
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 13981-13989

© Research India Publications. http://www.ripublication.com

13981

Bio-inspired Swarm Intelligence Algorithms –A Systematic Analysis

Manu Rajan Nair,

Research Scholar, Department of Computer Applications,

Bharathiar University, Coimbatore-641046, Tamilnadu, India.

Orcid : 0000-0001-5823-2478

Dr.T.Amudha,

Assistant Professor, Department Of Computer Applications,

 Bharathiar University, Coimbatore-641046, Tamilnadu, India.

Orcid :0000-0002-0089-5831

Abstract

Objectives: The paper reviews and compares relative strengths

and weaknesses of four algorithms in Swarm intelligence

namely Particle swarm optimization, Ant colony optimization,

Bacterial foraging optimization and Firefly.

Methods and Statistical analysis: Swarm intelligence inspired

by nature constitutes one of newest methods used for

optimizing solutions for computing problems. The meta-

heuristics extracted from biological phenomenon specifically

behavior of colonial organisms has led to several interesting

algorithms. These algorithms are analyzed by dividing each of

them into their common denominator constituents, namely

Environment, Components, Start and End Configurations and

Iteration engine. Further analysis is based on resemblances

and differentiation among these elements.

Findings: It was found that the environment component itself

can be sub-typed based on movement freedom, presence of

solutions in environment. The component element can be sub-

typed based on solution capacity and memory capacity. The

start and end configuration can be sub-typed based on the

usage of random initialization functions and generation count

limit. The iteration engine shows greatest variation and be

sub-typed based on use of various functions such as culling,

cloning and randomization. Thereby this paper seeks to

enhance the readers understanding of these algorithms in

particular and swarm intelligence algorithms in general.

Application and Improvements: The common denominator

constituent elements can be used to suggest subtypes for

further detailed classification of the algorithms.

Keywords: Swarm intelligence, Bio-inspired techniques,

Algorithm analysis, Algorithm behaviour comparison.

INTRODUCTION

Normal polynomial computational problems can be solved by

applying reasonable amount of resources such as time and

space. An increase in problem size leads to polynomial increase

in amount of resources needed, such problems are called

solvable problems. There is another class of problems that can

be solved using same approach called hard problems.

Polynomial problems can be solved faster by increasing the

speed processing entity. This approach has led to development

of faster physical computational elements such as high speed

processors and memory. Unfortunately this brute force

approach of solving problems is ineffectual in the case of hard

problems due to the exponential nature of resource requirement.

Polynomial programming requires a single processing entity to

solve a single problem, whereas actual limitations of hardware

limit their usability. But to solve hard problems is to use

multiple processing entities or swarms. Parallel processing

provides mathematical solution to such problems.

Researchers have been looking to optimize parallel processing

by taking inspiration from nature. This has led to development

of nature inspired algorithms [1, 2, 3]. Nature is observed to

solve fundamentally complex problems by relatively simple

solutions. The algorithmic interpretations of these solutions

can be used to solve computational problems. Nature consists

of entire set of all, describable phenomenon, in the universe.

They include physical, chemical, and biological phenomenon.

A special subcategory of nature inspired algorithm takes

inspiration from biological phenomenon and bio inspired

algorithm. BIA (Bio Inspired Algorithm) [3, 4, 5] is often the

survivor of Darwinian evolution pressure, the fittest and most

suitable solution to given problem. This means that such

solutions are efficient, elegant, using component,

compartmentalized, discrete, survivable, and adaptable by

design.

One of most important biological phenomenon is collective

behavior shown by simple components leading to emergent

behavior. For example, ants in ant colony are simple

components which work together behaving like single group

for advancement of the colony as a whole. This social

behavior is the model for developing a subset of BIA, Swarm

intelligence algorithms [5, 6, 7, 8].The defining characteristics

of SIA (Swarm Intelligence Algorithm) are simple

components that can act independently, share information

mailto:manurajan10@gmail.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 13981-13989

© Research India Publications. http://www.ripublication.com

13982

among components, taking decentralized collective decisions,

to further common interest and achieve a particular goal. SIA

acts within a predefined solution space which is assumed to

contain the best possible solution.

The components start with initial random position, symmetric

or asymmetric, within the search space. The components then

iterate, searching for the best solution called the Global

optima [6, 7, 9]. In between, components may exchange

information, or change configuration depending on the

algorithm used. Configuration changes may use cloning,

reduction, expansion, culling, switching or randomizing

methods to change both local as well as global topology of the

system. Nested iterations are often used wherein a fixed

number of local loops updates by the components, followed

by a global loop update by the system. The iterations end

upon attaining a particular maturity value or termination

condition. In addition to above common characteristics shown

by most SIA, individual SIA have additional defining

peculiarities.

