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Abstract

Since the initial sequencing of the human genome, many projects are underway to understand

the effects of genetic variation between individuals. Predicting and understanding the

downstream effects of genetic variation using computational methods are becoming

increasingly important for single nucleotide polymorphism (SNP) selection in genetics studies

and understanding the molecular basis of disease. According to the NIH, there are now more

than four million validated SNPs in the human genome. The volume of known genetic

variations lends itself well to an informatics approach. Bioinformaticians have become very

good at functional inference methods derived from functional and structural genomics. This

review will present a broad overview of the tools and resources available to collect and

understand functional variation from the perspective of structure, expression, evolution and

phenotype. Additionally, public resources available for SNP identification and characterisation

are summarised.

INTRODUCTION
Single nucleotide polymorphisms (SNPs;

Table 1 provides a glossary of terms) are

the most common form of genetic

variation in humans comprising nearly

1/1,000th of the average human genome.1

Traditionally, SNPs are assumed biallelic,

ie only two of the four common

nucleotides are found in that position,

having their least common nucleotide

found in greater than 1 per cent of the

population. The distribution and function

of SNPs are important areas of current

research. Reviews are available for

understanding how SNPs affect protein

structure, the use of SNPs in genetics

studies and identifying functional variants

in candidate genes.2�5 This review covers

bioinformatics efforts to predict variation

that is likely to have a functional effect

(and possibly a phenotypic effect) and to

classify the downstream molecular effects

of those variants.

Research suggests that most SNPs fall

in the 95 per cent non-coding region of

the genome.6 Of the SNPs that are near

or in a gene, their effect on function is

difficult to determine. SNPs can alter the

function of DNA, RNA and proteins,

and are generally classed by genomic

location (Table 2). Non-synonymous

SNPs alter the amino acid sequence of the

protein product through either amino

acid substitution or the introduction of a

nonsense/truncation mutation. A variant

may also affect the expression or

translation of a gene product, either by

interrupting a regulatory region or by

interfering with normal splicing and

mRNA function. This can include SNPs

in regulatory regions, synonymous SNPs

and intronic SNPs. The molecular effects

of variation are now becoming better

understood in many cases, and specific

examples are discussed in detail later in

this paper.

The two types of variation that are

usually studied from a functional

perspective are polymorphisms with no

known phenotype, and phenotypically
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annotated or disease-associated variation.

Polymorphisms without a known

phenotype are usually discovered by SNP

screening or genomic analysis, while the

phenotypically annotated SNPs are often

discovered from association studies.

Because human mutations are often

inferred to be disease-associated through

genetics association studies, these

mutations may not be causative; they may

only be in linkage with the actual

causative allele.

Today, the primary database of

polymorphisms is dbSNP,7 which

currently contains more than 5,000,000

validated human SNPs. Disease-associated

polymorphisms are available from

databases such as OMIM,8 Swiss-Prot,9

the Human Gene Mutation Database

(HGMD)10 and HGVBase.11 Together,

these databases represent more than

40,000 non-synonymous, synonymous

and non-coding polymorphisms.

The first efforts to understand the

patterns of sequence variation in the

coding regions of genes were studied on

two different sets of genes by Cargill et

al.12 and Halushka et al.13 Cargill et al.

characterised variations in 106 genes that

were hand selected for their potential

relevance to human disease. The authors

estimated between 36 and 54 per cent of

the non-synonymous mutations were

non-conservative, based on the

BLOSUM62 matrix. Lau and Chasman

have provided further analysis of these

data sets.14

Functional bioinformatics approaches

have been applied to the analysis of

disease-associated mutations, as well.

Several recent reports have focused very

precisely on where diseased alleles are

occurring on protein structures and what

the properties of those mutations are. It

has been shown that these mutation

positions are conserved

evolutionarily,15–19 and that they are

relevant to protein structure.18–21 One of

the difficulties in analysing disease-

associated mutations is that it is very

difficult to obtain a set of neutral alleles

for comparison. Most approaches to

collecting neutral mutations contain some

amount of false positives. Some have

compared against nsSNPs, while others

have used accepted mutations in other

species. Terp et al. identified structurally

relevant features common in disease-

associated mutations from the HGMD.22

Further analysis of the biophysical and

evolutionary distributions of disease-

associated mutations was provided by

Table 1: Glossary of terms

Allele One of the forms of a variant that occurs at a given locus
Coding In a region of the genome that is transcribed
Haplotype The organisation of variation across a chromosome
Missense mutation A variant that alters a codon to substitute one amino acid for another
Nonsense mutation A mutation that introduces a stop codon
Rare variant A variation where the least common allele occurs less than 1 per cent in the population
SNP (single nucleotide
polymorphism)

