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ABSTRACT

Motivation: Prediction of catalytic residues provides useful
information for the research on function of enzymes. Most of the
existing prediction methods are based on structural information,
which limits their use. We propose a sequence-based catalytic
residue predictor that provides predictions with quality comparable
to modern structure-based methods and that exceeds quality of
state-of-the-art sequence-based methods.
Results: Our method (CRpred) uses sequence-based features
and the sequence-derived PSI-BLAST profile. We used feature
selection to reduce the dimensionality of the input (and explain
the input) to support vector machine (SVM) classifier that provides
predictions. Tests on eight datasets and side-by-side comparison
with six modern structure- and sequence-based predictors show
that CRpred provides predictions with quality comparable to current
structure-based methods and better than sequence-based methods.
The proposed method obtains 15–19% precision and 48–58%
TP (true positive) rate, depending on the dataset used. CRpred
also provides confidence values that allow selecting a subset of
predictions with higher precision. The improved quality is due to
newly designed features and careful parameterization of the SVM.
The features incorporate amino acids characterized by the highest
and the lowest propensities to constitute catalytic residues, Gly
that provides flexibility for catalytic sites and sequence motifs
characteristic to certain catalytic reactions. Our features indicate that
catalytic residues are on average more conserved when compared
with the general population of residues and that highly conserved
amino acids characterized by high catalytic propensity are likely to
form catalytic sites. We also show that local (with respect to the
sequence) hydrophobicity contributes towards the prediction.
Availability: http://biomine.ece.ualberta.ca/CRpred/CRpred.htm
Contact: lkurgan@ece.ualberta.ca
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Enzymes are biomolecules (virtually all of them are proteins) that
catalyze chemical reactions. Enzymes bind temporarily to reactants
and by doing so they lower the amount of activation energy needed

∗To whom correspondence should be addressed.

which results in speeding up the reaction. Many cellular processes
require enzymes in order to occur at significant rates. Only a small
number of amino acids that compose the enzyme, which are known
as catalytic residues, are directly involved in the reaction and thus
are fundamental to the enzyme’s biological functions. Compared
with the rapidly increasing volume of protein sequence and structure
information, experimental methods used to infer catalytic residues
are lagging behind. This motivates development of high-throughput
in silico methods for identifying catalytic residues.

To date, several approaches for prediction of protein functional
residues that are involved in catalytic reactions have been proposed.
One group of such methods is based solely on protein sequence
and they use evolutionary information in the form of multiple
sequence alignments (Capra and Singh, 2007; Fischer et al., 2008;
La et al., 2005; Pande et al., 2007; Sterner et al., 2007). La
et al. (2005) demonstrated that phylogenetic motifs, which are
sequence alignment fragments that approximate the overall familial
phylogeny, are useful for predictions of regions surrounding enzyme
active sites. In Pande et al. (2007), the authors show that neural
networks can accurately predict catalytic residues using only residue
identity and sequence conservation. In the most recent attempt,
Fischer and colleagues (2008) proposed a method that improves
on the prediction quality when compared with existing sequence-
based methods by integrating the information concerning sequence
conservation, predicted secondary structure and relative solvent
accessibility, and amino acid frequencies. Another group of methods
is based on protein structure (Chea et al., 2007; Gutteridge et al.,
2003; Ota et al., 2003; Petrova and Wu, 2006; Sacquin-Mora
et al., 2007; Torrance et al., 2005; Youn et al., 2007). Structure-
based methods usually obtain better prediction accuracy due to the
combination of both sequence and structure information, which were
shown to be complementary (Gutteridge et al., 2003; Petrova and
Wu, 2006; Youn et al., 2007). We emphasize that their application
is limited only to proteins with known structure, which constitute
only a small fraction of all known proteins. One of the cornerstone
methods for prediction of catalytic residues was developed by
Thornton’s group (Gutteridge et al., 2003). This group also built
the Catalytic Site Atlas (CSA) database which provides catalytic
residue annotations for enzymes in Protein Data Bank (Porter et al.,
2004). Two most recent structure-based methods include catalytic
residue predictor based on closeness centrality measure (Chea et al.,
2007) and support vector machine (SVM)-based method that utilizes
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Table 1. Summary of selected competing methods

Reference Inputsa (structure- Prediction algor.
sequence-based)

Gutteridge et al. (2003) RT, SC, SA, SS, cleft, Neural network
depth (structure-based)

Petrova and Wu (2006) RT, SC, flexibility, SA, SVM
relative position on protein
surface, hydrogen bonds,
SS (structure-based)

Youn et al. (2007) RT, SC, structure SVM
information extracted from
S-BLEST, B-factors, cysteine
bridged pair information, SA,
SS (structure-based)

Chea et al. (2007) RT, closeness centrality, Filterb

SA (structure-based)
Fischer et al. (2008) RT, SC, predicted SS, Bayesian classifier

predicted SA
(sequence-based)

aRT (residue type), SA (solvent accessibility), SC (sequence conservation), SS
(secondary structure).
bFilter that assumes that catalytic residues are composed of certain RTs or residues for
which closeness centrality /SA value is within a certain range.

information concerning sequence and structure conservation, the
degree of uniqueness of a residue’s structural environment and
hydrophobicity and solvent accessibility of the residues (Youn et al.,
2007).

We propose a sequence-based model for the prediction of
catalytic residues (CRpred) that aims at providing prediction quality
comparable with the quality of the current structure-based methods.
The novelty of the proposed method stems from the design of
several new types of sequence-based features computed using
windowed hydrophobicity, custom-designed sequence motifs, and
position-specific scoring matrix and entropy of weighted observed
percentages that were extracted with PSI-BLAST. These features
were processed by using feature selection and inputted into a
carefully parameterized SVM classifier. The proposed method
is compared against sequence/structure-based catalytic residue
predictor by Gutteridge et al. (2003), three most recent structure-
based predictors by Petrova and Wu (2006), Youn et al. (2007)
and Chea et al. (2007), and with the most recent sequence-based
method by Fischer et al. (2008). Table 1 summarizes these methods.
The results, which are based on several datasets with varying
levels of homology, show that CRpred provides predictions that
are comparable with those obtained with current structure-based
methods and that outperform results of the sequence-based methods.

2 MATERIALS AND METHODS

2.1 Datasets
We prepared nine datasets to design and test the proposed method, including
six datasets that were used in previous studies. They include SCOP fold
dataset (EF fold), SCOP superfamily dataset (EF superfamily) and SCOP
family dataset (EF family) from Youn et al. (2007), SCOP superfamily
dataset (HA superfamily) from Chea et al. (2007), dataset (PC) from Petrova
and Wu (2006) and non-homologous dataset (NN) from Gutteridge et al.
(2003). These datasets include sequences at various levels of homology,
i.e. one sequence per fold, family and superfamily, and allow for an unbiased

comparison with the competing methods. The remaining three datasets
include two test datasets (T-124 and T-37) and one design dataset (ST-1109).
We use CSA v. 2.2.5 (Porter et al., 2004) to annotate catalytic residues.
Table 2 gives an overview of the datasets used for testing.