REVIEW OF SIAs

The paper seeks to introduce the various Bio inspired Swarm

intelligence Algorithms by pointing out the similarities and

differences between them, thereby creating a better

understanding about these algorithms. Though the algorithms

under consideration may differ in sources of inspiration,

framework and implementation, they still have several

similarities [5, 7, 10, 11].All SIA under discussion share the

following elements: (i) A Dimensioned environment or Search

space, (ii) Mobile components that move within (i), (iii)

Global Start with end configuration and (iv) Iteration engine

that controls both (i) and (ii). It must be noted that the actual

solution to the problem being solved depends on the SIA, it

may be a point or plane in (i), a grouping of (ii) or a global

configuration involving both (i) and (ii). It may also be noted

that the application areas of the SIA may differ in terms of

dimensionality and complexity. The following SIAs will be

discussed based on their elements namely Particle Swarm

Optimization (PSO), Ant Colony Optimization (ACO),

Bacterial Foraging Algorithm (BFOA) and Firefly Algorithm

(FA).

Particle Swarm Optimization

By observing the flocking behaviour of birds, J. Kennedy and

R. Ederhart proposed PSO algorithm [1, 5, 10, 28, 30] in

1995. Flocks of birds fly around in large swarms looking for

food, whenever a bird locates a food source, all other birds in

the flock move towards the source. The individual birds in the

flock communicate with other birds thereby allowing all the

flock to converge on the food source. The larger the number

of birds in a flock, the better is the chance that they can locate

good food sources in an area in a shorter time, thereby

increasing the success rate of the flock as a whole. The PSO

algorithm mimics this behaviour, in which individual

components of a group work together to optimize the problem

solving efficiency of the whole.

The algorithm has the constituent elements as mentioned in

the following section.

Elements of PSO

1) Environment

It is an N dimensional space with unrestricted movement

allowed. It contains the solution space or search space

which contains a set of all possible solutions.

2) Components or Particles

They are particles that move through environment, each

are having a position X, a velocity V and memory for

storing best position of that particle. It can be vector in N-

dimensional Cartesian space.

3) Start Configuration

Initially components are given random positions and

velocities. A fitness value function is used to find the best

solution for that particle, often denoted as pbest [5, 8, 11].

4) End Configuration

The stopping criteria are fulfilled due to following

conditions; first if it exceeds maximum number of

iterations and second if global fitness value reaches

limiting conditions.

5) Iteration Engine

After initialization, the system enters iteration phase

where positions and velocities of individual particles are

updated. Within iteration, the velocity of each particle is

updated depending on its previous velocity, current

position, best position in the current context, and

optionally random or predetermined weights. The weights

may be social factors so as to control expansion or

reduction functions. This controls, how wide the particles

move with respect to the local or global environment.

Position of particle is updated by adding its updated

velocity to its current position, causing a translation to

new position.

A fitness evaluation is conducted by each particle updating its

best solution, using a fitness function with respect to global

best historical solution denoted as gbest. The iteration engine

evaluates two sets of positional values, stored in its memory

using fitness functions. The first set contains global best

position for the system. The second set is unique to each

particle, containing that particles history of best positions. The

former is denoted as gbest or global best, the latter is denoted

as pbest or particle best. A common mechanism within

iteration is to determine best solution, both global and current

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 13981-13989

© Research India Publications. http://www.ripublication.com

13983

particle, is better or worse, than newly computed one

replacing the current with new value if better or else, current

values are maintained.

For PSO system [4, 5, 8, 12] consisting of N particles,

iterating over T iterations, each particle can be expressed as

follows, where x is position, v is velocity, b is best position, i=

0 to N-1 and t= 0 to T-1

𝑃𝑖(𝑡) = {𝑥𝑖(𝑡), 𝑣𝑖(𝑡), 𝑏𝑖(𝑡)} (1)

The swarm can be represented as follows where G is global

best of all bi (t)

𝑆(𝑡) = {𝐺(𝑡), 𝑃𝑖(𝑡)} (2)

Velocity updating equation is given by

𝑣𝑖(𝑡) = 𝑣𝑖(𝑡 − 1) + 𝑐1𝑟1(𝑏𝑖(𝑡 − 1) − 𝑥𝑖(𝑡 − 1)) +

𝑐2𝑟2(𝐺(𝑡 − 1) − 𝑥𝑖(𝑡 − 1)) (3)

Position updating equation

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡) (4)

Memory updating equation

𝑣𝑖(𝑡) = 𝐵𝑒𝑠𝑡(𝑏𝑖(𝑡), 𝑥𝑖(𝑡)) (5)

After initialization using Eq. (1) by setting random values, Eq.

