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Background: Several Rho GTPase-activating proteins (RhoGAPs) are implicated in tumor progression through
their effects on Rho GTPase activity. ARHGAP21 is a RhoGAP with increased expression in head and neck
squamous cell carcinoma and with a possible role in glioblastoma tumor progression, yet little is known
about the function of ARHGAP21 in cancer cells. Here we studied the role of ARHGAP21 in two prostate ad-
enocarcinoma cell lines, LNCaP and PC3, which respectively represent initial and advanced stages of prostate
carcinogenesis. Results: ARHGAP21 is located in the nucleus and cytoplasm of both cell lines and its depletion
resulted in decreased proliferation and increased migration of PC3 cells but not LNCaP cells. In PC3 cells,
ARHGAP21 presented GAP activity for RhoA and RhoC and induced changes in cell morphology. Moreover,
its silencing altered the expression of genes involved in cell proliferation and cytoskeleton organization, as
well as the endothelin-1 canonical pathway. Conclusions: Our results reveal new functions and signaling
pathways regulated by ARHGAP21, and indicate that it could contribute to prostate cancer progression.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

ARHGAP21 is a member of the RhoGAP family of proteins that has
received much attention since first being described by our group in
2002 [1–3]. RhoGAPs catalyze the conversion of active GTP-bound
forms of Rho-family GTPases to their inactive GDP-bound state. Rho
family GTPases are key regulators of many cell functions, including
actin reorganization, migration, gene transcription, survival, adhesion,
and proliferation [4,5]. Several Rho GTPases are known to contribute
to cancer progression [4], with either oncogenic or tumor suppressor
activities [6,7]. There are 20 human Rho GTPase genes, of which the
most extensively studied members are RhoA, Rac1 and Cdc42. When
activated, Rho GTPases interact with several downstream effector pro-
teins leading to activation of multiple signaling pathways which results
in cellular responses until intrinsic or RhoGAP-mediatedGTPase activity
returns the proteins to the GDP-bound state [8].
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ARHGAP21 is a protein with 1958 amino acids that contains, in ad-
dition to the RhoGAP domain, a PDZ and a pleckstrin homology (PH)
domain. It has been reported that ARHGAP21 has RhoGAP activity for
RhoA and Cdc42 [9,10] and interacts with several proteins, such as
FAK, PKC-ζ, α-catenin, β-arrestin-1 and ARF1, mediating cross-talk
between Rho GTPases and other signaling pathways [1,3,9–11].
ARHGAP21 plays a role in the vesicular trafficking of Golgi mem-
branes, cell–cell interactions, influenza virus replication and cardiac
stress [3,9,12,13], but its function in cancer cells has been poorly in-
vestigated. ARHGAP21 is overexpressed in head and neck squamous
cell carcinoma, and could be a possible potential therapeutic target
[14]. We found that ARHGAP21 silencing in glioblastoma cell lines
increased cell migration and secretion of metalloprotease-2, as well
as FAK and Cdc42 activities [11].

Other RhoGAPs have been investigated in solid tumors, with roles in
cancer development and progression, including prostate cancer [15–17].
Prostate cancer is one of the leading causes of cancer-related mortality
among men worldwide [18]. Although there has been progress in the
last years, several challenges remain regarding diagnosis and treatment
[19]. Several signaling pathways are known to be aberrantly activated
in prostate cancer progression, including the endothelin-1 pathway
[20,21]. However, a better understanding of the molecular mechanisms
related to prostate cancer progression may lead to more effective
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therapeutic strategies. We therefore aimed to evaluate ARHGAP21
functions in prostate adenocarcinoma cell lines.

2. Materials and methods

2.1. Cell culture

LNCaP and PC3 cell lines were used as a model for human prostate
adenocarcinoma in specific assays as appropriated. HEK293T cells
were used for pull down assays. Cell lines were obtained from ATCC
(Philadelphia, PA, USA) and cultured in appropriate medium (RPMI
for LNCaP and PC3 cells and DMEM for HEK293T cells) containing 10%
fetal bovine serum with penicillin/streptomycin and maintained at
37 °C, 5% CO2. HUVECs were purchased from PromoCell (Heidelberg,
Germany) and cultured according to the manufacturer's instructions.

