Biology of Fungi, Lecture 2: The Diversity of Fungi and Fungus-Like Organisms

Terms You Should Understand

- ◆ 'Fungus' (pl., fungi) is a taxonomic term and does not refer to morphology
- ◆ 'Mold' is a morphological term referring to a filamentous (multicellular) condition
- ◆ 'Mildew' is a term that refers to a particular type of mold
- ◆ 'Yeast' is a morphological term referring to a unicellular condition

Special Lecture Notes on Fungal Taxonomy

- Fungal taxonomy is constantly in flux
- Not one taxonomic scheme will be agreed upon by all mycologists
- ◆ Classical fungal taxonomy was based primarily upon morphological features
- Contemporary fungal taxonomy is based upon phylogenetic relationships

Fungi in a Broad Sense

- Mycologists have traditionally studied a diverse number of organisms, many not true fungi, but fungal-like in their appearance, physiology, or life style
- At one point, these fungal-like microbes included the Actinomycetes, due to their filamentous growth patterns, but today are known as Gram-positive bacteria
- The types of organisms mycologists have traditionally studied are now divided based upon phylogenetic relationships
- These relationships are:
 - * Kingdom Fungi true fungi
 - * Kingdom Straminipila "water molds"
 - * Kingdom Mycetozoa "slime molds"
- Kingdom Fungi (Mycota)
 - * Phylum: Chytridiomycota
 - * Phylum: Zygomycota
 - * Phylum: Glomeromycota
 - * Phylum: Ascomycota
 - * Phylum: Basidiomycota
 - * Form-Phylum: Deuteromycota (Fungi Imperfecti)

- Kingdom Straminiplia (Chromista)
 - * Phylum: Oomycota
 - * Phylum: Hyphochytridiomycota
 - * Phylum: Labyrinthulomycota
- Kingdom Mycetozoa
 - * Phylum: Myxomycota
 - * Phylum: Dictyosteliomycota
 - * Phylum: Acrasiomycota
 - * Phylum: Plasmodiophoromycota

The Mycetozoa (Slime Molds)

- Kingdom Mycetozoa is comprised of four phyla containing three different groups of organisms that differ in their trophic (feeding) stages
 - * Myxogastrids plasmodial
 - * Dictyostelids and acrasids amoeboid
 - * Protostelids obligate parasites having two plasmodial stages
- Phylum Dictyosteliomycota
 - * Monophyletic group of cellular slime molds
 - * Best example: Dictyostelium discoideum
 - * Grow and divides as unicellular, haploid amoebae
 - * Feed on bacteria via phagocytosis
 - * Commonly found in moist, organic-rich soil
 - * Asexual reproductive phase begins upon depletion of nutrients
 - Amoebae secrete cAMP
 - cAMP acts as chemotactic agent causing aggregation (*streaming*) of amoebae into one body, termed a 'slug' (grex) - <u>Note</u>: no cellular fusion; amoebae remain as independent cells
 - Cells within the grex differentiate into two types:
 - + Pre-stalk cells
 - + Pre-spore cells
 - Grex undergoes a complex process whereby it forms a cellulosic sorocarp (fruiting body) comprised of thin stalk and large spore head

