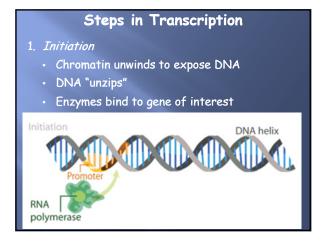
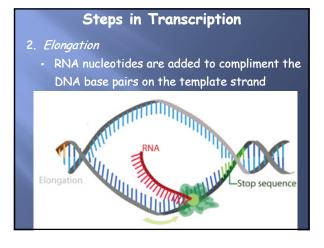
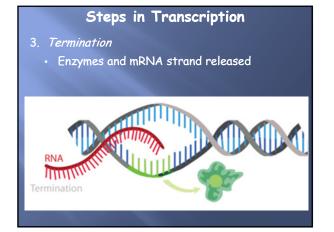
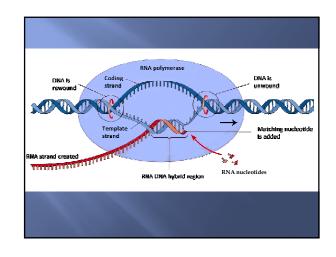


Genes

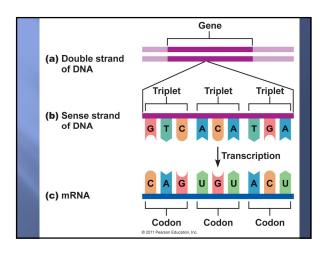

- Sequence of nucleotide bases in DNA is a code for making proteins
- To uniquely code for each of the 20 amino acids, how many bases must code for a single amino acid?

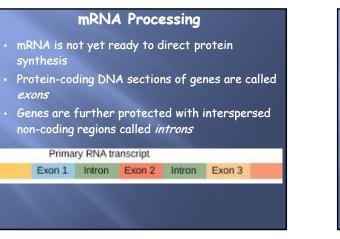

	Total number of unique code		
1 base forms code pattern	4 unique codes - A, T, C, G (4 ¹) 4 ² = 16 unique codes (too few)		
2 bases form code pattern			
3 bases form code pattern	4 ³ = 64 unique codes (just right)		
4 bases form code pattern	44 = 256 unique codes (too many)		

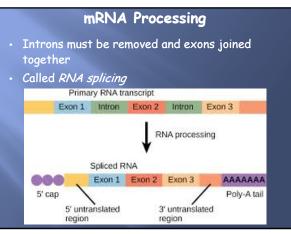



Transcription

- DNA is too large, too valuable to leave the nucleus
- Can't get to the ribosomes to give instructions for making proteins
- Sends a temporary copy made of RNA
- Process of making this copy is called *transcription*
- Specific type of RNA produced in transcription is messenger RNA (mRNA)

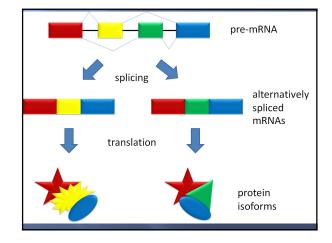






Transcription • DNA triplets have been re-coded as mRNA codons • But in mRNA, T is replaced with U

exons



mRNA Processing

- Some genes can be spliced together in multiple ways
 - Called alternative splice products or splice isoforms
- One gene can code for more than one protein
- One protein may have multiple forms

Protein Synthesis

- Once a strand of mRNA has been spliced, it is ready to be decoded to build a protein
- This process is called *translation*
- The genetic code is translated from the language of nucleic acids to the language of proteins

Genetic Linguistics

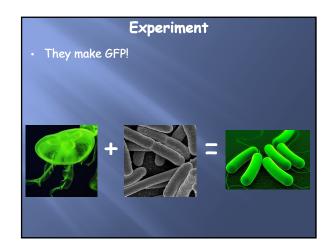
- Think about different written languages
- Do the same letter combinations mean the same thing in all languages?

<u>Examples</u> Ours Pain Pet French

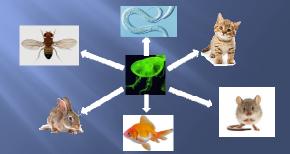
Genetic Linguistics

- What about the language of DNA and proteins?
- Will every species read DNA the same way?
- If we put the gene for a human protein into another species, will it make the same protein?

Experiment


- Jellyfish are cool
- Some of them make a protein known as GFP that glows green when exposed to UV light

Experiment

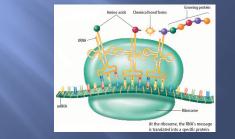

- What if we take the gene for this protein and put it into bacteria?
- Will the bacteria make GFP? Or will they translate the genetic code differently?

