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ABSTRACT 
 

BIOPHYSICAL AND PHYSIOLOGICAL ECOLOGY OF LOGGERHEAD TURTLE 

NESTS 

AT ZAKYNTHOS AND KYPARISSIA, GREECE 

 

Jack S. Suss 

 

 

Sea turtles bury large masses of eggs on beaches. Burying eggs deeply in sand 

provides a humid environment with fairly constant temperature, but also constrains the 

diffusion of gases. Zakynthos and Kyparissia, Greece host the largest loggerhead turtle 

rookeries in the Mediterranean, and the sand on the beaches visibly differs in texture. I 

used these differences as a natural experiment to determine how the physical 

characteristics of sand affect the physiology of loggerhead turtle nests in 2009 and 2010. 

Temperature at nest depth was lower on Marathonissi (26.7 ± 1.6°C) and Laganas (27.9 ± 

0.8°C) than all other beaches (30.3 ± 1.5°C) and provided conditions for male hatchling 

production during this period. Beach temperatures on Kyparissia were higher than 

ambient weather conditions because topography of the beach allowed for increased 

absorbance of solar radiation. Based on soil water characteristic curves, eggs on the 

beaches of Greece were not under hydric stress. Diffusivity varied as a function of air-

filled porosity in sand from sea turtle nesting beaches in Greece, Costa Rica and 

Equatorial Guinea. Conductivity varied as a function of air-filled porosity and median 

grain size. The oxygen concentration of sea turtle nests can be affected by both diffusion 

and bulk flow of gases, especially for beaches with large tidal amplitudes. Hatching 

success of nests was lowest on Kyparissia A (67.6 ± 4.5%) and maximum nest 
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temperature was lowest on Marathonissi beach (29.4 ± 0.4°C). All other beaches had a 

hatching success of 83.0 ± 4.7% and a maximum temperature of 33.1 ± 0.4°C. Minimum 

oxygen concentration within the nest ranged from 17.1 to 20.1 kPa among all nests. Sand 

grain size characteristics, water content, clutch size, temperature, and ambient sand 

oxygen concentration predicted nest oxygen concentration when inactive pore space was 

consideredGas exchange may limit clutch size, and may be an important factor in the 

evolution of multiple nesting events in sea turtles. As beaches continue to be developed, 

eroded or renourished, the undisturbed state of the interstitial environment must be 

understood in order to properly mitigate and restore the beach ecosystem. 
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CHAPTER 1: INTRODUCTION 

 

Background on Underground Nesting 

Many reptiles bury clutches of eggs underground where they are incubated by the 

soil environment. Eggs contain the embryo and the resources, in the form of yolk and 

albumin, needed for growth and development, but must exchange heat, water and gases 

with the environment. The rates of these exchanges are limited in part by the egg shell 

and in part by the physical properties of the soil. Soil naturally exists in a matrix of solid, 

liquid and gas and the movement of materials through the matrix is dependent on the 

relative proportions of each of these phases. There are relatively few examples in the 

herpetological literature about how the incubation medium affects the physiology of egg 

clutches, but there is increasing awareness that climate can influence soil properties.  

Sea turtle nests are large masses of metabolically active tissue buried in tropical 

and subtropical beaches worldwide. To survive from incubation through hatching, the 

egg clutch exchanges large and measurable amounts of heat, water and gases with the 

incubation environment. The biophysical properties of sand that influence these 

physiological properties of the developing embryos include thermal, hydric and gas 

transfer. Since sea turtles display philopatry and nest site fidelity, the beaches used for 

incubation tend to be favorable for incubation. 

Temperature is important for sex determination of hatchlings and provides the 

thermal limitations for incubation. For loggerhead turtles (Caretta caretta) in the 

Mediterranean, females are produced when incubation temperatures are greater than 
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29.3°C (Mrosovsky et al. 2002). The upper thermal limits of hatchling emergence for 

leatherback turtle (Dermochelys coriacea) and Olive ridley turtle (Lepidochelys olivacea) 

are 36 and 37.5°C, respectively (Drake and Spotila 2002).  

Water moves through the environment through gravitational and water potential 

gradients and the water potential of the incubation environment must be greater than the 

water potential of the egg contents for successful development. The turtle egg content 

water potential is -750 kPa (Booth 2005) and would lose water to any incubation 

environment drier than that.  

Through metabolic processes, the clutch of eggs acts as an oxygen sink and a CO2 

source and provides a good model for studying gas exchange and gas movement through 

sand to understand the limitations of the environment as an incubator. If sand does not 

allow for adequate gas exchange, the nest can become hypoxic resulting in lower 

hatching success (Ackerman 1980, Garrett 2010). Gas exchange properties of beaches 

has been hypothesized to limit clutch size and influence nest site selection in sea turtles 

(Seymour 1980). It has been assumed that the dominant method of gas exchange is 

through diffusion (Ackerman 1977), but tidal ventilation of nests through bulk flow of 

gases may also be important (Wallace et al. 2004).  

The loggerhead turtle nesting beaches at Zakynthos and Kyparissia, Greece, offer 

an opportunity to examine how the differences in biophysical properties affect nest 

physiology because of the visible differences in sand grain size distributions among 

beaches. At Zakynthos, C. caretta females bury about a hundred eggs to a depth of 25-50 

cm below the surface of the sand (Margaritoulis et al. 2011). These eggs incubate for 6-

12 weeks, depending on the temperature and generally more than two thirds of the eggs 
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hatch (Margaritoulis 2005). The loggerhead turtle population in Zakynthos produces 

mostly female hatchlings (Zbinden 2007) because the nest temperatures are mainly above 

29.3°C, the pivotal sex-determination temperature for loggerheads in Kyparissia 

(Mrosovsky et al. 2002), although early season nesting may contribute to male production 

more than previously thought (Katselidis et al. 2102). Together, Zakynthos and 

Kyparissia host the two largest loggerhead rookeries in the Mediterranean accounting for 

857-2018 (N=16 years) and 286-927 (N=15 years) nests per year, respectively (Rees 

2005).  

Occasional records of interchange have been reported between these rookeries 

from external flipper tags of nesting females (Margaritoulis 1998) and telemetry 

(Schofield et al. 2010). Given the differences between sand characteristics of these 

beaches, it is not clear if turtle nesting behaviors are selected for laying their eggs on a 

particular beach. Loggerheads in Greece use sand characteristics for oviposition sites 

displaying preferences for sand grain size distributions that maximize aeration and water 

drainage and provide structural support during egg chamber construction (Karavas 2005, 

Mazaris et al. 2006). 

 

Biophysical Ecology 

Sea turtles bury large clutches of eggs on beaches worldwide. Each egg contains 

resources necessary for growth and development and exchanges heat, water and gases at 

a rate commensurate to the physical properties of the incubation environment (Ackerman 

1977, Seymour 1980, Ackerman et al. 1985, Seymour et al. 1986).    
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The conditions within the sand that influence timing and survival are determined 

by the biophysical conditions experienced at the beach (Santidrian Tomillo et al. 2012). 

Temperature affects hatching success (Santidrian Tomillo et al. 2012), hatchling 

condition (Booth et al. 2004), hatchling sex ratio (Standora 1985), incubation duration 

(Georges 1989), hatchling emergence success (Santidrián Tomillo et al. 2009), and 

oxygen consumption (Reid et al. 2009). Turtles have temperature-dependent sex 

determination where females are produced at high temperatures, so maintaining 

variations in beach temperature on either side of the pivotal sex determining temperature 

is important for the population sex ratio and can have implications for species survival 

(Standora 1985). In Chapter 2, I compared the ambient weather conditions at Zakynthos 

and Kyparissia, Greece to beach environmental conditions of oxygen and temperature, 

and I described how the topography of the beach can contribute to the temperatures 

experienced by the nests. 

Water is crucial for the formation of new tissue in embryos (Packard 1999). In 

buried eggs, the embryo can obtain water either directly from the yolk and albumin or 

through exchange with the environment (Ackerman 1997). The magnitude and direction 

of the water exchange between the environment and the egg contents are driven by a 

water potential gradient. Water is contained in a given environment dependent on the 

matric and osmotic potential of the material and the amount of water already present. 

Water potential increases as water content increases, thus increasing the potential for 

water to move out of the environment. For developing embryos, the water potential of the 

environment must be lower than the water potential of the egg contents or else the 

embryo loses water (Ackerman and Lott 2005). Environments with low water potential 
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have lower hatching success (Packard 1999) and less fit hatchlings (Booth and Yu 2009). 

In Chapter 3, I examined the soil water characteristics curve of sands from beaches in 

Zakynthos and Kyparissia, Greece to determine the potential for hydric stress.   

 

Physiological Ecology 

Gas exchange through soils is vital for many organisms that reside there, from 

plants to micro- and macrofauna. The gas exchange of sea turtle eggs is limited by the 

physical properties of the sand surrounding the nest (Ackerman 1977). Diffusion is the 

dominant process for gas exchange (O'Connor et al. 2009) as oxygen concentrations in 

the nest are lower than in the surrounding sand resulting in a net diffusion of oxygen into 

the nest, at the same time CO2 diffuses out (Ackerman 1977). Bulk flow of gases can 

occur through tidal movement, as the water table acts as a piston under the beach 

producing high and low pressures along with the tide, which can ventilate the nest 

(O'Connor et al. 2011). Bulk flow can also be generated through the metabolic gas sink 

environment in the nest where there is lower CO2 production than O2 consumption (Reid 

et al. 2009). The nest, while metabolizing is therefore an area of low pressure and the net 

convective flux of gas will be into the nest (O'Connor et al. 2011).  