The ST-1109 dataset is based on all chains which have catalytic residue
annotations in CSA v. 2.2.5 that were filtered at 40% sequence identity with
CD-HIT (Li and Godzik, 2006) with parameters –c 0.4 –n 2. These 2152
chains were then filtered at 40% sequence identity against the sequences in
the above six datasets from Youn et al. (2007), Chea et al. (2007), Petrova
and Wu (2006) and Gutteridge et al. (2003) with CD-HIT-2D (Li and Godzik,
2006) (parameters: –c 0.4 –n 2 –s2 0.3) to avoid overlap with the sequence
used for testing. The remaining 1109 chains constitute the design dataset.

The remaining two datasets were used to compare with competing
methods and to present results using tests on an independent dataset, rather
than based on cross-validation which was applied on EF fold, EF superfamily,
EF family, HA superfamily, PC and NN datasets. The T-124 dataset was built
by selecting chains in the HA superfamily dataset (large dataset independent
of the contribution that introduced the EF fold dataset) that have sequence
identity <30% when compared with the chains in both EF fold and ST-1109;
the latter two datasets were used to design the method and to train the
classification model. To compare with the method by Fischer et al. (2008),
we further filtered the T-124 dataset to remove chains that have sequence
identity ≥30% with respect to the chains in CSA-cat dataset used in Fischer
et al. (2008). Among the selected 40 chains, three were removed since they
produced errors when executed on the server that implements the method by
Fischer et al. (2008); the remaining 37 chains constitute T-37 dataset.

We use the whole protein sequence as an input, including residues which
have no coordinate information. The residues with the missing information
are considered as non-catalytic residues. While this allows the users to
enter the sequence without the necessity to verify whether all its residues
have coordinates in the PDB file (some competing methods predict/were
tested only for residues with the coordinate information), it also increases
the difficulty of the prediction. This is since the number of actual catalytic
residues does not change, while we may risk making additional false positive
predictions due to the increased number of non-catalytic residues. The
predictions are evaluated based on true positive rate and precision computed
for catalytic residues, which are larger when more true positives and fewer
false positives are predicted and which are independent of true negative
predictions. As shown in Table 2, the datasets are heavily imbalanced, with
the ratio of catalytic to non-catalytic residues varying between 1 : 80 and
1 : 128. Using the original data result in a strong bias toward prediction of all
residues as non-catalytic; thus we undersample the non-catalytic residues to
create the training data and keep the original ratio for the test data. We use
1 : 6 ratio by randomly selecting six non-catalytic residues for one catalytic
residue in each training sequence, which is consistent with the sampling
performed in Gutteridge et al. (2003) and Youn et al. (2007).

2.2 Overview of the prediction system
The proposed system extracts five sets of features based on (1) position-
specific scoring matrix (PSSM) values, (2) entropy computed from weighted
observed percentages (EntWOP), both of which are generated with PSI-
BLAST (Altschul et al., 1997), (3) residue type (ResType), (4) average
cumulative hydrophobicity (AveCH) and (5) catalytic residue pairs (CRPair)
that were developed using the ST-1109 dataset. The latter three sets are
generated directly from a protein sequence. Total of 210 features, which were
selected among 544 considered features, are fed into the SVM classifier to
predict catalytic residues, see Figure 1.

2.3 Support vector machine
We use SVM classifier (Vapnik, 1999) that was previously applied for
catalytic residue prediction (Petrova and Wu, 2006; Youn et al., 2007).
SVM is a linear large-margin classifier which can be extended to non-linear
classification with the use of a kernel function.
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Table 2. Summary of the datasets used to validate the proposed method

EF fold EF
superfamily

EF family HA
superfamily

NN PC T-124 T-37

Reference Youn et al.
(2007)

Youn et al.
(2007)

Youn et al.
(2007)

Chea et al.
(2007)

Gutteridge et al.
(2003)

Petrova and Wu
(2006)

This article This artcle

Catalytica 606 712 1183 933 599 283 379 130
Non-catalyticb 48 362 62 236 10 7284 98 130 56 309 24 499 48 634 14 501
Ratioc 1 : 80 1 : 87 1 : 91 1 : 105 1 : 94 1 : 87 1 : 128 1 : 112

aNumber of catalytic residues in the dataset.
bNumber of non-catalytic residues in the dataset.
cRatio between catalytic and non-catalytic residues.

Protein 
sequence 

ST-1109 dataset 

PSI-BLAST 

EntWOP (9) 

PSSM (166) 

ResType (13) 

AveCH (7) 

CRPair (15)

SVM 
Catalytic
residue 

prediction 

Fig. 1. Block diagram of the proposed prediction system.

We use Weka LibSVM (WLSVM) to develop and test the proposed
method. WLSVM is an implementation of the LibSVM (Fan et al., 2005)
running under Weka environment (EL-Manzalawy and Honavar, 2005;
Witten and Frank, 2005). Radial basis function (RBF) is used as the
kernel function. The parameterization of the SVM (see Section 2.5) yielded
soft-margin constant C = 1.5 and width of the RBF kernel γ = 0.03.

2.4 Feature-based sequence representation
2.4.1 ResType The 20 amino acids are characterized by different
propensities to constitute catalytic residues (Bartlett et al., 2002). We use
binary encoding to represent the type of a predicted residue, i.e. the residue
is encoded using 20-dimensional binary vector, where the dimension of the
corresponding amino acid is set to 1 and the remaining positions equal 0.

2.4.2 PSSM and EntWOP Several studies have shown that sequence
conservation is important for catalytic residue prediction (Capra and Singh,
2007; Fischer et al., 2008; Petrova and Wu, 2006; Youn et al., 2007).
Therefore, we designed two types of features based on PSI-BLAST profiles to
incorporate sequence conservation information. We extracted the PSSM and
weighted observed percentages (WOP) using PSI-BLAST with parameter
–j 3, i.e. 20-dimensional PSSM and 20-dimensional WOP vectors are
obtained for each residue.

The PSSM vector for a given residue represents the log-likelihood of the
substitution of 20 amino acids at that sequence position (Jones, 1999). Each
PSSM value x in the vector indicates the degree of conservation of a given
amino acid type for that residue and is normalized by 1/(1+e−x). We use a
sliding window of size 21 as suggested in Youn et al. (2007) to extract the
PSSM features.