An inherited single nucleotide substitution between individuals of a species. Commonly
defined as having the least frequent allele occur at a rate greater than 1 per cent in a
population. The most common form of human variation

Table 2: SNP functional classes

Coding SNPs cSNP Positions that fall within the coding regions of genes
Regulatory SNPs rSNP Positions that fall in regulatory regions of genes
Synonymous SNPs sSNP Positions in exons that do not change the codon to substitute an amino

acid
Non-synonymous SNPs nsSNP Positions that incur an amino acid substitution
Intronic SNPs iSNP Positions that fall within introns
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Ferrer-Costa et al.23 Stitziel et al. further

analysed the locations of non-

synonymous disease-associated

polymorphisms by classifying the

mutational data into structural classes.24

Evolutionary conservation and amino acid

identities of mutations have been studied

in detail. Mooney et al. showed that, in

general, disease-associated mutations tend

to occur in positions that are

conserved.25,26 Vitkup et al. examined the

frequencies of mutations associated with

disease in detail.27 They found that the

prevalence of observed disease-associated

mutations correlates strongly with the

mutability of the observed genetic code.

Together, these reports and the papers

discussed in the previous section give a

good understanding of the properties of

disease-associated mutations. Their

positions are conserved evolutionarily and

the nature of the mutations are far more

likely to be non-conserved than

unannotated polymorphisms.

Variation does not occur randomly

across genetic sequences and often occurs

in hotspots.28 It is likely that selection has

played a role in the evolution of human

genetic variation.29,30 With this in mind,

the following sections summarise the

methods and resources available to predict

and characterise the function of non-

synonymous, synonymous and non-

coding polymorphisms using

bioinformatics methods.

WEB RESOURCES AND
SOFTWARE TOOLS FOR
SNP CHARACTERISATION
Many resources now annotate variation

data with functional information. This

section identifies interesting and novel

resources for SNP annotation and analysis.

The simplest approaches classify variants

based on their relationship to genes.

Information about whether variants occur

near a gene, in a coding region, in an

exon, in an intron or up- or downstream

of the gene is relatively direct using

several genome resources. The NCBI

databases, such as dbSNP and OMIM,31

and Ensembl32 provide visualisation access

and some annotations related to function,

based on experiment. Furthermore, with

the sequencing of several mammalian

genomes, comparative sequence analysis is

now possible, even for variation outside

of exon boundaries.

Many locus or disease-specific databases

are beginning to integrate functional

information, such as protein structure,

into their annotation sets. The Human

Genome Variation Society maintains a

comprehensive list of locus-specific

databases, which often contain

high-quality annotations on variation in

specific genes or diseases.33

An excellent resource for visualisation

of SNP locations and other genome

annotations is GoldenPath, the UCSC

Genome Browser and genome

assembly.34 Here, an incredible array of

annotations has been assembled.

Furthermore, the database is completely

in the public domain, and trivially

importable into a relational database, such

as MySQL.35 The other primary genome

resource is Ensembl.36 Within Ensembl,

users can visualise variation in and around

genes, and their data annotations are of

high quality and embedded into an

elegant interface. Another powerful

resource for SNP analysis is SNPper.37,38

SNPper was created in the Kohane Lab at

Harvard University for the analysis of

SNPs. SNPper focuses on SNP selection

for genetic studies, and is a valuable tool

for the geneticist. The National Cancer

Institute has developed several SNP

analysis tools as part of its Cancer

Genome Anatomy Project’s Genetic

Annotation Initiative (CGAP-GAI).39,40

Figure 1 displays SNPs in the BRCA1

gene using SNPper, Ensembl and

UCSC’s GoldenPath Genome Browser.

Table 3 summarises SNP databases and

tools for SNP analysis.