The structure of soil consists of solid, liquid and gas phases, and as such, a 

material moving through soils will follow the path of least resistance. Gas moves through 

sand mainly using the air-filled pore space (Currie 1961). Diffusion is the dominant force 

of gas exchange in the soil (Buckingham 1904) where the gas flux (g s
-1

) is governed by 

Fick’s first law: 
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C
ADF


           (1) 

 

where A is the cross-sectional area (cm
2
), D is the diffusivity of the material (cm

2 
s

-1
), C 

is the concentration gradient (g cm
-3

) through the material over a distance 



 (cm). 

Diffusive fluxes are therefore driven by the partial pressure differences, or differences in 

concentration, of a given substance. The differences in diffusive gas exchange through a 

variety of porous media can be described through the unique D of each substance.  

Many attempts have been made to clarify the relationship between the gas 

diffusion constant (Ds) and soil structure (van Bavel 1952, Freijer 1994). Generally, there 

is a positive relationship between diffusivity and air-filled porosity (air) (Buckingham 

1904, Penman 1940, Marshall 1959) which can be described as:  

 

  xS

D

D

0

         (2) 

 

where Ds is the diffusion coefficient in the soil (cm
2 

s
-1

), D0 is the diffusion coefficient in 

air (cm
2 

s
-1

),  is the air-filled porosity (cm
3
 cm

-3
) and ,, and x are factors that reflect 

the complexity of the soil media. Complexity factors can include tortuosity (Troeh et al. 

1982, Ullman and Aller 1982, Freijer 1994), constrictivity (Freijer 1994), pore continuity 

(Bruckler et al. 1989), compaction (Currie 1984a, Fujikawa 2005), morphology (Bruckler 

et al. 1989), water content (Bakker and Hidding 1970) and water potential (Currie 1984b, 

Pereira and Cruciani 2001, Thorbjorn et al. 2008). While no single equation can 
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adequately describe diffusion in all materials (Currie 1961), the general relationship that 

diffusivity depends on porosity has passed scientific scrutiny for more than a century.  

Gas can also move through a soil via bulk flow driven by a total pressure gradient. 

This movement is driven by Darcy’s Law:  

 



PkA
Q


           (3) 

 

where Q is the convective flux (m
3 

s
-1

), k is the intrinsic permeability (m
2
), A is the cross-

sectional area (m
2
), P is the difference in total pressure (Pa),  is the gas viscosity (Pa s) 

and   is the length (m). Gas conductivity (m
3
 s kg

-1
) is k μ

-1
. Convective fluxes are driven 

by total pressure differences across a boundary. The differences in convective gas flow 

through a variety of porous media can be described through the unique conductivity of 

each substance. 

Conductivities through soil are largely reported as a hydraulic conductivity, which 

includes a gravity component not applicable to gas flows in our system. Both hydraulic 

and gas conductivities through soil are affected by the pore radius (Campbell 1974) and 

intrinsic permeability (Olson et al. 2001). Different porosities, median grain size, and 

sorting factors affect the pore radius (Bezrukov et al. 2001). Air-filled porosity affects 

both diffusive and convective fluxes and varies with sorting but is independent of median 

grain size (Beard 1973, Bezrukov et al. 2001). Grain size distributions on natural beaches 

are mixtures of log-normally distributed populations of grain sizes produced by different 

sedimentation processes (Spencer 1963) and sorting, skewness and kurtosis are 
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descriptors of the sum of the influence of each of these processes on the beach (Folk and 

Ward 1957). Median grain size and morphology describe the distance traveled and the 

maturity of the source population (Folk 1954, Pettijohn 1957).   

In all sea turtle species, the porous eggs are adapted to the high humidity and low 

oxygen in the underground environment (Seymour 1980). Survival during this life stage 

requires eggs to respond to stressors physiologically. If the incubation medium does not 

allow for adequate gas exchange, the sea turtle nest can become chronically hypoxic 

resulting in lower hatching success (Ackerman 1980, Garrett 2010), or depressed growth 

and metabolism of the eggs in the clutch (Kam 1993). Embryos exposed to hypoxia have 

physiological plasticity in an increased ability to transport oxygen (Kam 1993, Crossley 

et al. 2003) that may reduce the response to future hypoxia (Eme et al. 2011b) but also 

result in cardiac stress (Eme et al. 2011a).  

The sea turtle egg shell allows for greater gas and water exchange (Tracy et al. 

1978) than in avian eggs (Wangensteen et al. 1970). The flexible and parchment-like 

shell (Packard et al. 1979) has gas permeability twice that of the chicken egg due to 

greater shell porosity (Ackerman and Prange 1972). In avian eggs, the resistance to gas 

exchange is through the hard shell that minimizes water loss in the air (Wangensteen et 

al. 1970). In the turtle egg the resistance to gas exchange is in the sand around the nest 

rather than in the porous shell (Ackerman and Prange 1972). Ackerman (1977) 

hypothesized that the sand surrounding the nest acts as an extension of the turtle eggshell, 

thereby decreasing the effective gas permeability to that of a hard-shelled avian egg. Gas 

exchange is ultimately limited by the physical characteristics of the beach (Ackerman 

1975) and affects survivorship of eggs (Ackerman 1980, Wallace et al. 2004, Honarvar et 
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al. 2008, Garrett 2010). Embryos at the center of the clutch may suffer greater mortality 

and grow more slowly and hatch later than the eggs at the periphery of the nest 

(Ackerman 1980, Wallace et al. 2004). 

Oxygen consumption of a clutch of eggs exhibits a peaked pattern, low at first, 

with exponential increase that may either flatten or decrease just before hatching (Prange 

and Ackerman 1974), which would allow for improved gas exchange in the final days of 

development (Kraemer and Richardson 1979). Increased embryonic growth rates are 

associated with increased oxygen consumption (Ackerman 1980). Oxygen concentration 

decreases throughout incubation reaching minimum O2 and maximum CO2 just before 

hatching (Ackerman 1977, Maloney et al. 1990, Miller 2008). The low-oxygen 

environment is due to increased oxygen consumption during embryonic development 

(Ackerman 1981, Reid et al. 2009), as well as the resistance to gas exchange of the nest 

environment (Ackerman 1977). The nests of megapode birds (Seymour et al. 1986) and 

crocodilians (Booth 2000) have similar oxygen profiles during development.  

Generally, the minimum oxygen concentration in the nest corresponds to the 

number of developing embryos (Wallace et al. 2004), but if the nest becomes too 

hypoxic, hatching success can decrease (Honarvar et al. 2008, Garrett 2010). Sand 

characteristics explain differences in hatching success of Chelonia mydas nests (Maloney 

et al. 1990, Mortimer 1990), but have not explained variations in gas concentrations 

(Chen et al. 2010). Since changes in gas conductance affect growth and survival of eggs 

(Ackerman 1981), estimates of sand diffusivity have been made through modeling 

(Ackerman 1977), but diffusivity alone may not be adequate to explain nest gas 

concentrations especially on beaches with large tidal fluxuations (Wallace et al. 2004). 
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Diffusivity and conductivity contribute in different ways to the gas conductance 

of sand through the partial pressure and total pressure gradients, respectively and soil 

structure affects these factors. In Chapter 4, I report on the factors that affect gas 

movement through the sand of sea turtle nesting beaches. In Chapter 5, I examine the gas, 

temperature and hatching success of natural C. caretta nests in Zakynthos and Kyparissia, 

Greece and compare oxygen concentrations to predicted levels. These comparisons help 

to clarify the gas exchange relationship between eggs and sand. 

Since adaptive behaviors are related to survival and reproductive success 

(Williams and Nichols 1984), the same sand characteristics that influence nest placement 

should influence the survival of the eggs within the nest (Hays and Speakman 1993). 

Sands on the beaches of Zakynthos and Kyparissia differ visually in grain size and color 

(personal observation). In this dissertation I describe these differences in sand 

characteristics and demonstrate the contribution of sand to the development of turtle 

eggs.  
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CHAPTER 2:  BIOPHYSICAL ECOLOGY OF LOGGERHEAD TURTLE 

NESTING BEACHES IN GREECE 

 

Introduction 

Loggerhead turtles (Caretta caretta) lay their eggs in carefully constructed nests 

on beaches worldwide. On the Greek island of Zakynthos, C. caretta females bury an 

average of 106 eggs to a depth of 25-50 cm below the surface of the sand (Margaritoulis 

et al. 2011). These eggs incubate for 42-89 days, depending on the temperature and 

generally 71.5% of the eggs hatch (Margaritoulis 2005). The loggerhead turtle population 

in Greece produces mainly female hatchlings (Zbinden 2007) because the nest 

temperatures are usually above 29.3°C, the pivotal sex-determination temperature for 

loggerheads in Kyparissia (Mrosovsky et al. 2002), although early-season nesting 

produces males on all beaches in Zakynthos (Katselidis et al. 2102).  

Conditions within the sand that influence incubation time and hatchling survival 

are determined by the weather experienced at the beach (Santidrian Tomillo et al. 2012). 