(5) is run to set bi(t) for each particle. Then the iteration

engine recursively executes steps in eqs. (3), (4) and (5) for

each particle .It then runs Eq. (2). The recursion is continued

until one of end configurations are encountered.

Applications of PSO

PSO is used in Power System Optimization problems [1, 2,

31], Edge detection in noisy images [2] ,finding optimal

machining parameter [28], assembly line balancing in

production and operations management [2, 4, 33],various

scheduling problems [28] ,vehicle routing problems

,prediction of tool life in ANN [4, 7] ,multi objective

dynamic , constrained and combinatorial optimization

problems [7] ,QoS in adhoc multicast ,anomaly detection

,colour image segmentation ,sequential ordering problem ,

constrained portfolio optimization problem [11] ,selective

particle regeneration for data clustering [11], Extracting rules

from fuzzy neural network [29] , machine fault detection [4]

,Unit commitment computation [12] ,Signature verification

[12],Multimodal biomedical image registration and the

iterated Prisoners Dilemma, classification of instances

databases [14], feature selection, and web service course

composition.

Ant Colony Optimization

Ants and ant colonies are one of nature’s typical examples of

a swarm based problem solver. Marco Dorigo in 1992

proposed the ACO algorithm [5, 8, 15, 16, 17] drawing

inspiration from this. Ants start from their nest and randomly

search for food sources leaving pheromones in its path; on

locating one it lays a pheromone trail back to its nest. Any

other free ant that happens upon this pheromone trail picks it

up and follows it to the food source while adding pheromones

to the path. As more ants use the trail to the food source, the

trail represents the best solution for reaching the food source

from the nest. ACO algorithm consists of independent

components that try to find the best path to a target from a

starting point, both points existing in the same environment.

The pheromone trail laid by each component represents that

component’s solution or path for the problem. A greater

number of components using the same trail signify the higher

quality of that particular path or solution.

Elements of ACO

1) Environment

It is a Construction graph with nodes representing

domain points and edges representing relations

between nodes. Movement is restricted to only

between connected nodes.

2) Components or Ants

Ants move through environment, each keeping track

of path traversed from its starting point called,

Historic path memory (HPM) [8, 11, 14, 15]. Ants

deposit pheromones at edges, quantity of pheromone

being determined heuristically. Pheromones are

deterministically degrading weighted values. The

degradation rate is exponential. Ants traverse the

environment choosing paths based on existing

pheromone levels, exploring all possible nodes. The

list of nodes and order of traversal is stored in ant’s

HPM.

3) Start Configuration

All components are distributed randomly among

nodes, depending on the problem domain under

consideration. Some nodes may be specifically

designated, for example, start node and end node. All

edges in the environment are given an initial equal

pheromone level.

4) End Configuration

Two possible end configurations can exist; (1)

Convergence and (2) Termination condition including

maximum iteration.

5) Iteration Engine

After initialization, each ant traverses the

environment, moving to next node based on state

transition rule. Once the complete traversal is done by

all ants, the pheromone updating initiates, updating all

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 13981-13989

© Research India Publications. http://www.ripublication.com

13984

the pheromone quantity on all edges based on fitness

function. These steps are repeated until end

configuration is encountered. For each ant the path

traversed by it is stored in its HPM. At the end of

iteration, it uses this information to update pheromone

levels of all edges in the environment. In the next

iteration, the ant uses transition probability to

determine the traversal order that it undertakes.

Transition probability [5, 8, 15, 16] depends on

pheromone levels of edges and inverse of directed

weight between nodes. At the end, the iteration

convergence check is made based on number of ants

and the path stored in each ants HPM. If a

predetermined significant percentage of ants have

similar HPM, then convergence check is passed and

algorithm succeeds.

For n nodes and m ants, The Transition Probability Equation

from node r to node s for the kth ant

Pk(r, s) = {

[𝜏(𝑟,𝑠).[𝜂(𝑟,𝑠)]𝛽

∑ [𝜏(𝑟,𝑢).[𝜂(𝑟,𝑢)]𝛽
𝑢∈𝐽𝑘(𝑟)

, 𝑖𝑓 𝑠, 𝑢 ∈ 𝐽𝑘(𝑟)

0,
 (6)

where r is the current node, s is the next node ,τ (r,s) is the

pheromone level between node r and node s, η (r,s) = δ (r,s)-1

is the inverse of the distance δ (r,s) between node r and s , Jk

(r) is the set of nodes that remain to be visited by the kth ant

positioned on node r, and β is a parameter determining the

relative importance of pheromone level versus distance. u is

total number of remaining nodes to be visited.

