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The Power of Bits
• The fundamental unit of memory inside a computer is called a 

bit—a term introduced in a paper by Claude Shannon as a 
contraction of the words binary digit. 

• An individual bit exists in one of two states, usually denoted 
as 0 and 1. 

• More sophisticated data can be represented by combining 
larger numbers of bits: 
– Two bits can represent four (2 × 2) values. 
– Three bits can represent eight (2 × 2 × 2) values. 
– Four bits can represent 16 (24) values, and so on. 

• This laptop has 16GB of main memory and can therefore exist 
in 2549,755,813,888 states.  If you were to write that number out, it 
would contain more than fifty billion digits. 



Leibniz and Binary Notation
• Binary notation is an old idea.  It 

was described back in 1703 by 
the German mathematician 
Gottfried Wilhelm von Leibniz. 

• Writing in the proceedings of the 
French Royal Academy of 
Science, Leibniz describes his 
use of binary notation in a 
simple, easy-to-follow style. 

• Leibniz’s paper further suggests 
that the Chinese were clearly 
familiar with binary arithmetic 
2000 years earlier, as evidenced 
by the patterns of lines found in 
the I Ching.



The rightmost digit 
is the units place.

The next digit gives 
the number of 2s.

The next digit gives 
the number of 4s.

42

0  x 01 =
1  x 22 =
0  x 04 =
1  x 88 =
0  x 016 =
1  x 3232 =
0  x 064 =
0  x 0128 =

Using Bits to Represent Integers
• Binary notation is similar to decimal notation but uses a 

different base.  Decimal numbers use 10 as their base, which 
means that each digit counts for ten times as much as the digit 
to its right.  Binary notation uses base 2, which means that 
each position counts for twice as much, as follows:

0 0 1 0 1 0 1 0



Numbers and Bases
• The calculation at the end of the preceding slide makes it clear 

that the binary representation 00101010 is equivalent to the 
number 42.  When it is important to distinguish the base, the 
text uses a small subscript, like this:

001010102  =  4210

• Although it is useful to be able to convert a number from one 
base to another, it is important to remember that the number 
remains the same.  What changes is how you write it down.  

• The number 42 is what you get if you count 
how many stars are in the pattern at the right.  
The number is the same whether you write it 
in English as forty-two, in decimal as 42, or in 
binary as 00101010.

• Numbers do not have bases; representations do.



Octal and Hexadecimal Notation
• Because binary notation tends to get rather long, computer 

scientists often prefer octal (base 8) or hexadecimal (base 16) 
notation instead.  Octal notation uses eight digits: 0 to 7. 
Hexadecimal notation uses sixteen digits: 0 to 9, followed by 
the letters A through F to indicate the values 10 to 15.

• The advantage of using either octal or hexadecimal notation is 
that doing so makes it easy to translate the number back to 
individual bits because you can convert each digit separately.

• The following diagrams show how the number forty-two 
appears in both octal and hexadecimal notation:

2  x 21
5  x 408

5 2

42

10  x 101
02  x 3216

2 A

42

octal hexadecimal

=
=

=
=



Exercises: Number Bases
• What is the decimal value for each of the following numbers?

100012 1778 AD16

1  x  11
0  x  02
0  x  04
0  x  08
1  x  116

1 0 0 0 1

17

7  x  71
7  x  568

7 7

127

1

1  x  6464

13  x  131
10  x  16016

A D

173

17 127 173

• As part of a code to identify the file type, every Java class file 
begins with the following sixteen bits:

1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

 How would you express that number in hexadecimal notation?

1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

A F E
CAFE16

1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0



Bits and Representation
• Sequences of bits have no intrinsic meaning except for the 

representation that we assign to them, both by convention and 
by building particular operations into the hardware. 

• As an example, a 32-bit word represents an integer only 
because we have designed hardware that can manipulate those 
words arithmetically, applying operations such as addition, 
subtraction, and comparison. 

• By choosing an appropriate representation, you can use bits to 
represent any value you can imagine: 
– Characters are represented using numeric character codes. 
– Floating-point representation supports real numbers. 
– Two-dimensional arrays of bits represent images. 
– Sequences of images represent video. 
– And so on . . .



Adding Numbers
• How does a computer actually add numbers together? 
• We have discussed how computers deal with 0s and 1s at the 

lowest level. Computers use transistors to manipulate the 
digital 0s and 1s, and certain transistor configurations can be 
used to build logic gates to perform boolean functions: AND, 
OR, XOR, NOT, etc. 

• We are going to "build an adder" using logic and a set of logic 
gates. The symbols for the logic gates we will use look like 
this:



Determining a Circuit from a Truth Table
• We often write A AND B as AB, and A OR B as A+B. We also write A 

XOR B as A⊕B 

• All circuits can be made from a combination of AND and OR gates, in 
the following way: 

• For each set of inputs that produces a "1" output, AND together all 
of the inputs such that the result is "1". For inputs that are 0, use the 
NOT operator. For example:

• There are three 1 outputs on the 
right. The first output is when all 
three inputs are 0, so it is true for 
A̅ B̅ C̅. The next 1 result would be 
from A̅ B C̅, etc. 

