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Abstract 

Objectives: The paper reviews and compares relative strengths 

and weaknesses of four algorithms in Swarm intelligence 

namely Particle swarm optimization, Ant colony optimization, 

Bacterial foraging optimization and Firefly.  

Methods and Statistical analysis: Swarm intelligence inspired 

by nature constitutes one of newest methods used for 

optimizing solutions for computing problems. The meta-

heuristics extracted from biological phenomenon specifically 

behavior of colonial organisms has led to several interesting 

algorithms. These algorithms are analyzed by dividing each of 

them into their common denominator constituents, namely 

Environment, Components, Start and End Configurations and 

Iteration engine. Further analysis is based on resemblances 

and differentiation among these elements.  

Findings: It was found that the environment component itself 

can be sub-typed based on movement freedom, presence of 

solutions in environment. The component element can be sub-

typed based on solution capacity and memory capacity. The 

start and end configuration can be sub-typed based on the 

usage of random initialization functions and generation count 

limit. The iteration engine shows greatest variation and be 

sub-typed based on use of various functions such as culling, 

cloning and randomization. Thereby this paper seeks to 

enhance the readers understanding of these algorithms in 

particular and swarm intelligence algorithms in general. 

Application and Improvements: The common denominator 

constituent elements can be used to suggest subtypes for 

further detailed classification of the algorithms. 

Keywords: Swarm intelligence, Bio-inspired techniques, 

Algorithm analysis, Algorithm behaviour comparison. 

 

INTRODUCTION 

Normal polynomial computational problems can be solved by 

applying reasonable amount of resources such as time and 

space. An increase in problem size leads to polynomial increase 

in amount of resources needed, such problems are called 

solvable problems. There is another class of problems that can 

be solved using same approach called hard problems. 

Polynomial problems can be solved faster by increasing the 

speed processing entity. This approach has led to development 

of faster physical computational elements such as high speed 

processors and memory. Unfortunately this brute force 

approach of solving problems is ineffectual in the case of hard 

problems due to the exponential nature of resource requirement. 

Polynomial programming requires a single processing entity to 

solve a single problem, whereas actual limitations of hardware 

limit their usability. But to solve hard problems is to use 

multiple processing entities or swarms. Parallel processing 

provides mathematical solution to such problems. 

Researchers have been looking to optimize parallel processing 

by taking inspiration from nature. This has led to development 

of nature inspired algorithms [1, 2, 3]. Nature is observed to 

solve fundamentally complex problems by relatively simple 

solutions. The algorithmic interpretations of these solutions 

can be used to solve computational problems. Nature consists 

of entire set of all, describable phenomenon, in the universe. 

They include physical, chemical, and biological phenomenon. 

A special subcategory of nature inspired algorithm takes 

inspiration from biological phenomenon and bio inspired 

algorithm. BIA (Bio Inspired Algorithm) [3, 4, 5] is often the 

survivor of Darwinian evolution pressure, the fittest and most 

suitable solution to given problem. This means that such 

solutions are efficient, elegant, using component, 

compartmentalized, discrete, survivable, and adaptable by 

design. 

One of most important biological phenomenon is collective 

behavior shown by simple components leading to emergent 

behavior. For example, ants in ant colony are simple 

components which work together behaving like single group 

for advancement of the colony as a whole. This social 

behavior is the model for developing a subset of BIA, Swarm 

intelligence algorithms [5, 6, 7, 8].The defining characteristics 

of SIA (Swarm Intelligence Algorithm) are simple 

components that can act independently, share information 
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among components, taking decentralized collective decisions, 

to further common interest and achieve a particular goal. SIA 

acts within a predefined solution space which is assumed to 

contain the best possible solution. 

The components start with initial random position, symmetric 

or asymmetric, within the search space. The components then 

iterate, searching for the best solution called the Global 

optima [6, 7, 9]. In between, components may exchange 

information, or change configuration depending on the 

algorithm used. Configuration changes may use cloning, 

reduction, expansion, culling, switching or randomizing 

methods to change both local as well as global topology of the 

system. Nested iterations are often used wherein a fixed 

number of local loops updates by the components, followed 

by a global loop update by the system. The iterations end 

upon attaining a particular maturity value or termination 

condition. In addition to above common characteristics shown 

by most SIA, individual SIA have additional defining 

peculiarities. 

