Linear Regression

- Linear regression with one predictor
- Assess the fit of a regression model
 - Total sum of squares
 - Model sum of squares
 - Residual sum of squares
 - $-R^2$
- Test for model significance F test
- Interpret a regression model

What is Regression?

- A way of predicting the value of one variable from another.
 - It is a hypothetical model of the relationship between two variables.
 - The model used is a linear one.
 - Therefore, we describe the relationship using the equation of a straight line.

Assumptions of Simple Linear Regression

- For each value of x, Y are randomly sampled and independent.
- For any value of X in the pop'l there exists a normal distribution of Y values
- There is homogeneity of variances in the population. ie. the variance of the normal distribut. of Y values in pop'l are equal for all of values of x.
- The relationship of x and y is linear.
- X is measured without error

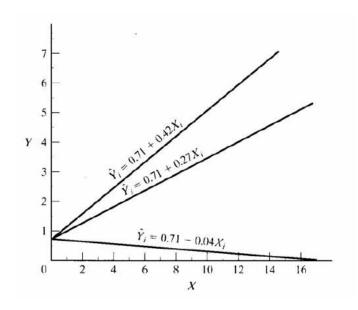
Describing a Straight Line

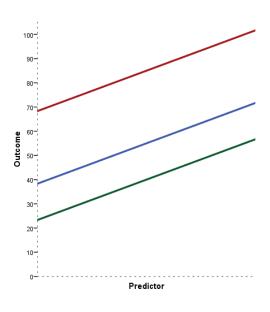
$$Y_i = b_0 + b_i X_i + \varepsilon_i$$

- b_i
 - Regression coefficient for the predictor
 - Gradient (slope) of the regression line
 - Direction/strength of relationship
- **b**₀
 - Intercept (value of Y when X = 0)
 - Point at which the regression line crosses the Yaxis (ordinate)

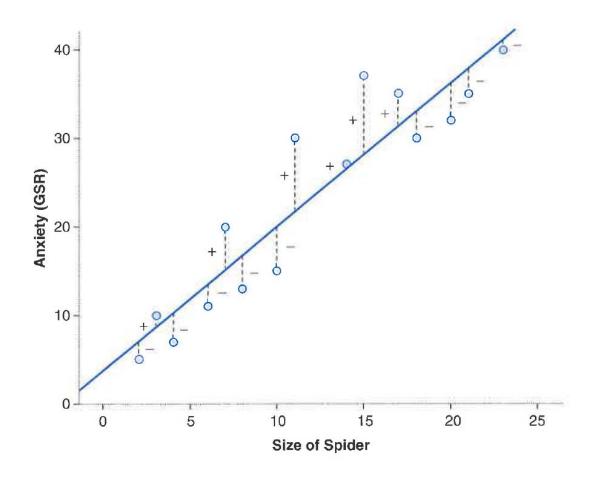
Intercepts and Gradients

$$Y_i = b_0 + b_i X_i + \varepsilon_i$$





The Method of Least Squares



This graph shows a scatterplot of some data with a line representing the general trend. The vertical lines (dotted) represent the differences (or residuals) between the line and the actual data

How Good Is the Model?

- The regression line is a model based on the data.
- This model might not reflect reality.
 - We need some way of testing how well the model fits the observed data.
 - How?

Sums of Squares

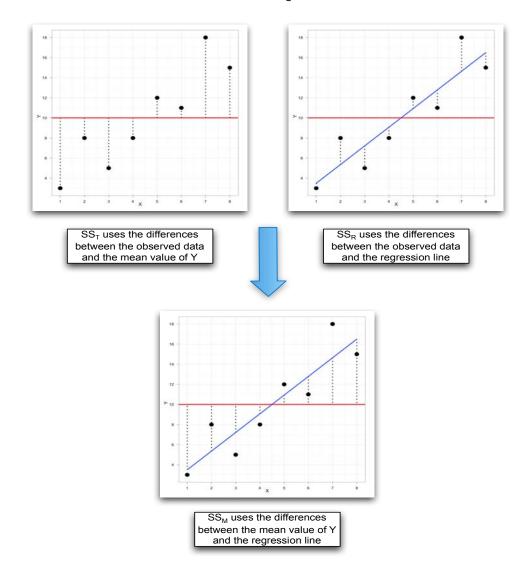
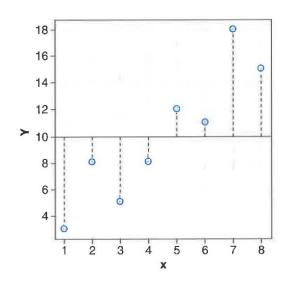


Diagram showing from where the regression sums of squares derive

Total SS (SS_T)

- \bullet SS_T
 - Total variability (variability between scores and the mean).
- TSS is the sum of the squared residuals when the most basic model is applied to the data.
- How good is the mean as a model to the observed data?

