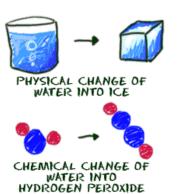
Biology

Unit 2

2:1 Matter and Energy


MATTER: anything that has mass and takes up space

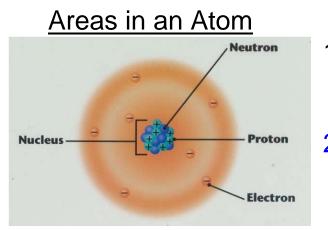
Three States (phases) of Matter

- 1. <u>SOLID</u>: matter with definite volume and shape
- 2. <u>LIQUID</u>: matter with definite volume but no definite shape
- 3. <u>GAS</u>: matter with no definite volume nor shape

How does Matter Change?

- <u>PHYSICAL CHANGE</u>: change in size, shape, or state of matter
 <u>e</u>.g. changing wood boards into a chair
- <u>CHEMICAL CHANGE</u>: change from one substance to another
 e.g. wood burning

ELEMENT: substance that cannot be broken down to simpler substances by ordinary means


<u>ATOM</u>: smallest unit of an element with all the properties of that element

<u>SYMBOL</u>: shorthand way to represent <u>one atom</u> of an element

e.g. Hydrogen – H Oxygen – O Carbon – C

Sodium – Na Iron – Fe Nitrogen – N

2:2 Structure of the Atom

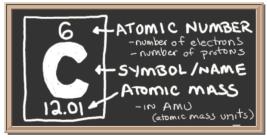
- 1. <u>NUCLEUS</u>: positively charged center of an atom containing almost all the atomic mass
- 2. <u>ELECTRON CLOUD</u>: negatively charged area around the nucleus with almost no mass

Atomic Particles

- 1. <u>PROTON</u>: positively charged particle in the nucleus, has mass (1 AMU)*
- 2. <u>ELECTRON</u>: negatively charged particle in the electron cloud, no mass
- 3. <u>NEUTRON</u>: neutral (no charge) particle in the nucleus, has mass (1 AMU)*
- *<u>AMU</u>: <u>Atomic Mass Unit</u>

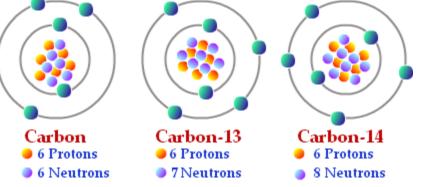
The charge of a proton (p+) is **EQUAL** and **OPPOSITE** to the charge of an electron (e-).

In ALL ATOMS the number of protons equals the number of electrons. ATOMS HAVE NO OVERALL ELECTRICAL CHARGE.


Elements are different because they have <u>different numbers</u> of protons and electrons than other elements.

<u>ATOMIC NUMBER</u>: the number of protons (or electrons) in one atom of an element

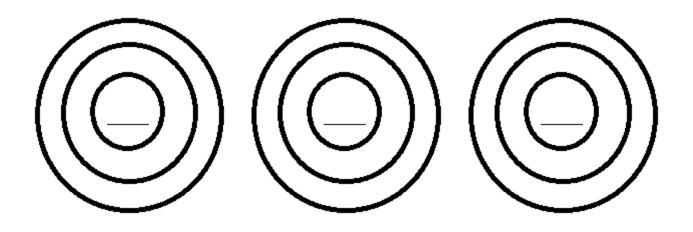
Atomic Number = # p+ = #e-


ATOMIC MASS NUMBER: the number of protons PLUS the number of neutrons in an atom of an element

Atomic Mass Number = # p+ + # n # n = Atomic Mass Number - # p+

Always round the Atomic Mass to the nearest whole number.

<u>ISOTOPES</u>: atoms of the same element (same atomic #) with different numbers of neutrons (different atomic mass)


ATOMIC MASS UNIT: (AMU) unit used to measure mass of atoms and atomic particles

1 AMU = mass of 1 p + = mass of 1 n

ENERGY LEVELS: paths that electrons follow around thenucleus1st EL- holds 2 e- or 1 pair2nd EL- holds 8 e- or 4 pairs3rd EL – holds 8 e- or 4 pairsInner ELs must be full before next EL begins to fill. All atoms

want full OEL(outer energy level).