 

REVIEW OF SIAs 

The paper seeks to introduce the various Bio inspired Swarm 

intelligence Algorithms by pointing out the similarities and 

differences between them, thereby creating a better 

understanding about these algorithms. Though the algorithms 

under consideration may differ in sources of inspiration, 

framework and implementation, they still have several 

similarities [5, 7, 10, 11].All SIA under discussion share the 

following elements: (i) A Dimensioned environment or Search 

space, (ii) Mobile components that move within (i), (iii) 

Global Start with end configuration and (iv) Iteration engine 

that controls both (i) and (ii). It must be noted that the actual 

solution to the problem being solved depends on the SIA, it  

may be a point or plane in (i), a grouping of (ii) or a global 

configuration involving both (i) and (ii). It may also be noted 

that the application areas of the SIA may differ in terms of 

dimensionality and complexity. The following SIAs will be 

discussed based on their elements namely Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), 

Bacterial Foraging Algorithm (BFOA) and Firefly Algorithm 

(FA). 

 

Particle Swarm Optimization 

By observing the flocking behaviour of birds, J. Kennedy and 

R. Ederhart proposed PSO algorithm [1, 5, 10, 28, 30] in 

1995. Flocks of birds fly around in large swarms looking for 

food, whenever a bird locates a food source, all other birds in 

the flock move towards the source. The individual birds in the 

flock communicate with other birds thereby allowing all the 

flock to converge on the food source. The larger the number 

of birds in a flock, the better is the chance that they can locate 

good food sources in an area in a shorter time, thereby 

increasing the success rate of the flock as a whole. The PSO 

algorithm mimics this behaviour, in which individual 

components of a group work together to optimize the problem 

solving efficiency of the whole.  

The algorithm has the constituent elements as mentioned in 

the following section. 

 

Elements of PSO 

1) Environment 

It is an N dimensional space with unrestricted movement 

allowed. It contains the solution space or search space 

which contains a set of all possible solutions. 

2) Components or Particles 

They are particles that move through environment, each 

are having a position X, a velocity V and memory for 

storing best position of that particle. It can be vector in N-

dimensional Cartesian space. 

3) Start Configuration 

Initially components are given random positions and 

velocities. A fitness value function is used to find the best 

solution for that particle, often denoted as pbest [5, 8, 11]. 

4) End Configuration 

The stopping criteria are fulfilled due to following 

conditions; first if it exceeds maximum number of 

iterations and second if global fitness value reaches 

limiting conditions. 

5) Iteration Engine 

After initialization, the system enters iteration phase 

where positions and velocities of individual particles are 

updated. Within iteration, the velocity of each particle is 

updated depending on its previous velocity, current 

position, best position in the current context, and 

optionally random or predetermined weights. The weights 

may be social factors so as to control expansion or 

reduction functions. This controls, how wide the particles 

move with respect to the local or global environment. 

Position of particle is updated by adding its updated 

velocity to its current position, causing a translation to 

new position. 

A fitness evaluation is conducted by each particle updating its 

best solution, using a fitness function with respect to global 

best historical solution denoted as gbest. The iteration engine 

evaluates two sets of positional values, stored in its memory 

using fitness functions. The first set contains global best 

position for the system. The second set is unique to each 

particle, containing that particles history of best positions. The 

former is denoted as gbest or global best, the latter is denoted 

as pbest or particle best. A common mechanism within 

iteration is to determine best solution, both global and current 
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particle, is better or worse, than newly computed one 

replacing the current with new value if better or else, current 

values are maintained. 

For PSO system [4, 5, 8, 12] consisting of N particles, 

iterating over T iterations, each particle can be expressed as 

follows, where x is position, v is velocity, b is best position, i= 

0 to N-1 and t= 0 to T-1 

𝑃𝑖(𝑡) = {𝑥𝑖(𝑡), 𝑣𝑖(𝑡), 𝑏𝑖(𝑡)}   (1) 

The swarm can be represented as follows where G is global 

best of all bi (t) 

𝑆(𝑡) = {𝐺(𝑡), 𝑃𝑖(𝑡)}       (2) 

Velocity updating equation is given by  

𝑣𝑖(𝑡) = 𝑣𝑖(𝑡 − 1) + 𝑐1𝑟1(𝑏𝑖(𝑡 − 1) − 𝑥𝑖(𝑡 − 1)) +

𝑐2𝑟2(𝐺(𝑡 − 1) − 𝑥𝑖(𝑡 − 1))      (3) 

Position updating equation 

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡)        (4)  

Memory updating equation 

𝑣𝑖(𝑡) = 𝐵𝑒𝑠𝑡(𝑏𝑖(𝑡), 𝑥𝑖(𝑡))    (5) 

 

After initialization using Eq. (1) by setting random values, Eq. 