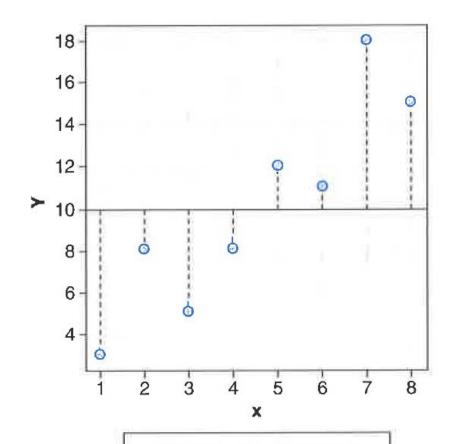


Total SS (SS_T)

- SS_T
 - Total variability

 (variability between scores and the mean).

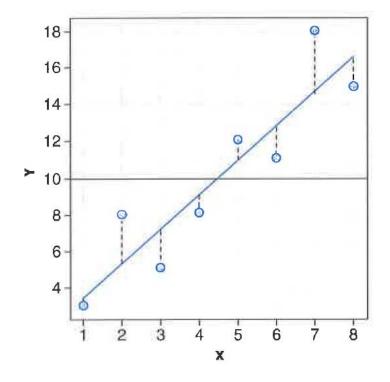
total SS =
$$\sum (Y_i - \overline{Y})^2$$



SS_T uses the differences between the observed data and the mean value of *Y*

Residual SS or Error SS (SS_R)

- SS_R
 - Residual/error variability (variability between the regression model and the actual data).
- Difference between the observed data and the model
- This represents the degree of inaccuracy when fitting the best fit model to the data.

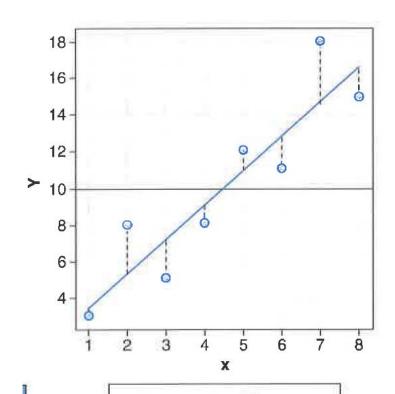


Residual SS

• SS_R

Residual/error
 variability (variability
 between the
 regression model and
 the actual data).

residual SS =
$$\sum (Y_i - \hat{Y}_i)^2$$

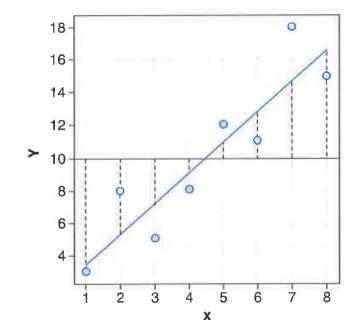


SS_R uses the differences between the observed data and the regression line

Model SS or Regression SS (SS_M)

- SS_M
 - Model variability (difference in variability between the model and the mean).
- This is the improvement we get from fitting the model to the data relative to the null model.

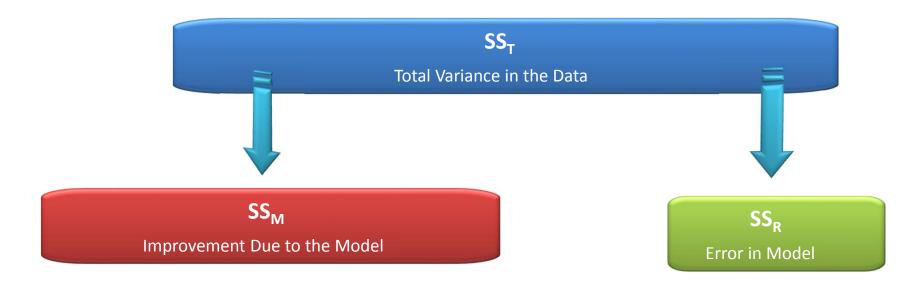
regression SS =
$$\sum (\hat{Y}_i - \overline{Y})^2$$



SST = SSR + SSM

- How to we get large SSM?
- What happens if the SSM is large?
- Regression model is much different from using the mean as the outcome, therefore regression model improves the outcome.
- So, we can calculate the proportion of improvement due to the model.
- SSM/SST, percentage of variation explained by the model.