BIOINFORMATICS
APPROACHES TO
PREDICTING FUNCTIONAL
NON-SYNONYMOUS SNPS
Much effort has been invested in

predicting the function of non-

Annotated genome
databases are excellent
resources for SNP
annotations
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synonymous mutations, based on

evidence that regulatory and coding SNPs

are most likely to affect disease42–44 and

the wide availability of functional data on

proteins. An important question is

understanding whether a particular

mutation will be tolerated.45 There are

several ways an nsSNP can affect gene

product function. The most probable

effect is a partial or complete loss of

function of the mutated gene product. A

less likely possibility is a gain of function

Figure 1: Tools for
identifying SNPs in
relationship to genes and
gene structure. The
following are
visualisations of SNP
positions in the BRCA1
gene. The resources are
(a) SNPper,32 (b) UCSC
Genome Browser41 and
(c) Ensembl Genome
Browser36
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mutation, such as those that have been

observed in somatic mutations of the

androgen receptor ligand binding

domain46 or the activation (by loss of

GTPase activity) of the RAS oncogene.47

Researchers have taken several

approaches to predict the function of

nsSNPs. Almost all methods use

categories, or discrete or continuous

valued features to predict a deleterious

mutation. These features range from

sequence-based properties, physical

properties of the wild-type and mutant

amino acids, protein structural properties

and evolutionary properties derived from

a phylogeny or sequence alignment. To

classify whether a mutation will be

tolerated, a training set is usually

constructed of mutations known to be

deleterious. For example, these training

sets can be derived from saturation

mutagenesis experiments where mutation

severity is determined in activity

assays,16,18,21,48,49 multiple sequence

alignments where tolerance to mutation is

derived from evolutionary analyses of

sequence positions,19 or known

deleterious human mutations.18

The earliest studies analysed mutations

using sequence properties based on how

conservative a mutation was, using a

BLOSUM62 matrix.12 BLOSUM62 does

not take into account the sequence or

structural context of the mutation, so

further efforts were employed to include

position-specific conservation estimates

and protein structural information. Ng

and Henikoff continued this body of

research by developing a position specific

estimation of non-conservative mutations

with their method, Sorting Intolerant

From Tolerant (SIFT),49,50 to find that 25

per cent of nsSNPs in dbSNP are likely to

affect protein function.17 SIFT is based on

a position-specific scoring matrix (PSSM),

and estimates positions that will be

unfavourable to mutation, based on

tolerated mutations in homologues. SIFT

has recently been applied to SNPs in both

DNA repair genes and separately to

BRCA1.51,52

An early study to classify and survey

non-synonymous SNPs that included

protein structural features was that of

Sunyaev et al.20 The authors compared

disease-associated mutations in

orthologous genes and human cSNPs. To

assess local functionality for a given

position, both protein structural

information and evolutionary information

were taken into account. Protein

structural parameters such as solvent

Better characterized
proteins often result in
better classifications,
because more
functional and
structural information
is available

Table 3: Online SNP databases

URL Comments

Genome resources
dbSNP http://www.ncbi.nlm.nih.gov/SNP/ The primary repository for SNP data
Ensembl http://www.ensembl.org/ Genome database
GoldenPath http://genome.ucsc.edu/ Genome database
HapMap Consortium http://www.hapmap.org/ Haplotype block information
JSNP http://snp.ims.u-tokyo.ac.jp/ Japanese SNP database
Mutation repositories
HGVBase http://hgvbase.cgb.ki.se/ Public genotype phenotype database
HGMD http://www.hgmd.org/ Mutation database with many annotations
Swiss-Prot http://us.expasy.org/ Protein database with extensive variant annotations
List of locus-specific
databases

http://www.genomic.unimelb.edu.au/mdi/dblist/dblist.html

CGAP-GAI http://cgap.nci.nih.gov/ Cancer Gene Anatomy Project at the National Cancer Institute
Other databases and tools http://ymbc.ym.edu.tw/dgd/hdgd.htm Tools for SNP analysis and gene characterisation
Tools
SNPper http://snpper.chip.org/ Novel software for SNP analysis
BioPerl http://www.bioperl.org/ A programming application program interface (API) for

bioinformatics analysis
Genewindow http://www.genewindow.nci.nih.gov/ Interactive tool for visualisation of variation
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accessibility, location within beta strands

or active sites, and participation in

disulphide bridges were used. Sequence

and sequence-based evolutionary

conservation were also assessed. The

authors found that approximately 70 per

cent of disease-associated mutations were

in protein structural sites described above

and most likely to affect protein function.

Additionally, their disease mutations were

more likely (35 versus 9 per cent) to be

solvent inaccessible than accepted

mutations in orthologous genes. Chasman

and Adams16 continued this direction by

training and annotating both continuous

and categorically valued features on

nsSNPs to build a probabilistic classifier of

nsSNPs, utilising 16 different structure

and evolutionary-based features. They

estimated that between 26 and 32 per cent

of nsSNPs affect protein function.