- 2 in 1st 8 in 2nd
- 8 in 3rd

2:3 Compounds

<u>COMPOUND</u>: substance in which two or more elements are combined chemically

<u>MOLECULE</u>: smallest unit of a compound with all the properties of the compound

<u>FORMULA</u>: shorthand way to represent one molecule of a compound

<u>SUBSCRIPT</u>: number representing the number of atoms of an element in one molecule of a compound

example H₂O 2 atoms of Hydrogen 1 atom of Oxygen formula for 1 molecule of water

Facts About Making Compounds

1. Under certain conditions, most elements will chemically combine with other elements.

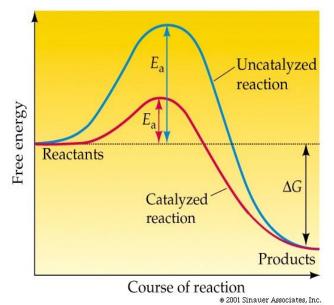
<u>CHEMICALLY ACTIVE</u>: elements that will chemically combine

<u>INERT</u>: elements with almost no chemical activity due to full outer energy levels

- 2. Each element has its own combining capacity.
- 3. In forming compounds, elements combine in definite proportions

4. A compound has different properties than the element of which it is made.

2:4 Energy


<u>ENERGY</u>: the ability to do work or cause change <u>Two Types of Energy</u>

- 1. <u>KINETIC ENERGY</u>: energy of motion, energy actually doing work or causing change
- 2. <u>POTENTIAL ENERGY</u>: energy of position, stored or chemical energy

Energy may change from one form to another. <u>ACTIVATION ENERGY</u>: energy needed to begin the change from potential energy to kinetic energy

LAW OF CONSERVATION OF MATTER AND ENERGY: matter and energy cannot be created nor destroyed but may be changed from one form to another

<u>CATALYST:</u> chemical substance that can reduce the amount of activation energy needed to start a reaction

2:5 Chemical Bonding <u>CHEMICAL BOND</u>: force holding elements (atoms) together to form compounds (molecules)

Elements form bonds to fill their Outer Energy Levels.

Two Types of Chemical Bonds

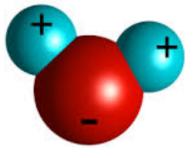
- 1.<u>COVALENT BOND</u>: bond formed when two atoms share electrons in their OEL, electrons orbit nuclei of both atoms
- 2.<u>IONIC BOND</u>: bond due to electrical attraction of two atoms which have transferred electrons from one to the other

<u>ION</u>: atoms which carry + or – electrical charge due to loss or gain of electrons

example

Na \rightarrow e- donor \rightarrow Na+ Cl \rightarrow e- acceptor \rightarrow Cl-NaCl \rightarrow salt \rightarrow held together by IONIC BOND \rightarrow the attraction of oppositely charged ions

 $\frac{\text{DIATOMIC MOLECULE}: \text{ compound formed when}}{\text{two atoms of the same element covalently bond} \\ \text{examples} \quad \text{H}_2 \quad \text{O}_2 \quad \text{N}_2 \quad \text{Cl}_2$


2007 Encyclopædia Britannica, Inc

2:6 Water and Solutions

Water is a polar molecule.

POLAR: uneven distribution of charge

They do not share electrons equally, so Hydrogen and Oxygen have charged poles. H is slightly positive and O is slightly negative.

PROPERTIES OF WATER:

- 1. <u>COHESION:</u> water molecules stick to each other as a result of attractive forces between hydrogen bonds a. Example: how water has the ability to travel from roots to the leaves
- 2.<u>ADHESION:</u> attractive forces between two particles of different substances, such as water and glass
 - a Example: Insects on the surface of water

3.<u>HIGH HEAT CAPACITY:</u> absorb and release large amounts of energy without change in

temperature

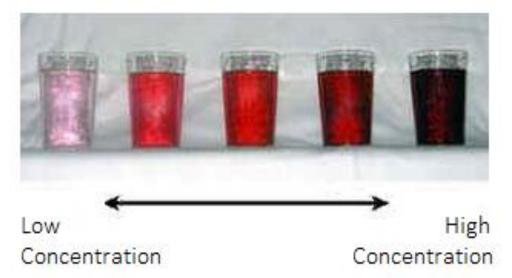
a.Example: Earth's oceans stabilize global temperatures enough to allow life to exist

- 4. <u>SOLVENT:</u> fluid that dissolves solutes
 - a Example: Because water is polar it has the ability to dissolve a large number of substances (proteins, sugars, etc)
 - b. Oxygen and Carbon Dioxide dissolve in water in the blood and then carry to different parts of the body
- 5.DENSITY OF ICE-solid water is less dense than liquid water
 - a.EXTREMELY IMPORTANT! Bodies of water freeze from the top down and not the bottom up.

