-square type statistic. 

 

The Hosmer-Lemeshow Statistic is a measure of lack of fit in a logistic 

regression model. Hosmer and Lemeshow recommend partitioning the 

observations into 10 equal sized groups according to their predicted 

probabilities. The test then computes a chi-square statistic from observed and 

expected frequencies in each of the 10 quantiles. The null is that the observed 

frequencies equal the expected frequencies, hence if we do NOT reject the null 

then we are saying the model is well-fitting, i.e. there is no significant 

difference between observed and model-predicted values. 

 

In SAS: Get this statistics use the /lackfit option 

In STATA: use the postestimation option: lfit, group(10) table 

Goodness of Fit - Hosmer Lemeshow test 



proc logistic data = birthwgt2 descending; 

 class c_baseline_bmi (ref = "2") /param = ref; 

 model hibwt = totalweightgain c_baseline_bmi/rsq ctable pprob = (.13) lackfit; 

 output out=z predicted =fitted_prob;  

run; 

 

                  Partition for the Hosmer and Lemeshow Test 

                              hibwt = 1               hibwt = 0 

   Group       Total    Observed    Expected    Observed    Expected 

       1         209           5        4.96         204      204.04 

       2         199           9       11.75         190      187.25 

       3         200           7       15.24         193      184.76 

       4         199          25       17.76         174      181.24 

       5         188          17       19.42         171      168.58 

       6         208          29       24.98         179      183.02 

       7         205          25       29.12         180      175.88 

       8         205          46       34.74         159      170.26 

       9         199          45       42.28         154      156.72 

      10         188          52       59.75         136      128.25 

 

Hosmer and Lemeshow Goodness-of-Fit Test 

 

Chi-Square       DF     Pr > ChiSq 

   16.5844        8         0.0347 

Goodness of Fit: SAS output 



. estat gof, group(10) table 

Logistic model for hibwt, goodness-of-fit test 

  (Table collapsed on quantiles of estimated probabilities) 

  +--------------------------------------------------------+ 

  | Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total | 

  |-------+--------+-------+-------+-------+-------+-------| 

  |     1 | 0.0473 |     5 |   5.0 |   204 | 204.0 |   209 | 

  |     2 | 0.0668 |     8 |  11.5 |   187 | 183.5 |   195 | 

  |     3 | 0.0819 |     8 |  15.0 |   190 | 183.0 |   198 | 

  |     4 | 0.0949 |    25 |  17.9 |   176 | 183.1 |   201 | 

  |     5 | 0.1122 |    19 |  22.7 |   199 | 195.3 |   218 | 

  |-------+--------+-------+-------+-------+-------+-------| 

  |     6 | 0.1294 |    27 |  22.1 |   155 | 159.9 |   182 | 

  |     7 | 0.1541 |    25 |  29.1 |   180 | 175.9 |   205 | 

  |     8 | 0.1849 |    46 |  34.7 |   159 | 170.3 |   205 | 

  |     9 | 0.2389 |    44 |  40.1 |   146 | 149.9 |   190 | 

  |    10 | 0.6046 |    53 |  61.9 |   144 | 135.1 |   197 | 

  +--------------------------------------------------------+ 

       number of observations =      2000 

             number of groups =        10 

      Hosmer-Lemeshow chi2(8) =        17.15 

                  Prob > chi2 =         0.0286 

 

Note: SAS and Stata outputs are different because they handle the ties 

differently. 

Goodness of Fit: Stata output 



The Null hypothesis being tested here is that the model matches the data. So 

finding a p-value <.05 means we would reject that the model is fitting well. 

One thing this lack of fit could be indicating is missing covariates…if we add 

another covariate to the model, age_lmp, we find the following: 
Hosmer and Lemeshow Goodness-of-Fit Test 

Chi-Square       DF     Pr > ChiSq 

   10.8758        8         0.2088 

Also, the AIC with age_lmp added is 1430.036 (smaller than the value 

previously, 1440.462) and, as expected, the c-index is larger 0.716. 

 

Here are the estimated OR with age_lmp added to the model. Notice there is 

no qualitative differences in terms of the estimates for totalweightgain and 

c_baseline_bmi. 
Odds Ratio Estimates 

                             Point          95% Wald 

Effect                    Estimate      Confidence Limits 

totalweightgain              1.044       1.033       1.055 

c_baseline_bmi  1 vs 2       0.186       0.058       0.598 

c_baseline_bmi  3 vs 2       2.183       1.506       3.165 

c_baseline_bmi  4 vs 2       2.939       2.139       4.038 

age_lmp                      1.047       1.021       1.075 

Goodness of Fit: interpretation 



NOTE: This test is known to be highly dependent on the actual groupings (the 

number of groups) and cutoff value used when conducting the test. It also 

tends to detect small differences when the sample size is large. VGSM  

reccommend using it cautiously. 

NOTE: This test does not have anything to do with whether regression 

coefficients are significant or whether there is high predictability (e.g. high c-

statistic) in the model. 

From: “A comparison of goodness-of-fit tests for the logistic regression 

model” by DS Hosmer, T Hosmer, SL Cessie, and S Lemeshow Statistics in 

Med., VOL. 16, 965-980 (1997) 

In the context of logistic regression the overall goodness of fit is assessing all 

of the following (not any one specifically) 

• The logit transformation is the correct function linking covariates with the 

conditional mean Xβ 

• The linear predictor is correct, i.e. we do not need to include additional 

variables, transformation of variables, or interactions of variables 

• The variance is Bernoulli, i.e. var(Y |X) = π(X)(1 − π(X)) 

Goodness of Fit - Hosmer Lemeshow test 



SAS will not produce odds ratios when you include an interaction in a logistic 

regression. Stata will still produce odds ratios which are simply the 

exponential of the estimated coefficients.  

-- We cannot interpret the coefficient of one predictor as a log odds ratio 

without specifying value of the other predictor. 

-- Since the predictor X is involved in both main and interaction terms, 

OR(Y|X) = odds(Y|X+1)/odds(Y|X) needs to be computed using both the 

estimated coefficients for main and interaction terms. 

 

Complete seminar about how to do this: Statistical Computing Seminars 

Visualizing Main Effects and Interactions for Binary Logit Models in Stata 

http://www.ats.ucla.edu/stat/stata/seminars/stata_vibl/default.htm 

Interactions in models with 0-1 outcomes 



proc logistic data = wcgs descending; 

 class bage_50 (ref = "0") arcus (ref = "0") /param = ref; 

 model chd69 = bage_50 arcus bage_50*arcus; 

 contrast 'OR(arcus) in older group' arcus 1 bage_50*arcus 1 1 / estimate=exp; 

run; 

                                       Standard          Wald 

Parameter            DF    Estimate       Error    Chi-Square    Pr > ChiSq 

 

Intercept             1     -2.8828      0.1089      700.4573        <.0001 

arcus         1       1      0.6480      0.1789       13.1236        0.0003 

bage_50       1       1      0.8933      0.1721       26.9328        <.0001 

bage_50*arcus 1 1     1     -0.5920      0.2722        4.7299        0.0296 

 

Contrast                   Type        Row   Estimate      Error    Alpha    Confidence Limits 

OR(arcus) in older group   EXP           1     1.0575     0.2170     0.05     0.7073     1.5811 

 

Interpretation of the interaction term is similar to that in linear regression 

model. Instead of difference in the slope, it is now the difference in log(Odds 

Ratio). For example, 

 

Interactions: age group * presence of arcus senilis 



Interactions: component odds ratios 



Interactions: categorical and continuous predictors 