Performing a similar rigorous analysis

using heuristics instead of a probabilistic

model, Sunyaev et al. published an

estimate that approximately 20 per cent of

the common nsSNPs would likely have a

functional effect.19 Using a strictly

evolutionary approach, Fay et al. have

estimated that 23 per cent of this

deleterious variation is only slightly

deleterious.30 Wang and Moult53

compared disease-associated variation

within the HGMD with SNPs extracted

from dbSNP. They classified mutations

into five groups for altering protein

stability, ligand binding, catalysis,

allosteric regulation and post-translational

modification. They found that 90 per

cent of the disease-associated mutations

affect molecular function and that 83 per

cent of those that affect molecular

function do so through disruption of

protein stability. Conversely, they found

that 30 per cent of the non-synonymous

SNPs are classified as affecting protein

stability. Ng and Henikoff followed this

with an analysis of previous estimates on

the number of functional nsSNPs in a

typical genome.17 They found that in an

analysis of the Whitehead Institute

nsSNPs the expected false positive error

rates suggested that estimates of

extrapolations to thousands of functional

nsSNPs in a typical human genome are

probably overstated.

In order to assess different features for

prediction of intolerant mutations,

Saunders and Baker18 followed the

analysis of Sunyaev et al. and Chasman

and Adams with a machine learning

perspective on the different proposed

features. They applied decision trees and a

linear logistic regression to find that a

protein structure-derived solvent

accessibility term (C� density) and an

evolutionary term derived from a PSSM

matrix (SIFT) were the most accurate

terms for prediction. They carefully

selected a human allele training set along

with saturation mutagenesis data sets from

lac repressor, HIV-1 protease and T4

lysozyme. The human allele training set

was carefully selected to contain known

deleterious and neutral alleles, as opposed

to alleles that had simply been associated a

phenotype. They found that decision

trees had an overall classification error of

29.6 per cent on the human alleles and

22.9 per cent on the in vitro mutations.

They also found that in both human

alleles and in vitro cases, the SIFT and C�
density terms classified the best, and that

the normalised B-factor and Sunyaev-

derived structural rules did not improve

classification accuracy when incorporated

with the former terms in a combined

analysis.

Adding to the feature comparison

performed by Saunders and Baker,

Krishnan and Westhead21 compared

different approaches to classification.

They rigorously compared decision trees

to support vector machines (SVMs) and

applied these methods to the same in vitro

mutagenesis data sets as well as to SNPs in

the nematode worm species Caenorhabditis

elegans. One of their findings showed that

introducing structural features reduced

their error rate. The features that reduced

the error rate include mass and

hydrophobicity differences, buried

charges, solvent accessibility and

secondary structure. In another

application of machine learning methods,

Saturation mutagenesis
experiments are
reasonable datasets for
training machine
learning methods

& HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 6. NO 1. 44–56. MARCH 2005 4 9

SNP functional analysis



Cai et al. applied a Bayesian method for

predicting disease-associated SNPs and

obtained relatively low false positive error

rates, in exchange for a relatively high

false negative rate.48 In general, prediction

methods must balance sensitivity and

specificity, where low false positive error

rates (high specificity) can only be

achieved with low sensitivity.

More recently, at the ‘Inferring SNP

Function’ session at the Pacific

Symposium of Biocomputing (PSB),

Karchin et al. continued these efforts to

identify the most informative features for

predicting deleterious mutations.54 Using

the saturation mutagenesis experiments

discussed above, they ranked 32 features

using mutual information and found that

structural features, such as solvent

accessibility of the wild type and mutant

as well as an evolutionary term, derived

from superfamily multiple alignments.

Currently the state-of-the-art

classification tools are based on SVMs or

decision trees and the best features for

classification are based on structural and

evolutionary properties. Structurally,

solvent accessibility has consistently been

shown to be important in determining

whether a mutation will be

tolerated.16,18,19,55 Evolutionarily, non-

tolerated mutations inferred using a PSSM

matrix are generally better than using

positional conservation approaches.18

Several web resources are available for

functional annotation of variation, two

excellent resources are PolyPhen55 and

SIFT.50 For a summary, see Table 4.

