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How many length n binary strings contain k ones?

Density is number of ones
For example, n=6 k=4

Which of these strings matches this example?
A. 101101
B. 1100011101
C. 111011
D. 1101
E. None of the above.

Fixed-density Binary Strings
Rosen p. 413



How many length n binary strings contain k ones?

Density is number of ones
For example, n=6 k=4

Product rule: How many options for the first bit? the second? the third?

Fixed-density Binary Strings
Rosen p. 413



How many length n binary strings contain k ones?

Density is number of ones
For example, n=6 k=4

Tree diagram:  gets very big & is hard to generalize

Fixed-density Binary Strings
Rosen p. 413



How many length n binary strings contain k ones?

Density is number of ones
For example, n=6 k=4

Another approach: use a different representation i.e. count with categories

Objects: 
Categories: 
Size of each category: 

# categories = (# objects) / (size of each category)

Fixed-density Binary Strings
Rosen p. 413



How many length n binary strings contain k ones?

For example, n=6 k=4

Another approach: use a different representation i.e. count with categories

Objects: all strings made up of 01, 02, 11, 12, 13, 14
Categories: strings that agree except subscripts
Size of each category: Subscripts so objects are distinct

# categories = (# objects) / (size of each category)

Fixed-density Binary Strings
Rosen p. 413



How many length n binary strings contain k ones?

For example, n=6 k=4

Another approach: use a different representation i.e. count with categories

Objects: all strings made up of 01, 02, 11, 12, 13, 14 6!
Categories: strings that agree except subscripts
Size of each category: ?

# categories = (# objects) / (size of each category)

Fixed-density Binary Strings
Rosen p. 413



How many subscripted strings i.e. rearrangements of the symbols
01, 02, 11, 12, 13, 14

result in 
101101

when the subscripts are removed?

Fixed-density Binary Strings

A. 6!
B. 4!
C. 2!
D. 4!2!
E. None of the above



How many length n binary strings contain k ones?

For example, n=6 k=4

Another approach: use a different representation i.e. count with categories

Objects: all strings made up of 01, 02, 11, 12, 13, 14 6!
Categories: strings that agree except subscripts
Size of each category: 4!2!

# categories = (# objects) / (size of each category)
= 6! / (4!2!)

Fixed-density Binary Strings
Rosen p. 413



How many length n binary strings contain k ones?

Another approach: use a different representation i.e. count with categories

Objects: all strings made up of 01, 02, …, 0n-k, 11, 12, …, 1k n!
Categories: strings that agree except subscripts
Size of each category: k!(n-k)!

# categories = (# objects) / (size of each category)
= n!/ ( k! (n-k) ! )

Fixed-density Binary Strings
Rosen p. 413



A permutation of r elements from a set of n distinct objects is an ordered
arrangement of them.  There are 

P(n,r) = n(n-1) (n-2) …(n-r+1)
many of these.

A combination of r elements from a set of n distinct objects is an unordered
selection of them.  There are

C(n,r) = n!/ ( r! (n-r) ! )
many of these.

Terminology
Rosen p. 407-413

Binomial coefficient
"n choose r"



How many length n binary strings contain k ones?

How to express this using the new terminology?

A. C(n,k)
B. C(n,n-k)
C. P(n,k)
D. P(n,n-k)
E. None of the above

Fixed-density Binary Strings
Rosen p. 413



How many length n binary strings contain k ones?

How to express this using the new terminology?

A. C(n,k) {1,2,3..n} is set of positions in string, choose k positions for 1s
B. C(n,n-k) {1,2,3..n} is set of positions in string, choose n-k positions for 0s
C. P(n,k)
D. P(n,n-k)
E. None of the above

Fixed-density Binary Strings
Rosen p. 413



Ice cream! redux
An ice cream parlor has n different flavors available.  

How many ice cream cones are there, if we count two cones as the same if they 
have the same two flavors (even if they're in opposite order)?

Objects: cones n(n-1)
Categories: flavor pairs (regardless of order)
Size of each category: 2

# categories = (n)(n-1)/ 2

Order doesn't matter so 
selecting a subset of size 2 of the 
n possible flavors:

C(n,2) = n!/ (2! (n-2)!) = n(n-1)/2



Binomial: sum of two terms, say x and y.  
What do powers of binomials look like?