Since the WOP vector for a given residue represents a frequency
distribution of 20 amino acids at that sequence position (Altschul et al.,
1997), we introduce EntWOP by computing Shannon entropy:

EntWOP=�i −pi log
(
pi

)

where pi = ni/�i ni, i = 1, 2, … ,20, and (n1, n2, … ,n20) is the WOP vector.
EntWOP ranges between 0 (the most conserved; only one amino acid type
has non-zero value at the corresponding position in the WOP vector) and
2.996 (the least conserved; all 20 amino acids have the same non-zero value
in the WOP vector).

As a result, we obtain 21 * 20 = 420 PSSM features and 21 EntWOP
features for each predicted residue. In case of residues at the sequence
termini, we use 0’s to fill in blanks in both PSSM and WOP vectors.

2.4.3 Average cumulative hydrophobicity Bartlett et al. (2002) indicates
that most of catalytic residues have limited exposure to solvent. Since
hydrophobicity index can be used to quantify the intrinsic propensity of an
amino acid to be exposed to solvent and since it was shown to provide useful
input for prediction of DNA/RNA binding sites (Wang and Brown, 2006),
we introduce AveCH features by computing the average of the cumulative
hydrophobicity index over a sliding window, varying window size between 3
and 21. We applied Eisenberg’s hydrophobicity index (Sweet and Eisenberg,
1983) due to its superior performance when compared with other indices
(Juretic and Lucin, 1998; Kurgan et al., 2007). We used 0’s to fill in blanks for
residues at the sequence termini. Total of 10 AveCH features are computed.

2.4.4 Catalytic residue pairs We also built several features based on
sequence motifs associated with catalytic residues. A CRPair is defined as
CRPairn = {A, D} where n = 2, 3, … ,A = {A1, A2, …, An} denotes n-adjacent
catalytic residues in a sequence with direction from N-terminus to C-
terminus, and D = {d1, d2, …, dn−1} denotes the distances between each two
adjacent catalytic residues. We computed the occurrence of each CRPairn

using the ST-1109 dataset and we selected 73 CRPairn (including 47
CRPair2, 21 CRPair3 and 5 CRPair4) that occur more than eight times in
this dataset. For each predicted residue, we computed 73 binary features that
correspond to the selected 73 CRPairn, i.e. value of 0 represents the
fact that the a given residue is associated with a certain CRPairn, which
means that this residue is in set A and the remaining n−1 residues in set A
can be found in sequence according to the distance values in D, and value
of 1 is used otherwise.

Total of 544 features (20 ResType, 420 PSSM, 21 EntWOP, 10 AveCH
and 73 CRPair) were generated for each predicted residue.

2.5 Design
The design of the proposed predictor concerns selection of a subset of
the proposed features and parameterization of the SVM classifier. Feature
selection reduces the dimensionality, which decreases the computational time
and complexity of the prediction model, and allows finding factors (encoded
as features) associated with the prediction of catalytic residues.

2.5.1 Feature ranking In the first step, we ranked the 544 features
based on their contribution to the prediction of catalytic residues. We use
χ2-statistic to perform ranking (Liu and Setiono, 1995). The χ2-values were
computed with 10-fold cross-validation on EF-fold dataset, i.e. average over
the 10-fold was computed to avoid overfitting, and features that give higher
average χ2-value receive higher rank. Usage of this method was motivated by
recent research that shows that it performs well if the goal of the subsequent
classification is to improve precision (Forman, 2003), which is the case for
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Fig. 2. ACI (y-axis) against the selected number of top n features (x-axis).
The selected SVM parameters (C, γ ) for each n are shown near the ACI
point. We show ACI values for n ≥ 90, since values for smaller n were low
and would distort the plot.

the proposed prediction method. Next, we extracted top n ranked features,
where n = 10, 20, 30, …, 300. We stop at 300 features, since according to
χ2-test the remaining features have no correlation with the predicted values.

2.5.2 Parameter selection Parameterization of the SVM aims at
improving the prediction quality. Values of C and γ were optimized based on
the top n selected features. After several initial tests that allowed establishing
an approximate range of well-performing C and γ values, we executed
a grid search over a Cartesian product of these ranges. The values of
parameter C were chosen from {1.0, 1.5, 2.0} and for parameter γ from
{0.01, 0.02, …, 0.1}. The grid search involved 30 10-fold cross-validations
on EF fold dataset each time with a different set of (C, γ ) values. We
measured two quality indices

TP rate=TP/
(
TP+FN

)
and precision=TP/

(
TP+FP

)

where TP, FP and FN denote true positives, false positives and false negatives,
respectively. These indices are commonly used to evaluate catalytic residue
prediction systems (Chea et al., 2007; Fischer et al., 2008; Gutteridge et al.,
2003; Youn et al., 2007). We selected the parameters for which precision
equals at least 17% and which provide the highest TP rate. The minimal
precision equals the precision obtained in Youn et al. (2007) and Chea
et al. (2007). We note that C values above 2.0/below 1.0 would lead to
low precision/poor TP rate.

2.5.3 Feature selection Feature selection was performed using 10-fold
cross-validation on the EF fold, EF superfamily, EF family, HA superfamily
and NN datasets with the top n features and the selected SVM parameters.
We compute average cumulative improvement (ACI) by summing up the
improvements, i.e. the difference between the results of the proposed method
and the corresponding results reported for a given dataset in Gutteridge
et al. (2003), Youn et al. (2007) and Chea et al. (2007) of the two quality
indices and next averaging the sum by the number of the datasets. Figure 2
shows the ACI values with respect to different values of n. We select n = 210
that corresponds to the largest value of ACI. We observe two large dips in
ACI values for n = 220 and n = 270; the reason is that the SVM parameters
(relatively low γ -value) selected on the EF-fold dataset did not translate well
into the other four datasets.

2.6 Conservation score
We compute a baseline prediction for the eight benchmarking datasets
(EF fold, EF superfamily, EF family, HA superfamily, NN, PC, T-124 and
T-37), based on three simple conservation score-based approaches, SP score
(Valdar, 2002), Rate4site (Mayrose et al., 2004) and information per position
(IPP) (Karypis, 2006; Youn et al., 2007). These three scores are based on

multiple sequence alignment (MSA). IPP comes directly from the output
of PSI-BLAST, while both SP score and Rate4site use MSAs, which are
extracted using PSI-BLAST with search parameters –j 3 –h 0.001 –e 0.001
against the NCBI non-redundant (NR) database (Martin et al., 2006), as the
input.