For instance, temperature affects hatching success (Santidrian Tomillo et al. 2012), 

hatchling condition (Booth et al. 2004), hatchling sex ratio (Mrosovsky et al. 2002), 

hatchling emergence success (Santidrián Tomillo et al. 2009), and oxygen consumption 

(Reid et al. 2009). Rain events can play an important role in environmental sand 

condition by cooling the beach (Standora 1985) and flushing the nest with oxygen 

(Prange and Ackerman 1974). Variations in beach temperature on either side of the 
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pivotal sex determining temperature is important for the population sex ratio and can 

have implications for species survival (Standora 1985). 

In this chapter, I report the weather and the ambient sand conditions at nest depth 

for two important loggerhead turtle nesting areas of Zakynthos and Kyparissia, Greece. 

Based on this information, I discuss the importance of these factors with respect to 

incubation conditions within loggerhead nests on those beaches. 

 

Methods 

I conducted this study on the Greek island of Zakynthos (Figure 2-1A) in the 

Ionian Sea and on the beach at Kyparissia Bay (Figure 2-1B) on the Peloponese 

Peninsula. Laganas Bay is located at the southern part of Zakynthos Island, and has six C. 

caretta nesting beaches: Marathonissi, Laganas, Kalamaki, Sekania (East, West and 

Thiafi), Daphni, and Gerakas. Laganas Bay is a NATURA 2000 site protected under the 

National Marine Park of Zakynthos (NMPZ), and the beaches have limited public access 

and strict regulations (Margaritoulis 2005). Kyparissia Bay is located on the western 

coast of Greece, with the beach, dunes and coastal forest comprising a NATURA 2000 

site (Rees 2005). The nesting beach extends the entire 44 km length of the bay, but the 

majority of nesting occurs along the southern 9.5 km (Figure 2-1B). For this study, I only 

used sectors A and O, comprising the southernmost 5 km of the densest nesting habitat.  

I set up HOBO U30 weather stations to record weather variables behind the 

beaches of Sekania East (34.494735 °E, 41.75267 °N) and Kyparissia A (34.561918 °E, 

41.30203 °N). Weather stations were assembled according to the manufacturer’s 

specifications, using a 3 meter tripod, such that the temperature and relative humidity 
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sensor was shaded at 1.5 meter above the ground, the anemometer was calibrated to 

north, and the rain gauge and photosynthetically active radiation (PAR) sensor had direct 

access to the sky above. I buried the tripod feet 50 cm in the sand to ensure stability and 

leveled the tripod with guy lines attached to stakes. I attached the pole via copper wire to 

a copper lightning rod buried in the sand nearby. The HOBO computer collected and 

recorded temperature (°C), relative humidity (%), dew point (°C), rainfall (mm), solar 

radiation (Wm
-2

), wind speed (ms
-1

), gust speed (ms
-1

), and wind direction (°) at 5 minute 

intervals. Relative humidity was calculated as the ratio of partial pressure of water vapor 

(kPa) per saturated water vapor pressure (kPa) at any given temperature. The Zakynthos 

weather station recorded data from 01 July 2009 (Julian date 182) at 12:03 to 10 

September 2009 (Julian date 253) at 07:33 and from 30 July 2010 (Julian date 211) at 

06:48 to 30 September 2010 (Julian date 273) at 16:48. The Kyparissia weather station 

recorded data from 24 June 2009 (Julian date 175) at 11:54 to 06 September 2009 (Julian 

date 249) at 09:34 and from 27 July 2010 (Julian date 208) at 10:56 to 09 September 

2010 (Julian date 252) at 17:21. All times were GMT + 02:00. I configured the data using 

HOBOWare Pro.  

In 2009 and 2010 I collected temperature and O2 data from the ambient sand at 

nest depth (25-50 cm) on the beaches of Marathonissi, Laganas (2009 only), Kalamaki 

(2009 only), Sekania (East, West and Thiafi), and Gerakas at Zakynthos and sectors A 

and O (2010 only) at Kyparissia. For ambient sand measurements, I excavated control 

nests on the beaches similar to a turtle nest in a location that would be suitable for a turtle 

to nest. I determined suitable nesting sites by selecting locations that were surrounded by 

visible body pits or previously marked nests within 15 meters, and at an intermediate 
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distance to the sea. I placed an O2 sampling port constructed from a perforated film 

canister (volume ≈ 75-cm
3
) at a depth of 40-cm similar to natural loggerhead nests 

(Margaritoulis 2005). A 70-mm length of Tygon tubing (2-mm internal diameter) 

extended to the surface to allow for gas sampling to the gas analyzing equipment 

(Wallace et al. 2004, Honarvar et al. 2008, Garrett 2010). I also placed Cu/Cn 

thermocouples to measure temperature at depths of 0, 10, 25, 40 and 50 cm for a thermal 

profile of the beach. I covered the hole and packed it with sand to approximate the 

conditions of a natural nest, but without eggs. All beaches had N=3 control nests, except 

Kyparissia A in 2009 (N=4) and Thiafi in 2009 and 2010 (N=2, both years) 

I collected gas samples and recorded temperatures on individual beaches bi-

weekly.  For real-time measurements I used a Qubit Systems RP2LP-FCM High Ranges 

Respiration Package. I used a gas pump calibrated to a flow rate of 50 mL min
-1

 and 

withdrew air from the sand at nest depth for three minutes to obtain dependable gas 

measurements.  I compared O2 readings in the sand at nest depth to atmospheric readings 

immediately prior to sampling. Due to unreliable measurements, I do not report CO2 

concentrations. I used OMEGA HH200A thermocouple readers (±0.1) for real-time 

temperature measurements of the nests and beach thermal conditions. I calibrated 

thermocouples to ±0.05 °C. I report the temperature at nest depth as the grand mean 

temperatures of the beach from thermocouples at 25, 40, and 50 cm depth.  

 I analyzed the data in R. I generated descriptive hourly statistics for daily weather 

patterns and descriptive daily statistics for seasonal weather patterns. I present hourly 

descriptive statistics from the week of 01-07 August 2009 and 2010 because this was a 

time when most loggerhead nests had been laid and few had begun to hatch and therefore 
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would have the largest influence on incubation conditions. I compared weather and beach 

temperatures to the pivotal temperature for loggerhead turtle sex determination in 

Kyparissia of 29.3°C (Mrosovsky et al. 2002) above which nests produce female 

hatchlings, and below, male hatchlings. I compared temperature and solar radiation 

measurements between Kyparissia and Zakynthos in the same year and at each location 

between years using paired T-tests of the measured variables matched to the nearest 5 

minute period. I compared relative humidity and wind speed using Welch Two Sample T-

tests in the same manner. I used T-tests instead of ANOVAs so that data recorded during 

the month of July were included in 2009 comparisons. Non-overlapping data were 

removed from analyses and the Julian dates considered were 182-249, 2009 and 211-252, 

2010 for location comparison and 211-253 for Zakynthos and 208-249 for Kyparissia 

between years. I calculated length of day as the amount of time in each 24-hour period 

that the location was exposed to solar radiation above nighttime readings of 0.6 Wm
-2

. I 

compared day length between beaches and years using a paired T-test as described 

before. I analyzed beach temperature and O2 at nest depth using ANCOVAs with year 

and beach as factor variables and Julian date as a regressor. When applicable, I report 

means with errors of two standard deviations.  

 I used MATLAB functions (O’Connor, personal communication) derived from 

Gates (1980) and Oke (1992) to predict the amount of solar radiation on a flat beach, a 

sloped beach, and a sloped beach with exposed flat berm. 
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Results 

Solar Radiation 

Length of day decreased throughout the season (Figure 2-2) along with the 

seasonal decrease in maximum solar declination from the summer solstice to the autumn 

equinox. Day length was 1.2 to 3.9 minutes longer in 2009 than 2010 at Zakynthos 

(Paired T (40) = 3.8, p < 0.001), but there was no difference between years at Kyparissia 

(Paired T (38) = 0.9, p > 0.05). Day length was no different between Zakynthos and 

Kyparissia in 2009 (Paired T (64) = 0.5, p > 0.05), but was 0.3 to 2.7 minutes shorter at 

Zakynthos than at Kyparissia in 2010 (Paired T (39) = 2.5, p < 0.05). Solar radiation had 

a diurnal pattern with values following the cycle of solar declination, the angle of the sun 

relative to the horizon, throughout the day (Figure 2-3). Solar radiation was 5.79 to 7.87 

W m
-2

 and 1.89 to 4.60 W m
-2

 lower at Zakynthos than Kyparissia in 2009 (Paired T 

(19266) = 12.9, p < 0.0001) and 2010 (Paired T (11935) = 4.7, p < 0.0001), respectively. 

Solar radiation was 11.57 to 14.47 W m
-2

 and 5.13 to 7.33 W m
-2

 lower in 2009 than 

2010 at Zakynthos (Paired T (12105) = 17.6, p < 0.0001) and Kyparissia (Paired T 

(11792) = 11.1, p < 0.0001), respectively. Mean maximum solar radiation was 935.3 ± 

160.1 W m
-2

 and 772.3 ± 55.3 W m
-2

 at Zakynthos in 2009 and 2010, and was 944.9 ± 

144.0 W m
-2

 and 925.0 ± 94.8 W m
-2

 at Kyparissia in 2009 and 2010, respectively, and 

varied along with the seasonal solar declination. 