(5) is run to set bi(t) for each particle. Then the iteration 

engine recursively executes steps in eqs. (3), (4) and (5) for 

each particle .It then runs Eq. (2). The recursion is continued 

until one of end configurations are encountered. 

 

Applications of PSO 

PSO is used in Power System Optimization problems [1, 2, 

31], Edge detection in noisy images [2] ,finding optimal 

machining parameter [28], assembly line balancing in 

production and operations management [2, 4, 33],various 

scheduling problems [28] ,vehicle routing problems 

,prediction of tool life in ANN [4, 7]  ,multi objective 

dynamic , constrained and combinatorial optimization 

problems [7] ,QoS in adhoc multicast ,anomaly detection 

,colour image segmentation ,sequential ordering problem , 

constrained portfolio optimization problem [11] ,selective 

particle regeneration for data clustering [11], Extracting rules 

from fuzzy neural network [29] , machine fault detection [4]  

,Unit commitment computation [12] ,Signature verification 

[12],Multimodal biomedical image registration and the 

iterated Prisoners Dilemma, classification of instances 

databases [14], feature selection, and web service course 

composition. 

 

Ant Colony Optimization 

Ants and ant colonies are one of nature’s typical examples of 

a swarm based problem solver. Marco Dorigo in 1992 

proposed the ACO algorithm [5, 8, 15, 16, 17] drawing 

inspiration from this. Ants start from their nest and randomly 

search for food sources leaving pheromones in its path; on 

locating one it lays a pheromone trail back to its nest. Any 

other free ant that happens upon this pheromone trail picks it 

up and follows it to the food source while adding pheromones 

to the path. As more ants use the trail to the food source, the 

trail represents the best solution for reaching the food source 

from the nest. ACO algorithm consists of independent 

components that try to find the best path to a target from a 

starting point, both points existing in the same environment. 

The pheromone trail laid by each component represents that 

component’s solution or path for the problem. A greater 

number of components using the same trail signify the higher 

quality of that particular path or solution. 

 

Elements of ACO 

1) Environment 

It is a Construction graph with nodes representing 

domain points and edges representing relations 

between nodes. Movement is restricted to only 

between connected nodes. 

2) Components or Ants 

Ants move through environment, each keeping track 

of path traversed from its starting point called, 

Historic path memory (HPM) [8, 11, 14, 15]. Ants 

deposit pheromones at edges, quantity of pheromone 

being determined heuristically. Pheromones are 

deterministically degrading weighted values. The 

degradation rate is exponential. Ants traverse the 

environment choosing paths based on existing 

pheromone levels, exploring all possible nodes. The 

list of nodes and order of traversal is stored in ant’s 

HPM. 

3) Start Configuration 

All components are distributed randomly among 

nodes, depending on the problem domain under 

consideration. Some nodes may be specifically 

designated, for example, start node and end node. All 

edges in the environment are given an initial equal 

pheromone level. 

4) End Configuration 

Two possible end configurations can exist; (1) 

Convergence and (2) Termination condition including 

maximum iteration. 

5) Iteration Engine 

After initialization, each ant traverses the 

environment, moving to next node based on state 

transition rule. Once the complete traversal is done by 

all ants, the pheromone updating initiates, updating all 
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the pheromone quantity on all edges based on fitness 

function. These steps are repeated until end 

configuration is encountered. For each ant the path 

traversed by it is stored in its HPM. At the end of 

iteration, it uses this information to update pheromone 

levels of all edges in the environment. In the next 

iteration, the ant uses transition probability to 

determine the traversal order that it undertakes. 