2.2. Plasmid constructs

The plasmid pCMV containing the cDNA encoding full-length
human ARHGAP21 and the empty vector were purchased fromOriGene
Technologies (Rockville, MD, USA). The plasmids encoding pEGFP wild
type RhoA, RhoC and constitutively active Cdc42 (Q61L) were provided
by Ferran Valderrama (St George's, University of London). The plasmid
encoding FLAG-p190-B RhoGAP in CMV2 expression vector was a kind
gift from Jeff Settleman (Massachusetts General Hospital, Cambridge,
USA).

2.3. Immunofluorescence and confocal microscopy

PC3 and LNCaP cells were grown on cover slips and fixed in 4%
paraformaldehyde for 20 min, permeabilized with 0.5% Triton X-100
in PBS for 10 min at room temperature and blocked in PBS containing
3% bovine serum albumin (BSA) (60 min at room temperature). The
cells were then incubated overnight at 4 °C with anti-ARHGAP21 anti-
body (sc-98336, Santa Cruz, CA, USA), diluted in PBS (1:200) containing
1% BSA, followed by incubation with secondary antibody diluted in PBS
(1:400) containing 1% BSA for 2 h at room temperature. All incubations
were followed by three 5-minute PBSwashes. The slides weremounted
in ProLong Gold Anti-Fade Mounting Medium with DAPI (Molecular
Probes). Images were generated using a confocal laser-scanning micro-
scope (LSM 510, Carl Zeiss, Welwyn Garden City, UK).

2.4. Subcellular fractionation

PC3 and LNCaP cells were trypsinized and collected by centrifugation
at 200 ×g for 5 min at 4 °C. Cells were washed in ice-cold phosphate-
buffered saline and collected by centrifugation at 1500 ×g for 5 min at
4 °C. The pellets were gently resuspended in buffer 1 (10 mM Hepes
pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 10 mM Na3VO4 and
2 mM PMSF). Cells were chilled on ice for 10 min and then lysed by
the addition of 0.1% (v/v) Nonidet P-40 and homogenization by 10 pas-
sages through a 26.5-gauge needle. The extracts were centrifuged at
12.000 ×g for 10 min at 4 °C. The supernatant was used as a cytosolic
and membrane fraction. The pellet was resuspended with a buffer 2
(20 mM HEPES pH 7.9, 25% Glycerol, 1.5 mM MgCl2, 20 mM KCl,
0.2 mM EDTA, 0.5 mM DTT, 10 mM Na3VO4 and 2 mM PMSF). The ho-
mogenate was incubated on ice for 30 min at 4 °C and centrifuged at
12.000 ×g for 10 min at 4 °C. Supernatant was used as the nuclear frac-
tion. Equal amount of proteins was used for Western blot analysis.

2.5. Transient transfections

Silencing of ARHGAP21, RhoA, RhoC and Cdc42 was performed in
prostate adenocarcinoma cells using specific siRNAs fromThermoFisher
Scientific (Lafayette, CO, USA), as previously described [22]. Briefly, the
cellswere plated at 70% confluence and transfected using Lipofectamine
2000 reagent (Invitrogen, Carlsbad, CA, USA), according to the
manufacturer's instructions. Cellswere analyzed 72 h after transfection.
All siRNA sequences are described in Supplementary Table S1.

Overexpression of ARHGAP21, p190-B RhoGAP, GFP-RhoA and
GFP-RhoC was performed with appropriated amount of vectors and
jetPEI reagent (Polyplus Transfection), according to the manufacturer's
instructions.

2.6. RNA extraction

Total RNA from siARHGAP21 and siControl cells was extracted using
Trizol (Invitrogen), according to the manufacturer's instructions. For mi-
croarray assays, RNA was purified with Qiagen®, RNeasyTM Micro Kit
and integrity of the RNAswas analyzedwith Agilent 2100 Eletrophoresis
Bioanalyser (Agilent Technologies, Santa Clara, CA).