* Sexual cycle involves the formation of diploid macrocysts that undergo meiosis

- Phylum Acrasiomyctoa
 - * Polyphylogenetic group of cellular slime molds
 - * Best example: Acrasis rosea
 - * Cylindrical (limax type) amoebae
 - * Feeds on bacteria by phagocytosis
 - * Amoeba aggregate singly or in groups
 - * Differences with Dicytosteliomycota:
 - Do not respond to cAMP; chemotactic factor is unknown
 - Amoebal aggregation complex does not migrate, but immediately forms a sorocarp
 - Stalk of sorocarp is not well differentiated and cells can germinate to form amoebae
 - Sexual reproduction is unknown
 - * Plasmodial slime molds
 - * Best example: *Physarum polycephalum*
 - * Prominent feature is the multinuclear network of protoplasm that exhibits rhythmic streaming
 - * Feeds by phagocytosis of bacteria
 - * Plasmodium typically develops under the surface of organic substrates
 - * Plasmodium moves to the surface when nutrients become depleted
 - Develops a fruiting structure (sporangium; pl., sporangia)
 - Sporangium contains haploid spores that are dispersed by the wind
 - Spores germinate to produce either amoeboid cells (myxamoebae) or flagellated swarm cells
 - Two cells fuse to form a diploid zygote
 - Zygote nucleus divides and cell grows to form a plasmodium
 - A mature plasmodium can form either:
 - A sclerotium under adverse conditions that can then regenerate as a plasmodium; or
 - + Sporangia that bear haploid spores

- Phylum Plasmodiophoromycota
 - * Obligate intracellular parasites of plants, algae, or fungi
 - * Best example: *Plasmodiophora brassicae*
 - Infection of plant roots leads to "club foot"
 - Plant responds to infection by *P. brassicae* by undergoing rapid cell expansion and division, forming galls that require substantial nutrients
 - Gall formation involves glucobrassicin, a compound converted to a phytohormone
 - * However, many species of plasmodiophorids, including *P. brassicae*, appear to live harmlessly inside many types of plant roots due to:
 - Absence of high levels of glucobrassicin; or
 - Lack of phytohormone production
 - * *P. brassicae* has a complex and not completely defined life cycle that involves:
 - Two types of biflagellated zoospores
 - Two types of plasmodia (primary and secondary)
 - Alternating cycles of life in soil and in the plant root hair

The Chromistans

- The term 'Chromistan Fungi' is oxymoronic in that:
 - * Chromists are a broadly diverse of protists containing stramenopiles (also spelled straminiples), but not true fungi
 - * Phylogenetic evidence suggests a monophyletic origin quite distinct from the true fungi, most likely a red algal ancestor
- Chromists contain not only the stramenopiles, but also haptophytes and cryptophytes
- Chromists seem to share a common ancestry with alveolates (ciliates, sporozoans, dinoflagellates)

The Stramenopiles

- Stramenopiles are also known as heterokonts, referring to two types of flagella found in this group
 - * Smooth (whiplash) flagellum
 - * "Tinsillated" (or tinsel) flagellum
 - Contains stiff lateral hairs (mastigonemes)
 - Pulls, doesn't push, cell through the medium
- Number/kind of flagella varies among the different groups of organisms
- Stramenopiles include diatoms and kelps in addition to fungus-like microbes

- ♦ Kingdom Straminipila
 - * Comprised of three fungal-like phyla
 - Hyphochytridiomycota
 - Oomycota
 - Labyrinthulomycota
 - * Phylum Hyphochytridiomycota
 - Very similar in many ways to the Phylum Chytridiomycota (Kingdom Fungi [Eumycota])
 - Live in water or soil
 - Parasites or saprotrophs
 - Thallus (body) structure:
 - + Endobiotic resides completely within the host
 - Epibiotic reproductive structures outside a host or on the surface of dead organic matter
 - Reproductive structure types:
 - + Holocarpic entire thallus develops into a sporangium
 - + Eucarpic thallus differentiates into assimilative rhizoids and a sporangium
 - Arrangement of thallus
 - + Monocentric single center of growth
 - + Rhizoidal sporangium with rhizoids (non-septate)
 - + Polycentric branched hyphae (septate) connecting many sporangia
 - Thallus developmental patterns (i.e., monocentric, rhizoidal, or polycentric) differentiate families among the hyphochytrids
 - Motile spores (zoospore) possess a single, anterior tinsel flagellum [distinguishes the hyphochytrids from the chytrids]
 - No sexual reproduction yet observed among the hyphochytrids
 - Best example: *Rhizidiomyces apophysatus* parasite water mold oogonia
 - Thallus developmental patterns (i.e., monocentric, rhizoidal, or polycentric) differentiate families among the hyphochytrids
 - Motile spores (zoospore) possess a single, anterior tinsel flagellum [distinguishes the hyphochytrids from the chytrids]
 - No sexual reproduction yet observed among the hyphochytrids
 - Best example: Rhizidiomyces apophysatus parasite water mold oogonia