PolyPhen55 uses a wide variety of features

that are sequence-, evolutionary- and

structurally based to predict whether a

non-synonymous mutation is likely to

affect protein function, and performs

optimally if structural information is

available. PolyPhen has been applied to all

mutations in HGVBase, and a server is

provided for the annotation of new

mutations. Currently, more than 11,000

non-synonymous mutations are

annotated. SIFT is available online for

predicting intolerant mutations using

position-specific information derived

from sequence alignments, and requires

only sequence and homologue

information.50 SNPeffect at EMBL

annotates SNPs with three categories of

functional and chemical properties,

protein structure and dynamics, functional

sites and cellular processing.56 SNP3D is

another resource for inferring the

function of SNPs and incorporates

structure, alternative splicing, systems

biology and evolutionary information for

annotation.57 Additionally, data on the

Swiss-Prot website link to homology

models of mutations when available.

Generally, the quality of the method

will depend on the amount of input data

available to the researcher. If only a

sequence is available without known

homologues or known structure, the

method will not perform as well as if

these were available. If only sequence

and homologue data are available, SIFT

will likely give the best performance. If

structure data are available, the PolyPhen

method will add to an analysis by SIFT

because of its use of that data. For any

SIFT and PolyPhen are
commonly used
resources for classifying
uncharacterized
nonsynonymous SNPs

Table 4: Tools for predicting the function of nsSNPs

Function
prediction

URL Comments

SIFT http://blocks.fhcrc.org/sift/SIFT.html Online tool for sequence-based annotation of mutations
PolyPhen http://www.bork.embl-heidelberg.de/PolyPhen/ Server for functional analysis of mutations
SNP3D http://www.snps3d.org/ Annotations of structure, systems biology, evolution and alternative splicing
SNPeffect http://snpeffect.vib.be/index.php Annotations based on structure, catalysis and cellular process
PicSNP http://plaza.umin.ac.jp/�hchang/picsnp/ Gene-centric mutation annotation
TopoSNP http://gila.bioengr.uic.edu/snp/toposnp/ Protein structural annotations of SNPs
MutDB http://www.mutdb.org/ Protein structural information of SNPs
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of these resources, better characterised

genes will result in better quality

predictions.

For protein structural annotations of

variation in dbSNP and Swiss-Prot,

MutDB58 was developed to annotate

known variation data with information

relevant to identifying the molecular

effects of a mutation or polymorphism.

Mutations from Swiss-Prot and dbSNP

are annotated with protein structure

information, when available (Figure 2).

Similarly, PicSNP59 is a resource that has

annotated more than 1.1 million SNPs

and classified them into structural and

functional groups. Additionally, they also

associate mutations to Gene Ontology

categories.

BIOINFORMATICS
APPROACHES TO
PREDICTING FUNCTIONAL
SYNONYMOUS VARIATION
Synonymous variation has been shown to

be functional as well. In particular, exonic

splicing enhancers (ESEs) are short

sequences that occur in exons, and they

encourage exon recognition by the cell’s

splicing machine.60 When mutated, ESEs

can affect mRNA splicing and causing

exon skipping.60 Majewski and Ott61

found that SNPs occur less often near

intron–exon boundaries and the

frequency of SNPs in both introns and

exons increases as the distance from the

boundary increases. Indeed, ESEs have

relevance to human disease. Disease-

associated variation that disrupts ESEs

were found in the breast cancer-associated

genes BRCA162,63 and BRCA2.64

Furthermore, it has been shown that

mutations that affect mRNA splicing are

the most common type of mutations in

neurofibromatosis type 1.65

An original approach to the analysis of

variation that disrupts ESEs was recently

reported by Fairbrother et al., where the

authors aligned SNPs that are in predicted

ESE sites and showed, by comparison to

the chimpanzee genome, that these SNPs

are under selective pressure. In fact nearly

20 per cent of the polymorphisms have

been selected out, and that this is most

notable near splicing sites.66

BIOINFORMATICS
APPROACHES TO
PREDICTING FUNCTIONAL
NON-CODING VARIATION
Non-coding variation has not received

the attention that non-synonymous SNPs

and disease-associated mutations have.

This is due to difficulties in collecting

functional variation information, not to

lack of importance. Understanding how

variation affects gene expression has been

called one of the key challenges in human

genetics.67 The challenge arises from the

difficulty in separating regulatory

variation (cis-acting factors) from the

cellular environment and variation on

other chromosomes (trans-acting factors)

and the environment.68 A recent review

succinctly summarises the efforts to

understand this challenging problem.69

A key problem for bioinformatics is

developing methods to predict variation

that is likely to affect expression levels.