Temperature 

Temperature showed a diurnal pattern, with higher temperatures during the day 

than at night (Figure 2-4). The daily temperature range was 9.5 ± 4.6°C and 10.0 ± 3.4°C 
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at Zakynthos in 2009 and 2010, and 10.0 ± 4.4°C and 10.0 ± 3.6°C at Kyparissia in 2009 

and 2010, respectively (Figure 2-5). Temperatures were 2.1 to 2.2°C and 1.9 to 2.0°C 

warmer at Zakynthos than Kyparissia in 2009 (Paired T (19266) = 152.8, p < 0.0001) and 

2010 (Paired T (11935) = 119.9, p < 0.0001), respectively. Temperatures were 0.4 to 

0.5°C and 0.9 to 1.0°C warmer in 2009 than 2010 at Zakynthos (Paired T (12105) = 23.5, 

p < 0.0001) and Kyparissia (Paired T (11792) = 48.0, p < 0.0001), respectively. Sand 

temperature at nest depth was significantly different among beaches, years, and date 

(ANCOVA F(10, 182) = 86.5, p < 0.0001). Marathonissi had the lowest beach 

temperature (26.7 ± 1.6°C) followed by Laganas (27.9 ± 0.8°C). All other beaches were 

not significantly different from each other and above the pivotal temperature of 29.3°C 

for most of the season with a mean of 30.3 ± 1.5°C (Figure 2-5). 

Rain 

Kyparissia had a total of 16.2 and 0 mm of rain in 2009 and 2010, and Zakynthos 

had a total of 0.6 and 59.2 mm in 2009 and 2010 (Figure 2-6). Rainfall was unusual at 

these locations during July and August and began again during September in both years 

after I had disassembled the weather station at Kyparissia (both years) and Zakynthos 

(2009). The rainfall events of September 2010 in Zakynthos were typical for this time of 

year, although not recorded at the other stations. At this time, most loggerhead nests had 

hatched on all but the coolest beaches, such as Marathonissi. 

Relative Humidity 

Relative humidity had a diurnal pattern with higher values during the night and 

early morning than during the day. This pattern was more clearly defined at Kyparissia 
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than at Zakynthos (Figure 2-7). Relative humidity was 11.4 to 12.0 % and 11.6 to 12.3 % 

lower at Zakynthos than Kyparissia in 2009 (Welch Two Sample T (37406) = 77.4, p < 

0.0001) and 2010 (Welch Two Sample T (22942) = 68.1, p < 0.0001), respectively. 

Relative humidity was no different between years at Zakynthos (Welch Two Sample T 

(24190) = 0.6, p > 0.05) but was 3.8 to 4.4 % lower in 2009 than 2010 Kyparissia (Welch 

Two Sample T (23153) = 24.4, p < 0.0001), respectively. Mean relative humidity was 

59.2 ± 23.4 % and 64.2 ± 21.0 % at Zakynthos in 2009 and 2010, and was 71.3 ± 20.9 % 

and 72.2 ± 17.1 % at Kyparissia in 2009 and 2010, respectively. There was no clear 

seasonal trend, although relative humidity did seem to have a regional effect especially 

evident where the peaks and troughs corresponded to the same dates between Zakynthos 

and Kyparissia in 2009 (Figure 2-8). 

Wind Speed 

Wind speed had a diurnal pattern with higher values during the day than at night 

that was more clearly defined at Kyparissia than at Zakynthos (Figure 2-9). Wind speed 

was 0.26 to 0.30 m s
-1

 and 0.18 to 0.23 m s
-1

 higher at Zakynthos than at Kyparissia in 

2009 (Welch Two Sample T (38351) = 25.7, p < 0.0001) and 2010 (Welch Two Sample 

T (22831) = 14.0, p < 0.0001), respectively. Wind speed was no different between 2009 

and 2010 at Zakynthos (Welch Two Sample T (23879) = 0.9, p > 0.05) or Kyparissia 

(Welch Two Sample T (21618) = 1.2, p < 0.0001), respectively. Mean wind speed was 

1.85 ± 1.10 m s
-1

 and 1.75 ± 1.39 m s
-1

 at Zakynthos in 2009 and 2010, and was 1.59 ± 

0.91 m s
-1

 and 1.57 ± 1.38 m s
-1

 at Kyparissia in 2009 and 2010, respectively. There was 

no clear seasonal trend in wind speed for Zakynthos and Kyparissia in 2009 and 2010 

(Figure 2-10). 
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Oxygen 

 Oxygen concentration was lower on Thiafi than all other beaches in 2009 and 

2010 (Figure 2-11). Thiafi was also the only beach that differed between years and had a 

trend across the season. Mean oxygen concentration was 20.7 ± 1.0 kPa on Thiafi and 

21.1 ± 0.3 kPa on all other beaches for 2009 and 2010 combined.  

 

Discussion 

During the loggerhead turtle (Caretta caretta) nesting seasons of 2009 and 2010, 

the weather at Zakynthos was hotter, drier, and windier than at Kyparissia. Sand 

temperatures at nest depth were not different among most beaches at both sites, except 

that Laganas and Marathonissi at Zakynthos had lower temperatures. Oxygen content was 

only different on Thiafi compared to all other beaches.  

Daily cycles of weather variables were more clearly defined in Kyparissia than 

Zakynthos especially for relative humidity, and wind speed. This was likely due to the 

topography of the locations. Kyparissia was a long beach (44 km) with a well-established 

dune system (Rees 2004). The weather station at Kyparissia was positioned without any 

visible taller obstructions for nearly 180° facing west and only low trees to the east, the 

nearest more than 100 m distance (Figure 2-1 B). Conversely, Zakynthos, and more 

specifically, Laganas Bay was 6 km wide at the mouth with occasional small beaches 

(Margaritoulis 1982). The weather station at Zakynthos was positioned in the small dunes 

behind Sekania beach between two dry river beds that during the rainy season drain the 

water from the steep slopes above. Although I placed the weather station at the most 

unobstructed place possible behind the beach, less than 90° facing southwest had no 
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visible taller obstructions. There are also steep cliffs behind the beach, obstructing 

morning sun. While there were some differences in topography between individual 

beaches within Laganas Bay, the weather conditions experienced behind Sekania were 

likely very similar among the other beaches. The differences in topography did provide 

for differences between the Zakynthos and Kyparissia.         

Oxygen content in the sand did not appear to vary with weather conditions. 

Oxygen did show an increasing trend on Thiafi in both years (Figure 2-11), but this was 

most likely due to the metabolic influence of hatching nearby nests.  Due to the small size 

of suitable nesting habitat on Thiafi (approximately 100 m
2
) and the relatively large 

number of nests on the beach (10-20 nests), the oxygen content at the control sites was 

most likely influenced by nearby metabolizing nests (Honarvar et al. 2008) or by 

microbial metabolism in decomposing nests from previous seasons (Clusella Trullas 

2007). As nearby nests hatched, the amount of metabolic mass in the sand decreased, and 

the oxygen levels increased. There was very little rain during the incubation period 

(Figure 2-6), and since the effect of rain on oxygen concentration in the sand was brief 

(Prange and Ackerman 1974), I was unable to detected any change at the time of my 

measurements.   

Sand temperature was lower on the beaches of Marathonissi and Laganas at 

Zakynthos than all other beaches (Figure 2-5). Since loggerheads, and most turtles, have 

temperature-dependent sex determination with females produced at high temperatures, 

these beaches are important to the preservation of the population because the 

temperatures are conducive to producing males (Zbinden 2007). Climate change 

predictions for the Mediterranean show higher temperatures that suggest a female skewed 
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population sex ratio for C. caretta (Godley et al. 2001), but turtles nesting early in the 

season (Katselidis et al. 2102) and on Marathonissi and Laganas (Zbinden 2007) produce 

more males at Zakynthos, which could slow this skewing. In addition to the sand 

temperature differences among the beaches of Zakynthos, the sand temperatures on 

sectors A and O of Kyparissia were higher than ambient air temperatures most days 

(Figure 2-5). This can be explained through the profile of the beach influencing the 

exposure of the sand to solar radiation.  

At Zakynthos, the beaches have a slight lip at the water’s edge, then continue at a 

gradual slope until they become steeper at the back of the beach where most loggerhead 

turtle nests occurred. The beaches of Sekania East, Sekania West, Thiafi, Gerakas, were 

predominantly south-west facing while Laganas, and Kalamaki were south facing. 

Marathonissi had exposures to both north and east, and lighter color sand. Behind all of 

these beaches were either steep clay cliffs or a dune system with vegetation, or a 

combination of both. Turtles did not nest behind the beach, so these areas were not 

considered, except that there may have been additional obstructions to solar radiation. 

The topography of Kyparissia sector A consisted of a west-facing slope above the wave 

zone continuing to a berm that extended horizontally with very little vegetation until it 

reached the dunes behind the beach. Kyparissia sector O was similar in topography to 

sector A, except that instead of dunes, there was an asphalt road and a stone wall. The 

turtles nested at or near the crest of the berm.  

To approximate the profile for the beaches at Zakynthos, I used a plate with 30° 

west-facing slope and a horizontal plate. For Kyparissia I used a horizontal plate attached 

to the top of a 45° west-facing slope. Both locations were at 40°N Latitude. I assumed 
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clear skies (1 dust particle cm-3 and 0.01 m water) at sea level for sand with albedo 0.2. I 

used biophysical equations (Gates 1980, Oke 1992) converted into MATLAB functions 

(M.P. O’Connor, personal communication) to determine the total (direct and diffuse) 

solar radiation at the equinox and summer solstice for each profile. 