- * Phylum Oomycota
 - Economically important fungus-like organisms that have extremely significant environmental roles in agriculture
 - Causes of the following plant/fish diseases:
 - + Potato blight (*Phytophthora infestans*)
 - + Sudden oak death (Phytophthora ramorum)
 - + "Decline" diseases (Pythium spp.)
 - + Downy mildews (Peronospora spp.)
 - + Water molds/fish pathogens (Saprolegnia spp.)
 - Greatly mimic the true fungi in many ways probably due to convergent evolution
 - Possess the following plant-like features:
 - + Glucan and cellulose-like cell walls (not chitin)
 - + Diploid nuclei (most fungi tend to be haploid)
 - + Membranes contain plant sterols (not ergosterol)
 - + Specific energy storage compounds
 - + Similar organellar ultrastructure
 - + Different sensitivities to antifungal agents
 - Key features
 - Zoospores have two flagella a forward directed tinsel type and a backward directed whiplash type
 - Sexual reproduction is oogamous, i.e., the zygote develops into a thick-walled oospore that can persist in the environment [Note: oogamy can also occur in some chytrids (Eumycota)]
 - Features of a oomycetous life cycle is typified by that of *Phytophthora infestans*
 - Asexual reproduction involves a multinucleate sporangium that releases diploid zoospores
 - + The diploid zoospores encyst, then germinate to form somatic hyphae
 - Somatic hyphae has two fates: continued asexual reproduction via the formation zoospores, or sexual reproduction by undergoing differentiation into male and female gametangia
 - + Types of gametangia: antheridium (male sex organ) and oogonium (female sex organ)
 - + Meiosis occurs in both gametangia before the antheridium fertilizes the oogonium
 - + Fertilization leads to the development of one or more thick-walled, diploid oospores
 - + Oospores have a dormant period prior to germination

- Germinating oospores produce either diploid hyphae or a sporangium that will subsequently release more diploid zoospores
- Variations of this life-cycle theme are replete within this phylum
 - + Some Oomycota are homothallic, whereas others are heterothallic
 - + Some (e.g, Pythium) develop oogonia via parthenogenesis
 - + Some water molds (e.g., *Saprolegnia*) produce primary zoospores that encyst immediately upon release, then form secondary zoospores that remain motile for hours while searching for substrate
- * Phylum Labyrinthulomycota
 - Commonly referred to as "net slime molds"
 - Characterized by a network of branch, anastomosing (fusing), wall-less filaments held together by a secreted polysaccharide sheath
 - Produce biflagellated zoospores
 - + Anteriorly directed tinsel type
 - + Posteriorly directed whiplash type
 - Most members are marine parasites

The Chytridiomycota

- ◆ 'Chytrids' are considered the earliest branch of the true fungi (Eumycota)
- Cell walls contain chitin and glucan
- Only true fungi that produce motile, flagellated zoospores
 - * Usually single, posterior whiplash type
 - * Some rumen species have multiple flagella
- Zoospore ultrastructure is taxonomically important within this phylum
- Commonly found in soils or aquatic environments, chytrids have a significant role in degrading organics
- Exhibit many of the same thallus structure types and arrangements as hyphochytrids (e.g., eucarpic; rhizoidal; endobiotic; etc.)
- ◆ A few are obligate intracellular parasites of plants, algae, and small animals (e.g., frogs)
- Very few economically important species (Synchytrium endobioticum causes potato wart disease)
- ◆ More important (and fascinating) as biological models (e.g, *Allomyces*)