3 RESULTS AND DISCUSSION

3.1 Comparison with competing structure- and
sequence-based methods

The proposed method (CRpred) is compared with four structure-
based methods and one sequence-based method using 10-fold
cross-validation on six datasets; see Table 3. To facilitate comparison
using two quality indices, we report the TP rate and precision
obtained by the competing methods and by CRpred (top four rows),
together with TP rate values obtained by CRpred at precision equal
to the precision of a given competing method (fifth row), CRpred’s
precision obtained at equal TP rate (sixth row) and precision of a
baseline prediction with Rate4site at TP rate equal to the TP rate
of CRpred (seventh row). The values in the last three rows are
computed by adjusting the threshold with respect to the probability
of predicting a given residue as a catalytic residue provided by the
proposed SVM, and with respect to the Rate4site’s conservation
score. The Rate4site is used as the baseline due to its favorable
quality when compared with the other two baseline conservation
scores (Fig. 3). The TP rate of Rate4site at equal precision is not
provided, since the baseline method cannot obtain precision as high
as that reported for CRpred.

When compared with the method by Youn et al. (2007), CRpred’s
TP rates at equal precision for the EF fold and EF superfamily
datasets are about 2–3% lower and for the EF family dataset are 1%
higher, and precision values at equal TP rates are 1% lower for the EF
fold and EF superfamily datasets and 1% higher for the EF family
dataset. When compared with the method by Chea et al. (2007),
CRpred obtains 20.4% better TP rate and 8.2% better precision
at equal precision and equal TP rate, respectively. The structure-
based method without spatial clustering by Gutteridge et al. (2003)
is characterized by lower TP rate (by 9.9%) and lower precision (by
4.0%) for measurements at equal precision and TP rate, respectively.
The structure-based method with spatial clustering (Gutteridge et al.,
2003) has 7.2% higher TP rate and 3.5% higher precision, when
compared at equal precision and TP rate with CRpred, respectively.
The method by Petrova and Wu (2006) obtains 5.5% better TP
rate at equal precision and 1.4% higher precision at equal TP rate.
Finally, the TP rate and precision of the sequence-based method
by Gutteridge et al. (2003) are lower by 16.9% and 6.3% at the
same precision and TP rate, respectively. CRpred shows a consistent
improvement roughly doubling the baseline precision at equal TP
rate for all six datasets. Overall, the results indicate that CRpred
provide predictions of quality comparable to predictions of the
considered structure-based methods (only the method that applies
spatial clustering provides a clear improvement) and which are better
than predictions of the included sequence-based method.

We observe that although the HA superfamily and EF superfamily
datasets are characterized by the same level of homology, CRpred’s
predictions show differences in precision. Although the reason for
the 2% decrease for the HA superfamily dataset is unknown (we
hypothesize that this could be due to more imbalanced nature of this
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Table 3. Comparison with competing methods that include four structure-based methods and one sequence-based method on six datasets

Method Reported index Structure-based competing methods Sequence-based

EF EF EF HA NN NN PC NN
fold super family family super family (without clustering) (with clustering)

Competing methods TP rate 51.1a 53.9a 57.0a 29.3b 56.0c 68.0d 90.0e 50.0f

Precision 17.1a 16.9a 18.5a 16.5b 14.0c 16.0d 7.0e 13.0f

CRpred TP rate 48.2 52.1 58.3 54.0 57.1 57.1 53.7 57.1
Precision 17.0 17.0 18.6 14.9 17.8 17.8 17.5 17.8

Equal precisiong TP rate 48.0 52.1 58.3 49.7 65.9 60.8 84.5 66.9
Equal TP rateh Precision 16.1 15.9 19.5 24.7 18.0 12.5 5.6 19.3
Equal to TPi

Rate4site Precision 9.3 9.4 9.1 7.1 9.4 9.4 11.2 9.4

aResult on EF fold, EF superfamily, and EF family datasets by Youn et al. (2007).
bResult on HA superfamily dataset using the residue identity filter at threshold Tnp = 5 by Chea et al. (2007); this result is based on personal communication with the author.
cResult on NN dataset by using structure-based method without spatial clustering by Gutteridge et al. (2003).
dResult on NN dataset by using structure-based method with spatial clustering by Gutteridge et al. (2003).
eResult on PC dataset by Petrova and Wu (2006).
f Result on NN dataset by using sequence-based method by Gutteridge et al. (2003). All results are based on 10-fold cross validation.
gTP rate values that were computed by adjusting the threshold used to classify the outputs of CRpred to obtain the same precision as the precision of a given competing method.
hPrecision values that were computed for CRpred to obtain the same TP rate as the TP rate of a given competing method.
iPrecision values that were computed for Rate4site to obtain the same TP rate as reported for CRpred.

A B

Fig. 3. TP rate versus FP rate for CRpred, FRpred and three baseline
predictions (IPP, SP score and Rate4site) on two datasets: (A) EF fold and
(B) T-37. Based on Fischer et al. (2008), FP rate was constrained to (0, 0.05).

dataset, see Table 2), the same drop in precision is observed for the
baseline predictions with Rate4site, see Table 3.

3.2 Test on T-124 dataset
Since the performed feature selection includes use of the five datasets
from Section 3.1, we also provide tests on an independent dataset.
We generate the prediction model by training on the entire EF fold
dataset (dataset with the lowest homology) using the selected 210
features and SVM parameters, and next we test this model on the
T-124 dataset. The latter dataset is characterized by low pairwise
sequence identity (<30%) with respect to the EF fold and ST-
1109 datasets that were used for training the CRpred model. We
compare these results with the structure-based HA method by Chea
et al. (2007) to establish a point of reference. The HA method
was computed based on two different filters, residue identity and
combination. Since the competing method works only for residues
that have coordinate information, we compute the CRpred’s quality
indices based on (1) all residues and (2) based only on the residues
that have the coordinate information.

As shown in Table 4, CRpred’s results computed for all
residues have the same TP rate and slightly lower precision when

Table 4. Summary of predictions on T-124 dataset

Method TP FN FP TN TP rate Precision

CRpred 190 189 1131 47 503 50.1 14.4
(all residues)
CRpred 190 189 1103 46 017 50.1 14.7
(residues with coordinates)
HAa 105 274 549 46 571 27.7 16.1
(residue identity filter)
HAb 91 288 553 46 567 24.0 14.1
(combination filter)

aResults of method by Chea et al. (2007) based on residue identity filter at threshold
Tnp = 5.
bResults of method by Chea et al. (2007) based on combination filter (solvent
accessibility + residue identity) at threshold Tnp = 5.

compared with the results for residues that have complete coordinate
information, which agrees with the discussion in Section 2.1. The
results (TP rate = 50.1% and precision = 14.4%) are consistent
with the results (TP rate = 54.0% and precision = 14.9%) shown in
Table 3. The small decrease is likely due to the smaller size of the
T-124 dataset; we emphasize that a similar decrease is observed
for the HA method (TP rate = 27.7% and precision = 16.1% for the
T-124 dataset, and TP rate = 29.3% and precision = 16.5% for the HA
superfamily dataset). When compared with the HA method, the
proposed method provides a large improvement of the TP rate as
a tradeoff for a small decrease of precision. However, HA method
is based on a relatively simple model, which in contrast to other
considered methods does not use alignment conservation.