(x+y)4 = (x+y)(x+y)(x+y)(x+y)
= (x2+2xy+y2)(x2+2xy+y2)
= x4+4x3y+6x2y2+4xy3+y4

What's in a name?
Rosen p. 415

In general , for (x+y)n

A. All terms in the expansion are (some coefficient times) xkyn-k for some k, 0<=k<=n.
B. All coefficients in the expansion are integers between 1 and n.
C. There is symmetry in the coefficients in the expansion.
D. The coefficients of xn and yn are both 1.
E. All of the above.



(x+y)n = (x+y)(x+y)…(x+y)

= xn + xn-1y + xn-2y2 + … + xkyn-k + … + x2yn-2 + xyn-1 + yn 

Binomial Theorem 
Rosen p. 416

Number of ways we can choose k of the n factors (to contribute to x)
and hence also n-k of the factors (to contribute to y)



(x+y)n = (x+y)(x+y)…(x+y)

= xn + xn-1y + xn-2y2 + … + xkyn-k + … + x2yn-2 + xyn-1 + yn 

= xn + C(n,1) xn-1y + … + C(n,k) xkyn-k + … + C(n,k-1) xyn-1 + yn 

Binomial Theorem 
Rosen p. 416

Number of ways we can choose k of the n factors (to contribute to x)
and hence also n-k of the factors (to contribute to y) C(n,k)



What's an identity ? An equation that is always true.

To prove 
LHS = RHS

• Use algebraic manipulations of formulas

OR

• Interpret each side as counting some collection of strings, and then prove a 
statements about those sets of strings

Binomial Coefficient Identities



Theorem: 

Symmetry Identity
Rosen p. 411



Theorem: 

Proof 1: Use formula

Symmetry Identity
Rosen p. 411



Theorem: 

Proof 1: Use formula

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length n with k ones
RHS counts number of binary strings of length n with n-k ones

Symmetry Identity
Rosen p. 411



Theorem: 

Proof 1: Use formula

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length n with k ones and n-k zeros
RHS counts number of binary strings of length n with n-k ones and k zeros

Symmetry Identity
Rosen p. 411



Theorem: 

Proof 1: Use formula

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length n with k ones and n-k zeros
RHS counts number of binary strings of length n with n-k ones and k zeros

Can match up these two sets by pairing each string with another where 0s, 1s are 
flipped. This bijection means the two sets have the same size.  So LHS = RHS.

Symmetry Identity
Rosen p. 411



Theorem: 

Proof 1: Use formula

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings ???
RHS counts number of binary strings ???

Pascal's Identity
Rosen p. 418



Theorem: 

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length n+1 that have k ones.
RHS counts number of binary strings ???

Pascal's Identity
Rosen p. 418

Length n+1 binary strings with k 
ones



Theorem: 

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length n+1 that have k ones.
RHS counts number of binary strings ???

Pascal's Identity
Rosen p. 418

Start with 1 Start with 0 



How many length n+1 strings start with 1 and have k ones in total?

A. C(n+1, k+1)
B. C(n, k)
C. C(n, k+1)
D. C(n, k-1)
E. None of the above.

Pascal's Identity
Rosen p. 418

Start with 1 Start with 0 



How many length n+1 strings start with 0 and have k ones in total?

A. C(n+1, k+1)
B. C(n, k)
C. C(n, k+1)
D. C(n, k-1)
E. None of the above.

Pascal's Identity
Rosen p. 418

Start with 1 Start with 0 



Theorem: 

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length n+1 that have k ones.
RHS counts number of binary strings of length n+1 that have k ones, split into 

two.

Pascal's Identity
Rosen p. 418

Start with 1 Start with 0 



Theorem: 

Sum Identity
Rosen p. 417

What set does the LHS count?

A. Binary strings of length n that have k ones.
B. Binary strings of length n that start with 1.
C. Binary strings of length n that have any number of ones.
D. None of the above.



Theorem: 

Proof : Combinatorial interpretation?

LHS counts number of binary strings of length n that have any number of 1s.

By sum rule, we can break up the set of binary strings of length n into 
disjoint sets based on how many 1s they have, then add their sizes.

RHS counts number of binary strings of length n.

This is the same set so LHS = RHS.

Sum Identity
Rosen p. 417



A permutation of r elements from a set of n distinct objects is an ordered
arrangement of them.  There are 

P(n,r) = n(n-1) (n-2) …(n-r+1)
many of these.