• Altogether, we could get the 
result as follows: 

• A̅ B̅ C̅ + A̅ B C̅ + A̅ B C + A B̅ C

A B C Result
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0



Distribution and Substitutions
• Once we have the equivalent AND and OR circuit, we can use some 

mathematical properties to reduce the number of components we will 
need for our circuit. 

• For the result on the previous slide: 

A̅ B̅ C̅ + A̅ B C̅ + A̅ B C + A B̅ C 

• We can use the distributive property to find the common C and C̅ terms, 
as follows: 

C̅ (A̅ B̅ + A̅ B) + C (A̅ B + A B̅) 

• There are a couple of nice substitutions, as well: 

(A̅ B + A B̅) = A ⊕ B 

(A̅ B̅ + AB) = A ⊕ B 

• So, above, we can make the following substitution: 

C̅ (A̅ B̅ + A̅ B) + C (A̅ B + A B̅) = C̅ (A̅ B̅ + A̅ B) + C (A ⊕ B)



Distribution and Substitutions
• Now, we are left with, which we can 

reduce even further: 

C̅ (A̅ B̅ + A̅ B) + C (A ⊕ B) 

• For the first term, we can pull out the A̅ : 

C̅A̅ (B̅ + B) 

• But, (B̅ + B) is always true, so this 
further reduces to: 

C̅A̅ 

• We now have: 

C̅A̅ + C (A ⊕ B) 

• We can simplify the first term by using a 
NAND gate: C̅A̅ = A+C 

• So our final result is: A+C + C(A ⊕ B) 

• Which looks like this in a logic diagram:



Adding Two Bits
• When adding two one-bit numbers together, we have two 

outputs: a sum and a carry. 
• Let's fill in the table below to determine these values based on 

adding two bits:

A B Sum Carry

0 0

0 1

1 0

1 1



Adding Two Bits
• When adding two one-bit numbers together, we have two 

outputs: a sum and a carry. 
• Let's fill in the table below to determine these values based on 

adding two bits:

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1



Adding Two Bits

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

• Can we determine what logic gates we can use to produce the 
sum and the carry from A and B?

• When adding two one-bit numbers together, we have two 
outputs: a sum and a carry. 

• Let's fill in the table below to determine these values based on 
adding two bits:



Adding Two Bits

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

• Can we determine what logic gates we can use to produce the 
sum and the carry from A and B?

• When adding two one-bit numbers together, we have two 
outputs: a sum and a carry. 

• Let's fill in the table below to determine these values based on 
adding two bits:



Let's Build a Half Adder!

https://logic.ly/demo

https://logic.ly/demo


The Full Adder
• A half adder takes two one-bit numbers and adds them. But, if 

we want to do this for more than one bit, we have to include a 
carry-in as well. Let's make a new table:

A B Carry In Sum Carry Out

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



The Full Adder
• A half adder takes two one-bit numbers and adds them. But, if 

we want to do this for more than one bit, we have to include a 
carry-in as well. Let's make a new table:

A B Carry In Sum Carry Out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1



The Full Adder
• The logic for the Full Adder is more difficult, and has multiple 

solutions. Here is one solution:



The Full Adder
• The logic for the Full Adder is more difficult, and has multiple 

solutions. Here is one solution:

• Let's build a 4-bit Full Adder!



Representing Characters
• Computers use numeric encodings to represent character data 

inside the memory of the machine, in which each character is 
assigned an integral value. 

• Character codes, however, are not very useful unless they are 
standardized.  When different computer manufacturers use 
different coding sequence (as was indeed the case in the early 
years), it is harder to share such data across machines. 

• The first widely adopted character encoding was ASCII 
(American Standard Code for Information Interchange). 

• With only 256 possible characters, the ASCII system proved 
inadequate to represent the many alphabets in use throughout 
the world.  It has therefore been superseded by Unicode, 
which allows for a much larger number of characters. 



The ASCII Subset of Unicode
The Unicode value for any character in the table is the sum of the 
octal numbers at the beginning of that row and column.
The letter A, for example, has the Unicode value 1018, which is 
the sum of the row and column labels.
The following table shows the first 128 characters in the Unicode 
character set, which are the same as in the older ASCII scheme: 

\000 \001 \002 \003 \004 \005 \006 \007
\b \t \n \011 \f \r \016 \017

\020 \021 \022 \023 \024 \025 \026 \027
\030 \031 \032 \033 \034 \035 \036 \037
space ! " # $ % & '
( ) * + , - . /
0 1 2 3 4 5 6 7
8 9 : ; < = > ?
@ A B C D E F G
H I J K L M N O
P Q R S T U V W
X Y Z [ \ ] ^ _
` a b c d e f g
h i j k l m n o
p q r s t u v w
x y z { | } ~ \177