- Isolation of chytrids is not easy
 - * Requires 'baiting' techniques
 - * Appears to be species-substrate specificity/preference presumably due to specific receptor molecules on the zoospore surface membrane
- Five orders within the chytrids, based largely on zoospore ultrastructure
 - * Chytridiales and Spizellomycetales
 - Similar to one another
 - + Spizellomycetales live in soil
 - + Chytridiales live in aquatic environments
 - These Orders do not produce hyphae
 - Unique to the chytrids, Spizellomycetales zoospores exhibit amoeboid movement
 - * Blastocladiales
 - Produces true hyphae and narrow rhizoids
 - Some species (e.g., *Allomyces*) exhibit alternation of generations (i.e., rotating from haploid and diploid phases)
 - + Haploid thalli of Allomyces produce gametes in specialized gametangia
 - + Diploid thalli of Allomyces produce flagellated zoospores and resting sporangia
 - Allomyces also exhibits anisiogamy two different sizes of gametes (small, highly mobile ['male'] and larger, less mobile ['female'])
 - * Monoblepharidales
 - Unique among the true fungi for its means of sexual reproduction via oogamy
 - Not of economic importance
 - * Neocallimastigales
 - Obligate anaerobes
 - No mitochondria, but instead produce energy via a hydrogenosome
 - Often found in animal rumens; highly cellulytic
 - Multiflagellated zoospores
- Phylogenetic relationships
 - * Early studies did not support the placement of the chytrids within the Kingdom Fungi
 - * These studies also suggested that chytrids
 - are monophyletic
 - Represent the basal group, i.e., the common ancestor of all true fungi possessed motile zoospores

- * The monophyletic nature of the chytrids may not be true for several reasons
 - Flagella could have been lost or added during evolution, e.g., *Basidiobolus*, previously considered a zygomycete based upon morphological features and does not have motile zoospores, was moved to the chytrids
 - Recent data suggest that the Blastocladiales may be more closely related to zygomycetes than other chytrids

The Zygomycota

- Five features of Phylum Zygomycota
 - * Cell walls contain chitin, chitosan, and polyglucuronic acid
 - * Some members typically bear multinucleate, coenocytic hyphae, i.e., without cross walls (septa; sing., septum)
 - When present, septa are simple partitions
 - Some Orders have regular septations that are flared having a centrally plugged pore
 - * Produce zygospores (meiospore) via sexual reproduction (gametangial fusion)
 - * Asexual spores (mitospores), termed sporangiospores, form through cytoplasmic cleavage within a sac-like structure termed a sporangium
 - * Haploid genome
- Importance of the zygomycetous fungi
 - * Organic degraders/recyclers
 - * Useful in foodstuffs/fermentations
 - * Pathogens of insects/other animals
- Generalized life cycle
 - * Asexual stage (anamorphic; imperfect)
 - Hyphae develop erect branches termed sporangiophores
 - A thin-walled sac (sporangium) is walled off at the tip and fills with cytoplasm containing multiple nuclei (with collumella underneath sac)
 - Cytoplasmic cleavage and separation of nuclei into walled units produces sporangiospores
 - Thin sporangial wall (peridium) breaks releasing sporangiospores
 - Cytoplasmic cleavage and separation of nuclei into walled units produces sporangiospores
 - Thin sporangial wall (peridium) breaks releasing sporangiospores
 - Sporangiospores germinate to repeat the asexual life cycle