A combination of r elements from a set of n distinct objects is an unordered
slection of them.  There are

C(n,r) = n!/ ( r! (n-r) ! )
many of these.

Review: Terminology
Rosen p. 407-413

Binomial coefficient
"n choose r"



How many length n binary strings contain k ones?

Objects: all strings made up of 01, 02, 11, 12, 13, 14 n!
Categories: strings that agree except subscripts
Size of each category: k!(n-k)!

# categories = (# objects) / (size of each category)
= n!/ ( k! (n-k) ! ) = C(n,k) =

Fixed-density Binary Strings
Rosen p. 413

Density is number of ones



What's the smallest number of bits that we need to specify a binary string if 
we know it has k ones and n-k zeros?

Encoding Fixed-density Binary Strings
Rosen p. 413

A. n
B. k
C. log2( C(n,k) )
D. ??



Store / transmit information in as little space as possible

Data Compression



Data Compression: Video 

Video: stored as sequence of still frames.

Idea: instead of storing each frame fully, record change from previous frame.



Data Compression: Run-Length Encoding

Image: described as grid of pixels, each with RED, GREEN, BLUE values.

Idea: instead of storing RGB value of each pixel, store run-length of run of same color.

When is this a good coding mechanism?
Will there be any loss in this compression?



Lossy Compression: Singular Value Decomposition

Image: described as grid of pixels, each with RED, GREEN, BLUE values.

Idea: use Linear Algebra to compress data to a fraction of its size, with minimal loss.



Complicated compression scheme

… save storage space
… may take a long time to encode / decode

Data Compression: Trade-off

Data Encoding 
Algorithm

Stored in Computer

DataDecoding 
Algorithm



Encoding: Binary Palindromes

Palindrome: string that reads the same forward and backward.

Which of these are binary palindromes?

A. The empty string.
B. 0101.
C. 0110.
D. 101.
E. All but one of the above.



Encoding: Binary Palindromes

Palindrome: string that reads the same forward and backward.

How many length n binary palindromes are there?

A. 2n

B. n
C. n/2
D. log2n
E. None of the above



Encoding: Binary Palindromes

Palindrome: string that reads the same forward and backward.

How many bits are (optimally) required to encode length n binary palindromes?

A. n
B. n-1
C. n/2
D. log2n
E. None of the above.

Is there an algorithm that achieves this?



Encoding: Fixed Density Strings

Goal: encode a length n binary string that we know has k ones (and n-k zeros).

How would you represent such a string with n-1 bits?



Encoding: Fixed Density Strings

Goal: encode a length n binary string that we know has k ones with k<<n.

How would you represent such a string with n-1 bits?

Can we do better?



Encoding: Fixed Density Strings

Goal: encode a length n binary string that we know has k ones (and n-k zeros).

How would you represent such a string with n-1 bits?

Can we do better?

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 

There's a 1!  What's its position?



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01

There's a 1!  What's its position?



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01

There's a 1!  What's its position?



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100

There's a 1!  What's its position?



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100

No 1s in this window.



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01000

No 1s in this window.



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01000

There's a 1!  What's its position?



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100011

There's a 1!  What's its position?



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100011

No 1s in this window.



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01000110.

No 1s in this window.



Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01000110.

Compressed to 8 bits!

But can we recover the original string?  Decoding …



Encoding: Fixed Density Strings

With n=12, k=3, window size n/k = 4.  Output: 01000110

Can be parsed as the (intended) input: s = 011000000010 ?
But also:

01: one in position 1
0: no ones 
00: one in position 0
11: one in position 3
0: no ones

s' = 010000100010

Problem: two different inputs with same output.  Can't uniquely decode.



Compression Algorithm

A valid compression algorithm must:

- Have outputs of shorter (or same) length as input.
- Be uniquely decodable.



Encoding: Fixed Density Strings

Can we modify this algorithm to get unique decodability?

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 

What output corresponds to these first few bits?
A. 0 C. 01 E. None of the above.
B. 1 D. 101



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101

Interpret next bits as position of 1; this position is 01



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101100

Interpret next bits as position of 1; this position is 00



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101100



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 1011000

No 1s in this window.



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 1011000



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 1011000111

Interpret next bits as position of 1; this position is 11



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 1011000111



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 10110001110

No 1s in this window.



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 10110001110

Compare to previous output: 01000110

Output uses more bits than last time.  Any redundancies?



Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, 
record a 1 to interpret next bits as position, 
then record its position and move the window over.

- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 10110001110

Compare to previous output: 01000110

* After see the last 1, don't need to add 0s to indicate empty windows. *



Encoding: Fixed Density Strings

procedure WindowEncode (input: b1b2…bn, with exactly k ones and n-k zeros)

1. w := floor (n/k) 
2. count := 0
3. location := 1
4. While count < k:
5. If there is a 1 in the window starting at current location
6. Output 1 as a marker, then output position of first 1 in window.
7. Increment count.
8. Update location to immediately after first 1 in this window.
9. Else
10. Output 0.
11. Update location to next index after current window.

Uniquely decodable?



Decoding: Fixed Density Strings

procedure WindowDecode (input: x1x2…xm, target is exactly k ones and n-k zeros)
1. w := floor ( n/k ) 
2. b := floor ( log2(w))
3. s := empty string
4. i := 0
5. While i < m
6. If xi = 0
7. s += 0…0 (j times)
8. i += 1 
9. Else
10. p := decimal value of the bits xi+1…xi+b
11. s += 0…0 (p times) 
12. s += 1
13. i := i+b+1
14. If length(s) < n
15. s += 0…0 ( n-length(s) times )
16. Output s.



Encoding/Decoding: Fixed Density Strings

Correctness?

E(s) = result of encoding string s of length n with k 1s, using WindowEncode.

D(t) = result of decoding string t to create a string of length n with k 1s, using 
WindowDecode.

Well-defined functions?
Inverses?

Goal: For each s, D(E(s)) = s.
Strong Induction!



Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

How long is E(s)?

A. n-1
B. log2(n/k)
C. Depends on where 1s are located in s



Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

For which strings is E(s) shortest?

A. More 1s toward the beginning.
B. More 1s toward the end.
C. 1s spread evenly throughout.



Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Best case : 1s toward the beginning of the string.  E(s) has
- One bit for each 1 in s to indicate that next bits denote positions in window.
- log2(n/k) bits for each 1 in s to specify position of that 1 in a window.
- k such ones.
- No bits representing 0s because all 0s are "caught" in windows with 1s or
after the last 1.

Total |E(s)| = k log2(n/k) + k



Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Worst case : 1s toward the end of the string.  E(s) has
- Some bits representing 0s since there are no 1s in first several windows.
- One bit for each 1 in s to indicate that next bits denote positions in window.
- log2(n/k) bits for each 1 in s to specify position of that 1 in a window.
- k such ones.

What's an upper bound on the number of these bits?
A. n D. 1
B. n-k E. None of the above.
C. k



Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Worst case : 1s toward the end of the string.  E(s) has
- At most k bits representing 0s since there are no 1s in first several windows.
- One bit for each 1 in s to indicate that next bits denote positions in window.
- log2(n/k) bits for each 1 in s to specify position of that 1 in a window.
- k such ones.

Total |E(s)| <= k log2(n/k) + 2k



Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

k log2(n/k) + k <= | E(s) | <= k log2(n/k) + 2k

Using this inequality, there are at most ____ length n strings with k 1s.

A. 2n D. (n/k)k

B. n E. None of the above.
C. (n/k)2



Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. 
Given | E(s) | <= k log2(n/k) + 2k, we need at most k log2(n/k) + 2k bits to represent
all length n binary strings with k 1s.  Hence, there are at most 2… many such strings.
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Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. 
Given | E(s) | <= k log2(n/k) + 2k, we need at most k log2(n/k) + 2k bits to represent
all length n binary strings with k 1s.  Hence, there are at most 2… many such strings.



Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. 
Given | E(s) | <= k log2(n/k) + 2k, we need at most k log2(n/k) + 2k bits to represent
all length n binary strings with k 1s.  Hence, there are at most 2… many such strings.

C(n,k) = # Length n binary strings with k 1s <= (4n/k)k



Bounds for Binomial Coefficients

Using windowEncode():

Lower bound?

Idea: find a way to count a subset of the fixed density binary strings.

Some fixed density binary strings have one 1 in each of k chunks of size n/k.

….

How many such strings are there?
A. nn B.  k! C. (n/k)k D. C(n,k)k E. None of the above.



Bounds for Binomial Coefficients

Using windowEncode():

Using evenly spread strings:

Counting helps us analyze our compression algorithm.

Compression algorithms help us count.