3.3 Comparison with FRPred method
The comparison with the most recent sequence-based method by
Fischer et al. (2008) is based on the T-37 dataset, which has low
pairwise sequence identity (<30%) with the two training datasets
of CRpred (EF fold and ST-1109) and with the training dataset used
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by Fischer et al. (2008). The chains in the T-37 were predicted
with CRpred built in Section 3.2, web server (FRPred) provided by
Fischer et al. (2008) and using the HA method by Chea et al. (2007).
CRpred obtained TP rate = 52.3% and precision = 18.8% and the HA
method obtained TP rate = 25.4% and precision = 17.2%. Since the
results of the FRPred can be adjusted using a threshold, we choose
two configurations, one that provides the same TP rate as obtained
by the CRpred and the other with the same precision. FRPred obtains
precision = 18.8% with TP rate = 26.2%, and TP rate = 52.3% with
precision = 10.7%. We observe that in both cases CRpred provides
improvements over the FRPred method.

Since the T-37 dataset is relatively small, we also use the EF fold
dataset. We compare predictions provided by the FRPred server (10
sequences in EF fold generated errors when executed on the FRPred
and thus were excluded) with results of CRpred based on 10-fold
cross-validation on this dataset. At 17.0% precision, CRpred’s TP
rate = 48.2%, which is about 8% higher than the TP rate of FRPred
(40.5%). At TP rate = 48.2%, CRpred obtains precision = 17.0%,
which is 2% higher than the precision of FRPred (15.0%). We
again observe that the proposed method provides more accurate
predictions than FRPred, even though in case of FRPred the results
could be overestimated due to an overlap between the EF fold dataset
and the training dataset of FRPred. Using CD-HIT (parameters: -c
0.4 –n 2), we found 60 chains (about one-third of sequences in
the EF fold) with sequence identity >95% when compared with
the sequences in the training dataset of FRPred, and 77 chains
with sequence identity >40%. Although the results suggest that
CRpred is characterized by improved prediction quality, we note
that FRPred is a more generic method that can also provide ligand-
binding residue prediction, while CRpred is specific to prediction of
catalytic residues.

Figure 3 shows the ROC curves for CRpred, FRPred and the three
baseline predictions (IPP, SP score and Rate4site) on the EF fold and
T-37 datasets. The FP rate is constrained to (0, 0.05) range; the same
assumption was made in Fischer et al. (2008). The corresponding
global ROC curves (that cover entire range of FP rate values) and
precision versus TP rate curves, which were introduced and used
in Fischer et al. (2008) for all eight benchmarking datasets, are
provided in the Supplementary Material. The proposed method is
shown to perform better than Rate4site, which is the best performing
among the baseline predictors, on both datasets.

Test on the EF fold dataset shows that CRpred and FRPred provide
favorable predictions when compared with the three baselines,
except for FRPred that performs slightly worse than Rate4site on
the T-37 dataset. When compared with FRPred, CRpred provides
higher TP rate when FP rate ≤0.07, while FRPred obtains higher TP
rate when FP rate >0.07. However, since the datasets are highly
unbalanced, i.e. catalytic residues (positive samples) constitute
<1.5% of residues (Table 2), FP rates of above 0.07 result in
relatively low precision. For instance, CRpred’s precision of 17%,
which equals precision obtained in Youn et al. (2007) and Chea
et al. (2007), corresponds to FP rate of 0.06 for the EF-fold dataset.
Therefore, we conclude that CRpred constitutes an improvement
over FRPred in the case when relatively high precision is required.
We note that results of FRPred on the EF fold dataset could be
overestimated since training set of this method overlaps with this
test set, while CRpred’s results are based on 10-fold cross-validation.
Test on the T-37 dataset, which has low similarity with the training
sets of both CRpred and FRPred, shows that our predictor provides
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Fig. 4. Prediction on EF fold (black plots) and T-124 (gray plots) datasets
filtered with the use of confidence values; x-axis shows the percentage of
the predicted positives selected based on the confidence values, while y-axis
shows the corresponding quality index values.

favorable quality of predictions when considering the entire range
of precision.

3.4 Confidence values
The proposed CRpred method supplements the prediction of
catalytic/non-catalytic residues with an estimate of a probability of
predicting a given residue as a catalytic residue, which is derived
from the SVM model (Fan et al., 2005). This probability estimate
constitutes a confidence value, i.e. the higher the confidence value,
the more credible is the corresponding prediction. Removal of the
positive (catalytic residue) predictions with lower confidence values
should lead to reduction of the false positive predictions, which in
turn should provide better precision.

We use 10-fold cross-validation test results on the EF fold dataset
and results of the test on the T-124 dataset to validate whether
precision can be improved with the help of the confidence values. We
rank all predicted positives (residues predicted as catalytic residues)
by their confidence values. Next, we select a given percentage of
the top ranked predictions as the positive predictions, while the
remaining predictions are regarded as non-catalytic residues. We
vary the threshold between 5% and 100% with a step of 5%, see
Figure 4. Selection of the top 5% predicted positives results in the
highest precision = 33%, however, only 10% of the true positives
were included among the predicted positives (TP rate = 4.8%).
Increase of the threshold results in lower precision value and better
TP rate. We observe that the slope of TP rate curve is higher for
lower values of the threshold and it gradually decreases as the
threshold increases. At the same time, the slope of the precision is
approximately constant, which indicates that the confidence values
help in obtaining better precision as a tradeoff for reduced TP rate.
For instance, when selecting the top 75% of predicted positives,
precision = 20.1% is obtained with TP rate = 42.9%, compared with
precision = 17.0% and TP rate = 48.2% when all predictions are
considered. This shows that 3.1% more true positives that in fact
constitute catalytic residues are obtained when predictions cover
5.3% less of the actual catalytic residues. We also plot inter_TP
rate, which is defined as the number of true positives divided by the
number of all true positives in predicted positives that follows similar
trend as the TP rate. We note that similar relations are obtained for
both EF fold and T-124 datasets.
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Table 5. Summary of the prediction results for three proteins that include
predictions with the three highest confidence values in the T-124 dataset

PDB id TP FP FN
(true positives) (unverified positives)a (false negatives)

Positionb Typec Confd Positionb Typec Confd Positionb Typec Confd

1A7UA_ 98 Ser 0.995 57 Asp 0.946 99 Met 0.471
257 His 0.959 30 His 0.877 32 Phe 0.381
228 Asp 0.604 100 Gly 0.672 140 Ala 0.049

97 Phe 0.587 141 Pro 0.037

2PLC__ 45 His 0.993 79 Arg 0.832 84 Arg 0.408
46 Asp 0.842 119 Glu 0.78

278 Asp 0.678 66 Gln 0.596
93 His 0.646 236 His 0.555

1NVMG_ 21 His 0.774 202 His 0.992
291 Tyr 0.648 17 Arg 0.973

200 His 0.957
18 Asp 0.904

203 His 0.861
170 Asp 0.784
204 Asn 0.721

13 Asp 0.691
171 Ser 0.671
236 Asn 0.635

aFalse positives (some of these predictions could correspond to not yet annotated
catalytic residues).
bResidue number in the PDB file.
cResidue type.
dConfidence value.