- The zygospore represents the teleomorphic phase (sexual; perfect form) of this phylum
 - * Results from the fusion of gametangia of heterothallic (two different mating types; designated "+" and "-") or homothallic (self fertile) strains
 - * Acts as a thick-walled resting spore
 - * Mating process
 - Hyphae make physical contact and exchange chemical signals to establish that each is of a different mating type
 - Hyphal tips (isogamous zygophores not distinguished from one another) grow, loop back towards one another, swell (becoming progametangia at this point) then fuse (anastomose)
 - Nuclei mix/fused and immediate region walled off from rest of hyphae (gametangium or zygosporangium)
 - Zygosporangium becomes thick walled to form the zygospore
 - Hyphae to the sides become empty appendages (suspensor cells)
 - Zygospore often forms ornate appendages
 - Zygospore is constitutively dormant for a time, but then germinates to produce a sporangium containing haploid sporangiospores
- Phylum Zygomycota two Classes
 - * Class Zygomycetes six orders
 - Order Mucorales
 - + Typical globose mitosporangium containing hundreds of non-motile asexual spores
 - + Contains saprobes and the common 'black bread molds' *Mucor*, *Rhizopus*, *Absidia*
 - + Contains the corpophilous (dung-fungus) *Pilobolus*, which can 'shoot' its single spored sporangium almost 6 feet in the direction of light
 - Order Entomophthorales insect pathogens
 - Order Kickxellales atypical zygomycete having regularly septate hyphae
 - Order Zoopagales mycoparasites
 - * Class Trichomycetes four Orders
 - Live nearly exclusively in the guts of arthropods
 - Does not produce sporangiospores, but instead trichospores
 - Unusual zygospore structure

- Phylogenetic relationships
 - * Probably non-monophyletic
 - * Order Glomales (Class Zygomycetes) was recently separated into its own Phylum, Glomeromycota
 - * One order, Amoebidiales, within Class Trichomycetes is now believed to be a protist produces amoeboid cells and chitin-less cell walls

The Glomeromycota

- ◆ These fungi were originally placed within the Phlyum Zygomycota
 - * Do not produce zygospores
 - Live as obligate, mutualisitic symbionts in >90% of all higher plants known at arbusular mycorrhizas (AM; endomycorrrhiza)
- Will not grow axenically
- ◆ Produce large, thick-walled spores in soils that germinate in the presence of a plant root

Develop non-septate hyphae that invade the root, then form a branch, tree-like arbuscules within the root

- ◆ Help plants thrive in nutrient poor soils, especially phosphorous
- Phylogenetics of the Glomeromycota
 - * Based upon rRNA sequences, this phylum is monophyletic
 - * Morphologically distinct from other fungi
 - * Probably had same ancestor as the phyla Ascomycota and Basidiomycota

The Ascomycota

- ◆ This phylum contains 75% of all fungi described to date
- Most diverse phylum being significant:
 - * Decomposers
 - * Agricultural pests (e.g., Dutch elm disease, powdery mildews of crops)
 - * Pathogens of humans and animals
- Asexual spores (mitospores)
 - * Variety of types
 - * Usually not used for taxonomic purposes
 - * Generally referred to as conidia
 - * Tend to be haploid and dormant
- Key feature is the ascus (pl., asci) sexual reproductive cell containing meiotic products termed ascospores