Updating pheromone level between nodes uses the following

equations given below

𝜏(𝑟, 𝑠) ← (1 − 𝛼). 𝜏(𝑟, 𝑠) + ∑ ∆𝜏𝑘
𝑚
𝑘=1 (𝑟, 𝑠) (7)

∆τk (r, s) = {

1

Lk
, if(r, s) ∈ route done by ant k,

0, otherwise,
 (8)

Where Δτk (r, s) is the pheromone level laid down between

nodes r and s by the kthant, m is the number of ants, Lk is the

length of the route visited by kth ant, and 0<α<1 is a

pheromone decay parameter.

Applications of ACO

ACO is used to solve TSP Problem, Quadratic Assignment

Problem (QAP) [2], Job-Shop Scheduling Problem [2],

Dynamic Problem of data networking and routing [2, 3], a

shortest path problem where properties of system such as node

availability vary over time, continuous optimization and

parallel processing implementation vehicle routing problem

[7], graph coloring and set covering, agent based dynamic

scheduling [32], digital image processing [8], classification

problem in data mining and protein folding problem [12].

Bacterial Foraging Optimization Algorithm

Bacterial Foraging Algorithm [1, 2, 6, 11, 19, 20, 21, 22, 27]

was developed by Kevin.M.Passino in 2002, based on

foraging behaviour of microscopic single cell organisms like

bacteria. Bacteria are simple organisms which uses a limited

set of actions in order to survive. These actions are called

chemo taxis. It consists mainly of tumbling and running.

Running describes movement of bacteria in single direction

and tumbling describes change of direction. The survival of

bacteria involves foraging for food, avoiding unfavourable

environments and maximizing chances for finding better

sources of food. The environment of bacteria is chemical in

nature, made up of mixed nutrients and noxious or harmful

substances. These chemicals exist as gradient, both positive

and negative. The bacteria seek positive gradient for nutrients

and negative gradient for noxious substances. It swims up the

positive gradient for nutrients and swims down, negative

gradient for noxious substances. In neutral media, it randomly

searches for gradient.

A typical example of bacteria is Escheria Coli bacteria with

diameter 1µm and length of 2 µm. The primary locomotion

method or organ used is flagella. It has six rigid flagella which

operates like propellers of ship of which operates at 200 rpm

pushing the bacteria at up to 20 µm per second. Another

feature of bacteria is the natural selection based evolution

where only the bacteria that successfully survive are able to

reproduce. This cloning process allows successful bacteria to

make a copy of it, which occupies same location as parent.

The success of bacteria is determined by its ability to locate

best sources of food and avoidance of harmful materials. The

unsuccessful bacteria are the ones that are unable to collect

enough food to reproduce or even to survive, since movement

of bacteria involves expending energy that it collects from

food. All actions, taken by a bacteria can be seen as a practical

expression of cost minimization or effect maximization

function. So it can be summarized that at the end of given

period of time within a limited environment with a fixed no of

randomly distributed bacteria, only successful ones and the

progenies will remain. Majority of which will be located in

areas in the environment with highest gradient level, for

nutrients and lowest for noxious substances. This behaviour

has inspired the development of Bacterial Foraging

Optimization algorithm where by the chemo taxis, survival

and dispersal behaviour is simulated by artificial bacterium.

The algorithm consists of following three actions namely

Chemo taxis, Reproduction-Elimination and Dispersal.

Chemo taxis involves two types of steps which are running-

swimming and tumbling. Running or swimming involves

bacterium moving in a single direction continuously for a

fixed amount of time or distance called run length or step size.

Tumbling involves change of direction. The direction may be

random but definitely different from earlier direction and

backtracking is avoided. Reproduction is a cloning function

that creates an exact copy of the bacterium in place, called

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 13981-13989

© Research India Publications. http://www.ripublication.com

13985

child. Other than designation there is no discernable

difference between parent and child. Elimination consists of

Culling function that reduces or eliminates a part of a given

population of bacteria based on preset probability. Dispersion

consists of randomization function that spreads the remaining

bacteria around the environment at random locations.

Elements of BFOA

1) Environment

It is an N dimensional unrestricted space, data points

are expressed as gradient, both positive and negative.

Environment [16, 19, 27] may be continuous but also

episodic. Environment may contain only food sources

or may contain both food sources and noxious

substances.