An example application of the confidence values is summarized in
Table 5. We rank all residues in the T-124 dataset by their confidence
values and select three proteins which contain the top three ranked
residues. When selecting the predicted positives (including true and
false positives) that have confidence value >0.6 (which corresponds
to the top 90% predicted positives), three false positives are removed
while the number of true positives is not affected.

We observe that some false positives may have high confidence
values, some of which are higher than the confidence of true
positives. However, a false positive could correspond to a catalytic
residue which is not yet annotated in CSA database, or to a residue
that is related to the function of an enzyme and which may be a
(missing) part of an annotated catalytic site. In order to analyze these
false (unverified) positives, we compute the distance between them
and the actual positives (including true positives and false negatives)
in each protein by finding the minimal distance between atoms on
the two residues. Some of the false positives are in fact close to the
actual positives. For instance, the false (unverified) positive 100Gly
in 1A7UA_ is only 2.96 Å away from 98Ser and 1.33 Å from 99Met;
in 1NVMG_, the two false positives 17Arg and 18Asp are 3.96 Å and
2.96 Å away from 21His, respectively. The above is motivated by the
distribution of the number of residues that constitute a catalytic site.
Such distribution based on the CSA database is shown in Figure 5.
The figure indicates that a catalytic site usually contains up to five
catalytic residues, and thus 100Gly could be included in the catalytic
site formed by 98Ser, 257His and 228Asp, and 17Arg and 18Asp
could be in the catalytic site formed by 291Tyr and 21His.

3.5 Analysis of SVM parameterization and selected
features

We compare a linear kernel with the RBF kernel that was used in
CRpred. When testing these two kernels using all 544 features and
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Fig. 5. Distribution of the number of residues constituting catalytic sites;
x-axis shows the number of residues in a catalytic site; y-axis shows the
count of the corresponding sites (the numbers above the bars are the actual
count).

Table 6. Analysis of contributions of new features based on 10-fold cross-
validation on 6 datasets

EF EF EF HA NN PC
fold superfamily family superfamily

CRpreda TP rate 48.2 52.1 58.3 54.0 57.1 53.7
Precision 17.0 17.0 18.6 14.9 17.8 17.5

New features TP rate 46.5 49.9 56.8 52.2 54.8 51.9
removedb

Precision 16.8 17.2 17.8 14.4 17.7 17.3

aCRpred model using 210 features.
bPredictions when EntWOP, AveCH and CRPair features were removed from the 210
features.

default parameters (default RBF kernel has C = 1.0 and γ = 0.01;
default linear kernel has C = 1.0) on the six benchmark datasets
(EF fold, EF superfamily, EF family, HA superfamily, NN and PC),
we find that the results based on linear kernel have a higher TP
rate (on average by 12%) but much (twice) lower precision. Similar
results are found while using the selected 210 features. This indicates
that RBF kernel provides higher precision and still relatively high
TP rate, while linear kernel gives higher TP rate as a tradeoff for
below-standard precision. The comparison between the CRpred and
the results where all 544 features and the default RBF kernel are used
show that CRpred obtains on average 9.6% improvement of TP rate
balanced by 1.9% loss of precision by applying feature selection
and SVM parameterization. This improvement is mostly due to the
SVM parameterization since similar results (8.1% increase of TP
rate and 2.3% decrease of precision) are observed when comparing
the CRpred and the results when using the selected features, and the
default RBF kernel. This is expected since feature selection should
reduce dimensionality usually without increase in the prediction
quality. We also analyze the contribution of the features designed
in this article, see Table 6. We observe on average 2% and 0.3%
increase of TP rate and precision, respectively, due to inclusion of
the new features, i.e. EntWOP, AveCH and CRPair.

Table 7 gives an overview on the contributions of the five
subsets of features used as the input to CRpred. EntWOP and
PSSM features that are extracted with PSI-BLAST are shown to
provide the strongest input, which is followed by ResType, AveCH
and CRPair features. Among the 210 selected features, the top 10
selected features are EntWOP-0 (entropy of the central residue),
PSSM-0-V, PSSM-1-V, PSSM-0-C, PSSM-1-C, PSSM-0-H, PSSM-
1-H, PSSM-0-I, PSSM-1-I and PSSM-0-A (PSSM-i-j denotes the
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Table 7. Analysis of contributions of the five subsets of features

Feature subset (description) Rank Ave scorea Max scoreb No. of
features

EntWOP(entropy of the 1 123.822 610.627 9
residue in the sliding window)

PSSM (PSSM values of the 2 79.982 457.371 166
residue in the sliding window)

ResType (residue type of the 3 46.419 235.709 13
central residue)

AveCH (average cumulative 4 27.367 46.658 7
hydrophobicity in the window)

CRPair (catalytic residue pair) 5 16.050 26.911 15

aThe average (over all constituent features) χ2. Score of a given subset of features.
bThe maximum score obtained in a given subset of features.
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vary between 0 (conserved) and 3 (not conserved) are binned into 15
even intervals (x-axis); y-axis denotes the percentage of the values for
catalytic/non-catalytic residues in a certain interval.

PSSM value of j-th amino acid type at i-th position in the
window, where i = 0 represents the central residue and i < 0
represents positions towards N-terminus). This shows that catalytic
residue prediction benefits the most from the knowledge of residue
conservation expressed with PSSM and EntWOP. CRpred also takes
advantage of the knowledge of residue type, which is related to its
propensity to form catalytic sites, and the information about average
hydrophobicity of the surrounding residues and sequence motifs that
are characteristic for certain catalytic reactions. In the following, we
provide interpretation for the most interesting features.