For the Zakynthos beach profiles, a horizontal flat plate had a longer exposure to 

direct solar radiation at both the equinox (Figure 2-12) and summer solstice (Figure 2-13) 

than the west-facing slope. The sloped surface had a higher peak than the horizontal flat 

plate at the equinox, but was equal at the solstice. The total solar radiation (area under the 

curve) would be 6137 and 9379 W hr m
-2

 for the horizontal plate and 5703 and 8545 W 

hr m
-2

 for the 30° west-facing slope for the equinox and the summer solstice, 

respectively. Not shown in the graphs, a 30° south-facing slope would have a daily total 

solar radiation of 7599 and 8644 W hr m
-2

 and a 30° north-facing slope would have 3293 

and 7966 W hr m
-2

 at the equinox and summer solstice respectively.  

For the Kyparissia beach profile, the solar radiation throughout the day would be 

the maximum value of all plates from horizontal through 45° west-facing. The solid line 

shows the integration of all of these slopes for the equinox (Figure 2-14) and summer 

solstice (Figure 2-15). The total solar radiation (area under the curve) for the beach 

profile of Kyparissia would be 7381 and 10984 W hr m
-2

 at the equinox and summer 

solstice respectively. 

The curves in Figures 2-12, 2-13, 2-14 and 2-15 describe the solar radiation at the 

surface of each of the beach profiles. Differences in sand temperatures at nest depth 

among similarly profiled beaches could be due to thermal conductivity of the sand and 

the temperature and distance of the water table below the beach. The curves show that the 
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sand at the crest of the berm at Kyparissia receives more solar radiation than at any of the 

Zakynthos profiles, which would allow for solar heating which is transferred through 

conduction to nest depth. Additional heat loading at the surface and conduction to nest 

depth could account for sand temperature at Kyparissia being higher than the ambient air 

temperature.  

There were two beaches at Zakynthos that had lower beach temperatures at nest 

depth, Marathonissi and Laganas (Figure 2-5). Marathonissi beach consisted of a spit of 

sand that had a steep north-facing slope and a gradual east-facing slope. North-facing 

slopes at a latitude greater than 23.5°N, such as on Marathonissi, decrease the amount of 

solar radiation by increasing the solar angle of incidence from normal to slope (Gates 

1980), so the north slope of Marathonissi beach received less direct solar radiation during 

the incubation seasons, but the east-facing gradual slope would have received solar 

radiation similar to a mirror image of the west-facing slope in Figures (2-12 and 2-13). 

Additionally for Marathonissi, the sand was a lighter color which may decrease the 

absorptance of solar radiation (Gates 1980).  However, the explanation for lower 

temperatures on Laganas cannot be from solar radiation alone. Laganas beach had a near-

horizontal south-facing slope, and the sand had similar color to most other beaches 

(except Marathonissi) so the daily solar radiation profile for Laganas would be similar to 

the curve for the flat plate in Figures (2-12 and 2-13). Furthermore, in 2009, there was a 

temperature gradient along Laganas beach where the west (26.4 ± 1.6°C) was cooler than 

the center (27.9 ± 2.2°C) and east (29.4 ± 1.4°C). While the beach profile of the nesting 

area was not visually different, the center and east part of the beach, much like Kalamaki 

beach, had dunes or clay cliffs behind the beach adds reflected solar radiation to those 
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areas of the beach. The temperature difference could also be due to differences in thermal 

conductivity of the sand, or due to the temperature and depth of the water table below the 

beach. It is possible that the water between Marathonissi and west Laganas beach was 

cooler than the rest of Laganas Bay, contributing to the lower temperatures on those 

beaches.  

The sea surface temperature of Laganas Bay is distributed with warmer water 

downwind (Schofield et al. 2009). Due to the topography behind Sekania beach, wind 

direction data showed a lot of variability and were not reported here, however the 

weather station at Zakynthos airport, located 1 km inland from Laganas Bay, reported 

wind direction for the summer of 2009 and 2010 to be predominantly from the north, but 

variable from all directions except south-west (Weather Underground Inc.). With the 

warm surface water moving away from the beaches, the cooler water from below moves 

to the surface. In shallower areas of the bay, especially around nesting beaches with a 

gradual near shore slope, the deeper water is still warm. Laganas Bay is mostly shallow 

and has clear water with sea grass (Posidonia oceanica) beds covering much of the floor 

from 5-15 m depth (Tsirika et al. 2007). For beaches with steeper near shore slopes, the 

water can be more than 2°C cooler at >10m depth than <5m depth (Schofield et al. 2009). 

It was possible that this interaction contributed to the lower temperatures on Marathonissi 

beach, and to a lesser extent, Laganas beach. 

The loggerhead populations that use Kyparissia and Zakynthos as rookeries are 

among the largest in the Mediterranean (Margaritoulis 2003) and are major sources of 

genetic variation in the eastern basin (Carreras et al. 2007). The variation in temperature 

among beaches provides many suitable incubation options for the eggs, and can provide 
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the population with a buffer to climate change. These beaches provide a unique system 

for studying natural variance of thermal conductance among sands that deserves more 

study, given the importance of temperature to the turtle population that uses this 

ecosystem for egg incubation.   
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Figure 2-1. The loggerhead turtle nesting beaches of Zakynthos Island (A) and 

Kyparissia Bay (B), Greece.  
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Figure 2-2. During the nesting season for loggerhead turtles in Greece, the day length decreases, reducing the amount of time 

that the beach is exposed to solar radiation. The vertical grid lines correspond to the first day of the calendar months of June 

through October. 
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Figure 2-3. Hourly mean solar radiation had a strong diurnal pattern during the week of 01-07 August 2009 and 2010, with 

higher values during the middle of the day when there is direct sunlight. Some clouds at Kyparissia on Julian day 217, 2009 

resulted in the abnormal pattern on that day. All other days describe skies. Vertical grid lines are at 00:00 hrs. 
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Figure 2-4. Hourly mean temperature had a strong diurnal pattern during the week of 01-07 August 2009 and 2010 with higher 

values during the day. Temperatures were higher at Zakynthos than at Kyparissia. Vertical grid lines are at 00:00 hrs. 
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Figure 2-5. Sand temperatures at nest depth during the nesting seasons correspond to the range of daily temperatures (solid 

vertical lines) differently at different beaches. Most sand temperatures are close to the  pivotal temperature for sex 

determination for loggerheads (29.3 °C, dotted line) except Marathonissi (both years) and Laganas (2009). Sand temperatures 

for Kyparissia beach sectors were often higher than observed air temperatures in both years. Vertical grid lines correspond to 

the first day of the calendar months of June through December. 
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Figure 2-6. Total rainfall at Kyparissia and Zakynthos during the loggerhead turtle nesting seasons in 2009 and 2010. The 

vertical grid lines correspond to the first day of the calendar months of June through October. 
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Figure 2-7. Hourly mean relative humidity showed a cyclical diurnal pattern that was higher in the night and early morning 

during the week of 01-07 August 2009 and 2010. Humidity is higher and the diurnal pattern is clearer for Kyparissia than 

Zakynthos for both years. Vertical grid lines are at 00:00 hrs.  
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Figure 2-8. Daily mean relative humidity was higher at Kyparissia than Zakynthos throughout the nesting season. Error bars 

designate the daily range of humidity values. The vertical grid lines correspond to the first day of the calendar months of June 

through October. 
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Figure 2-9. Mean hourly wind speed showed a diurnal pattern of windy days and calm nights that was clearer at Kyparissia 

during the week of 01-07 August 2009 and 2010. Vertical grid lines are at 00:00 hrs. 

 

  



 

 

3
5
 

 

 

 
 

Figure 2-10. Mean daily wind speed at Kyparissia and Zakynthos, Greece during the loggerhead turtle nesting seasons in 2009 

and 2010. Vertical grid lines correspond to the first day of the calendar months of June through October. 
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Figure 2-11. Oxygen concentrations at nest depth were generally below the atmospheric oxygen concentration (21.18 kPa, 

dotted line). Thiafi sand had lower oxygen in 2009. Vertical grid lines correspond to the first day of the calendar months of 

June through December. 
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Figure 2-12. Daily profile for solar radiation on a flat beach and a beach with a 30° west-facing slope at 40°N latitude on the 

equinox (22 March or 22 September). The sand on the west-facing slope is exposed to a higher peak solar radiation two hours 

later than on the flat beach. Between 07:00 and 09:00, the west-facing slope is only exposed to diffuse solar radiation. 
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Figure 2-13. Daily profile for solar radiation on a flat beach and a beach with a 30° west-facing slope at 40°N latitude on the 

summer solstice (22 June). The sand is exposed to the most solar radiation two hours later on the west-facing slope than the 

flat beach. Between 05:45 and 08:30, the west-facing slope is only exposed to diffuse solar radiation. 
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Figure 2-14. Daily profile for solar radiation on the crest of a beach berm consisting of a flat top and a 45° west-facing slope at 

40°N latitude on the equinox (22 March or 22 September). The sand at the curve of crest is exposed to peak solar radiation 

from 13:00 until 16:00 and more total solar radiation than either the flat beach or west-facing slope alone. 
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Figure 2-15. Daily profile for solar radiation on the crest of a beach berm consisting of a flat top and a 45° west-facing slope at 

40°N latitude on the summer solstice (22 June). The sand at the curve of crest is exposed to peak solar radiation from 13:00 

until 16:00 and more total solar radiation than either the flat beach or west-facing slope alone. 
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CHAPTER 3: WATER RELATIONS OF SEA TURTLE EGGS AND NESTING 

BEACH SAND 

 

Introduction 

Female loggerhead turtles bury clutches of eggs on beaches worldwide. Each egg 

contains resources necessary for growth and development and exchanges water, gases 

and heat with the environment (Ackerman et al. 1985). Water is an important factor for 

embryos developing in buried eggs and for the formation of new tissue (Packard 1999). 