Write 1-2 sentences explaining what the effect would be if water froze from the bottom up.

Water has <u>CAPILLARITY</u>: attraction of molecules that results in the rise of the surface of a liquid when in contact with a solid (straws, plant roots)

Solutions


<u>SOLUTION:</u> mixture in which one or more substances are uniformly distributed in another substance

SOLUTE: substance being dissolved

SOLVENT: substance that dissolves the solute

<u>CONCENTRATION:</u> amount of solute dissolved in a fixed amount of the solution

Using a lot of Kool-Aid mix will make your Kool-Aid taste stronger because it would be highly concentrated.

2:7 Acids, Bases, and the pH Scale

<u>ACIDS</u>: ionic compounds that break apart in water to form positively charged hydrogen ions (H+)

Examples – Vinegar, Citrus Fruits, Stomach Acid

(Hydrochloric Acid)

- The strength of an acid is determined by the concentration of hydrogen ions (H+) in the solution.
- The more H+ ions the stronger the acid.

Characteristics of Acids:

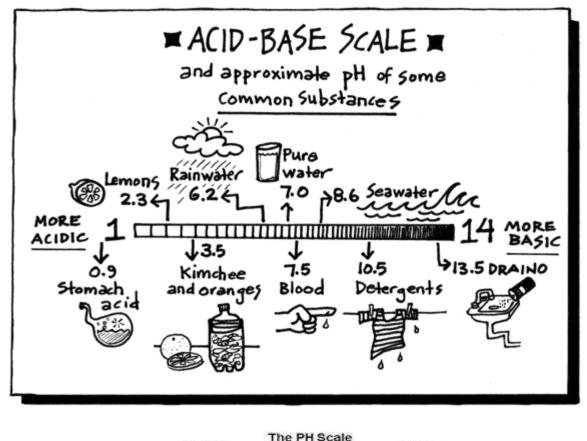
- Acids taste sour
- Acids react strongly with metals (Zn + HCI)
- Strong Acids are dangerous and can burn your skin

BASES: ionic compounds that break apart in water to form

negatively charged hydroxide ions (OH-)

Examples – Ammonia, Lye (Sodium Hydroxide)

• The strength of a base is determined by the concentration of Hydroxide ions (OH-) in the solution.


- The more OH- ions the stronger the base.
- Solutions containing bases are often called alkaline.

Characteristics of Bases

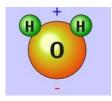
- Bases taste bitter and feel slippery
- Strong bases are very dangerous and can burn your skin

pH SCALE: a scale that measures the strength of an acid or base in a solution

- The pH scale is a measure of the hydrogen ion concentration.
- It spans from 0 to 14 with the middle point pH 7 being neutral, neither acidic nor basic.
- pH number **GREATER** than 7=base
- pH number LESS than 7=acid
- 0 is the strongest acid and 14 is the strongest base.

<u>INDICATOR</u>: a special type of compound that changes color as the pH of a solution changes, thus indicating the pH of the solution

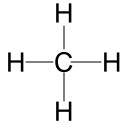
<u>BUFFER:</u> chemical substances that neutralize small amounts of acids or bases (bringing the pH closer to 7)