- Another significant structural feature a simple septum with a central pore surrounded by Woronin bodies
- The fruiting body of these fungi, termed an ascocarp, takes on diverse forms
 - * Flasked shaped perithecium
 - * Cup-shaped apothecium
 - * Closed structure cleistothecium
 - * Embedded structure pseudothecium
 - * Some ascospores are borne singly or not enclosed in a fruiting structure
- Asci also vary in structure:
 - * Unitunicate-operculate single wall with lid/opening (operculum); found only in apothecial ascomata (fruiting body tissue)
 - * Unituicate-inoperculate operculum replaced with an elastic ring; found in perithecial and some apothecial
 - * Protunicate no active spore shooting mechanism; ascus dissolves to release spores; characteristically produced by fungi that form cleistothecia
 - * Bitunicate double-walled ascus in which outer wall breaks down, inner wall swells through water uptake, then expels spores
- Ascomycetes differ from zygomycetes in both their basic anamorphic and teleomorphic characteristics:
 - * Anamorph mitospores (conidia) of ascomyetes are typically derived from modified bits of hyphae, whereas zygospores result from the cleavage of a multinucleated cytoplasm within a sporangium
 - * Teleomorph in zygomycetes, the anamorph and teleomorph often occur together and share the same nomenclature; in ascomycetes, anamorphs can be completely separated from the teleopmorph and are often given different binomials
- For the Ascomycota, anamorph + teleomorph = holomorph
- ◆ Life cycle of most ascomycetes typified by *Neurospora*
 - * Conidia/ascospores give rise to hyphae
 - * Hyphae may continue to grow and produce conidia
 - * Sexual reproduction begins with the differentiation of female hyphae into a trichogyne
 - * Trichogyne is fertilized by a conidium or by an antheridium (male reproductive structure)
 - * Plasmogamy occurs without karyogamy, i.e., cytoplasmic fusion without nuclear fusion, producing heterokaryotic hyphae (presence of two different nuclei in the same cytoplasm)
 - * The heterokaryotic hyphae undergo crozier formation
 - * Nuclear division continues followed by septation of the crozier to produce an ascus initial cell that contains one nucleus of each mating type, i.e., a dikaryotic state

- * Karyogamy occurs to form a diploid nucleus that then undergoes meiosis
- * Haploid nuclei are then walled off to form ascospores typically there are 4-8 meiotic products
- Phylogenetic relationships
 - * Phyla Ascomycota and Basidiomycota are sister groups that seem to share a recent common ancestor
 - * Phylum Ascomycota is monophyletic
 - * rRNA sequence analysis divides the Ascomycota into three subgroups, termed Subphyla
 - Taphrinomycotina (= Archiascomycetes or Archaeascomycetes) with one exception, members of this subphylum do not form ascomata (e.g., *Schizosaccharomyces* fission yeast)
 - Saccharomycotina (= Hemiascomycetes) with members of this subphylum do not form ascomata and are largely composed of the "true yeasts" (e.g., *Saccharomyces* baker's or brewer's yeast)
 - Pezizomycotina (= Euascomycetes) predominant hyphal forms that do form ascomata (e.g., *Neurospora*)

The Basidiomycota

- ◆ This phylum contains 30,000 different species or about 37% of all true fungi
- Most often recognized as mushrooms and toadstools, as well as other types of fruiting bodies in nature
- Very important for their ecological and agricultural impact
- ◆ Majority are terrestrial, although some can be found in marine or freshwater environments
- ◆ Oldest confirmed basidiomycete fossil is about 290 millions years old
- Some are molds, some are yeasts, and some are dimorphic
- Features similar to those of the Ascomycota
 - * Haploid somatic hyphae
 - * Septate hyphae
 - * Potential for hyphal anastomosis
 - * Production of complex fruiting structures
 - * Presence of a dikaryotic life cycle phase
 - * Production of a conidial anamorph

- Key differences
 - * Cell wall
 - Ascomycetes two layered
 - Basidiomycetes multilayered
 - * Septa
 - Ascomycetes
 - + Hyphal forms simple with central pore surrounded by Woronin bodies
 - + Yeast forms simple with micropores
 - Basidiomycetes
 - Sub-groups (clades) Hymenomycetes (*in Kendrick* = Holobasidiomycetes and Phragmobasidiomycetes) - dolipore type septum surrounded by a parenthosome
 - Sub-group (clade) Urediniomycetes (*in Kendrick* = Teliomycetes) central pore blocked by a pulleywheel occlusion
 - Sub-group (clade) Ustilaginomycetes (*in Kendrick* = Teliomycetes) dolipore-like, but parenthosome is absent
 - * Dikaryophase
 - Ascomycetes
 - + Restricted to ascogenous tissue
 - + Nuclear fusion and subsequent meiosis involve the formation of a crozier
 - Basidiomycetes
 - + Heterokaryotic nuclei (2 per cell)
 - + Not restricted to a tissue phase and may continue indefinitely
 - Perpetuated by the formation of a clamp connection at each septum of a dikaryotic hypha
 - Meiospore production- meiosis occurs within a specialized cell termed a basidium (pl., basidia), but the spores are borne *exogenously* on tapering outgrowths termed sterigmata (sing., sterigma)
- ◆ Very complex life cycles that vary among the different classes/species
- Generalized life cycle:
 - * Haploid basidiospores germinate to form hyphae with a single nucleus per cell (monokaryotic phase)
 - * Monokaryons can produce oidia (= conidia)
 - * Monokaryons of different mating types fuse <u>or</u> an odium attracts monokaryon of compatible mating type, then fuses
 - * Fusion (plasmogamy) results in dikaryotic hyphae (two nuclei per cell; heterokaryotic)