2) Components or Bacteria

The components may be randomly distributed or may

start at extreme points of environment. Each

bacterium is capable of chemo taxis, and

reproduction. In the chemo taxis mode it can run or

tumble based on three conditions [20, 23]; (1) in

neutral medium, and it behaves randomly by using

running and tumbling. This is done to find favourable

gradient, (2) On encountering positive gradient,

bacteria swims up that it executes a fixed number of

run actions in direction of increasing gradient (food

seeking behaviour) and (3) On negative gradient, it

swims down a negative gradient. This is done to avoid

unfavourable gradient (avoidance behaviour).

The component uses a fitness function or cost

function to determine, the direction and mode of

movement in the next step in chemo taxis mode. Run

length or step size determines duration for this mode.

A memory is used to store previous result of this

function which if worse than present one then it is

replaced. This serves as an input for determining if

next chemo tactic step is either run or tumble.

θi (j, k, l) represents position of ith bacteria at chemo

tactic step j, reproduction step k, dispersal or

elimination step l. J (i, j, k, l) represents fitness

function for ith bacteria at each step. Jlast represents

previous best J value stored in memory of component

or bacteria in memory of component or bacteria. The

result of J (i, j, k, l) may be a run vector in same

direction as previous movement of component or

tumble vector which may be random direction.

3) Start Configuration

Initially the components or Bacteria are randomly

distributed in environment.

4) End Configuration

There are three types of end configurations possible

such as (1) Maximum iterations, (2) Maximum

number of generations or reproductive steps and (3)

Generation exhaustion where no new generations are

produced.

5) Iteration Engine

Considering maximum values for number of

generations, K, Maximum number of Bacteria, S,

where i = 1, 2……S, the maximum number of

iterations is determined by limit values of j and l. The

constant values, probability of elimination ped and C

(i) denotes run length unit.

Iteration engine has the following nested loops [19,

20];

(1) Chemo taxis loop: In the first phase of iteration,

the chemo taxis, whether either run or tumble to

be taken by each bacteria is determine.

θi(j + 1, k, l) = θi(j, k, l) + c(i)φ(j) (9)

Where ϕ (j) determines whether action to be

taken is run or tumble.

Condition (1)

If J (i, j+1, k, l) is better than Jlast
, where Jlast = J

(i, j, k, l), then run is executed with the same

direction as the previous ie, θi (j, k, l). Here ϕ (j)

is dependent on the magnitude of food source in

the immediate environment of the bacteria i. By

comparing with previous value the iteration

engine can determine whether the bacteria are

moving to favourable gradient.

Condition (2)

If J (i, j+1, k, l) is worse than Jlast , then tumble is

executed. Tumble consists of random vector in

the range [-1, 1]. This is done when the iteration

engine encounters a bacteria moving through an

unfavourable gradient ,then direction of bacteria

is changed and a run of magnitude C(i) ,is

executed in that new direction.

At the end of chemo taxis step, all the bacteria

are translated to new position. The iteration

engine moves all bacteria in a favourable

gradient, up the gradient and all the bacteria in

an unfavourable gradient are given a new

direction. All the bacteria store their best fitness

value as Jlast .

(2) Reproduction loop: The iteration engine first

determines a health value for each bacterium and

orders them in terms of decreasing health value.

Jhealth
i = ∑ (i, j, k, l)

jmax
j=1 (10)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 13981-13989

© Research India Publications. http://www.ripublication.com

13986

The bacteria with least health value are culled

and remaining bacteria are cloned. The cloned

bacteria share same position in the environment

as their parents.

(3) Elimination and dispersal loop: For each

bacterium, second round of culling and

randomization is done by iteration based on

predetermined probability value. Another check

is made to ensure that number of bacteria remain

constant. This is done by randomizing position

of live bacteria whenever a bacteria is

eliminated. These three nested loops are run

until end configurations are encountered.

Applications of BFOA

BFOA is used in harmonic estimation problem in power

systems [2], inverse airfoil design, optimal power system

stabilizers design [2],tuning the PID controller of AVR [5] ,an

optimal power flow solution [11] ,machine learning, job shop

scheduling benchmark problems ,parameters of membership

functions and the weights of rules of a fuzzy rule set [16]

,transmission loss reduction ,implemented as the parameter

estimation of non linear system model(NSM) for heavy oil

thermal cracking [20],evaluation of independent components

to work with mixed signals[23] , solve constrained economic

load dispatch problems ,null steering of linear antenna arrays

by controlling the element amplitudes and in multi objective

optimization [24].