2:8 Inorganic versus Organic

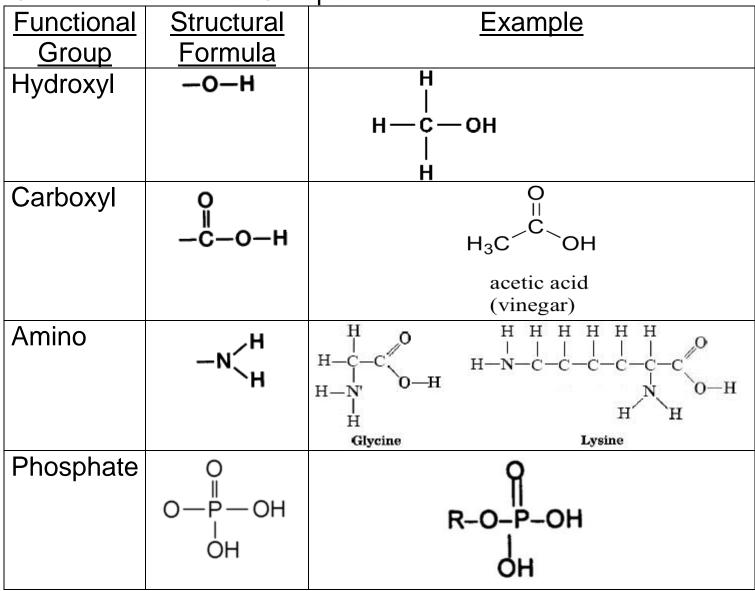
<u>ORGANIC</u> : from life INORGANIC: not from life

INORGANIC COMPOUNDS: compound not a product of living organisms

Important Inorganic Compounds


- 1.<u>OXYGEN(O₂): needed to release energy from food</u> through cellular respiration
- 2. <u>CARBON DIOXIDE</u> (CO₂): needed for photosynthesis, supplies carbon to living things
 - a. **exception: this inorganic compound contains a carbon atom**
- 3.<u>WATER</u> (H₂O): most abundant inorganic compound, most abundant of all compounds in living things.

ORGANIC COMPOUNDS: carbon containing compounds manufactured by living things


Organic compounds may be represented by

- Molecular formula $\rightarrow CH_4$
- Structural formula \rightarrow

<u>FUNCTIONAL GROUPS:</u> the portion of a molecule that is active in a chemical reaction and that determines the properties of many organic compounds

Common Functional Groups:

STRUCTURAL FORMULA: map of the atoms and bonds in a molecule

- Symbols represent atoms
- Lines represent bonds
 - single bond 1 pair e- shared
 - = double bond 2 pairs e- shared
 - \equiv triple bond 3 pairs e- shared

STRUCTURAL FORMULAS ARE IMPORTANT BECAUSE many organic compounds have the same molecular formula and different structures.

BIOSYNTHESIS: manufacture of organic compounds by living things

2:9 Types of Large Carbon Molecules

MONOMERS: small, simple molecules

<u>POLYMERS:</u> monomers combined together to create more complex molecules

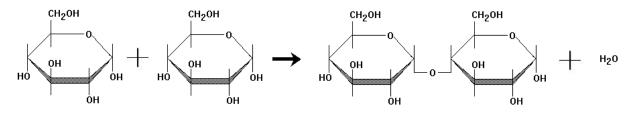
MACROMOLECULES: large polymers

- 1. Carbohydrates
- 2. Lipids
- 3. Proteins
- 4. Nucleic Acids

Order smallest to largest: Monomers→Polymers→Macromolecules 2:10 Carbohydrates

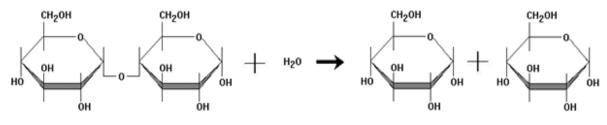
<u>CARBOHYDRATES</u>: organic compounds made of carbon, hydrogen, and oxygen; H and O in a 2:1 ratio; examples: sugars, starches, cellulose

<u>SUGARS</u>: carbohydrates made by plants, provide fuel (energy) for living things

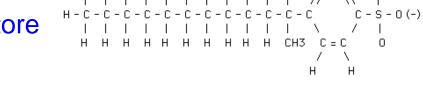

Two Types of Sugars

- MONOSACCHARIDES: simple sugars containing carbon, hydrogen, and oxygen atoms in a 1:2:1 ratio; C₆H₁₂O₆ or C₅H₁₀O₅; examples - glucose, galactose, fructose.
- 2.<u>DISACCHARIDES</u>: two simple sugars combined; C₁₂H₂₂O₁₁; examples - maltose, sucrose, lactose.

<u>POLYSACCHARIDES</u>: complex carbohydrates made of three or more simple sugars chemically combined; example starches, cellulose.