The embryo can obtain water either directly from the yolk and albumin or through 

exchange with the environment (Ackerman 1997). The magnitude and direction of the 

water exchange between the environment and the egg contents are driven by a water 

potential gradient.  

The water potential of the sea turtle egg has been reported as -750 to -800 kPa (Booth 

2005). Pure water has a water potential of 0 kPa. Water movement accounts for changes 

in mass of the egg and its components (Ackerman and Lott 2005) as it moves down a 

water potential gradient such that if the surrounding sand has a water potential of -1000 

kPa, the egg will lose water mass to the incubation environment according to: 

 

 see AK
dt

dM
  *         (1) 

 

where dM dt
-1

 is the change in mass (mg) over time, Ke (mg cm
-2

 kPa) is the hydraulic 

permeability of the eggshell, and ψe (kPa) and ψs (kPa) are the water potentials of the 

interior of the egg and of the incubation environment (sand), respectively (Ackerman and 
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Lott 2005). Water is contained in a given environment dependent on the matric and 

osmotic potential of the material and the amount of water already present. Water potential 

increases as water content increases, thus increasing the potential for water to move out 

of the environment.  

In this chapter, I generated soil water characteristic curves from sand samples of 

loggerhead turtle nesting beaches in Greece and compared to the water content of those 

beaches throughout the nesting seasons. I considered the eggs to be in hydric stress when 

the water potential of the surrounding sand is below -750 kPa and hypothesize that water 

potential will be lower in larger grained sands at similar water contents. 

 

Methods 

 

Water Content 

In 2010, I collected sand samples from non-nest locations on nesting beaches bi-

weekly during the nesting season. I determined gravimetric water content by weighing 

samples to the nearest 0.01 g on an OHAUS balance, drying for 24 hours at 100C and 

reweighing; I considered water mass to be the difference in mass. Water content was the 

water mass per dry sand mass. I did not include any samples in the analysis that had 

longer than 1 week between collection and weighing. 

Sand grain size characteristics 

I manually shook dried sand for 15 minutes through standard soil sieves of sizes 

2, 1.4, 1, 0.5, 0.355, 0.25, 0.15, 0.09 and 0.063 mm and weighed the contents of each bin. 

The bin sizes were converted to the  scale (-log2(mm)) to account for lognormal 
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distribution during sedimentation (Folk 1980). Beaches were differentiated by the median 

grain size (50) and sorting () for analyses according to Folk (1966) where 

 



 
84 16

4











95 5

6.6









       (2) 

I interpolated values for  at the 5
th

, 16
th

, 50
th

, 84
th

 and 95
th

 percentiles from the slope of 

the line between the points on either side of each percentile.  

Water Potential 

I generated soil water characteristic curves from four samples from nest depth 

(30, 40, or 50 cm) from every beach using a WP4 Water Potentiameter (Decagon) 

calibrated with KCl. Laboratory water contents between 0.2% and 10% were prepared 

gravimetrically by adding water to dry sand and mixing thoroughly. I ran each water 

content preparation in triplicate. A water potential curve consisted of no less than four 

water content preparations for each sample. 

I calculated the water content of the sand at osmotic equilibrium (ψe is equal to ψs
 

in Equation 1) from the slope of the straight line between points on either side of -0.75 

MPa. I calculated high and low estimates of the osmotic equilibrium sand water content. 

This is the water potential of a turtle egg, so this value represents the minimum water 

content at which an egg will not desiccate.   

Data Analysis 

I performed all statistical analyses using R. I used an ANOVA to test differences in 

water content at osmotic equilibrium between beaches. I used an ANCOVA to test for 

differences between beaches of water content during the incubation period. Since grain 
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sizes are lognormally distributed, I present all sand grain data as  = -log2 (mm), such 

that finer grains have larger . I performed least squares regressions with 50 and  as 

independent. For all statistical tests I accepted a significance level of  = 0.05. Means are 

reported with two standard errors.    

 

Results 

 

Water Content and Water Potential 

The soil water characteristic curve showed a similar pattern among all beaches 

(Figure 3-1). There were no differences between the water content of all beaches in 2010 

(ANCOVA: F(13,176) = 1.7, p > 0.05). There were no differences for the water content 

at egg water potential (-0.75 MPa) between beaches (ANOVA: F(6,21) = 1.9, p > 0.05). 

Sand Grain Size 

 Median grain size (50) did not affect the water content at osmotic equilibrium 

(Least Squares Regression: F(1,26) = 2.1, p > 0.05). Sand grain sorting () had a 

significant effect on the water content at osmotic equilibrium (Least Squares Regression: 

F(1,26) = 4.9, p = 0.04, R
2
 = 0.16). 

 

Discussion 

 

The water potential for all beaches at field water content (Table 3-1) was greater 

than -0.75 MPa, the water potential of a sea turtle egg (Figure 3-1). The loggerhead turtle 
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eggs incubating on these beaches are not under hydric stress and should not strongly 

influence hatching success. The field water content of the beaches were all greater than 

the high water content values (Table 3-1) so there would be no net water loss from the 

eggs. Eggs incubated in cool and moist environments have higher hatching success than 

those incubated in hot and dry environments (Packard 1999) and as such there may be a 

hatching success gradient among these beaches. More likely, some beaches, such as on 

Kyparissia and Thiafi, which have right-shifted water potential curves (Figure 3-1) and 

relatively low field water content (Table 3-1) may have lower quality hatchlings by 

limiting the amount yolk converted to tissue (Booth and Yu 2009).  

 The sand grain size distribution characteristics did not explain the variations 

between beaches. Median grain size (50) did not affect the osmotic equilibrium sand 

water content and sorting (), while statistically significant, only explains 16% of the 

variation. It should be noted that water vapor moves through the environment mainly 

through a water vapor pressure (P) gradient similar to the water potential (ψ) gradient in 

equation 1, but there are five orders of magnitude less vapor permeability than liquid 

permeability at the same driving pressure (Ackerman and Lott 2005). Water vapor moves 

through a porous environment through the air-filled pore space while liquid water uses 

the water-filled pore space and displaces the air (Bear 1972). The significant effect of 

sorting on water content at osmotic equilibrium was most likely due to its correlation 

with air-filled porosity (Beard 1973) and the similarities between liquid and water vapor 

movement. 

 It is important that physiological studies take care to describe the water in the 

environment appropriately. Liquid and vapor water move through an environment 
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through a water potential gradient determined by the osmotic, matric and gravitational 

force, but water vapor is also strongly influenced by temperature and air-filled porosity 

(Ackerman et al. 1985). Parchment-shelled eggs of reptiles are able to exchange water 

with the environment through both vapor (Packard et al. 1979) and liquid processes 

(Tracy et al. 1978). The most appropriate measurements to be reported are water potential 

to describe water movement, volumetric water content to describe gas or water vapor 

movement and gravimetric water content to describe the amount of water consumed. 

Since eggs are not consuming the substrate, gravimetric water content should not be 

reported as an explanatory variable in physiological studies. 
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Figure 3-1. The water potential curve for loggerhead turtle nesting beaches at Zakynthos and Kyparissia, Greece demonstrates 

that when the water potential of the sand has a higher value (less negative) than the water potential of the sea turtle egg shell (-

0.75 MPa, horizontal dotted line) the eggs are not under hydric stress. Error bars are two standard errors of the mean. 
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Table 3-1. Sand water content values (g g
-1

) at osmotic equilibrium were calculated from the slope of the line in Figure 3-1. 

High and low water contents were calculated from the slope of the line among positive error points and negative error points, 

respectively and represent the range of water content at the hydric stress boundary. Field water content was the average value 

of the 2010 nesting season. Median grain size (Φ50) and sorting (σΦ) are Φ (-log2(mm)) for the samples used to generate the 

water potential curves. Errors are two standard errors of the mean. 

 

Beach 

Sand Water 

Content at 

ψEgg 

Low Water High Water 
Field Water 

Content 
Φ50 σΦ 

Kyparissia O 2.13 1.97 2.55 3.85 (±0.46) -0.66 (±0.33) 0.89 (±0.14) 

Kyparissia A 1.93 1.41 2.36 3.52 (±0.15) 0.03 (±0.34) 0.67 (±0.15) 

Thiafi 1.76 1.53 2.00 2.97 (±0.39) 1.15 (±0.14) 1.32 (±0.21) 

Marathonissi 1.58 1.28 1.83 4.38 (±0.41) 1.23 (±0.23) 0.78 (±0.13) 

Sekania East 0.83 0.77 0.85 2.61 (±0.21) 1.97 (±0.10) 0.90 (±0.19) 

Sekania West 1.13 0.85 1.47 3.26 (±0.26) 1.83 (±0.19) 0.71 (±0.25) 

Gerakas 1.41 0.97 1.70 3.21 (±0.25) 2.21 (±0.21) 0.52 (±0.05) 
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CHAPTER 4:  PHYSICAL CHARACTERISTICS OF SAND FROM SEA 

TURTLE NESTING BEACHES AFFECT GAS MOVEMENT 

 

Introduction 

Gas movement within soils is an important process for the organisms that reside 

there, from plants to micro- and macrofauna. Historically, there has been much interest in 

gas flux through soil in agriculture as it relates to oxygen supply to plant roots (Bakker 

and Hidding 1970, Troeh et al. 1982), in addition to the use of pesticides, herbicides and 

fertilizers in agriculture (Bruckler et al. 1989), and more recently in assessing greenhouse 

gas emissions (Mancinelli 1995, Lange et al. 2009) and carbon cycling (Pataki et al. 

