

Bio-Based Polymers

PEP Report 265B December 2018

Process Economics Program

PEP Report 265B

Bio-Based Polymers

Susan Bell, Sr. Principal Analyst

Abstract

Bio-based polymers are defined as material where at least a portion of the polymer consists of material produced from renewable raw materials. For example, bio-based polymers may be produced from corn or sugar cane. The remaining portion of the polymers may be from fossil fuel-based carbon. Bio-based polymers have generally lower CO₂ footprint and are associated with the concept of sustainability. The total bio-based polymer market represents a tiny portion—about 1%—of the global polymer market. However, the market for bio-based polymers is expected to grow faster with growing usage in the beverage packaging industry, cost reduction, increasing government support for adopting bio-based materials, and rising consumer acceptance.

The largest potential market for bio-based biodegradable polymer is in the packaging industry. Consumption of biodegradable polymer is expected to grow globally at an average annual rate of 9% between 2017 and 2022. Polylactic acid (PLA) and polyhydroxyalkanoates (PHAs) are both major bio-based biodegradable plastics. Most of the PLA produced is used for packaging. PHAs are versatile biodegradable bio-based polymers that can be used in a wide range of applications. Poor production economics have limited commercialization of PHAs.

Conventional bottle-grade polyethylene terephthalate (PET) resin is used to produce beverage bottles. The plastic bottle beverage industry has been under intense pressure over the amount of PET produced and the solid waste generated from discarded conventional PET-based bottles. Responsible and sustainable PET consumption has been a major goal. Feedstocks for PET are petroleum-based. To achieve sustainability, bio-based feedstocks for PET production are being commercialized.

This report examines production technologies for PLA and its monomer lactic acid, PHA, and biobased PET, and evaluates the process economics for producing the polymers and lactic acid. This report will be of value to those companies engaging in the production of bio-based polymers and conventional petroleum-derived feedstock-based polymers.

Contents

1	Introduction	11
2	Summary	12
	Introduction	12
	Industrial aspects	12
	Technical aspects	14
	Lactic acid production	14
	Polylactic acid (PLA) production	15
	Polyhydroxyalkanoates (PHAs) production	16
	Bio-based polyethylene terephthalate (PET) production	17
	Economic aspects	18
	Lactic acid	18
	Bio-based polymers	19
	Polylactic acid and polyhydroxyalkanoate	19
	Bio-based polyethylene terephthalate (PET)	21
2	Summary of production costs	22 24
3	Industry status Introduction	24
	Polylactic acid (PLA)	24
	Cargill	24
	BASF SE	20
	Corbion (Purac)	27
	Galactic	27
	NatureWorks	27
	Plaxica	28
	Synbra Technology bv	28
	Total Corbion PLA	28
	Uhde Inventa-Fischer	29
	Polyhydroxyalkanoates (PHAs)	29
	Bio-based polyethylene terephthalate (PET)	31
4	Technology	32
1	Polylactic acid (PLA)	32
	Lactic acid production	32
	Lactic acid	32
	Lactic acid production by chemical synthesis	33
	Lactic acid production by fermentation	34
	PLA production	41
	Types of PLA	41
	Lactide synthesis	43
	Lactide polymerization	49
	Sustainability	53
	Polyhydroxyalkanoates (PHAs)	54
	Introduction	54
	Chemistry	54
	PHA production	56
	Metabolic pathways	57
	Microorganisms	58
	Carbon sources	60
	Fermentation	62
	PHA recovery	62

