Visualizing Data Biology 683

Lecture 4

Heath Blackmon

So Far

- What are some causes of the reproducibility crisis?
- What is a p-value
- Ways of messing up experiments (non-independence, bias, creating temporal patterns, etc.)

Plan for today

- 1. Importance of figures
- 2. General rules for making plots
- 3. Programs for plotting
- 4. Resources for plotting

Importance of figures

Serve a purpose

Meiotic drive shapes rates of karyotype evolution in mammals

Heath Blackmon,^{1,2} Joshua Justison,³ Itay Mayrose,⁴ and Emma E. Goldberg³

¹Department of Biology, Texas A&M University, College Station Texas 77843

²E-mail: coleoguy@gmail.com

³Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul Minnesota 55108

⁴School of Plant Sciences and Food Security, Tel Aviv University Tel Aviv 69978, Israel

Serve a purpose

Mammals have a weird distribution of numbers and types of chromosomes

I made this new model and it can test this hypothesis and it works pretty good

For most groups of mammals I show strong support for the existing hypothesis we should assume it is right but maybe not in 1-2 groups.

Rules for plots

1. Show the data

Show the data

Showing the data can reveal patterns

Rules for plots

- 1. Show the data
- 2. Avoid distorting data

Avoid distorting data

Rules for plots

- 1. Show the data
- 2. Avoid distorting data
- 3. Avoid chart junk

Avoid chart junk

Rules for plots

- 1. Show the data
- 2. Avoid distorting data
- 3. Avoid chart junk
- 4. Maximize data:ink ratio maximize information

Maximize data:ink ratio maximize information

Rules for plots

- 1. Show the data
- 2. Avoid distorting data
- 3. Avoid chart junk
- 4. Maximize data:ink ratio maximize information
- 5. Make it accessible to all (5% color blind + BW prints).

Make it accessible to all

Make it accessible to all

Use the viridis color palette

Color blind simulator

Rules for plots

- 1. Show the data
- 2. Avoid distorting data
- 3. Avoid chart junk
- 4. Maximize data:ink ratio maximize information
- 5. Make it accessible to all (5% color blind + BW prints).
- 6. Axes and legends that are informative and useful

Axes and legends

Rules for plots

- 1. Show the data
- 2. Avoid distorting data
- 3. Avoid chart junk
- 4. Maximize data:ink ratio maximize information
- 5. Make it accessible to all (5% color blind + BW prints).
- 6. Axes and legends that are informative and useful
- 7. Use vector art when possible

Types of images

Raster images

jpg, tiff, png, bmp, raw

Vector images

eps, pdf, svg

Example of journal requirements

Photos (edit in Adobe photoshop; gimp)

Plots (R; edit in inkscape; Adobe illustrator)

Complex plots (PPT; Adobe illustrator)

Plots with problems!

Primer Set 1 (Inside dsRNA)

dsRNA Treatment

Substrate type of lagartixas sightings by urbanization level

Hemoglobin Level

Echidna Progesterone Level VS. Days Before Egg Laying

Worker Ant Mass At Increasing Elevation Levels

Sucrose Diet

Caterpillar color influences metabolic rate

Caterpillar Color and Temperature treatment (°C)

Density of bacteria in liquid culture after 24h factorial antibiotic(AB) and phage(P) treatment

Use the right tool

Plotting continuous or discrete data

Matplotlib: is a python plotting library,

R: endless packages for plotting though base and ggplot2 are the most popular.

Inkscape: free vector graphics editor. Can read PDF and let you tweak things you couldn't quite fix in your script generated version.

Circos: created plots that compare genomes but can show connections between any large datasets.

Excel: it is possible but you have very limited options and control

Adobe Illustrator: Similar to inkscape particularly useful for building complex multipart figures

Image Manipulation

GIMP: Think of it as free photoshop. Steep learning curve but can do just about whatever you want

ImageJ: Similar to GIMP but with many packages for analyses of specific image types.

Photoshop: Image manipulation steep learning curve very powerful and definitely worth learning if your research includes figures of FISH results.

General Editing

Adobe acrobat: often the easiest way to tweak something small you couldn't get exactly right in your script.

Powerpoint: not elegant but often the easiest way to combine different elements into a single plot.

Resources

R graph gallery

Python graph gallery

Color Brewer

<u>Plotly</u>

Data Visualization Catalog

Philosophy of Data Visualization

\$41.60

\$34.58

EDWARD R. TUFTE

VISUAL EXPLANATIONS

1) Figure out the purpose of the figure. Usually you will have a sentence in the paper or a point you want to make in a talk.