Transition probability [5, 8, 15, 16] depends on 

pheromone levels of edges and inverse of directed 

weight between nodes. At the end, the iteration 

convergence check is made based on number of ants 

and the path stored in each ants HPM. If a 

predetermined significant percentage of ants have 

similar HPM, then convergence check is passed and 

algorithm succeeds. 

For n nodes and m ants, The Transition Probability Equation 

from node r to node s for the kth ant  

Pk(r, s) = {

[𝜏(𝑟,𝑠).[𝜂(𝑟,𝑠)]𝛽

∑ [𝜏(𝑟,𝑢).[𝜂(𝑟,𝑢)]𝛽
𝑢∈𝐽𝑘(𝑟)

, 𝑖𝑓 𝑠, 𝑢 ∈ 𝐽𝑘(𝑟)

0,
     (6)                                                              

where r is the current node, s is the next node  ,τ (r,s) is the 

pheromone level between node r and node s, η (r,s) = δ (r,s)-1 

is the inverse of the distance δ (r,s) between node r and s , Jk 

(r) is the set of  nodes that remain to be visited by the kth ant  

positioned on node r, and β is a parameter determining the 

relative importance of pheromone level versus distance. u is 

total number of remaining nodes to be visited. 

Updating pheromone level between nodes uses the following 

equations given below 

 

𝜏(𝑟, 𝑠)  ← (1 − 𝛼). 𝜏(𝑟, 𝑠) + ∑ ∆𝜏𝑘 
𝑚
𝑘=1 (𝑟, 𝑠)  (7) 

∆τk (r, s) =  {

1

Lk
, if(r, s) ∈ route done by ant k,

0, otherwise,
  (8) 

Where Δτk (r, s) is the pheromone level laid down between 

nodes r and s by the kthant, m is the number of ants, Lk is the 

length of the route visited by kth ant, and 0<α<1 is a 

pheromone decay parameter. 

 

Applications of ACO 

ACO is used to solve TSP Problem, Quadratic Assignment 

Problem (QAP) [2], Job-Shop Scheduling Problem [2], 

Dynamic Problem of data networking and routing [2, 3], a 

shortest path problem where properties of system such as node 

availability vary over time, continuous optimization and 

parallel processing implementation vehicle routing problem 

[7], graph coloring and set covering, agent based dynamic 

scheduling [32], digital image processing [8], classification 

problem in data mining and protein folding problem [12]. 

 

Bacterial Foraging Optimization Algorithm 

Bacterial Foraging Algorithm [1, 2, 6, 11, 19, 20, 21, 22, 27] 

was developed by Kevin.M.Passino in 2002, based on 

foraging behaviour of microscopic single cell organisms like 

bacteria. Bacteria are simple organisms which uses a limited 

set of actions in order to survive. These actions are called 

chemo taxis. It consists mainly of tumbling and running. 

Running describes movement of bacteria in single direction 

and tumbling describes change of direction. The survival of 

bacteria involves foraging for food, avoiding unfavourable 

environments and maximizing chances for finding better 

sources of food. The environment of bacteria is chemical in 

nature, made up of mixed nutrients and noxious or harmful 

substances. These chemicals exist as gradient, both positive 

and negative. The bacteria seek positive gradient for nutrients 

and negative gradient for noxious substances. It swims up the 

positive gradient for nutrients and swims down, negative 

gradient for noxious substances. In neutral media, it randomly 

searches for gradient. 

A typical example of bacteria is Escheria Coli bacteria with 

diameter 1µm and length of 2 µm. The primary locomotion 

method or organ used is flagella. It has six rigid flagella which 

operates like propellers of ship of which operates at 200 rpm 

pushing the bacteria at up to 20 µm per second. Another 

feature of bacteria is the natural selection based evolution 

where only the bacteria that successfully survive are able to 

reproduce. This cloning process allows successful bacteria to 

make a copy of it, which occupies same location as parent. 

The success of bacteria is determined by its ability to locate 

best sources of food and avoidance of harmful materials. The 

unsuccessful bacteria are the ones that are unable to collect 

enough food to reproduce or even to survive, since movement 

of bacteria involves expending energy that it collects from 

food. All actions, taken by a bacteria can be seen as a practical 

expression of cost minimization or effect maximization 

function. So it can be summarized that at the end of given 

period of time within a limited environment with a fixed no of 

randomly distributed bacteria, only successful ones and the 

progenies will remain. Majority of which will be located in 

areas in the environment with highest gradient level, for 

nutrients and lowest for noxious substances. This behaviour 

has inspired the development of Bacterial Foraging 

Optimization algorithm where by the chemo taxis, survival 

and dispersal behaviour is simulated by artificial bacterium. 