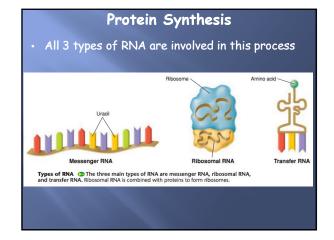
Experiment

- What about other species?
- How will they translate jellyfish DNA?

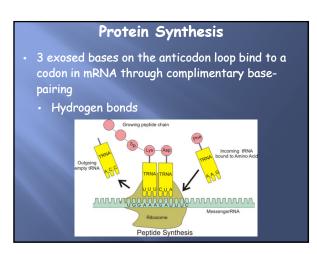
Experiment

- They make the same protein!
- What does this tell you about the genetic code?



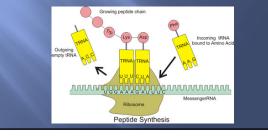

Experiment

- They make the same protein!
- What does this tell you about the genetic code?
- It's universal! An mRNA codon will be translated into the same protein, no matter the species
- We exploit this is so many, very cool ways
 - Recombinant DNA technology


Translation

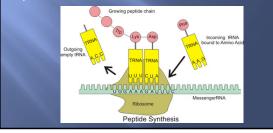
- How do we get from DNA to protein?
- The process is pretty complicated, but let's take a look...

Protein Synthesis Let's take a closer look at tRNA Note the anticodon loop at the bottom Note the amino acid attached to the other end Each tRNA will carry a specific amino acid determined by the specific anticodon


Protein Synthesis

loop

 Ribosome moves long mRNA to sequentially expose each codon


Transfer RNA

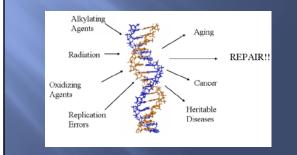
• Base-pairing brings amino acids to the ribosome in the correct order

Protein Synthesis

- Amino acids joined together to form a protein's primary structure
- Takes about 20 seconds to form the whole protein

Protein Synthesis

- The signal for where to begin translation is the start codon: AUG
 - Codes for the amino acid methionine
 - All proteins begin with methionine
- Translation ends when a STOP codon is reached
- Codes for no amino acid
- No corresponding tRNA
- Ribosome comes apart and releases mRNA, protein


			Unive	rsal Ge	enetic	Code			
	Second letter								
			U	С	А	G			
Circel Lother		U	UUU }Phe UUC }Phe UUA }Leu UUG }Leu	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G		
	First letter	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAA GIn	CGU CGC CGA CGG	Thirc⊃ ∪ < g		
	Firs	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC } Ser AGA AGG } Arg	C G ⊂ C < G		
		G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GAU	GGU GGC GGA GGG	U C A G		

DNA

- DNA is PRECIOUS!!
- If the code is changed, another amino acid could be made
- A change in just one nucleotide base can be devastating

DNA Damage, Repair, and Mutation

- Many factors lead to DNA damage
- Happens CONSTANTLY yet usually we're fine!

DNA Damage, Repair, and Mutation

- Many different DNA repair enzymes exist
- Replace damaged piece by...
 - Direct repair
 - Methylation defects
 - Referencing complimentary strand
 - Single base or nucleotide excision, mismatch repair
 - Referencing homologous chromosome
 - Double-strand breaks

DNA Damage, Repair, and Mutation

- Rarely, DNA damage is undetected or improperly repaired
- This is called a *mutation*
- Several types of mutations exist

Point Mutations

- Changing one base
- Could change an amino acid
- Lots of other things could happen
 - Nothing
 - Example: ACC to ACA
 - Both code for THR
 - Could cause truncation (protein gets cut short)
 - Example: UGG to UGA
 - UGG = TRP UGA = Stop
 - Could make a protein too long, could miss a Start codon, etc

Frameshift Mutations

- When a mutation changes how codons are grouped and read
- Changes every amino acid following the mutation
- Example: Take a sentence with all 3-letter words

THE DOG SAW THE CAT

• If we delete the E at position 3 and re-group the words, it no longer makes sense

THD OGS AWT HEC AT

• Which mutations in our previous examples produced a frameshift?

Other Mutations

- Additions
- Deletions
- Inversions and translocations
 - Large pieces of DNA (sometimes most of a chromosome) broken apart and reattached
 - Sometimes within a chromosome
 - Sometimes to another chromosome

Other Mutations

- May be benign
 - Entire genes with their promoters simply moved from one place to another
- Gene may split into pieces
 - No longer codes for a functional protein
 - Example: most severe hemophilia is caused by an inversion of the gene for a blood-clotting protein