Firefly Algorithm

Firefly algorithm [1, 3, 7, 25, 26, 27] was proposed in 2008. It

was inspired by intra population, species specific,

communication strategy of fireflies, particularly, reproductive

behaviour between them. Fireflies have unique adaptation, an

organ for producing light by a process bioluminescence. This

is an evolution of communication method using biochemical

like pheromones seen in other insects. The primary purpose of

bioluminescence as used by fireflies is to signal reproductive

fitness of that individual. It is in nature that fireflies that are

able to produce more intense light; are able to attract more

mates, increasing reproductive success of that individual. This

positive genetic feedback system has led to evolution of

fireflies with light producing ability of highest order. It is

observed that even though the primary criteria in attraction

between fireflies are light intensity, there is second

contradicting parameter is the distance between light producer

and observer as the intensity by physical laws decreases with

distance. This means that a distant brighter source may be at

disadvantage compared to a dimmer but closer source. The

brighter the light emitted by a firefly as observed by other

fireflies, the more likely they are to move towards that firefly.

This leads to convergence of various individuals of swarm

into areas with higher emission intensity. This property is

utilized by firefly algorithm in order to solve continuous

optimization problems. The meta-heuristics of firefly

algorithm require certain assumptions (i) Gender of fireflies is

irrelevant, (ii) Light intensity varies inversely proportional to

distance and directly proportional to attractiveness,(iii)

Attraction is always positive gradient. Higher intensity is

more attractive than lower intensity and (iv) the light intensity

of fireflies is modified by landscape of fitness function.

In the simplest expression of firefly algorithm when applied to

maximum optimization problems, the attractiveness is

determined as being dependant on the brightness of firefly at

particular location. The primary construct in determining

attractiveness is an objective function, which is directly

proportional to brightness of firefly at that location. But

attractiveness is considered a relative value, based on an

ordered pair set over all fireflies in a population.

For two fireflies i and j, both belonging to same population P,

i, j Є P, xiand xj are location of i and j. rij is the Cartesian

distance [2, 8, 11, 25, 26] between xi and xj. For any Cartesian

d dimensions,

rij = ||xi − xj|| = √∑ (xi,k − xj,k)2d
k=1 (11)

The attractiveness function [25, 26] for a firefly is based on

square law and absorption co-efficient of the environment. As

the attractiveness depends on the observed brightness of that

firefly at that location from other fireflies. For an ordered set,

the (i, j), attractiveness function β (rij) can be approximated as

β(rij) = 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

 (12)

Where r is the absorption co-efficient, rij is Cartesian distance

between xiand xjwhich are locations of fireflies i and j, β0 is

the attractiveness when rij =0.

The movement of firefly i towards another firefly j with

higher intensity β is determined by

𝑥𝑖 = 𝑥𝑖 + β (rij). (xi − xj) + αϵi (13)

Where αЄi denotes random walk with randomization

parameter α and random number Єi.

Elements of FA

1) Environment

It allows N dimensional unrestricted movement. It has

universal properties such as absorption co-efficient;

the topology is modified by an objective function.

2) Components or Fireflies

It is the solution carrying element of firefly algorithm.

It has property, light intensity. It is capable of

movement across environment towards other fireflies

based on attractiveness. Initial distribution is based on

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 13981-13989

© Research India Publications. http://www.ripublication.com

13987

solution space under consideration and relative fitness

of these solutions. Fireflies whose solutions display a

greater variance will be separated by greater distance.

Initial population also reflects set of all possible

candidate solutions, all being separated by distance

proportional to relative fitness. Each component or

firefly has Cartesian distance and light intensity and

has no memory.

3) Start Configuration

The population is made up of components randomly

distributed. Distribution of fireflies may be relative to

fitness.

4) End Configuration

It is based on maximum generations or iterations.

5) Iteration Engine

Iteration Engine in Firefly Algorithm passes through

the population iterating over an ordered pair set

consisting every combination of individuals

calculating their relative attractiveness with respect to

each other. Each member of the ordered set is (i, j)

pair. i is an observer and j is observed target. At each

iteration relative attractiveness of j is observed by i at

their current position xi and xj is evaluated; if the

target is observed to have higher attraction than the

observer, then i move towards j relative to quantity

based on their attractiveness and random walk

variable. At the end of the iteration, the fireflies are

arranged in order of fitness. The best solution is

determined for that generation. Iteration continues to

maximum number of generations in the end

configuration. The best solution at end of all

generation is used to determine locality of the final

best solution.

Applications of FA

FA is used in Function optimization [25], Parameter

estimation [25], combinatorial estimation [26]; Least squares

support vector machine and Geo technical engineering

problems [26].