The algorithm consists of following three actions namely 

Chemo taxis, Reproduction-Elimination and Dispersal. 

Chemo taxis involves two types of steps which are running-

swimming and tumbling. Running or swimming involves 

bacterium moving in a single direction continuously for a 

fixed amount of time or distance called run length or step size. 

Tumbling involves change of direction. The direction may be 

random but definitely different from earlier direction and 

backtracking is avoided. Reproduction is a cloning function 

that creates an exact copy of the bacterium in place, called 
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child. Other than designation there is no discernable 

difference between parent and child. Elimination consists of 

Culling function that reduces or eliminates a part of a given 

population of bacteria based on preset probability. Dispersion 

consists of randomization function that spreads the remaining 

bacteria around the environment at random locations. 

 

Elements of BFOA 

1) Environment 

It is an N dimensional unrestricted space, data points 

are expressed as gradient, both positive and negative. 

Environment [16, 19, 27] may be continuous but also 

episodic. Environment may contain only food sources 

or may contain both food sources and noxious 

substances. 

2) Components or Bacteria 

The components may be randomly distributed or may 

start at extreme points of environment. Each 

bacterium is capable of chemo taxis, and 

reproduction. In the chemo taxis mode it can run or 

tumble based on three conditions [20, 23]; (1) in 

neutral medium, and it behaves randomly by using 

running and tumbling. This is done to find favourable 

gradient, (2) On encountering positive gradient, 

bacteria swims up that it executes a fixed number of 

run actions in direction of increasing   gradient (food 

seeking behaviour) and (3) On negative gradient, it 

swims down a negative gradient. This is done to avoid 

unfavourable gradient (avoidance behaviour). 

The component uses a fitness function or cost 

function to determine, the direction and mode of 

movement in the next step in chemo taxis mode. Run 

length or step size determines duration for this mode. 

A memory is used to store previous result of this 

function which if worse than present one then it is 

replaced. This serves as an input for determining if 

next chemo tactic step is either run or tumble. 

θi (j, k, l) represents position of ith bacteria at chemo 

tactic step j, reproduction step k, dispersal or 

elimination step l. J (i, j, k, l) represents fitness 

function for ith bacteria at each step. Jlast represents 

previous best J value stored in memory of component 

or bacteria in memory of component or bacteria. The 

result of J (i, j, k, l) may be a run vector in same 

direction as previous movement of component or 

tumble vector which may be random direction. 

3) Start Configuration 

Initially the components or Bacteria are randomly 

distributed in environment. 

4) End Configuration 

There are three types of end configurations possible 

such as (1) Maximum iterations, (2) Maximum 

number of generations or reproductive steps and (3) 

Generation exhaustion where no new generations are 

produced. 

5) Iteration Engine 

Considering maximum values for number of 

generations, K, Maximum number of Bacteria, S, 

where i = 1, 2……S, the maximum number of 

iterations is determined by limit values of j and l. The 

constant values, probability of elimination ped and C 

(i) denotes run length unit. 

Iteration engine has the following nested loops [19, 

20];  

(1) Chemo taxis loop: In the first phase of iteration, 

the chemo taxis, whether either run or tumble to 

be taken by each bacteria is determine.                                                 

θi(j + 1, k, l) = θi(j, k, l) + c(i)φ(j) (9) 

Where ϕ (j) determines whether action to be 

taken is run or tumble. 

Condition (1) 

If J (i, j+1, k, l) is better than Jlast
, where Jlast = J 

(i, j, k, l), then run is executed with the same 

direction as the previous ie, θi (j, k, l). Here ϕ (j) 

is dependent on the magnitude of food source in 

the immediate environment of the bacteria i. By 

comparing with previous value the iteration 

engine can determine whether the bacteria are 

moving to favourable gradient. 

Condition (2) 

If J (i, j+1, k, l) is worse than Jlast , then tumble is 

executed. Tumble consists of random vector in 

the range [-1, 1]. This is done when the iteration 

engine encounters a bacteria moving through an 

unfavourable gradient ,then direction of bacteria 

is changed and a run of magnitude C(i) ,is 

executed in that new direction.  