2.7. Quantitative RT-PCR analysis (qPCR)

Reverse transcription reaction was performed using RevertAid™
First Strand cDNA Synthesis Kit, according to the manufacturer's in-
structions (MBI Fermentas, St. Leon-Rot, Germany). Real-time detec-
tion of ARHGAP21 amplification was performed in 7500 Real-Time
PCR System (Applied Biosystems) using Power SybrGreen PCR
Master Mix (Applied Biosystems) and specific primers: forward
5′-ATGCACTGTACACTCGCTTCGA-3′ and reverse 5′-CAACGACGCCAGC
AAAAAC-3′. HPRT was used as housekeeping gene and the sequence of
used primers was: forward 5′-GAACGTCTTGCTCGAGATGTGA-3′, and
reverse 5′-TCCAGCAGGTCAGCAAAGAAT-3′. Relative levels of gene ex-
pression were calculated using the equation, 2−ΔΔCT [23]. A negative
‘No Template Control’was included for each primer pair. Three replicas
were run on the same plate for each sample.

2.8. Western blotting

Cells were lysed in ice-cold Tris–HCl buffer (100 mM Tris, pH 7.5),
containing 10 mM EDTA, 10% Triton X, 100 mM NaF and phosphatase
and protease inhibitors (10 mM Na3VO4, 10 mM Na4P2O7, 25 mM
PMSF and 0.1 mg/mL aprotinin). Equal amounts of cell lysates were
subjected to SDS-PAGE andwestern blot analysis with specific antibodies
and ECL (Amersham Pharmacia Biotech, UK Ltd., Buckinghamshire,
England). Polyclonal antibodies against ARHGAP21 (sc-98336), RhoA
(sc-179), RhoC (sc-12116) and monoclonal antibodies against Stathmin
(sc-55531) and GFP (sc-7383) were from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Monoclonal antibody against p190-B RhoGAP
(611612) was from BD Transduction Laboratories (San Diego, CA, USA)
and polyclonal anti-Cdc42 (2462) was from Cell Signaling Technology
(Danvers, MA, USA). Quantitative analyses of the optical intensities of
protein bands were carried out with Un-Scan-It Gel 6.1 (Silk Scientific
Inc., Utah, USA) and normalized to GAPDH or actin for protein expression
or total protein for pulldown assays.

2.9. Analysis of cell proliferation

Cell proliferation was measured by methylthiazoletetrazolium
(MTT) assay. Twenty-four hours after transfection, 9×103 cells per
well were plated in a 96-well plate in RPMI containing 10% FBS. To eval-
uate cell viability, 10 μL of a 5 mg/mL solution of MTT (Sigma-Aldrich;
St. Louis, MO, USA) were added to the wells and incubated at 37 °C
for 4 h. The reaction was stopped by using 100 μL of 0.1 N HCl in anhy-
drous isopropanol and the absorbance was measured at 570 nm, using
an automated plate reader. All conditions were tested in six replicates.

2.10. TUNEL assay

Twenty-four hours after transfection, a total of 3×104 cells per
well were plated in a 12-well plate in RPMI containing 10% FBS. The
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cells were then collected and apoptosis was evaluated by TUNEL as-
says using APO-BrdUTM TUNEL Assay Kit from Invitrogen, according
to the manufacturer's guidelines.

2.11. Analysis of cell migration

Migration of PC3 and LNCaP cells was followed by time lapse mi-
croscopy. Twenty-four hours after siRNA transfection, 7000 cells in
RPMI containing 10% FBS were plated in a 24-well plate previously
coated with 100 μg/mL Matrigel (BD Biosciences, NJ, USA), 10 μg/mL
fibronectin (Sigma-Aldrich), or uncoated (plastic). On the next day,
the medium was changed to RPMI containing 1% FBS. Time-lapse
movies were acquired using a Nikon TE2000-E microscope and a Plan
Fluor 10× objective (Nikon, Kingston, UK) and a Hamamatsu Orca-ER
digital camera. Image series were captured at 37 °C and 5% CO2 at 1
frame/5 min for 17 h with Metamorph software (Molecular Devices,
Wokingham, UK). Cells were tracked and migration speed was deter-
mined using ImageJ analysis software (http://rsb.info.nih.gov/ij).

2.12. Transendothelial cell migration assay

HUVECs were grown to confluence on fibronectin-coated plates.
PC3 cells (4×104/well) in RPMI containing 10% FBS were added to
the HUVECs, and time-lapse images were acquired every 3 min for 7 h
as described above but with a 20× objective. Cells were tracked and
the percentage of intercalation was determined using ImageJ analysis
software.