CONCLUSION AND FUTURE WORK

Bio-inspired algorithms have revolutionized computing by

providing new set of solutions inspired by nature. Distributed

computing [2] and agent computing [8], that take advantage of

SI based solutions are also forefront of modern computing

solutions. Evolution in nature uses swarm intelligence as one

of its primary problem solver, a paradigm, which was the

result of millions of years of Darwinian evolutionary pressure

[9, 13, 18]. The survival has driven each species to discover

and evolve unique to optimize efficiency. Swarms made up of

relatively simple individuals acting together to a common

goal, particularly social organisms, which represent one of the

biggest success stories of evolution. Inspired by this , several

meta-heuristics have been suggested such as Particle Swarm

Optimization inspired by flocking behaviour of birds, Ant

Colony Optimization inspired by foraging behaviour of ants,

Bacterial foraging Optimization algorithm inspired by

foraging and survival behaviour of bacteria and Firefly

algorithm based on mating behaviour of fireflies.

This paper makes an in depth study of these meta-heuristics

by breaking down these algorithms based on four common

components. These components though shared by all

algorithms are implemented differently for each. This method

can be used to further classify Swarm Intelligence algorithms

based on the various subtypes as implementation of these

elements. The environment component itself can be sub-typed

based on movement freedom, presence of solutions in

environment. The component element can be sub-typed based

on solution capacity and memory capacity. The start and end

configuration can be sub-typed based on the usage of random

initialization functions and generation count limit. The

iteration engine shows greatest variation and be sub-typed

based on use of various functions such as culling, cloning and

randomization. All these classification techniques can be

extended to other SI algorithms, thereby increasing our

understanding of biologically inspiration of SI algorithms.

REFERENCES

[1] Bonabeau E, Dorigo M and Theraulaz, G.Swarm

Intelligence, Oxford University Press.1999.

[2] Selvaraj.C, Kumar.S, Karnan M. A Survey on

Applications of Bio Inspired Algorithms. IJCSIT,

International Journal of Computer Science and

Information Technologies, 2014.5(1) pp.1-5.

[3] Kennedy J, EberhartR.SwarmIntelligence, Morgan

Kaufmann, San Francisco.2001.

[4] Fister I, Yang X.S, Brest J, Fister D. A Brief Review of

Nature Inspired Algorithms for Optimization. 2013

July, 80(3).

[5] Chu S.C, Huang H.C, Roddick.J.F and

Pan.J.S.Overview Of Algorithms for Swarm

Intelligence.ICCCI 2011, Part I, LNCS 6922, pp,

Springer-Verlag Berlin Heidelberg 2011,28-41.

[6] Agarwal.P, Mehta.S.Nature inspired algorithms: state

of art, problem and prospects. International Journal of

Computer Applications.2014 August. (0975-8887),

Volume 100-No.1.

[7] Zhang.Y, Agarwal.P, Bhatnagar.V, Balochian.S,

andYan.J.SwarmIntelligence and its Applications, The

Scientific World Journal.2013.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 13981-13989

© Research India Publications. http://www.ripublication.com

13988

[8] BinithaS, SathyaS.S. A Survey of Bioinspired

Optimization Algorithms.IJSCE, ISSN: Volume-2,

2012 May, Issue-2, 2231-2307.

[9] Ridge.E, Curry.E, A roadmap of Nature Inspired

system Research and Development, Journal.

[10] Kennedy.J,Eberhart.R,Particle Swarm

Optimization.Proceedingsof

[11] IEEE International Conference on Neural

Networks.1995. pp 1942-1948.

[12] Sureja.N.New inspirations in nature: A survey

International Journal of Computer Applications and

Information Technology .2012 November Vol1, Issue

111, (ISSN: 2278-7720).

[13] Yang.X.S .Nature Inspired Metaheuristic Algorithms,

Luniver Press.2008.

[14] Blas N.G, DeMingo L.F, Peneula J.C. Bioinspired

Optimization Strategies: A Survey. Natural Computing

Group, Spain.

[15] YangX.S. Cue Z., Xiao R., GandomiA.H et al, Swarm

Intelligence and Bio inspired Computation, Theory and

Applications, Elsevier, Waltham, Mass, USA.2013.

[16] Dorigo.M,ManiezzoV,and,ColorniA.Ant System

:Optimization by a colony of cooperating agents.IEEE

Transactions on Systems ,Man ,Cybernetics1996, Part

B Algorithms.Foundations And Applications (SAGA

109) ,Vol 5792 of lecture notes of Computer Sciences,

Springer,Oct,2009.