	Bio-based polyethylene terephthalate (PET) Introduction	64 64
	Bio-based ethylene glycol	65
	Bio-based purified terephthalic acid (PTA)	67
	Bio-based para-xylene production	68
	Purified terephthalic acid production from para-xylene	70
	Polyethylene terephthalate (PET) production	72
5	Polylactic acid	74
·	Introduction	74
	Lactic acid production	74
	Process description	74
	Section 100—Fermentation	85
	Section 200—Biomass separation and lactic acid recovery	86
	Section 300—Lactic acid purification	86
	Process discussion	87
	Plant design capacity	87
	Plant location	87
	Yeast fermentation	87
	Simple defined media	87
	Lactic acid recovery	88
	Material of construction	89
	Waste treatment	89
	Cost estimate	89
	Capital costs	89
	L-lactic acid production costs	93
	Comparison of L-lactic acid production costs	95
	Polylactic acid production	97
	Process description	97
	Section 100—Lactide production and purification	104
	Section 200—Lactide polymerization	105
	Process discussion	106
	Plant design capacity	106
	Storage	106
	Lactide production	106
	Lactide purification Polymerization	106
	Demonomerization	107
	Granulation and crystallization	107 108
	Material of construction	108
	Waste treatment	108
	Cost estimate	103
	Capital costs	109
	PLA production costs	112
6	Polyhydroxyalkanoate	115
Ŭ	Introduction	115
	PHA production	115
	Process description	115
	Section 100—Fermentation	121
	Section 200—PHA recovery	121
	Process discussion	122
	Plant design capacity	122
	Carbon substrate	122
	Bacterial fermentation	123
	MCL-PHA recovery	123

Material of construction	124
Waste treatment	124
Cost estimate	124
Capital costs	124
MCL-PHA production costs	128
7 Bio-based polyethylene terephthalate (PET)	130
Introduction	130
Bio-based PET production	130
Process description	130
Section 100—Ethanol production	131
Section 200—Ethylene production	131
Section 300—Ethylene glycol production	131
Section 400—p-Xylene production	132
Section 500—Purified terephthalic acid (PTA) production	133
Section 600—Bottle-grade polyethylene terephthalate (PET) production	134
Process discussion	135
Plant design capacity	135
Process selection	135
Onstream factor	136
Utilities consumption	136
Offsites storage	137
Waste treatment	137
Cost estimate	140
Appendix A—Cited references	145
Appendix B—Patents	158
Appendix C—Patent references by company	168
Appendix D—Design and cost basis	171
Design conditions	172
Site location	172
Facility site basis	172
Cost bases	172
Capital Investment	172
Project construction timing	174
Available utilities	174
Production costs	175
Effect of operating level on production costs	175
Appendix E—Process flow diagrams	177

Tables

Table 2.1 L-Lactic acid production costs	19
Table 2.2 Polylactic acid and polyhydroxyalkanoate production costs	20
Table 2.3 Commodity polymer prices	20
Table 2.4 Bio-based PET and conventional PET production costs	21
Table 3.1 PLA production capacity	26
Table 4.1 Select properties of lactic acid	33
Table 4.2 Typical properties of commercial polylactic acid	42
Table 4.3 Polylactic acid properties	46
Table 4.3 Physical properties of polylactic acid	52
Table 4.4 Commercial PHAs	55
Table 4.5 Physical properties of PHAs	55