2.13. GTPase activity assays

GST-WASP-RBD and GST-Rhotekin-RBD were purified from
Escherichia coli as previously described [24]. GST-WASP-RBD pull-down
assays were used to evaluate the activity of Cdc42, whereas GST-
Rhotekin-RBD pull-down assays were used to evaluate RhoA and RhoC
activities. Cells (107/pull-down) were lysed in 1 mL GST-Fish buffer
(25 mM Hepes, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 10 mM MgCl2,
1 mM EDTA, 25 mM NaF, 1 mM Na3VaO4, 10 μg/mL aprotinin, 100 μM
PMSF, and 10% glycerol). Some lysate (40 μL) was retained to determine
total GTPase levels. The remaining lysate was incubated with the
protein-bound beads on a rotor for 2 h at 4 °C. The beads were washed
three times in pull-down buffer, boiled in Laemmli sample buffer, and
analyzed by western blotting.

2.14. Microarray experiments and data analysis

Gene expression measurements were performed using Whole
Human Genome Oligo Microarray 4×44k with RNA obtained from
three independent transfections on PC3 cells. For each individual sample,
500 ng of total RNA were amplified and labeled with Cy3 or Cy5 using
the Agilent Low RNA Input Fluorescent Linear Amplification Kit PLUS,
two-Color (Agilent Technologies) according to the manufacturer's rec-
ommendations. Labeled cRNA was hybridized using Gene Expression
Hybridization Kit (Agilent). Slideswerewashed and processed according
to the Agilent Two-Color Microarray-Based Gene Expression Analysis
protocol (Version 5.5) and scanned on a GenePix 4000 B scanner
(Molecular Devices, Sunnyvale, CA, USA). Fluorescence intensities
were extracted using Feature Extraction (FE) software (version 9.0;
Agilent). Genes differentially expressed between siControl and
siARHGAP21were identifiedwith the Significance Analysis ofMicroarray
(SAM) statistical approach [25], using the following parameters:
one-class unpaired responses, t-statistic, 16 permutations. False discovery
rate (FDR) was 15%. The list of altered genes was uploaded to Ingenuity
Pathways Analysis (IPA) software (IngenuityR Systems, http://www.
ingenuity.com) for the identification of relevant altered gene networks
and canonical gene pathways. The raw data has been deposited in
Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/
database under accession number GSE37888. All gene annotations
were performed using Blast2GO [26].

2.15. Statistical analysis

Statistical analysis was performed using GraphPad Instat 5
(GraphPad Software, Inc., San. Diego, CA, USA). Data were expressed as
the mean±SD. For comparisons, an appropriate Student's t-test was
used. The level of significance was set at pb0.05.

3. Results

3.1. ARHGAP21 localizes in the nucleus and cytoplasm of PC3 and LNCaP
cells

Since ARHGAP21 expression and localization have never been
evaluated in prostate adenocarcinoma cell lines, we first evaluated
ARHGAP21 localization in PC3 and LNCaP cells by immunofluores-
cence. ARHGAP21 was expressed and had a nuclear and cytoplasmic
localization in both cell lines, with prominent perinuclear localiza-
tion. Interestingly, ARHGAP21 also localized in protrusions of PC3
and LNCaP cells (Fig. 1A). The staining intensity with the ARHGAP21
antibody was lower in cells depleted of ARHGAP21 by RNAi, indicat-
ing the specificity of the antibody (Supplementary material, Fig. S1).
ARHGAP21 nuclear and cytoplasmic localization in PC3 and LNCaP
cells was confirmed by cell fractionation and western blotting. The
efficacy of the fractionation protocol was verified by subcellular dis-
tribution of the cytoplasmic protein stathmin and of the nuclear pro-
tein histone H4 (Fig. 1B).

3.2. ARHGAP21 silencing reduces proliferation but not apoptosis in prostate
cancer cells

PC3 and LNCaP cells silenced for ARHGAP21 (siARHGAP21)
(Fig. 2A) were used to investigate the function of ARHGAP21 in pros-
tate adenocarcinoma.

Rho GTPases are well known to affect cell proliferation [4]. The ef-
fect of ARHGAP21 on the proliferation of PC3 and LNCaP cells was
therefore determined. Proliferation was significantly reduced in
ARHGAP21-depleted PC3 cells compared to control cells, whereas
no difference was observed in LNCaP cells (Fig. 2B). The decrease in
PC3 cell number was not due to increased apoptosis, since the % of
apoptotic cells did not differ between siControl and siARHGAP21-
transfected PC3 or LNCaP cell lines (Fig. 2C).