At the end of chemo taxis step, all the bacteria 

are translated to new position. The iteration 

engine moves all bacteria in a favourable 

gradient, up the gradient and all the bacteria in 

an unfavourable gradient are given a new 

direction. All the bacteria store their best fitness 

value as Jlast . 

(2) Reproduction loop: The iteration engine first 

determines a health value for each bacterium and 

orders them in terms of decreasing health value. 

Jhealth
i =  ∑ (i, j, k, l)

jmax
j=1                (10) 
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The bacteria with least health value are culled 

and remaining bacteria are cloned. The cloned 

bacteria share same position in the environment 

as their parents. 

(3) Elimination and dispersal loop: For each    

bacterium, second round of culling and 

randomization is done by iteration based on 

predetermined probability value. Another check 

is made to ensure that number of bacteria remain 

constant. This is done by randomizing position 

of live bacteria whenever a bacteria is 

eliminated. These three nested loops are run 

until end configurations are encountered. 

 

Applications of BFOA 

BFOA is used in harmonic estimation problem in power 

systems [2], inverse airfoil design, optimal power system 

stabilizers design [2],tuning the PID controller of AVR [5] ,an 

optimal power flow solution [11]  ,machine learning, job shop 

scheduling benchmark problems ,parameters of membership 

functions and the weights of rules of a fuzzy rule set [16]  

,transmission loss reduction ,implemented as the parameter 

estimation of non linear system model(NSM) for heavy oil 

thermal cracking [20],evaluation of independent components 

to work with mixed signals[23] , solve constrained economic 

load dispatch problems ,null steering of linear antenna arrays 

by controlling the element amplitudes and in multi objective 

optimization [24]. 

 

Firefly Algorithm 

Firefly algorithm [1, 3, 7, 25, 26, 27] was proposed in 2008. It 

was inspired by intra population, species specific, 

communication strategy of fireflies, particularly, reproductive 

behaviour between them. Fireflies have unique adaptation, an 

organ for producing light by a process bioluminescence. This 

is an evolution of communication method using biochemical 

like pheromones seen in other insects. The primary purpose of 

bioluminescence as used by fireflies is to signal reproductive 

fitness of that individual. It is in nature that fireflies that are 

able to produce more intense light; are able to attract more 

mates, increasing reproductive success of that individual. This 

positive genetic feedback system has led to evolution of 

fireflies with light producing ability of highest order. It is 

observed that even though the primary criteria in attraction 

between fireflies are light intensity, there is second 

contradicting parameter is the distance between light producer 

and observer as the intensity by physical laws decreases with 

distance. This means that a distant brighter source may be at 

disadvantage compared to a dimmer but closer source. The 

brighter the light emitted by a firefly as observed by other 

fireflies, the more likely they are to move towards that firefly. 

This leads to convergence of various individuals of swarm 

into areas with higher emission intensity. This property is 

utilized by firefly algorithm in order to solve continuous 

optimization problems. The meta-heuristics of firefly 

algorithm require certain assumptions (i) Gender of fireflies is 

irrelevant, (ii) Light intensity varies inversely proportional to 

distance and directly proportional to attractiveness,(iii) 

Attraction is always positive gradient. Higher intensity is 

more attractive than lower intensity and (iv) the light intensity 

of fireflies is modified by landscape of fitness function. 

In the simplest expression of firefly algorithm when applied to 

maximum optimization problems, the attractiveness is 

determined as being dependant on the brightness of firefly at 

particular location. The primary construct in determining 

attractiveness is an objective function, which is directly 

proportional to brightness of firefly at that location. But 

attractiveness is considered a relative value, based on an 

ordered pair set over all fireflies in a population.  

For two fireflies i and j, both belonging to same population P, 

i, j Є P, xiand xj are location of i and j. rij is the Cartesian 

distance [2, 8, 11, 25, 26] between xi and xj. For any Cartesian 

d dimensions,  

rij = ||xi − xj|| =  √∑ (xi,k − xj,k)2d
k=1                (11) 

The attractiveness function [25, 26] for a firefly is based on 

square law and absorption co-efficient of the environment. As 

the attractiveness depends on the observed brightness of that 

firefly at that location from other fireflies. For an ordered set, 

the (i, j), attractiveness function β (rij) can be approximated as 

β(rij) =  𝛽0𝑒−𝛾𝑟𝑖𝑗
2

                 (12) 

Where r is the absorption co-efficient, rij is Cartesian distance 

between xiand xjwhich are locations of fireflies i and j, β0 is 

the attractiveness when rij =0. 