Table 4.6 PHA production by fed-batch mode fermentation	59
Table 4.7 Carbon substrates used for commercial PHA	60
Table 4.8 Comparison of methods for PHA recovery	63
Table 5.1 L-Lactic acid by a process similar to Cargill's low-pH technology—Design bases	75
Table 5.2 L-Lactic acid by a process similar to Cargill's yeast fermentation—Major stream flows	76
Table 5.3 L-Lactic acid by a process similar to Cargill's yeast fermentation—Major equipment	82
	85
Table 5.4 L-Lactic acid by a process similar to Cargill's yeast fermentation—Utilities summary	
Table 5.5 Summary of major waste streams	89
Table 5.6 L-Lactic acid by a process similar to Cargill's yeast fermentation—Total capital	
investment	92
Table 5.7 L-Lactic acid by a process similar to Cargill's yeast fermentation—Capital investment by	
section	93
Table 5.8 L-Lactic acid by a process similar to Cargill's yeast fermentation—Production costs	94
Table 5.9 L-Lactic acid by a conventional bacterial fermentation process—Production costs	96
Table 5.10 PLA by a process similar to Uhde Inventa-Fischer PLAneo [®] process—Design bases	98
Table 5.11 PLA by a process similar to Uhde Inventa Fischer PLAneo [®] process—Major stream	00
	99
flows	99
Table 5.12 PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Major	
equipment	101
Table 5.13 PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Utilities	
summary	104
Table 5.14 Summary of major waste streams	108
Table 5.15 PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Total capital	
investment	111
Table 5.16 PLA by a process similar to Uhde Inventa-Fischer PLAneo [®] process—Capital	
	112
investment by section	112
Table 5.17 PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Production	
costs	113
Table 6.1 MCL-PHA production by bacterial fermentation with canola oil as the carbon source—	
Design bases	116
Table 6.2 MCL-PHA production by bacterial fermentation with canola oil as the carbon source—	
Major stream flows	117
Table 6.3 MCL-PHA production by bacterial fermentation with canola oil as the carbon source—	
Major equipment	119
Table 6.4 MCL-PHA production by bacterial fermentation with canola oil as the carbon source—	
Utilities summary	121
Table 6.5 Typical canola oil composition	123
Table 6.6 Summary of major waste streams	124
Table 6.7 MCL-PHA production by bacterial fermentation with canola oil as the carbon source—	
Total capital investment	127
Table 6.8 MCL-PHA production by bacterial fermentation with canola oil as the carbon source—	
Capital investment by section	128
Table 6.9 MCL-PHA production by bacterial fermentation with canola oil as the carbon source—	
Production costs	129
Table 7.1 Bio-based PET production from corn—Utilities summary	136
	137
Table 7.2 Summary of major waste streams	137
Table 7.3 Bio-based PET production from corn by an integrated process (IV=0.82 dL/g)—Capital	
investment	140
Table 7.4 Bio-based PET production from corn by an integrated process (IV=0.82 dL/g)—Variable	
costs	141
Table 7.5 Bio-based PET production from corn by an integrated process (IV=0.82 dL/g)—	
Production costs	142
Table 7.6 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP	_
process (IV 0.82 dL/g) ¾ Variable costs	143
Table 7.7 PET by a process similar to INVISTA CP process and Polymetrix EcoSphere™ SSP	1 10
process (IV 0.82 dL/g)—Production costs	144
μ ν ν ν ν ν ν ν ν μ	144

Figures

Figure 2.1 World production capacity of bio-based polymers ^a	13
Figure 2.2 Lactic acid production process by Cargill's lactic acid process with yeast fermentation	15
Figure 2.3 Uhde Inventa-Fischer PLAneo [®] process block diagram	16
Figure 2.4 MCL-PHA production process block diagram	16
Figure 2.5 Corn to bio-based PET value chain	17
Figure 2.6 Bottle-grade bio-based PET from corn input and output	22
Figure 2.7 Process economics summary	23
Figure 3.1 World production capacity of bio-based polymersa	24
Figure 4.1 Lactic acid enantiomers	32
Figure 4.2 Lactic acid production from corn	35
Figure 4.3 Lactate production by Embden-Meyerhof-Parnas (EMP) pathway	36
Figure 4.4 Lactic acid production process by bacterial fermentation	38
Figure 4.5 Lactic acid production process by Corbion's gypsum-free lactic acid process	39
Figure 4.6 Lactic acid production pathway by modified yeast	40
Figure 4.7 Lactic acid production process by Cargill's lactic acid process with yeast fermentation	41
Figure 4.8 First-generation PLA production process	41
Figure 4.9 Routes to polylactic acid	43
Figure 4.10 Lactide enantiomers	44
Figure 4.11 Depolymerization reactor from Hitachi's patent US 20100249362	45
Figure 4.12 Depolymerization reactor from Companhia Refinadora Da Amazonia's patent US	4.5
20130267675	45
Figure 4.13 Uhde Inventa-Fischer PLAneo® process block diagram	47
Figure 4.14 PLA process with Optipure®	48
Figure 4.15 Plaxica's D-lactate production process based on US 20150152449	49
Figure 4.16 Tubular lactide polymerization reactor from Companhia Refinadora Da Amazonia's	50
patent US 20130267675	50
Figure 4.17 Polymerization system from Uhde's patent US 8399602	51
Figure 4.18 PLA tacticities	52
Figure 4.19 Basic structure of PHA	54 57
Figure 4.20 Metabolic pathways to PHB and PHBV	58
Figure 4.21 Metabolic pathways to MCL-PHA	56 61
Figure 4.22 Biomass conversion to VFA by anaerobic digestion	64
Figure 4.23 Structure of polyethylene terephthalate (PET) Figure 4.24 Bio-based ethylene glycol via bio-based ethanol	65
Figure 4.24 Bio-based entylene grycol via bio-based entallor Figure 4.25 Ethylene production from ethanol by adiabatic fixed-bed catalytic dehydration	66
Figure 4.26 Ethylene glycol production from ethylene and oxygen by Shell OMEGA [®] process	67
Figure 4.27 Bio-based ethylene glycol via Haldor Topsoe's Monosaccharide Industrial Cracker	07
(MOSAIK™) process	67
Figure 4.28 Bio-based purified terephthalic acid (PTA) via bio-based para-xylene	67
Figure 4.29 Bio-based para-xylene by Gevo process	68
Figure 4.30 Bio-based para-xylene by Virent process	69
Figure 4.31 Bio-based para-xylene by Anellotech process	70
Figure 4.32 Purified terephthalic acid production from para-xylene by INVISTA process	71
Figure 4.33 Bottle-grade PET production using the Integrated INVISTA continuous polymerization	
PET/Polymetrix (Buhler) EcoSphere™ SSP process	72
Figure 7.1 Corn-to-PET value chain	130
Figure 7.2 Corn-to-ethanol input and output	131
Figure 7.3 Ethylene input and output	131
Figure 7.4 Ethylene glycol input and output	132
Figure 7.5 Corn-to-p-xylene input and output	133
Figure 7.6 p-Xylene-to-PTA input and output	134
Figure 7.7 Bottle-grade PET from PTA and EG input and output	134
Figure 7.8 Bottle-grade bio-based PET from corn input and output	135
Figure 5.1 Polymer-grade lactic acid—Fermentation section	178