2011). The structure of soil consists of solid, liquid and gas phases, and as such, a 

material moving through soils will follow the path of least resistance. Respiratory gases 

move through sand mainly through the air-filled pore space, although oxygen diffusion 

through water is also possible, but occurs at a much slower rate than in the air.  

For organisms living within the soil matrix soil diffusivity may constrain gas 

exchange for aeration of their metabolic output. Sea turtles bury egg masses in the sand 

where they are left to incubate until hatching. Oxygen concentration decreases throughout 

incubation reaching minimum O2 and maximum CO2 just before hatching (Ackerman 

1977, Maloney et al. 1990, Miller 2008). The low-oxygen environment is due to 

increased oxygen consumption during embryonic development (Ackerman 1981, Reid et 

al. 2009), as well as the resistance to gas exchange of the nest environment (Ackerman 

1977). The nests of other organisms that bury eggs, such as megapode birds (Seymour et 
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al. 1986) and crocodilians (Booth 2000) have similar oxygen profiles during 

development. 

Generally, the minimum oxygen concentration in the nest corresponds to the 

number of developing embryos (Wallace et al. 2004), but if the nest becomes too 

hypoxic, hatching success can decrease (Honarvar et al. 2008, Garrett 2010). Sand 

characteristics explain differences in hatching success of green turtle nests (Maloney et 

al. 1990), but have not explained variations in gas concentrations (Chen et al. 2010). 

Estimates of sand diffusivity have been made through modeling (Ackerman 1977), but 

diffusivity alone may not be adequate to explain nest gas concentrations, especially on 

beaches with large tidal fluctuations (Wallace et al. 2004).  

The sea turtle nest acts as an oxygen sink and a CO2 source, and offers an 

excellent model for gas movement. Oxygen concentrations in the nest are lower than in 

the surrounding sand resulting in a net diffusion of oxygen into the nest, at the same time 

CO2 diffuses out (Ackerman 1977). Bulk flow of gases into and out of the nest can occur 

through tidal movement, as the water table rises and falls with the tide, it acts as a piston 

under the beach producing high and low pressures, which can ventilate the nest 

(O'Connor et al. 2011). Bulk flow of gases can also be generated through the gas sink 

environment in the nest. The sea turtle nest produces a respiratory quotient (RQ) of 0.7 

(Ackerman 1977), meaning that for every 10 mL of oxygen consumed, 7 mL of CO2 is 

produced, leaving 3 mL that needs to be replaced. As the clutch of eggs metabolizes at 

this RQ, the nest containing the eggs becomes an area of low pressure and the net 

convective flux of gas will be into the nest (O'Connor et al. 2011).  
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Diffusion is the dominant force of gas exchange in the soil (Buckingham 1904), 

where the gas flux (g s
-1

) is governed by Fick’s first law: 

 



C
ADF


           (1) 

 

where A is the cross-sectional area (cm
2
), D is the diffusivity of the material (cm

2 
s

-1
), C 

is the concentration difference (g cm
-3

) through the material over a distance 



 (cm). 

Diffusive fluxes are therefore driven by the partial pressure differences, or differences in 

concentration, of a gas. The differences in diffusive gas exchange through a variety of 

porous media can be described through the D of the gas in each medium.  

Many attempts have been made to clarify the relationship between the gas 

diffusion constant (Ds) and soil structure (van Bavel 1952, Freijer 1994). Generally, there 

is a positive relationship between diffusivity and air-filled porosity (air) (Buckingham 

1904, Penman 1940, Marshall 1959) which can be described as  

 

  xS

D

D

0

         (2) 

 

where Ds is the diffusion coefficient in the soil (cm
2 

s
-1

), D0 is the diffusion coefficient in 

air (cm
2 

s
-1

),  is the air-filled porosity (cm
3
 cm

-3
) and ,, and x are characteristics of the 

gas and medium. These parameters are affected by  tortuosity (Troeh et al. 1982, Ullman 

and Aller 1982, Freijer 1994), constrictivity (Freijer 1994), pore continuity (Bruckler et 



52 

 

 

al. 1989), compaction (Currie 1984a, Fujikawa 2005), morphology (Bruckler et al. 1989), 

water content (Bakker and Hidding 1970) and water potential (Currie 1984b, Pereira and 

Cruciani 2001, Thorbjorn et al. 2008). All of these complexity factors define the active 

pore space (Moldrup 2005). Predictive models of gas diffusivity in soils have 

demonstrated that the relationship differs depending on disturbance and repacking 

(Moldrup 2000). Additionally, diffusion in soils may have a larger vertical component 

than horizontal (Kühne et al. 2012). While no single equation can adequately describe 

diffusion in all materials (Currie 1960), the general relationship that diffusivity depends 

on porosity has passed scientific scrutiny for more than a century.  

Gas can also move through a soil via bulk flow driven by a total pressure gradient. 

This movement is driven by Darcy’s Law:  

 



PkA
Q


           (3) 

 

where Q is the convective flux (m
3 

s
-1

), k is the intrinsic permeability (m
2
), A is the cross-

sectional area for flow (m
2
), P is the difference in total pressure (Pa),  is the gas 

viscosity (Pa s) and   is the flow path length (m). In this chapter, I report conductivity (c, 

m
3 

s kg
-1

) as the k of the sample over the µair at 30ºC and 90% humidity (Tracy et al. 

1980). Convective fluxes are driven by total pressure differences across a boundary. The 

differences in convective gas flow through a variety of porous media may be described 

through the c of gas in the medium. 
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Conductivity through soil is usually reported as hydraulic conductivity, which 

includes a gravity component not applicable to gas flows in our system. Hydraulic 

conductivity through soil is affected by the pore radius usually estimated through 

moisture retention (Campbell 1974). Intrinsic permeability varies as a function of air-

filled porosity (Olson et al. 2001). Different porosities, median grain size, and sorting 

factors affect the pore radius (Bezrukov et al. 2001). 

Air-filled porosity consistently affects gas movement through soils via both 

diffusive and convective fluxes. Porosity varies with sorting, a standard estimate of the 

variance in the grain distribution, but is independent of median grain size (Beard 1973, 

Bezrukov et al. 2001). Grain size distributions on natural beaches are mixtures of log-

normally distributed populations of grain sizes produced by different sedimentation 

processes (Spencer 1963), with sorting, skewness and kurtosis being descriptors of the 

sum of the influence of each of these processes on the beach (Folk and Ward 1957). 

Median grain size and morphology describe the distance traveled and the maturity of the 

source population (Folk 1954, Pettijohn 1957).   

In this chapter, I report on the factors that affect gas movement through the sand 

on sea turtle nesting beaches. In order to generate better models of sea turtle nest gas 

exchange, I measured the diffusivity and conductivity of sands from sea turtle nesting 

beaches around the world with visibly different characteristics.  
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Methods 

 

Sand Collection 

I generated a library of sand from sea turtle nesting beaches in Greece 

(Kyparissia, Thiafi, Marathonissi, Sekania, and Gerakas), Costa Rica (Ostional, Naranjo, 

and Tortuguero), Bioko Island and Equatorial Guinea (Playa Moaba), in addition to 

commercially available “Play Sand.” These beaches were used by loggerhead (Caretta 

caretta), leatherback (Dermochelys coriacea), olive ridley (Lepidochelys olivacea), green 

(Chelonia mydas), East Pacifc green (Chelonia agassizi) and hawksbill (Eretrmochelys 

imbricata) sea turtles.  

I collected sand in a core of 50 cm length and 5 cm diameter from control sites on 

loggerhead turtle nesting beaches in Greece. A preliminary depth profile sieve analysis 

found no significant difference in sand structure in the first 50 cm; hence, after visual 

confirmation that there was no stratification, I dried and pooled each core. On Bioko 

Island, sand was collected in 50 mL screw-top Falcon tubes from the sides of leatherback 

turtle nests, up to 1 m depth. A preliminary depth profile sieve analysis found no 

significant difference in sand structure in the first meter, so I pooled those dry samples by 

nest site. Sand collections on the Costa Rica beaches occurred prior to this study and I re-

dried them before analysis. I dried the sand at 100ºC for 24 hrs prior to international 

transportation per USDA regulations. For all experiments, the sand tested was a sub-

sample of the pooled sand. 
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Sand Grain Size 

I manually shook dried sand for 15 minutes through standard soil sieves of sizes 

2, 1.4, 1, 0.5, 0.355, 0.25, 0.15, 0.09 and 0.063 mm, and weighed the contents of each 

bin. The bin sizes were converted to the  scale (-log2(mm)) to account for lognormal 

distribution during sedimentation (Folk 1980). Beaches were differentiated by the median 

grain size (50) and sorting () for analyses according to Folk (1966) where: 

 








 








 


6.64

5951684        (4) 

I interpolated values for  at the 5
th

, 16
th

, 50
th

, 84
th

 and 95
th

 percentiles from the 

slope of the line between the points on either side of each percentile.  