3.5.1 Relation between residue conservation and catalytic residues
Among the 21 EntWOP features, nine that represent the entropy of
the central and four immediately adjacent residues on both sides are
selected. The feature corresponding to the central residue has the
largest score, and the scores decrease with the increasing distance.
The distribution of an example selected EntWOP feature, EntWOP-
0, is shown in Figure 6. We observe that catalytic residues tend
to have lower entropy values, i.e. they are more conserved, while
non-catalytic residues are skewed toward higher values. Hence,
EntWOP features help to distinguish between catalytic and non-
catalytic residues based on residue conservation. This is measured
irrespective of the residue type, which contrasts these features from
the PSSM features.

Table 8 summarizes 166 PSSM features selected from the 420
values from the PSSM. The count and the average score (higher score
corresponds to higher ranked feature) of selected features for each
position in the window show that most of the top ranked selected

Table 8. Summary of the selected PSSM features

Residue type (1-letter amino acid code) 
A R N D C Q E G H I L K M F P S T W Y V count/score

−10 4 2.8 
−9 0 0.0 
−8 0 0.0 
−7 8 5.0 
−6 11 11.8 
−5 9 10.4 
−4 12 27.1 
−3 16 31.5 
−2 15 22.6 
−1 20 227.2 
0 20 239.4 

+1 15 33.0 
+2 13 21.2 
+3 7 15.1 
+4 8 11.6 
+5 2 1.2 
+6 1 0.6 
+7 2 1.6 
+8 2 1.7 
+9 1 0.4 
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aPosition in window where 0 denotes the central residue, +i/–i indicates the residues
shifted by i positions towards C-/N-terminus from the central residue.
bCount and average score (higher score corresponds to higher ranked feature) of the
selected features for each position (row) and amino acid type (column) in PSSM matrix.
The scores for each feature are obtained by using the χ2 feature selection method.
The cells in the table represent features where white/shaded cells show features that
were not/were selected. Darker shading corresponds to higher ranked features.

PSSM values are close to the center of the window. The selected
features are asymmetrical with respect to the central position in
the window. They have a preference towards N-terminus positions,
as most of them occupy positions between +4 and −7. At the
moment, we have no explanation for this skewed distribution. The
count and the average score for the residue types show consistency
with respect to their catalytic propensity defined in Bartlett et al.
(2002). The residue types with higher average scores have either
high or low catalytic propensities. More specifically, the top 12
highest scored residue types include six out of the seven residue
types with the highest catalytic propensities and five out of the six
residue types with the lowest propensities. Nine out of the top 10
selected features are based on PSSM values of two amino acids
(Cys and His) with the highest catalytic propensity and three amino
acids (Val, Ile, and Ala) with the lowest catalytic propensity (Bartlett
et al., 2002). Figure 7 shows catalytic propensity of residues with a
given range of PSSM-0-V and PSSM-0-C values (these two features
have the highest scores among the residues with the lowest and the
highest propensities). We observe that residues with larger PSSM-0-
C values, i.e. conserved with respect to Cys, have higher propensity
to be catalytic, while residues with larger PSSM-0-V values, i.e.
conserved with respect to Val, have relatively low propensity. This
shows that the highly conserved amino acids characterized by high
catalytic propensity are likely to form catalytic sites.

3.5.2 Relation between residue type and catalytic residues
Different residue types have different propensity towards formation
of catalytic sites (Bartlett et al., 2002). Thirteen out of the 20 features
that represent different residue types are selected. Six of them (His,
Cys, Asp, Arg, Glu and Tyr) concern amino acids characterized by
the highest propensities to constitute catalytic residues, another six
(Val, Ala, Ile, Pro, Leu, and Met) by the lowest propensities (Bartlett
et al., 2002), while the remaining Gly was suggested to provide
flexibility for enzyme active sites (Yan and Sun, 1997). This way
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Fig. 8. Mean (point markers) and SD (error bars) for AveCH features
with different window sizes (x-axis), gray/black color corresponds to
catalytic/non-catalytic residues.

CRpred is capable of predicting a given residue as both the catalytic
residue and as the non-catalytic residue.

3.5.3 Relation between hydrophobicity and catalytic residues
Seven AveCH features are selected, and they correspond to the
window sizes 3, 5, 11, 13, 15, 17 and 19. The average hydrophobicity
is found useful for either small (local) or large (wide) window sizes.
Figure 8 shows that for small window sizes (3 and 5) catalytic
residues are embedded in a stretch of relatively hydrophilic residues
when compared with the non-catalytic residues, while for larger
windows of size ≥11 they are embedded in a segment of more
hydrophobic residues. This suggests that although catalytic residues
prefer a relatively more hydrophobic neighborhood, they are likely
to be locally surrounded by hydrophilic residues. We observe that
the average hydrophobicity for window sizes of 7 and 9 is similar for
catalytic and non-catalytic residues which likely caused the removal
of the corresponding features.

3.5.4 Sequence motifs related to catalytic residues We selected
15 CRPair features, including 11 features corresponding to CRPair2
and 4 features corresponding to CRPair3. The highest scoring
CRPair2 feature is {{Cys,Cys},{3}}, and the highest scoring
CRPair3 feature is {{Cys,Gly,Cys},{1,2}}. The latter feature is a
special case of the former one, and the corresponding CysXXCys
motif constitutes a strong pattern associated with catalytic residues.
This motif is shown to be essential for catalysis of redox reactions
(Chivers et al., 1997). In another example, selected feature
{{Asp,Lys,Asn},{2,3}} serves as the catalytic loop of kinase which

is important to the catalysis of the phosphate transfer to the substrate
(Stegert, 2005).

4 CONCLUSIONS
We propose an accurate sequence-based method (CRpred) for the
prediction of catalytic residues. CRpred uses SVM classifier that
takes five types of interpretable features, including (1) residue type,
(2) PSSM values, (3) entropy computed over WOP vector that are
extracted with PSI-BLAST, (4) average cumulative hydrophobicity
and (5) several sequence motifs, as the input. We perform feature
selection which reduces the dimensionality of the input and allows
for investigation into the relations between the input features and
the prediction of catalytic residue. The most important factor that
contributes towards accurate predictions is the residue conservation.
Catalytic residues, irrespective of their types, tend to be more
conserved when compared with the general population of residues.
We show that highly conserved amino acids characterized by high
catalytic propensity are likely to form catalytic sites. We also
show that amino acids characterized by the highest (His, Cys,
Asp, Arg, Glu and Tyr) and the lowest (Val, Ala, Ile, Pro, Leu
and Met) propensities to constitute catalytic residues, Gly that is
known to provide flexibility for catalytic sites, and certain sequence
motifs that are associated with catalytic reactions contribute to the
prediction. Our results suggest that although catalytic residues prefer
a relatively more hydrophobic neighborhood, they are likely to be
locally (with respect to the sequence) surrounded by hydrophilic
residues. We also introduce confidence values that allow selection
of a subset of predictions with increased precision as a tradeoff for
reduced TP rate.