3.3. ARHGAP21 silencing increases PC3 cell migration on fibronectin but
does not affect interaction with endothelial cells

Rho GTPases regulate cell migration, and thus we investigated
whether ARHGAP21 knockdown affected cell motility. PC3 and LNCaP
cellswere plated onto 3 different substrates: uncoated plastic orMatrigel
or fibronectin coated-dishes. We observed an increase in the migration
speed of ARHGAP21-depleted PC3 cells specifically on fibronectin, com-
pared to control cells (0.33±0.22 and 0.39±0.22 μm/min for PC3
siControl and siARHGAP21, respectively; pb0.05). There was no differ-
ence in their migration speed on plastic orMatrigel (Fig. 3A). ARHGAP21
depletion did not alter the migration speed of LNCaP cells under any of
the conditions tested (data not shown).

Cancer metastasis involves interaction of cancer cells with endothe-
lial cells [27]. As previously described [28], we observed that PC3 cells
rapidly insert (intercalate) into a monolayer of HUVECs: approximately
55% of PC3 cells intercalate by 1 h and 95% by 7 h (Supplementary
material, Fig. S2). However, ARHGAP21 depletion did not alter the
timecourse of PC3 cell intercalation (Fig. 3B). Our results indicate that
ARHGAP21 specifically affects migration speed of PC3 cells but not in-
teraction with endothelial cells.

http://rsb.info.nih.gov/ij
http://www.ingenuity.com
http://www.ingenuity.com
http://www.ncbi.nlm.nih.gov/geo/
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3.4. ARHGAP21 has GAP activity for RhoA and RhoC and induces
morphological changes in PC3 cells

Previous studies have shown that ARHGAP21 acts as a RhoGAP
protein for RhoA and Cdc42 [9,12]. Given that RhoGAP specificity can
vary between in vitro and in vivo assays and that ARHGAP21 has
never been tested for RhoC, we measured the effects of ARHGAP21 si-
lencing and overexpression on RhoA, RhoC and Cdc42 activities in PC3
cells.

ARHGAP21 silencing increased RhoA and RhoC activity compared to
control cells but, surprisingly, no difference in Cdc42 activity was ob-
served (Fig. 4A). Corroborating thesefindings, ARHGAP21 overexpression
decreasedRhoA andRhoC activities, but not Cdc42 (Fig. 4B). Cells silenced
for RhoA, RhoC or Cdc42, cells overexpressing p190-B RhoGAP,
which is known to act as a GAP for RhoA [17], and cells overexpressing
GFP-Cdc42-L61 were used as internal controls of Rho GTPase activity
assays, as indicated (Fig. 4A–B). The efficiency of ARHGAP21 and
p190-B RhoGAP overexpression is shown in Fig. 4C.

Interestingly, ARHGAP21 overexpression induced similar morpho-
logical changes to p190-B RhoGAP in PC3 cells, characterized by cell
rounding, increase in the number and length of protrusions and de-
tachment from the tissue culture plastic plate (Fig. 4D). This is consis-
tent with ARHGAP21 acting predominantly as a RhoA/RhoC GAP in
PC3 cells. ARHGAP21 overexpression in HEK293T cells resulted in sim-
ilar effects on RhoA, RhoC and Cdc42 activities and cell morphology
(Supplementary material, Fig. S3).

In order to investigate whether the effects of ARHGAP21 silencing
effects were due to elevated RhoA and RhoC activities, we further in-
vestigated the effect of GFP-RhoA orGFP-RhoC overexpression (Fig. 5A)
on proliferation and migration of PC3 cells. In contrast to ARHGAP21 si-
lencing, both RhoA and RhoC overexpression slightly increased prolifera-
tion of PC3 cells (Fig. 5B),which is in accordancewith the previous studies
[29–31]. Similar to ARHGAP21 silencing, GFP-RhoC overexpression in-
creased migration speed compared to control, in agreement with
other reports [31]. Overexpression of GFP-RhoA did not alter themigra-
tion speed of PC3 cells on fibronectin (Fig. 5C). These results indicate
that the effect of ARHGAP21 silencing on migration is most likely due
to increased RhoC activity, whereas the effects on proliferation are
probably caused by effects on other signaling pathways and not RhoA
or RhoC.