- * Fruiting body forms containing dikaryotic basidia
- * Nuclear (karyogamy) fusion occurs followed by meiosis
- * Sterigmata form on the surface of the basidium
- * Haploid nuclei migrate into the sterigmata as the basidiospore develops
- Mature basidiospore in many fungi released through a ballistic-like method involving a hylar (or hilar) drop (see Chapter 1 in Money's book for historical and descriptive details about this mechanism)
- Phylogenetics
 - * rDNA analysis has separated the Phylum Basidiomycota into three separate sub-groups (clades)
 - Hymenomycetes typical mushroom, toadstools, and "jelly fungi"
 - Urediniomycetes "rusts"
 - Ustilaginomycetes "smuts"
 - * Phylogenetic relationships between and within the sub-groups remains unclear

Taxonomy

- * Urediniomycetes
 - Agriculturally significant "rusts"
 - Example Puccinia graminis causes black stem of wheat
- * Ustilaginomycetes
 - Agriculturally significant "smuts"
 - Example Ustilago maydis corn smut fungus
- * Selected differences between 'rusts' and 'smuts' (adapted from Table 5.1 in Kendrick):
- * Hymenomycetes four clades
 - Homobasidiomycetes mushrooms, toadstools, bracket fungi, puffballs, earthstars
 - Jelly fungi
 - + Tremellomycetidae
 - + Dacrymycetales
 - + Auriculariales

The Mitosporic Fungi

- Many ascomycetous fungi produce asexual (mitotic) spores (anamorphic phase), but their teleomorph phase (sexual reproduction) is absent
- Taxonomically, such fungi are placed in an artificial category variously termed Deuteromycota (or Deuteromycotina) or Fungi Imperfecti

- Due to the absence of a teleomorph, these fungi are often given a provisional name termed a "form" genus/species
- ◆ If the teleomorph is discovered, the fungus renamed
- Example of teleomorph/anamorph dichotomy of names:
 - * Anamorph Aspergillus nidulans forms mitosporically-derived conidia, therefore classified within the form-phylum Deuteromycota
 - * Teleomorph *Emerciella nidulans* forms a cleistothecium containing ascospores, therefore classified within the Phylum Ascomycota
- Conidia are produced in a variety of ways, but never by cytoplasmic cleavage as in the Zygomycota
- Two main types of conidium development are the basis for the production for all types of conidia
 - * Thallic fragmentation process
 - * Blastic swelling process
- Most conidia are blastic in origin and are borne in various ways:
 - * Budding
 - * Extrusion of flask shaped cells termed phialides
 - * Aggregation of condiophores in stalks termed synnema or coremium
 - * On a pad-like surface (acervulus)
 - * Within a flask-shaped structure (pycnidium)
- Taxonomic divisions of the Fungi Imperfecti truly an artificial classification scheme based solely on conidial structures
 - * Hyphomycetes conidia borne on conidiophores
 - * Coelomycetes conidia borne on an acervulus or within a pycnidium
 - * Agonomycetes "Mycelia Sterilia" no conidia; sometimes sclerotia