The movement of firefly i towards another firefly j with 

higher intensity β is determined by  

𝑥𝑖 =  𝑥𝑖 +  β (rij). (xi −  xj) + αϵi                (13) 

Where αЄi denotes random walk with randomization 

parameter α and random number Єi. 

 

Elements of FA 

1) Environment 

It allows N dimensional unrestricted movement. It has 

universal properties such as absorption co-efficient; 

the topology is modified by an objective function. 

2) Components or Fireflies 

It is the solution carrying element of firefly algorithm. 

It has property, light intensity. It is capable of 

movement across environment towards other fireflies 

based on attractiveness. Initial distribution is based on 
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solution space under consideration and relative fitness 

of these solutions. Fireflies whose solutions display a 

greater variance will be separated by greater distance. 

Initial population also reflects set of all possible 

candidate solutions, all being separated by distance 

proportional to relative fitness. Each component or 

firefly has Cartesian distance and light intensity and 

has no memory. 

3) Start Configuration 

The population is made up of components randomly 

distributed. Distribution of fireflies may be relative to 

fitness. 

4) End Configuration 

It is based on maximum generations or iterations. 

5) Iteration Engine 

Iteration Engine in Firefly Algorithm passes through 

the population iterating over an ordered pair set 

consisting every combination of individuals 

calculating their relative attractiveness with respect to 

each other. Each member of the ordered set is (i, j) 

pair. i is an observer and j is observed target. At each 

iteration relative attractiveness of j is observed by i at 

their current position xi and xj is evaluated; if the 

target is observed to have higher attraction than the 

observer, then i move towards j relative to quantity 

based on their attractiveness and random walk 

variable. At the end of the iteration, the fireflies are 

arranged in order of fitness. The best solution is 

determined for that generation. Iteration continues to 

maximum number of generations in the end 

configuration. The best solution at end of all 

generation is used to determine locality of the final 

best solution. 

 

Applications of FA 

FA is used in Function optimization [25], Parameter 

estimation [25], combinatorial estimation [26]; Least squares 

support vector machine and Geo technical engineering 

problems [26]. 

 

CONCLUSION AND FUTURE WORK 

Bio-inspired algorithms have revolutionized computing by 

providing new set of solutions inspired by nature. Distributed 

computing [2] and agent computing [8], that take advantage of 

SI based solutions are also forefront of modern computing 

solutions. Evolution in nature uses swarm intelligence as one 

of its primary problem solver, a paradigm, which was the 

result of millions of years of Darwinian evolutionary pressure 

[9, 13, 18]. The survival has driven each species to discover 

and evolve unique to optimize efficiency. Swarms made up of 

relatively simple individuals acting together to a common 

goal, particularly social organisms, which represent one of the 

biggest success stories of evolution. Inspired by this , several 

meta-heuristics have been suggested such as Particle Swarm 

Optimization inspired by flocking behaviour of birds, Ant 

Colony Optimization inspired by foraging behaviour of ants, 

Bacterial foraging Optimization algorithm inspired by 

foraging and survival behaviour of bacteria and Firefly 

algorithm based on mating behaviour of fireflies. 

This paper makes an in depth study of these meta-heuristics 

by breaking down these algorithms based on four common 

components. These components though shared by all 

algorithms are implemented differently for each. This method 

can be used to further classify Swarm Intelligence algorithms 

based on the various subtypes as implementation of these 

elements. The environment component itself can be sub-typed 

based on movement freedom, presence of solutions in 

environment. The component element can be sub-typed based 

on solution capacity and memory capacity. The start and end 

configuration can be sub-typed based on the usage of random 

initialization functions and generation count limit. The 

iteration engine shows greatest variation and be sub-typed 

based on use of various functions such as culling, cloning and 

randomization. All these classification techniques can be 

extended to other SI algorithms, thereby increasing our 

understanding of biologically inspiration of SI algorithms. 
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