Based on comprehensive tests that include eight datasets,
CRpred shows comparable quality when contrasted with the
modern structure-based methods and provides improved quality with
respect to the state-of-the-art sequence-based methods. CRpred is
characterized by 15–19% precision and 48–58% TP rate depending
on the dataset used. When compared with several recent structure-
based methods, CRpred obtains similar result to methods by
Youn et al. (2007) and Petrova and Wu (2006), and it improves
both TP rate and precision with respect to the method by Chea
et al. (2007). Comparison with methods introduced in Gutteridge
et al. (2003) shows that although their method based on spatial
clustering provides better quality, CRpred shows improvement when
contrasted with the method that does not utilize the clustering.
Comparison with two sequence-based methods (Fischer et al., 2008;
Gutteridge et al., 2003) reveals that the proposed method obtains
better results with respect to both TP rate and precision.

ACKNOWLEDGEMENTS
We thank Dennis Livesay, Eunseog Youn and Alex Gutteridge for
providing their datasets, which were supplemented with helpful
explanations. We are particularly grateful to Dr Livesay for
clarifications concerning his prediction method.

Funding: National Education Committee of China (to T.Z. and H.Z.);
NSFC (grant 10671100 to S.S. and J.R.); Liuhui Center for applied
mathematics (to S.S. and J.R.); the joint program of Tianjin and
Nankai Universities (to S.S. and J.R.); NSERC (to L.K.); Alberta
Ingenuity (to K.C.).

2337



T.Zhang et al.

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res., 25, 3389–3402.
Bartlett,G.J. et al. (2002) Analysis of catalytic residues in enzyme active sites. J. Mol.

Biol., 324, 105–121.
Capra,J.A. and Singh,M. (2007) Predicting functionally important residues from

sequence conservation. Bioinformatics, 23, 1875–1882.
Chea,E. et al. (2007) How accurate and statistically robust are catalytic site predictions

based on closeness centrality? BMC Bioinformatics, 8, 153.
Chivers,P.T. et al. (1997) The CXXC motif: a rheostat in the active site. Biochemistry,

36, 4061–4066.
EL-Manzalawy,Y. and Honavar,V. (2005) WLSVM: integrating LibSVM into Weka

environment. Available at http://www.cs.iastate.edu/∼yasser/wlsvm/ (last accessed
date July 27, 2008).

Fan,R.E. et al. (2005) Working set selection using the second order information for
training SVM. J. Mach. Learn. Res., 6, 1889–1918.

Fischer,J.D. et al. (2008) Prediction of protein functional residues from sequence by
probability density estimation. Bioinformatics, 24, 613–620.

Forman,G. (2003) An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res., 3, 1289–1305.

Gutteridge,A. et al. (2003) Using a neural network and spatial clustering to predict the
location of active sites in enzymes. J. Mol. Biol., 330, 719–734.

Jones,D.T. (1999) Protein secondary structure prediction based on position-specific
scoring matrices. J. Mol. Biol., 292, 195–202.

Juretic,D. and Lucin,A. (1998) The preference functions method for predicting protein
helical turns with membrane propensity. J. Chem. Inform. Comput. Sci., 38,575–85.

Karypis,G. (2006) YASSPP: better kernels and coding schemes lead to improvements
in protein secondary structure prediction. Proteins, 64, 575–586.

Kurgan,L. et al. (2007) Novel scales based on hydrophobicity indices for secondary
protein structure. J. Theor. Biol., 248, 354–366.

La,D. et al. (2005) Predicting protein functional sites with phylogenetic motifs. Proteins,
58, 309–320.

Li,W. and Godzik,A. (2006) CD-HIT: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659.

Liu,H. and Setiono,R. (1995) Chi2: feature selection and discretization of numeric
attributes. In Proceedings of the 7th International Conferenceon Tools with Artificial
Intelligence, IEEE Computer Society, Washington, DC, USA, pp. 388–391.

Martin,J. et al. (2006) Analysis of an optimal hidden Markov model for secondary
structure prediction. BMC Struct. Biol., 6, 25.

Mayrose,I. et al. (2004) Comparison of site-specific rate-inference methods: Bayesian
methods are superior. Mol. Biol. Evol., 21, 1781–1791.

Ota,M. et al. (2003) Prediction of catalytic residues in enzymes based on known
tertiary structure, stability profile, and sequence conservation. J. Mol. Biol., 327,
1053–1064.

Pande,S. et al. (2007) Prediction of enzyme catalytic sites from sequence using neural
networks. In IEEE symposium on CIBCB’07, IEEE Press, Honolulu, Hawaii, USA,
pp. 247–253.

Petrova,N.V. and Wu,C.H. (2006) Prediction of catalytic residues using support
vector machine with selected protein sequence and structural properties. BMC
Bioinformatics, 7, 312.

Porter,C. et al. (2004) The catalytic site atlas: a resource of catalytic sites and
residues identified in enzymes using structural data. Nucleic Acids Res., 32,
D129–D133.

Sacquin-Mora,S. et al. (2007) Locating the active sites of enzymes using mechanical
properties. Proteins, 67, 350–359.

Stegert,M.R. (2005) Functional characterisation of the mammalian NDR1 and NDR2
protein kinases and their regulation by the mammalian Ste20-like kinase MST3.
Ph.D. dissertation, Basel University, Switzerland.

Sterner,B. et al. (2007) Predicting and annotating catalytic residues: an information
theoretic approach. J. Comp. Biol., 14, 1058–1073.

Sweet,R.M. and Eisenberg,D. (1983) Correlation of sequence hydrophobicities
measures similarity in three dimensional protein structure. J. Mol. Biol., 171,
479–488.

Torrance,J.W. et al. (2005) Using a library of structural templates to recognize catalytic
sites and explore their evolution in homologous families. J. Mol. Biol., 347,
565–581.

Valdar,W.S. (2002) Scoring residue conservation. Proteins, 48, 227–241.
Vapnik,V. (1999) The Nature of Statistical Learning Theory. Springer-Verlag, New York,

USA.
Wang,L. and Brown,S.J. (2006) BindN: a web-based tool for efficient prediction of

DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res., 34,
W243–W248.

Witten,I.H. and Frank,E. (2005) Data Mining: Practical Machine Learning Tools and
Techniques. 2nd edn. Morgan Kaufmann, San Francisco.

Yan,B.X. and Sun,Y.Q. (1997) Glycine residues provide flexibility for enzyme active
sites. J. Biol. Chem., 272, 3190–3194.

Youn,E. et al. (2007) Evaluation of features for catalytic residue prediction in novel
folds. Protein Sci., 16, 216–226.

2338

http://www.cs.iastate