Testing the Model: ANOVA



- If the model results in better prediction than using the mean, then we expect SS_M to be much greater than SS_R
- SST = SSM + SSR

Evaluating the quality of the Model: R²

- \bullet R^2
 - The proportion of variance accounted for by the regression model.
 - The Pearson Correlation Coefficient Squared

$$R^2 = \frac{SS_M}{SS_T}$$

SS for model testing

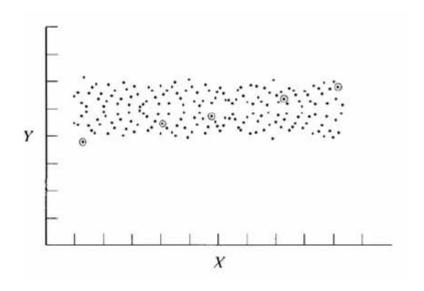
• A second use of the sum of squares values is to test the model.

```
Testing H_0: \beta = 0 against H_A: \beta \neq 0
```

- Evaluate the amount of systematic variance (regression) divided by the amount of unsystematic (residual) variance.
- The magnitude of the sum of squares is dependent on the number of observations

SS for model testing

Testing H_0 : $\beta = 0$ against H_A : $\beta \neq 0$



SS for model testing

- F test "termed variance ratio test"
- 1. We divide the SSM and SSR by their respective degrees of freedom (DF).
 - DF for SSM is the number of parameters in the model.
 - DF for SSR number of obs number of parameters in the model.

Degrees of freedom

- Given a statistic (mean, var) and sample size of a population.
- DF are the number of terms that are independent, such that when any of the other terms are known, the value can be estimated.

Testing the Model: ANOVA

- Mean squared error
 - Sums of squares are total values.
 - They can be expressed as averages, divided by DF terms.
 - These are called mean squares, MS.

$$F = \frac{MS_M}{MS_R}$$

EXAMPLE 17.1 Wing Lengths of 13 Sparrows of Various Ages. The Data Are Plotted in Figure 17.1.

Age (days) (X)	Wing length (cm) (Y)			
3.0	1.4			
4.0	1.5			
5.0	2.2			
6.0	2.4			
8.0	3.1			
9.0	3.2			
10.0	3.2			
11.0	3.9			
12.0	4.1			
14.0	4.7			
15.0	4.5			
16.0	5.2			
17.0	5.0			

n = 13

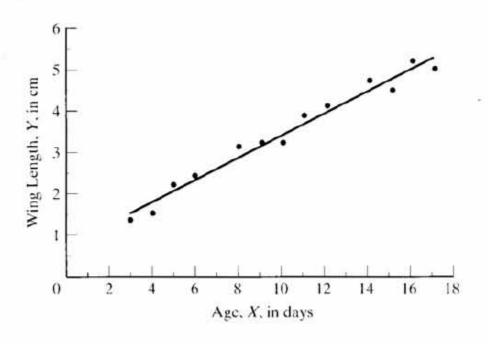


FIGURE 17.1: Sparrow wing length as a function of age. The data are from Example 17.1.

$$b = \frac{\sum xy}{\sum x^2} \qquad \alpha = \overline{Y} - \beta \overline{X}.$$

Worked example

TSS

total SS =
$$\sum y^2 = 171.30 - \frac{(44.4)^2}{13}$$

= 171.30 - 151.6431
= 19.656923

Model SS

regression SS =
$$\frac{(\sum xy)^2}{\sum x^2} = \frac{(70.80)^2}{262.00}$$

= $\frac{5012.64}{262.00}$
= 19.132214

Worked example

TABLE 17.1: Summary of the Calculations for Testing H_0 : $\beta = 0$ against H_A : $\beta \neq 0$ by an Analysis of Variance

Source of variation	Sum of squares (SS)	DF	Mean square (MS)
Total $[Y_i - \overline{Y}]$	$\sum y^2$	n - 1	
Linear regression $[\hat{Y}_i - \overline{Y}]$	$\frac{\left(\sum xy\right)^2}{\sum x^2}$	1	regression SS regression DF
Residual $[Y_i - \hat{Y}_i]$	total SS – regression SS	n-2	residual SS residual DF

DF for Regression (model DF) is 1 in simple linear regression Residual DF (Error DF) is equal n - 2

Worked example

Source of variation	SS	DF	MS
Total	19.656923	12	
Linear regression	19.132214	1	19.132214
Residual	0.524709	11	0.047701

$$F = \frac{19.132214}{0.047701} = 401.1$$

$$F_{0.05(1),1,11} = 4.84$$

Therefore, reject H_0 .

$$P \ll 0.0005$$
 [$P = 0.000000000053$]

Regression: An Example

- A record company boss was interested in predicting record sales from advertising.
- Data
 - 200 different album releases
- Outcome variable:
 - Sales (CDs and downloads) in the week after release
- Predictor variable:
 - The amount (in units of £1000) spent promoting the record before release.

Output of a Simple Regression

• In R:

summary(albumSales.1)

>Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 *** adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 65.99 on 198 degrees of freedom Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313 F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16

Using the Model

```
Record Sales<sub>i</sub> = b_0 + b_1Advertising Budget<sub>i</sub>
= 134.14 + (0.09612 \times \text{Advertising Budget}_i)
```

```
Record Sales<sub>i</sub> = 134.14 + (0.09612 \times \text{Advertising Budget}_i)
= 134.14 + (0.09612 \times 100)
= 143.75
```