[17] Mahale R.A, Prof ChavanS.D, A Survey: Evolutionary

and Swarm Based Bioinspired Optimization

Algorithms.International Journal of Scientific and

Research Publications, Volume 2, Issue12.December

2012.

[18] Binu A, Nandhakumar N.K .A survey on Bioinspired

methods for resource discovery.IJARCCE, Vol2, Issue

5.2013 May.

[19] Back.T, Evolutionary Algorithms in theory and

Practice, Oxford University Press.1996.

[20] Chen.H,Zhu.Y and Hu.k.Cooperative Bacterial

Foraging Optimization .Hindawi Publishing

Corporation ,Discrete Dynamics in Nature and

Society,2009Article ID 815247,17 pages.

[21] Liu.Y and Passino K.M.Biomimicry of Social Foraging

Bacteria for Distributed Optimization: Models,

Principles and Emergent Behaviors. Journal of

Optimization Theory and Applications, 2002 December

Vo115, No 3, pp 608-628.

[22] TangW.J,Wu Q.H,Senior Member ,IEEE and J.R

.Saunders, Bacterial Foraging Algorithm For Dynamic

Environments,IEEE Congress on Evolutionary

Computation Sheraton Vancouver Wall Centre

Hotel,Vancover,BC,Canada,July,16-21.

[23] Zareh.S, Seyedjavadi H.H, Erfani H, Grid Scheduling

using Cooperative BFO Algorithm, American Journal

of Scientific Research ISSN 1450-223X Issue62,2012,

pp.78-87.

[24] Thomas R.M .Survey of Bacterial Foraging

Optimization Algorithm”IJISME, ISSN: 2319-6386,

Volume-1 Issue-4 2013 March.

[25] K.M.Passino.Biomimicry of bacterial foraging for

distributed optimization and control, IEEEControl

Syst.Mag, Vol22, no3 pp52-672002 June.

[26] Fister.I, YangX.S, Brest.J.A Comprehensive review of

firefly algorithms.Swarm and Evolutionary

Computation.2013.

[27] Yang.X.S and He.X, Firefly Algorithm: Recent

Advances and Applications, IntJ.Bio-inspired

Computation Vol 2, No 2, pp52-67.2010.

[28] Kanaka Vardhini.K, Sitamahalakshmi.T, “A Review on

Nature-based Swarm Intelligence Optimization

Techniques and its Current Research Directions”,

Indian Journal of Science and Technology, 2016 Mar,

9(10), Doi no: 10.17485/ijst/2016/v9i10/81634.

[29] Laouratou .D, Aisha-Hassan A. Hashim, Rashidah.F.O,

Shayla I, Abdullah A.Z,“Two Objectives Big Data task

Scheduling using Swarm Intelligence in Cloud

Computing”,Indian Journal of Science and

Technology,2016 July, 9(28), Doi

no:10.17485/ijst/2016/v9i28/96635.

[30] Revathi.S, Malathi.A, “Multi-Tier Framework Using

Sugeno Fuzzy Inference System with Swarm

Intelligence Techniques for Intrusion Detection”,

Indian Journal of Science and Technology, 2014 Jan,

7(9), Doi no:10.17485/ijst/2014/v7i9/47317.

[31] Venkat .R, Natarajan.A.M,“Comparison of Genetic

Algorithm with Particle Swarm Optimisation, Ant

Colony Optimisation and Tabu Search based on

University Course Scheduling System”,Indian Journal

of Science and Technology,2016 June, 9(21), Doi no:

10.17485/ijst/2016/v9i21/85379.

[32] Reza.E, Fazlollah.R,“Unit Commitment in Power

System by Combination of Dynamic Programming

(DP), Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO)”,Indian Journal of Science and

Technology,2015 Jan, 8(2), Doi

no:10.17485/ijst/2015/v8i2/57782.

[33] Ashwin Kumar S.V, RahuL .R, Dheepan.P,

SendhilKumar.K.S, “An Optimal Ant Colony

Algorithm for Efficient VM Placement”, Indian Journal

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 13981-13989

© Research India Publications. http://www.ripublication.com

13989

of Science and Technology, 2015 Jan, 8(S2), Doi no:

10.17485/ijst/2015/v8iS2/60286.

[34] Jung Man Hong, Geun-Cheol Lee, Kilhwan Kim,

Seong-Hoon Choi ,“An Ant Colony Algorithm for

Assembly Line Balancing Problems with

RelaxableConstraints”,Indian

[35] Journal of Science and Technology, 2015 Apr, 8(S8),

Doi no:10.17485/ijst/2015/v8iS8/70479.