3.5. ARHGAP21 alters gene expression in PC3 cells

To investigate other signaling pathways that could bemodulated by
ARHGAP21 and contribute to the observed phenotypes of ARHGAP21-
depleted cells, gene expression was analyzed with Whole Human
Genome Oligo Microarrays (Agilent Technologies) using RNA from
siARHGAP21-depleted and siControl-transfected PC3 cells. A total of
110 differentially expressed genes between siARHGAP21 and siControl
were identified: 93 were down-regulated and 17 up-regulated in
siARHGAP21-depleted cells (Supplementary Fig. S3). The signature ex-
pression profile revealed genes related to several biological processes,
including cell proliferation and cytoskeleton organization (Table 1).
Using Ingenuity Pathways Analysis (IPA), we identified 7 relevant net-
works thatwere significantly enriched (pb0.001)with the genes altered
inARHGAP21-depleted PC3 cells. A genenetwork involved in cellular de-
velopment, cellular growth and proliferation and connective tissue de-
velopment and function is represented in Fig. 6A. Of the top canonical
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Fig. 4. ARHGAP21 regulates RhoA and RhoC activity. GST-Rhotekin-RBD pull down assays were performed to evaluate RhoA and RhoC activities, and GST-WASP-PBD pull down
assays were used to determine Cdc42 activity. Assays were performed in PC3 cells silenced for ARHGAP21 (A) or overexpressing ARHGAP21 (B). PC3 cells silenced for RhoA,
RhoC or Cdc42 or cells overexpressing p190-B RhoGAP or GFP-Cdc42-L61 were used as controls for the assay efficiencies, as indicated. Protein extracts from pull down and total
protein were used for western blot assays and blotted with the antibodies anti-RhoA (left), RhoC (middle) or Cdc42 (right). Densitometry was performed and a ratio of active pro-
tein versus total protein compared with the normalized value of control is shown. (C) Western blot analysis of total extracts from PC3 cells transfected with empty vector, or vectors
encoding ARHGAP21 (left panel) or p190-B RhoGAP (right panel). The efficiency of transfections was evaluated with antibodies against ARHGAP21 (250 kDa), p190-B RhoGAP
(190 kDa) or Actin (43 kDa), as a loading control. (D) Morphology of PC3 cells after transfection with empty vector, or vectors encoding ARHGAP21 or p190-B RhoGAP. ARHGAP21
and p190-B RhoGAP expression resulted in cell rounding and formation of protrusions, indicated by white arrows. Scale bars, 50 μm.
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pathways statistically modulated in PC3 cells silenced for ARHGAP21
(pb0.005), we detected endothelin-1 signaling, known to regulate cell
proliferation andmigration [32] (Fig. 6B). Interestingly, we also observed
statistically significantmodulation of the canonical pathway named Role
of MAPK Signaling in the Pathogenesis of Influenza (data not shown),
which is related to the study performed by Wang et al., who observed
lower rates of influenza virus replication in a human alveolar epithelial
cell line silenced for ARHGAP21 [13].
4. Discussion

We have investigated the function of the RhoGAP ARHGAP21 in
prostate adenocarcinoma cell lines. We observed that ARHGAP21 local-
izes in the nucleus, cytoplasm and cell protrusions of both PC3 and
LNCaP cells, with a prominent localization in the perinuclear region. Pre-
viouswork fromour group showed a nuclear and perinuclear localization
of ARHGAP21 in different cell lines [11]. Moreover, other studies showed
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Fig. 5. Effects of RhoA and RhoC overexpression on PC3 cell proliferation andmigration. (A) PC3 cells were transfectedwith indicated vectors and transfection efficiencywas evaluated by
detecting greenfluorescent protein (GFP) byfluorescencemicroscopy. (B)MTT assays in cells cultured in 10% FBS. Data shown are themean±SDof six replicates and are representative of
3 independent experiments. ***pb0.01; *pb0.05; two-way Student's t-test. (C) Migration assays on fibronectin. Cell migration speed was determined from time-lapse movies. Box and
whisker plots of speed: the central boxes represent values from the lower to upper quartile (25th to 75th percentiles), the middle line indicates median and the vertical line extends
from the minimum to maximum values. Three separate experiments were performed and at least 40 cells from each experiment were analyzed by two-way unpaired Student's t-test,
NS=not significant (p>0.05); ***pb0.001.
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a Golgi-specific localization in HeLa and MCF-7 cells [9,12] and cyto-
plasmic localization in head and neck squamous carcinomas [14]. We
hypothesize that different cell types and tissues may have different
patterns of ARHGAP21 localization, reflecting their specific charac-
teristics and functions.