Figure 5.1 Polymer-grade lactic acid—Biomass separation and lactic acid recovery section	179
Figure 5.1 Polymer-grade lactic acid—Purification section	180
Figure 6.1 Polymer-grade lactic acid—Purification section	181
Figure 5.2 PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Lactide	
production and purification section	182
Figure 5.2 PLA by a process similar to Uhde Inventa-Fischer PLAneo® process—Lactide	
polymerization section	183
Figure 6.1 MCL-PHA by bacterial fermentation with canola oil as the carbon source—	
Fermentation section	184
Figure 6.1 MCL-PHA by bacterial fermentation with canola oil as the carbon source—PHA	
recovery section	185

IHS Markit Customer Care:

CustomerCare@ihsmarkit.com Americas: +1 800 IHS CARE (+1 800 447 2273) Europe, Middle East, and Africa: +44 (0) 1344 328 300 Asia and the Pacific Rim: +604 291 3600

Disclaimer

Disclaimer
The information contained in this presentation is confidential. Any unauthorized use, disclosure, reproduction, or dissemination, in full or in part, in any media
or by any means, without the prior written permission of IHS Markit Ltd. or any of its affiliates ("IHS Markit") is strictly prohibited. IHS Markit owns all IHS
Markit logos and trade names contained in this presentation that are subject to license. Opinions, statements, estimates, and projections in this presentation
(including other media) are solely those of the individual author(s) at the time of writing and do not necessarily reflect the opinions of IHS Markit. Neither IHS
Markit togos and trade names contained in this presentation in the event that any content, opinion, statement, estimate, or projection (collectively,
"information") changes or subsequently becomes inaccurate. IHS Markit makes no warranty, expressed or implied, as to the accuracy, completeness, or
timeliness of any information in this presentation, and shall not in any way be liable to any recipient for any inaccuracies or omissions. Without limiting the
foregoing, IHS Markit shall have no liability whatsoever to any recipient, whether in contract, in tort (including negligence), under warranty, under statute or
otherwise, in respect of any loss or damage suffered by any recipient as a result of or in connection with any information provided, or any course of action
determined, by it or any third party, whether or not based on any information provided. The inclusion of a link to an external website by IHS Markit should not
be understood to be an endorsement of that website or the site's owners (or their products/services). IHS Markit is not responsible for either the content or
output of external websites. Copyright © 2018, IHS MarkitTM. All rights reserved and all intellectual property rights are retained by IHS Markit.