1) Figure out the purpose of the figure. Usually you will have a sentence in the paper or a point you want to make in a talk.

- 1) Figure out the purpose of the figure. Usually you will have a sentence in the paper or a point you want to make in a talk.
- Make a list of the data that will need to be included. Is it continuous, discrete, or more complex.

- 1) Figure out the purpose of the figure. Usually you will have a sentence in the paper or a point you want to make in a talk.
- 2) Make a list of the data that will need to be included. Is it continuous, discrete, or more complex.

CLADE	CHOM#	#5P	5C5
ORTHOPTERA	10-16		ΚO
BUATTONEA	7 - 12		XX
Phas.			Parth
((
9 groups	(7-50)	5-60+	3 states + missing data

- 1) Figure out the purpose of the figure. Usually you will have a sentence in the paper or a point you want to make in a talk.
- Make a list of the data that will need to be included. Is it continuous, discrete, or more complex.
- 3) Sketch out what you think it will look like. Don't waste time figuring out how to make the perfect plot in your tool until you have settled on a best approach. Check out other papers and the graph gallery for ideas.

- Figure out the purpose of the figure. Usually you will have a sentence in the paper or a point you want to make in a talk.
- Make a list of the data that will need to be included. Is it continuous, discrete, or more complex.
- 3) Sketch out what you think it will look like. Don't waste time figuring out how to make the perfect plot in your tool until you have settled on a best approach. Check out other papers and the graph gallery for ideas.

- Figure out the purpose of the figure. Usually you will have a sentence in the paper or a point you want to make in a talk.
- Make a list of the data that will need to be included. Is it continuous, discrete, or more complex.
- 3) Sketch out what you think it will look like. Don't waste time figuring out how to make the perfect plot in your tool until you have settled on a best approach. Check out other papers and the graph gallery for ideas.

- 1) Figure out the purpose of the figure. Usually you will have a sentence in the paper or a point you want to make in a talk.
- Make a list of the data that will need to be included. Is it continuous, discrete, or more complex.
- 3) Sketch out what you think it will look like. Don't waste time figuring out how to make the perfect plot in your tool until you have settled on a best approach. Check out other papers and the graph gallery for ideas.

How I make a plot

1) Decide why you are making the plot. Often times you will have a sentence in your paper that demands a plot. On almost every project I've ever been involved in we have much more data than is never included in a figure in the

final paper.

The $\triangle R_x$ statistics for fusions, fissions and polyploidy had credible intervals that overlapped zero (Fig 2A).

•	fission [‡]	fusion [‡]	polyploidy [‡]
1	1.924933e-02	6.691240e-03	1.194787e-02
2	8.055805e-03	-2.395435e-03	1.453424e-02
3	3.010314e-02	2.857327e-02	9.351597e-03
4	-7.035151e-03	2.745761e-02	8.345796e-03
5	5.011324e-04	-1.635201e-02	-1.280441e-02
6	2.711203e-02	-2.817951e-02	5.322630e-02
7	-4.188582e-03	2.202932e-02	-1.179885e-04
8	3.483755e-02	1.055559e-02	-1.843438e-02
9	3.550188e-02	-3.272404e-04	5.312943e-02
10	-1.145644e-02	2.068717e-03	2.317548e-02
11	1.620784e-02	1.637362e-02	1.869329e-03
12	-4.366205e-02	2.012690e-02	-2.899442e-02
13	3.398371e-03	2.127199e-03	-5.653567e-03
14	2.778317e-02	1.356907e-02	4.306500e-03
15	-6.903131e-03	5.692979e-02	3.769614e-03
16	2.218237e-02	8.972304e-05	1.469798e-02

10,000 rows

Each curve represents the posterior distribution of the ΔR_x statistic, where x is either fission, fusion, or polyploidy which is indicated by the color of the fill. Below the curves the lines indicate the 95% credible interval of each statistic.

Plotting in this class

Over the course of the semester we will plot using several approaches (base, ggplot, custom packages)

Thursday intro to R and then we will come back to plotting once you have some tools in your toolbox.

We are going to do a bit of a "flipped classroom" on Thursday. I want you to go over the script on the course website prior to coming to class so then when I work through these topics on Thursday it won't be completely new to all of you.

- 1. Show the data
- 2. Avoid distorting data
- 3. Avoid chart junk
- 4. Maximize data:ink ratio maximize information
- 5. Make it accessible to all (5% color blind + BW prints).
- 6. Axes and legends that are informative and useful
- 7. Use vector art when possible

I will evaluate all the plots you make this semester on these criteria. Can you break these? Yes but only for really good reasons!