LNCaP and PC3 cell lines are commonly used as representative of
prostate cancer. Both cell lines retain the expression of the prostate
Table 1
Biological processes of genes differentially expressed in PC3 siARHGAP21.

Biological processa Genes differentially expressed

Response to stress ↓GP6, ↓PLA2G4C, ↓W60781, ↓ATRX, ↓C5, ↓FCMD, ↓SAA4,
↓DCN, ↓CCL20, ↓IL1A, ↓IL29, ↓PTGS2, ↓UTS2, ↓RDM1, ↓TFF3,
↓PLA2G7, ↓PLA2G4A, ↓STX4, ↓ENDRA, ↑NF1, ↑HMOX1,
↑AXL

Transport ↓PLA2G4C, ↓STX4, ↓SYNE2, ↓ENDRA, ↑HMOX1, ↓UPK1A,
↑APOL6, ↑SLC20A1, ↑AXL, ↑NF1, ↓TCN1, ↓SLC5A6, ↑RAB15,
↓UTS2, ↓NLGN1, ↓C5

Cell differentiation ↓IL29, ↓ENDRA, ↓IL1A, ↓UPK1A, ↓TCP11, ↓SEMA3C, ↑AXL,
↑NF1, ↓W60781, ↓SPINK5, ↑NEURL, ↓UTS2, ↓BMP3,
↓NLGN1, ↓ETV1

Cell proliferation ↑AXL, ↑NF1, ↓W60781, ↓CDC25A, ↓UTS2, ↓PLA2G7, ↓FCMD,
↓IL29, ↓ENDRA, ↑CNTD2, ↑HMOX1, ↓IL1A, ↓PTGS2, ↓NOX5

Cell death ↓C5, ↓PLA2G7, ↓ENDRA, ↑HMOX1, ↓IL1A, ↓PTGS2, ↓NOX5,
↑AXL, ↑NF1, ↓GRID2

Cell–cell signaling ↓CCL20, ↓PTGS2, ↑NF1, ↑RAB15, ↓UTS2, ↓BMP3, ↓NLGN1,
↓STX4, ↓GRID2

Cell cycle ↓HPGD, ↓CDC25A, ↓PFTK1, ↓MAP3K8, ↓CKS2, ↓IL1A,
↓PTGS2, ↑CNTD2

Anatomical structure
morphogenesis

↓DCN, ↓SEMA3C, ↑AXL, ↑SOX13, ↑NF1, ↓SPINK5, ↑NEURL,
↓UTS2, ↓ETV1, ↓C5, ↓ENDRA, ↑HMOX1, ↓IL1A, ↓PTGS2, ↓NOX5

Cytoskeleton
organization

↑NF1, ↑NEURL, ↓CKS2

a The biological processes categories were obtained from the Blast2GO database.
Genes (↑) up-regulated or (↓) down-regulated in ARHGAP21-depleted PC3 cells with
respect to control PC3 cells.
specific antigen (PSA) [33]; however, they have different responses
to hormones [34] and diverge in the expression of other prostate
cancer markers [35–37]. Whereas LNCaP cells represent an initial
androgen-responsive stage of prostate cancer, PC3 cells are characterized
by a more aggressive behavior [38]. Interestingly, our results showed
that ARHGAP21 only affected proliferation and migration of PC3 but
not LNCaP cells, suggesting that ARHGAP21 has a more dominant role
in cells from an advanced stage of prostate cancer, and that increased
ARHGAP21 expression would stimulate prostate cancer proliferation.
We thus focused our attention on the PC3 cell line model.