<u>DEHYDRATION SYNTHESIS</u>: the formation of a large molecule by chemically combining 2 small molecules and removing a water molecule

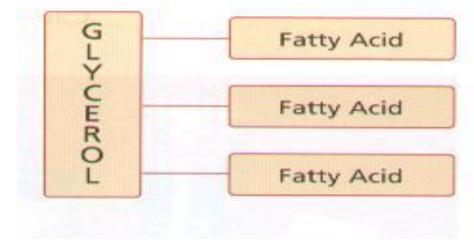
 $C_6H_{12}O_6 + C_6H_{12}O_6 \rightarrow C_{12}H_{22}O_{11} + H_2O$


HYDROLYSIS: the chemical breakdown of a large molecule into small molecules by the addition of a water molecule

 $C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$

2:11 Lipids and Proteins <u>LIPIDS</u>: large, nonpolar organic molecules that store high amounts of energy

• Contain C, H, and O



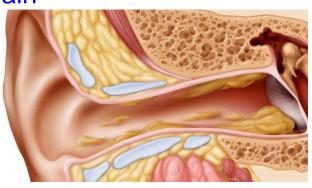
н

Н

0

- Made up of <u>FATTY ACIDS</u>: unbranched carbon chains that make up most lipids
- examples fats, oils, waxes

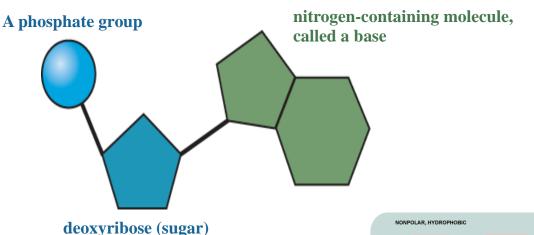
Three classes of lipids important to living things:


1. Triglycerides	3	
DEFINITION	CHARACTERISTICS	EXAMPLES
SATURATED: composed of saturated fatty	 High melting point Hard at room T° 	Saturated fats are found in animal products such as butter, cheese, whole milk, ice cream, cream, and fatty meats, and oils such
acids		as coconut, palm, and palm kernel oil
UNSATURATED: Composed of unsaturated fatty	 Soft or liquid at room T° 	
acids		Food Containing Unsaturated Fats

2.<u>PHOSPHOLIPIDS:</u> have two, rather than three, fatty acids attached to a molecule of glycerol

a.Example: Make the cell membrane

- 3.<u>WAXES:</u> type of structural lipid consisting of a long fatty-acid chain joined to a long alcohol chain
 - a.Example: ear wax to prevent microorganisms from entering the ear canal



Lipids have more bonds than carbohydrates.

- Breaking bonds releases energy
- Lipids have high potential energy

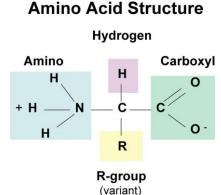
2:12 Nucleic Acids and Proteins <u>NUCLEIC ACIDS</u>: complex biological compounds made of chains of nucleotides, serve as instructions for protein synthesis; examples – DNA, RNA

- Functions: Store hereditary information; Energy storing molecule (ATP)
- Monomers-<u>NUCLEOTIDE</u>: made up of a phosphate group, a five-carbon sugar, and a ring-shaped nitrogenous base

<u>PROTEINS</u>: organic compounds composed mainly of carbon, hydrogen, oxygen, and nitrogen

