## 

1. The expansion of $(2-p x)^{6}$ in ascending powers of $x$, as far as the term in $x^{2}$, is

$$
64+A x+135 x^{2}
$$

Given that $p>0$, find the value of $p$ and the value of $A$.
2. The first four terms, in ascending powers of $x$, of the binomial expansion of $(1+k x)^{n}$ are

$$
1+A x+B x^{2}+B x^{3}+\ldots
$$

where $k$ is a positive constant and $A, B$ and $n$ are positive integers.
(a) By considering the coefficients of $x^{2}$ and $x^{3}$, show that $3=(n-2) k$.

Given that $A=4$,
(b) find the value of $n$ and the value of $k$.
3. Find the first three terms, in ascending powers of $x$, of the binomial expansion of $(3+2 x)^{5}$, giving each term in its simplest form.
(Total 4 marks)
4. (a) Write down the first 4 terms of the binomial expansion, in ascending powers of $x$, of $(1+$ $a x)^{n}, n>2$.

Given that, in this expansion, the coefficient of $x$ is 8 and the coefficient of $x^{2}$ is 30 ,
(b) calculate the value of $n$ and the value of $a$,
(c) find the coefficient of $x^{3}$.
5. (a) Expand $\left(2+\frac{1}{4} x\right)^{9}$ in ascending powers of $x$ as far as the term in $x^{3}$, simplifying each term.
(b) Use your series, together with a suitable value of $x$, to calculate an estimate of $(2.025)^{9}$.
6. The first three terms in the expansion, in ascending powers of $x$, of $(1+p x)^{n}$, are $1-18 x+36 p^{2} x^{2}$. Given that $n$ is a positive integer, find the value of $n$ and the value of $p$.
(Total 7 marks)
7. For the binomial expansion, in descending powers of $x$, of

$$
\left(x^{3}-\frac{1}{2 x}\right)^{12}
$$

(a) find the first 4 terms, simplifying each term.
(b) Find, in its simplest form, the term independent of $x$ in this expansion.
8. (a) Write down the first three terms, in ascending powers of $x$, of the binomial expansion of ( 1 $+p x)^{12}$, where $p$ is a non-zero constant.

Given that, in the expansion of $(1+p x)^{12}$, the coefficient of $x$ is $(-q)$ and the coefficient of $x^{2}$ is $11 q$,
(b) find the value of $p$ and the value of $q$.

1.

Coeff. of $x$ or $x^{2}$

$$
=64+6 \times 2^{5}(-p x) ;+15 \times 2^{4}(-p x)^{2}
$$

$$
\text { No }\binom{n}{r}
$$

$15 \times 16 p^{2}=135 \quad \Rightarrow p^{2}=\frac{9}{16}$ or $p=\underline{\frac{3}{4}}$ (only)
$-6.32 p=A$

$$
\Rightarrow \quad \underline{A}=-144
$$

Condone lost or extra '-'signs for M marks but A marks must be correct.
Final A1 ft is for $-192 x$ (their $p>0$ )
2. (a) $\frac{n(n-1)}{2!} k^{2}=\frac{n(n-1)(n-2)}{3!} k^{3}$

One coefficient (no $\binom{n}{r}$ )
A correct equation, no cancelling

$$
\begin{aligned}
& \text { e.g. } 3 k^{2}=(n-2) k^{3} \\
& \quad \text { Cancel at least } n(n-1)
\end{aligned}
$$

$$
3=(n-2) k(*)
$$

A1 cso4

B1
M1
A1, A14
[8]
3. $(3+2 x)^{5}=\left(3^{5}\right)+\binom{5}{1} 3^{4} .(2 x)+\binom{5}{2} 3^{3}(2 x)^{2}+\ldots$
$=\underline{243,+810 x,+1080 x^{2}}$
4. (a) $1+n a x,+\frac{n(n-1)}{2}(a x)^{2}+\frac{n(n-1)(n-2)}{6}(a x)^{3}+\ldots$
accept 2!, 3!
(b) $n a=8, \frac{n(n-1)}{2} a^{2}=30$
both

$$
\frac{n(n-1)}{2} \cdot \frac{64}{n^{2}}=30, \frac{\frac{8}{a}\left(\frac{8}{a}-1\right) a^{2}}{2}=30
$$

either

$$
n=16, a=\frac{1}{2}
$$

(c) $\frac{16.15 \cdot 14}{6}\left(\frac{1}{2}\right)^{3}=70$
5. (a) $\left(2+\frac{1}{4} x\right)^{9}=2^{9}+9 \times 2^{8}\left(\frac{1}{4} x\right)+\frac{9 \times 8}{2}\left(2^{7}\right) \frac{x^{2}}{16}+\frac{9 \times 8 \times 7}{6} \times 2^{6} \times \frac{x^{3}}{64}$
(M1 for descending powers of 2 and ascending powers of $x$; B1 for coefficients $1,9,36,84$ in any form, as above)

$$
=512+576 x,+288 x^{2}+84 x^{3}
$$

A1, A14
(b) $x=\frac{1}{10}$ gives

$$
\begin{array}{ll}
(2.025)^{9}=512+57.6+2.88+0.084 & \text { M1 } \\
=572.564 & \text { A12 }
\end{array}
$$

6. $(1+p x)^{n} \equiv 1+n p x,+\frac{n(n-1) p^{2} x^{2}}{2}+\ldots$

B1, B1

Comparing coefficients: $n p=-18, \frac{n(n-1)}{2}=36$
Solving $n(n-1)=72$ to give $n=9 ; p=-2$
M1 A1; A1 ft
7. (a) $\left(x^{3}\right)^{12} ; \ldots+\binom{12}{1}\left(x^{3}\right)^{11}\left((-) \frac{1}{2 x}\right)+\binom{12}{2}\left(x^{3}\right)^{10}\left((-) \frac{1}{2 x}\right)^{2}+\ldots$
[For M1, needs binomial coefficients, ${ }^{n} C_{r}$ form OK at least as far as shown]

Correct values for ${ }^{n} C_{r} s: 12,66,220$ used (may be implied)
$\left\{\left(x^{3}\right)^{12}+12\left(x^{3}\right)^{11}\left(-\frac{1}{2 x}\right)+66\left(x^{3}\right)^{10}\left(-\frac{1}{2 x}\right)^{2}+220\left(x^{3}\right)^{9}\left(-\frac{1}{2 x}\right)^{3} \cdots\right.$
$=x^{36}-6 x^{32}+\frac{33}{2} x^{28}-\frac{55}{2} x^{24}$
(b) Term involving $\left(x^{3}\right)^{3}\left((-) \frac{1}{2 x}\right)^{9}$;
$\operatorname{coeff}=\frac{12 \cdot 11.10}{3.2 \cdot 1}\left((-) \frac{1}{2}\right)^{9}$
A1
$=-\frac{55}{128}($ or -0.4296875$)$
8. (a) $1+12 p x,+66 p^{2} x^{2}$

B1, B1 2
accept any correct equivalent
(b) $12 p=-q, 66 p^{2}=11 q$

Forming 2 equations by comparing coefficients
Solving for $p$ or $q$
M1

$$
p=-2, q=24
$$

A1A1 4