0 1 2 3 4 5 6 7
00x
01x
02x
03x
04x
05x
06x
07x
10x
11x
12x
13x
14x
15x
16x
17x

\000 \001 \002 \003 \004 \005 \006 \007
\b \t \n \011 \f \r \016 \017

\020 \021 \022 \023 \024 \025 \026 \027
\030 \031 \032 \033 \034 \035 \036 \037
space ! " # $ % & '
( ) * + , - . /
0 1 2 3 4 5 6 7
8 9 : ; < = > ?
@ A B C D E F G
H I J K L M N O
P Q R S T U V W
X Y Z [ \ ] ^ _
` a b c d e f g
h i j k l m n o
p q r s t u v w
x y z { | } ~ \177



Hardware Support for Characters

10000110

=97

a



Strings as an Abstract Idea
• Characters are most often used in programming when they are 

combined to form collections of consecutive characters called 
strings. 

• As you will discover when you have a chance to look more 
closely at the internal structure of memory, strings are stored 
internally as a sequence of characters in sequential memory 
addresses. 

• The internal representation, however, is really just an 
implementation detail.  For most applications, it is best to 
think of a string as an abstract conceptual unit rather than as 
the characters it contains. 

• JavaScript emphasizes the abstract view by defining a built-in 
string type that defines high-level operations on string values.



Using Strings as Values
• You can store a string value in a JavaScript variable, just as if 

it were any other type of value. 
• The following declaration defines a variable named str and 

sets it to the ten-character string "hello, world":
var str = "hello, world";

• As with any other value, this declaration is best interpreted as 
creating a box named str with the appropriate initial value:

str

hello, world



Strings as Objects
• In JavaScript, strings are implemented as objects, which are 

structures that combine data and operations into a single unit. 
• In object-oriented languages, operations on objects are 

implemented using methods, which are functions that belong 
to a particular object.  Calling a method is viewed as sending 
a message to that object, as shown in the following example:

toUpperCase()

• The object to which a message is sent is called the receiver.

str

hello, world "HELLO, WORLD"

receiver.name(arguments);

• The general pattern for sending a message to an object is



Selecting Characters from a String
• Conceptually, a string is an ordered collection of characters.

• In JavaScript, the character positions in a string are identified 
by an index that begins at 0 and extends up to one less than the 
length of the string, as follows:

h
0

e
1

l
2

l
3

o
4

,
5

 
6

w
7

o
8

r
9

l
10

d
11

• The length of a string str is given by str.length.

• You can select a character by calling charAt(k), where k is 
the index of the desired character.  The expression  

returns the one-character string "h".

str.charAt(0);



Concatenation
• One of the most useful operations available for strings is 

concatenation, which consists of combining two strings end to 
end with no intervening characters. 

• Concatenation is built into JavaScript in the form of the + 
operator. If you use + with numeric operands, it signifies 
addition.  If at least one of its operands is a string, JavaScript 
interprets + as concatenation. If either of the operands is not a 
string, JavaScript converts it to a string before concatenating 
the strings together.



Extracting Substrings
• The substring method makes it possible to extract a piece of 

a larger string by providing index numbers that determine the 
extent of the substring.

where p1 is the first index position in the desired substring and 
p2 is the index position immediately following the last 
position in the substring.

• The general form of the substring call is

str.substring(p1, p2);

• For example, if str contains "hello, world", the following 
expression extracts the substring "ell":

str.substring(1, 4);



Other Useful String Methods
indexOf(pattern)

Returns the index of the first match of pattern, or -1 if none exists.

toUpperCase()
Returns a copy of this string with all lowercase characters changed to uppercase.

toLowerCase()
Returns a copy of this string with all uppercase characters changed to lowercase.

lastIndexOf(pattern)
Returns the index of the last match of pattern, or -1 if none exists.



Exercise: The “Starts With” Function
• Implement a function startsWith(str, prefix) that returns 

true if str starts with prefix.

function startsWith(str, prefix) { 
   if (str.length >= prefix.length) { 
      return prefix === 
             str.substring(0, prefix.length); 
   } else { 
     return result; 
   } 
}



Simple String Idioms

for (var i = 0; i < str.length; i++) { 
   var ch = str.charAt(i); 
   . . . code to process each character in turn . . . 
}

When you work with strings, there are two idiomatic patterns that 
are particularly important: 

Iterating through the characters in a string. 1.

var result = ""; 
for (whatever limits are appropriate to the application) {  
   . . . code to determine the next character to be added . . . 
   result += ch; 
}

Growing a new string character by character. 2.



The reverseString Function

JavaScript console

DESSERTS
reverseString("STRESSED")-> 

function reverseString(str) { 
   var result = ""; 
   for ( var i = 0; i < str.length; i++ ) { 
      result = str.charAt(i) + result; 
   } 
   return result; 
} 

istrresult

STRESSED 012345678STSRTSERTSSERTSSSERTSESSERTSDESSERTS



Exercise: Checking Palindromes

A palindrome is a string that reads the same forward and 
backward, such as "LEVEL" or "NOON".  How would you 
implement the predicate function isPalindrome(str)?



The End