<u>AMINO ACIDS</u>: "building blocks" of protein

Monomers of Proteins


Non OLAR, IN DROF HODIC		POLAR, UNCHARGED			
Alanine Ala A MW = 89	^{- оос} - сн - с н ₃ ,		OUPS H-	сн ⁻ соо ⁻ № Н ₃	Glycine Gly G MW = 75
Valine Val V MW = 117	- оос Н ₃ ^N	ж ^{сн} а	но-сн ₂ -	сн< ^{соо-}	Serine Ser S MW = 105
Leucine Leu L MW = 131	- оос _{Н₃№} >сн - с	сн ₂ - сң ^{сн} 3	он_ сн ₃ сн -	сн< ^{СОО⁻}	Threonine Thr T MWV = 119
Isoleucine Ile I MW = 131	- 00C H ₃ N +3+	сн ₂ -сн ₃	HS - CH ₂	- сн ^{<соо⁻ № Н₃}	Cysteine Cys C MW = 121
Phenylalanine Phe F MW = 131	- оос н ₃ ү	сн ₂	но - 🖉 - сн ₂	- сңС ^{соо-}	Tyrosine Tyr Y MW = 181
Tryptophan Trp W MW = 204	- оос _{Н₃^N}	CH2 - C	0 C - CH2	-сн ^{<соо°}	Asparagine Asn N MW = 132
Methionine Met M MVV = 149	- 00C H ₃ N +3 ^N	H ₂ - CH ₂ - S - CH ₃	NH ₂ 0 C - CH ₂ - CH ₂	- сн < ^{соо-} № Н ₃	Glutamine Gln Q MW = 146
Proline Pro P MW = 115	OOC CH	сн ₂ сн ₂	⁺ NH ₃ – CH ₂ – (СН	POLAR BASIC 2)3 - CH COO N H3	Lysine Lys K MW = 146
Aspartic acid Asp D MW = 133	POLAR ACIDIC	сн ₂ - с ₀	NH ₂ NH ₂ C - NH - (CH	₂)3-сн< ^{СОО-} МН ³	Arginine Arg R MW = 174
Glutamine acid Glu E MW = 147	- оос н ₃ ү	$CH_2 - CH_2 - C = 0$	/=C-CH2-0 HN≫NH	сн ^с оо ⁻ № Н ₃	Histidine His H MW = 155

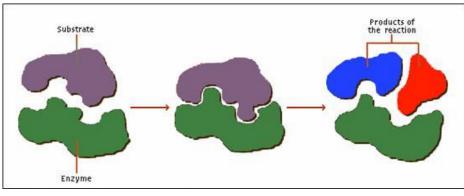
POLAR, UNCHARGED

- <u>PEPTIDE BOND</u>: when two amino acids form a covalent bond to make proteins by releasing a water molecule
- The 20 amino acids are the "alphabet" from which proteins are formed

The R group is what changes an amino acid and gives proteins very different shapes

 Different shapes allow proteins to carry out many different activities in living things

- Each organism makes its own individual proteins according to the instructions of its DNA
- You ingest plant or animal protein, break it down into amino acids (HYDROLYSIS), and use the amino acids to manufacture your proteins (DEHYDRATION SYNTHESIS).

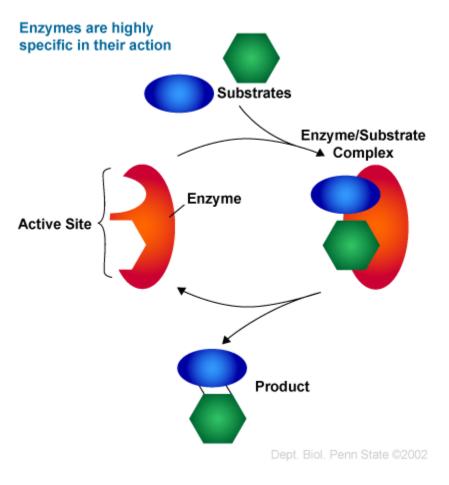

2:13 Enzymes

<u>CATALYSTS</u>: substance that changes the rate of a chemical reaction without being affected by the reaction

<u>ENZYMES</u>: proteins that act as catalysts in living organisms; example - digestive enzymes

<u>SUBSTRATE</u>: substance(s) that an enzyme causes to react <u>ACTIVE SITE</u>: area where enzyme and substrate fit together

during reaction



How do enzymes work?

- 1. The enzyme and the substrate fit together at the active site forming the enzyme-substrate complex.
- 2. Reaction occurs.
- 3. Enzyme is released and may be re-used.

Denaturing Proteins

- 1.Change in Temperature (Fever)
- 2. Change in pH levels
- 3. Introducing an inhibitor (snake venom)

Enzymes can work faster if you have an activator. Your metabolism can be controlled through enzyme activators.

2:14 Summarize Macromolecules

Macromolecule	Monomer	Function	Example
Carbohydrate	Monosaccharide	• Energy	Glucose
		source	• Fructose
		 Structural materials 	 Starch
Proteins	Amino Acids	Structural	Soy beans
		Defensive	Cheese
		 Catalysts 	Pumpkin
			seed
			• Enzymes
Lipids	Glycerol and	Store	• Oils
	Fatty Acids	energy	 Fatty
		 Make-up cell 	meats
		membrane	
Nucleic Acids	Nucleotide	Genetic	• DNA
		info	• RNA
		 Energy 	• ATP
		source	

-