BIOMASS POWER

- A Techno-Economic Analysis

Presented at:

Sensitisation Workshop and Skill Development Training on Sub-MW Scale Biomass Power Generation for Southern Region

4th Feb 2013

Presented by: Dinesh J Kagathi, COO

AllGreen Energy "A Cleaner, Brighter Future"

Technological Options for Biomass to Energy

Gasification Vs. Combustion & Why Gasification?

Why IISc technology?

Technology configuration in AllGreen's plants

Technological Options for Biomass to Energy

Gasification Vs. Combustion & Why Gasification?

Why IISc technology?

Technology configuration in AllGreen's plants

Gasification Vs. Combustion for Power - A Technical Comparison

Parameter	Combustion	Gasification	
Technology Status	Proven	Commercially Proven, Relatively new	
Capacity installed in India	~ 2862 MW (incl. co-gen plants)	~ 140 MW	
Scale of operation	Min 6 MW	Scalable from 100 kW upwards	
Thermal Efficiency	20 – 23% (w/o co-gen) 75 – 80% (with co-gen)	30-35% (w/o waste heat recovery) 60% (with heat recovery)	
Feedstock Adaptability	Can accept biomass / coal / both Certain biomass (agri wastes with alkali content) can cause coating of tubes. Reduces PLF	Designs for coal and biomass are different. Biomass gasifiers can accept all biomass Low density agri wastes have to be briquetted. Alkali content in biomass has no effect on PLF	
By-products	Nil	Charcoal / Activated Carbon, VAM Chilling from waste heat	
Emissions	Yes	Particulate – Negligible, Others – within permissible limits	
Water consumption	5 – 6 ltrs/kWh	~ 1.5 ltr / kWh	
Capital costs / MW	INR 4.6 – 5.6 Cr	INR 8.5 – 9.0 Cr	

GASIFICATION Vs. COMBUSTION

TO BE NOTED

The reduced variable costs with gasification more than compensates for the higher fixed costs

WHY GASIFICATION?

\Rightarrow Competitiveness

 \Rightarrow Although "capital costs" are higher with gasification, the total cost of generation is lower

- \Rightarrow Higher thermal efficiency leads to lower biomass costs
- \Rightarrow The incremental capital costs of Rs. 3.5 Cr/MW is offset through savings in Biomass costs
- \Rightarrow Increasing cost of biomass makes gasification even more competitive

\Rightarrow Multiple revenues

- \Rightarrow Charcoal / activated carbon as by products
- \Rightarrow Waste heat can also be used for revenue generation

\Rightarrow Lower environmental footprint

- \Rightarrow Negligible emissions
- \Rightarrow Lower water consumption
- \Rightarrow Contributes to building a good relationship with local community
- \Rightarrow Scalability

 \Rightarrow Capacity can be increased in small steps to match biomass availability

These factors lead to the selection of gasification technology

Technological Options for Biomass to Energy

Gasification Vs. Combustion & Why Gasification?

Why IISc technology?

Technology configuration in AllGreen's plants

OPTIONS FOR BIOMASS GASIFICATION TECHNOLOGY IN INDIA

TECHNOLOGY PROVIDERS & TYPE

- Indian Institute of Science Downdraft, open top
- Ankur Scientific Downdraft, closed top
- TERI Downdraft, closed top
- Grain Processing Updraft

WHY IISc TECHNOLOGY?

 \Rightarrow Feedstock flexibility

 \Rightarrow Can work with any biomass after suitable preparation such as cutting, drying & briquetting

 \Rightarrow Gas Quality (Critical for health of engine)

 \Rightarrow Proven to deliver producer gas with least tar & particulate matter (measured to be as low as 4 ppm)

 \Rightarrow Various design features to reduce tar & particulate production

 \Rightarrow An efficient cooling and cleaning system to remove the tar & particulate matter produced

 \Rightarrow Proven in commercial environments

 \Rightarrow More than 70 installations for electricity generation & about 30 installations for thermal applications (in India and abroad)

 \Rightarrow More than 20 installations generating more than 100 kW electricity

 \Rightarrow Technology licensed to 9 parties in India and abroad

 \Rightarrow Enjoys confidence of engine manufacturers

 \Rightarrow Cummins and GE Jenbacher offer their gas engines with commercial warranties when integrated with IISc technology gasifiers

Technological Options for Biomass to Energy

Gasification Vs. Combustion & Why Gasification?

Why IISc technology?

Technology configuration in AllGreen's plants

TECHNOLOGY CONFIGURATION FOR ALLGREEN'S PLANTS

- Grid Synchronized Plant
- Combined cycle configuration comprising of:
 - 3 lines of "gasifier gas engine" each line generating 1.95 MW
 - Bottoming cycle plant generating 0.55 MW
 - Uses waste heat from engine exhaust
 - Steam generated from waste heat in a Waste Heat Recovery Boiler
 - Steam expanded in a turbine to generate electricity
 - Total generation capacity (3 X 1.85+0.55 = 6.4 MW)
- VAM Chillers using engine jacket heat for generating chilling capacity for Process Chilling & cold storage
- Provision for setting up cold storage
- Provision for adding activated carbon plant

PROCESS FLOW FOR 6.5 MWBIGCC POWER PLANT, ACTIVATED CARBON PLANT & COLD STORAGE

Technological Options for Biomass to Energy

Gasification Vs. Combustion & Why Gasification?

Why IISc technology?

Technology configuration in AllGreen's plants

Plant Capacity : 6.4 MW

Location : SIPCOT, Perundurai, Erode Distrct, TN AllGreen Energy

Total Project Cost : Rs. 60.25 Cr

Power Generation

Particulars	Million Units	
a) Gross Units generated	46.08	
b) Net Exportable	39.90	
c) Auxiliary Consumption	6.18 (13.41%)	
d) Plant Load Factor	82%	
e) Billed Electricity (after transmission losses)	37.26	

CER Generation - 33,917 pa

Charcoal Generation : 3375 MT/annum

Wood	5 %
Agri Residues	10 %

Operational Parameters

Biomass Mix

Biomass	Cal Value as received (kCals/kg)	Proportion	Quantity (tons/ annum)
Coconut Fronds	2999	20%	8,079
Cane Trash	3057	50%	19,813
Wood	3300	30%	11,012

Station Heat Rate - 2587 kCal/kWh

Water Consumption - 220 cu.m/day

Profitability Analysis (Levelised)

Question / Clarifications

THANK YOU