The quality of a
prediction depends on
the amount of input
data available

Figure 2: Mutations in TP53 mapped to a protein structure in MutDB
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Mapping variation to known regulatory

sites will not complete the entire story,

however, because it is not sufficient to

know whether a variant is present; it will

be necessary to know whether a variant

affects, or disrupts, a function, and

therefore expression.

Although this area is difficult to study,

there are a few studies that have

attempted to examine the relationship

between gene expression and variation.

Most of the projects that aim to identify

the prevalence of variation that alters gene

expression at the genomic level have done

so by coupling computational methods

with experimental analysis of gene

expression levels using microarrays.

Cowles et al. addressed the problem of

removing trans-acting factors by focusing

their studies on the expression levels in an

F1 hybrid mouse derived from two inbred

mouse strains. This allowed them to

remove trans regulation from the results.68

They studied 69 genes in total and found

that 6 per cent (with large error) of those

genes had variants that affect detectable

gene expression levels. Pastinen et al.

examined 129 genes to identify 23 genes

that had allele-dependent expression

levels.70 Additionally, Wittkopp et al.

compared differences in gene expression

between closely related Drosophila species

and found that most of the genes with

significant expression level differences had

cis-regulatory differences.71 They also

found that cis-regulatory differences were

more common than trans-regulatory

differences.

Hoogendoorn et al. have screened

different promoter variants to identify

haplotypes that are likely to affect gene

expression.72,73 Their experiments found

that a third of the variants can alter

expression levels by more than 50 per

cent. Later, Buckland et al. tested the

ability of 20 variant promoters on

chromosome 21 alter gene expression and

found that approximately 18 per cent of

the variants altered expression levels by

1.5-fold or more.74

Very little bioinformatics research has

been performed to build predictors of

variation that is likely to affect gene

expression levels. Currently, identifying

whether the position is conserved in

model organisms and whether the

polymorphism sits in a known regulatory

motif remain the only computational way

of roughly estimating whether a variant

will affect expression levels. For example,

Consite is a method that predicts

transcription factor binding sites.75,76

Surely when well-annotated databases

begin to take form, regulatory relevant

polymorphism classification will become

possible. PupaSNP Finder77,78 is a tool for

identifying SNPs that could have an effect

on transcription. Using Ensembl, the

authors map SNPs in dbSNP to

transcription factor binding sites, intron/

exon border consensus sequences, ESE

sequences and variations that are non-

synonymous. Another resource is

rSNP_Guide,79,80 which contains

annotations of SNPs based on potential

effects to regulation.

PROGRAMMING TOOLS
FOR SNP ANALYSIS
For bioinformatics researchers developing

applications or web resources, the BioPerl

project81 has created an open source set of

tools for the analysis of biological data.

Using this powerful toolset, scientists can

quickly analyse local and remote data

from dbSNP, Ensembl and other

resources. BioPerl is well supported and

includes many tools for annotation,

visualisation and analysis of genetic

variation. Several tutorials are available for

learning the intricate details of Perl and

BioPerl.82 Another tool is libsequence,83 a

C++ library containing tools for SNP

analysis. Using similar tools, two groups

have described the development of a SNP

annotation and selection pipeline.84,85

THE FUTURE
The importance and quantity of SNP data

now available provide many avenues for

future research. First, prediction and

classification of non-synonymous

mutations using protein structure-based

tools need to be improved. Reduction of

A challenge for the
future is prediction of
cis–acting variation that
affects gene expression
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false positive rates is required. Structure-

based tools utilising ab initio and

comparatively modelled structures will

probably be required. For synonymous

mutations and non-coding mutations, the

spectrum of potential functional

disruptions needs to be described.

Additionally, for all prediction methods,

better training sets are required. These sets

need to be rich in both affected and

neutral alleles.17,18

Finally, controlled vocabularies for

describing the range of mutation affects

could be valuable for building

classification methods. Currently,

molecular and physiological phenotypic

information is often poorly annotated in

either human-readable annotations and

the subtleties of specific phenotypes are

often unclear. There is no central database

for phenotypically annotated mutations,

and researchers must search many

scattered resources to be thorough. There

are also few, if any, resources that give

information on complex or multifactorial

disease where a condition may be caused

by more than a single SNP.

The future for this area of research is

bright. It is clear from the initial research

efforts that bioinformatics methods that

predict molecular effects of mutation will

continue to improve. A word of caution

must be added, however, that

bioinformatic scientists building these

methods will have the most success if they

choose their learning tools carefully and

their training sets to best represent the

spectrum of predictions they will be

making.
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