We found that ARHGAP21 overexpression decreased both RhoA
and RhoC activities. Most RhoGAPs have only been tested on RhoA
but not RhoC. Despite their high level of homology, RhoA and RhoC
have different functions and can act through distinct effectors [22,
39,40]. RhoA frequently decreases whereas RhoC enhances cancer
cell migration and invasion [41,42], and RhoC is up-regulated during
epithelial–mesenchymal transition, concomitant to a decrease of RhoA
activation [43]. Surprisingly, we observed no changes in Cdc42 activity
in PC3 or HEK293T cells. Previous studies from our group showed an in-
crease in Cdc42 activity upon ARHGAP21 silencing in a glioblastoma cell
line [11]. We hypothesize that the ARHGAP21 specificity for different
RhoGTPasesmay vary according to the cell type,which could be related
to its specific localization [44]. Our results suggest that the increased
migration observed by ARHGAP21 depletion may be due to increased
RhoC activity, as both ARHGAP21 silencing and RhoC overexpression in-
creased PC3 cell migration on fibronectin. Moreover, our results indicate
that the phenotypic effects of ARHGAP21 overexpression in PC3 and
HEK293T cells are mostly due to RhoA/RhoC, as the shape change was
similar to that induced by p190-B RhoGAP, which acts on RhoA and
RhoC (our work) but not Cdc42 [45,46]. A similar phenotype induced by
p190 RhoGAP expression in fibroblasts has already been described and
was associated with the down-regulation of RhoA activity, since expres-
sion of constitutively activated RhoA suppressed the phenotype [47,48].
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Fig. 6. Pathway Analysis of gene expression changes induced by ARHGAP21 depletion. (A) Ingenuity Pathways Analysis identified that the top most significantly enriched (pb0.001)
network contained genes that are related to cellular development, growth and proliferation and connective tissue development and function. (B) Ingenuity Pathways Analysis iden-
tified that the endothelin-1 canonical pathway was significantly enriched (pb0.001) with altered genes. Gene color intensity indicates the degree of up-regulation (red) or of
down-regulation (green) in siARHGAP21-transfected PC3 cells in comparison to siControl-transfected cells. Genes in gray were either not detected as expressed or not modulated
by ARHGAP21 silencing in these cells.
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On the other hand, ARHGAP21 silencing effects on proliferation
were opposite to the effects of RhoA and RhoC overexpression, which
lead us to investigate other signaling pathways related to ARHGAP21.
The fact that there are more than 70 RhoGAPs for only 20 Rho GTPases
and that each of them has one or more additional domains indicates
that RhoGAPs do not function simply as regulators of Rho GTPases.
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Indeed, several ARHGAP21 partners have been already described, such
as FAK, PKC-ζ, α-catenin, β-arrestin-1 and ARF1 [1,3,9–11], indicating
that ARHGAP21 is a scaffolding protein in addition to a GAP. In this
study, we found that ARHGAP21 silencing modulated the expression
of several genes, including genes belonging to the endothelin-1 signal-
ing pathway.

Endothelin-1 is well-known to increase actomyosin contractility
and is involved in many cell functions [49]. Activation of endothelin-A
receptor by endothelin-1 promotes cell proliferation [20,50–52] and
there is accumulating evidence that selective blocking of this receptor
may be useful in prostate cancer treatment [53–55]. The decrease in
PC3 cell proliferation upon ARHGAP21 depletion could therefore be re-
lated to its modulation of the endothelin-1 pathway, especially the
down-regulation of endothelin-A receptor observed in our microarray
results. Previous studies have showed that ARHGAP21 partners are
involved with the endothelin-1 pathway. Endothelin-1 induces RhoA
and FAK activation [56,57]. Interestingly, ARHGAP21 has recently been
described as a partner of β-arrestin 1 and this interaction is increased
upon angiotensin II stimulation, regulating RhoA activation [1].
β-arrestin 1 was described to be recruited by the endothelin-A receptor,
and its silencing resulted in regulation of endothelin-A receptor-driven
signaling in ovarian cancer cells [58].

In conclusion, our results indicate that, in PC3 prostate adenocar-
cinoma cells, ARHGAP21 modulates cell proliferation and migration,
and expression of genes related to proliferation, cytoskeleton organi-
zation, and the endothelin-1 canonical pathway. Moreover, we
showed that ARHGAP21 has GAP activity for RhoA and RhoC and its
overexpression induces phenotypic changes consistent with inhibition
of RhoA/RhoC. Taken together, our study points to a role of ARHGAP21
in aggressive prostate cancer and thus it will be interesting to investi-
gate whether its expression correlates with prostate cancer progression
in the future.
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