Porosity 

I measured porosity in five random samples from each site. I packed dry sand by 

vibration into a 60 mL graduated syringe and capped the syringe with a rubber stopper. I 

recorded mass (+/- 0.005 g) and volume (+/- 0.5 ml). The syringe connected to a low-

flow rotameter via tygon tubing and a vapor trap.  I introduced a known volume of water 

by suction at 20 mL/min against gravity and under light vibration to minimize trapped air 

bubbles. When water coming out of the syringe appeared as an uninterrupted stream, I 

recorded the amount of water in the syringe as the void volume. Total porosity (T) was 

equal to the void volume per total volume and included both gas and liquid phases. 

Since gas movement occurs through the gas phase of the soil matrix, I calculated 

air-filled porosity (air) following experiments using the equation:  
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where VT was total volume occupied by sand (cm
3
), VW was volume of water in sand 

(cm
3
), MS was mass of dry sand (g), and S was density of dry sand in the experiment. 

The first phrase in the numerator was a volume correction for the packing of wet sand. I 

performed a separate sieve analysis on the individual sand samples to determine the 

relationship between porosity and grain size distribution parameters (50 and ).  

Sand Preparation for diffusivity and conductivity experiments 

I added water to dry sand for the desired water content (% of dry sand mass) and 

thoroughly mixed it. I packed wet sand into the chamber with ~3 kg force and vibrated it 

to obtain maximal compaction. The chamber was sealed and capped before being inserted 

into the apparatus assembly. Sealed chambers were checked regularly for leaks by a 

pressurized soap bubble test.  

Conductivity 

I built a test chamber following the methods of (Olson et al. 2001). I calculated 

the specific volume of test sand as S
-1 

from the volume of the conductivity chamber 

(cm
3
) over the mass of the dried sand (g). Specific volume was a proxy for the ability to 

pack sand into the chamber. I flowed N2 at 90% humidity through the chamber (verified 

with a Qubit Q-S161 RH/Temperature Analyzer) and used that humidity to calculate 

viscosity from Tracy et al. (1980). 
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Following Figure 4-1, I increased the flow using a rotameter (Brooks) and 

recorded the difference in pressure with an HH800 differential manometer (OMEGA). 

The intrinsic permeability (K, m
2
) was calculated according to Olson et al. (2001): 

 

PA

V
K





          (6) 

 

where  = viscosity (Pa s), V = flow rate (m
3
 s

-1
),  = column length (m), A = cross-

sectional area (m
2
), and ΔP = differential pressure (Pa). In this chapter, I report gas 

conductivity (c, m
3
 s kg

-1
) as K/µair where µair = 1.08x10

-5
 (Pa s) for air at 30ºC and 90% 

humidity.  

Diffusivity 

I modified the two flow system from (Batterman et al. 1996) to determine oxygen 

diffusivity through sand (Figure 4-2). I established humidified gas flow rates of ~15 

ml/min of pure O2 and pure N2 using a rotameter (Brooks) and monitored differential 

pressure using a digital manometer (OMEGA) to ensure no directional convective flow. 

A S100 O2 Sensor (Qubit) measured O2 concentration on the outflows and I analyzed it in 

LoggerPro (Vernier). Diffusivity (D, cm
2
 s

-1
) was calculated according to (Batterman et 

al. 1996):  
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where   = column length (cm), C = concentration of O2 at the outflow of the chamber 

(%) where the outflow ports are indicated by the respective inflow gas (O2 or N2), V = 

flow rate (mL s
-1

), A = cross-sectional area (cm
2
), and dP = differential pressure (Pa). 

Statistics 

I performed all statistical analyses in R and MATLAB. For the sieve analysis, I 

used a Pearson correlation between 50 and , and I used a MANCOVA to analyze the 

clustering differences by beach of the dependent variables. I analyzed the porosity data in 

least squares linear regression versus the separate sieve analysis of those specific 

samples. I analyzed diffusivity and conductivity data versus the median grain size (50) 

and sorting () for the sand core and air as calculated from the water content of the 

sample and average T of the sand core following equation 5. I used a multiple regression 

of air and 50 on conductivity, and ANCOVA of air and beach as a factor variable on 

diffusivity. All means are reported ± 2 standard errors of the mean. 

 

Results 

 

Grain Size 

Cumulative distribution of sand grain sizes (% larger grain size by mass) was 

different in different beaches (Figure 4-3). There was a significant difference between 

beaches on the sand 50 and  (MANOVA: F(11,117) = 112.29, p <0.0001; Pillai’s 

Trace = 1.83) (Table 4-1). There was a statistically significant, but small correlation 

between 50 and  (R = -0.31, p <0.0001, Figure 4-4).  
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Porosity 

Total porosity (T) varied as a function of  between sands from different 

beaches (linear regression: F(1,89) = 180.4, p <0.0001, R
2 

= 0.67, Figure 4-5). There was 

also a statistically significant relationship between T and 50 (linear regression: F(1,89) 

= 77.49, p <0.0001, R
2 

= 0.47, Figure 4-6). Since gas conductivity and diffusivity depend 

upon air-filled porosity (air) (Currie 1970b), I calculated air using equation 5 from the 

mean T for each core.  

Conductivity, Diffusivity and Specific Volume 

During the analysis of gas conductivity and diffusivity versus water content, sand 

at 0% water content had lower conductivity (Figure 4-7 Top) and diffusivity (Figure 4-7 

Middle) than sand at 2% moisture. Specific volume increased between 0 and 2% moisture 

but plateaued as water was added beyond that (Figure 4-7 Bottom). An increase in 

specific volume means a decrease in sand density and thus an increase in void space. This 

is why air was not always less than T because repacking wet sand increased the specific 

volume of the sand. 

Gas conductivity through sand (Figure 4-8) varied as a function of the air-filled 

porosity and grain size (Multiple regression: F(2,315) = 1294, R
2
 = 0.89, p <0.0001). 

Large sand grain sizes and large air-filled porosities increased gas conductivity.  

Gas diffusivity through sand varied as a function of air-filled porosity and beach 

(ANCOVA: F(12,198) = 54.9, p <0.0001, R
2
 = 0.77, Figure 4-9). Differences among 

beaches could not be explained from 50 or  (p >0.05), but were related to differences 
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in air filled porosity of those beaches. The diffusion constants ranged from 2-16% of O2 

in air with a mean of 7.7%.  

 

Discussion 

 

In this chapter, I report on the factors that influence gas movement through the 

sand of sea turtle nesting beaches. I show that the gas diffusion coefficient was linearly 

determined by the air-filled porosity (air) of the sand (Figure 4-8), that gas conductivity 

was collinearly determined by air and the median grain size (50) of the sand (Figure 4-

7), and that air was linearly related to the sorting ( ) of the sand. I measured these 

variables on sands from a variety of sea turtle nesting beaches that had different 50  and 

.   

In the grain size distribution analysis, the relationship between 50 and  was 

statistically significant, however that relationship should not be used to predict sand grain 

size distribution on the beaches (Figure 4-4). The sand distribution was unique to each 

beach because there were potentially different sources and different distribution forces 

that produced differences in not just the 50  and , but also factors not measured for this 

study, such as kurtosis and skewness in addition to non-distribution factors such as grain 

roundness and smoothness (Spencer 1963, Folk 1980). All of these factors could 

contribute to the amount of air space in the soil matrix, which in turn affects the gas 

movement through beach sand. Overall, the beaches in this study vary in terms of texture 
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and are representative of the range of beaches used for sea turtle nesting found previously 

(Mortimer 1990; Figure 4-4). 

In the porosity analysis, I found a significant relationship between T and 50; 

however, when this relationship is visualized (Figure 4-6) and compared to the 

relationship between 50 and  (Figure 4-4), it is revealed that these are mirror images, 

which can be explained by the negative slope in Figure 4-5. Therefore, the relationships I 

found between T and  (Figure 4-5) and between T and 50 (Figure 4-6) are similar to 

the previous findings that porosity is independent of grain size, but varies with sorting 

(Beard 1973). In that study, they were able to fill a wider array of sand grain distributions 

through artificial mixing which can fill in the gaps of this study, however, they point out, 

many of those distributions are not likely to occur in nature, especially fine sands with 

poor sorting (Beard 1973). 

Conductivity values from these experiments correspond to the range previously 

suggested for sand of 1*10
-7

 to 10
-4

 m
3 

s kg
-1

 (Bear 1972). Previous studies have found a 

relationship between intrinsic permeability and air-filled porosity (Olson et al. 2001), as 

well as both 50  and  (Beard 1973). While porosity, and as an extension ,  explains 

the total amount of pore space available for fluid movement through sand, 50 can be 

used to estimate pore diameter from the spherical contact distribution function (Bezrukov 

et al. 2001). Sand grain size determines pore diameter which is functionally related to the 

shear resistance to flow (Sperry and Peirce 1995). 

The relationship between diffusivity and air-filled porosity I report is comparable 

to previous studies in that as air-filled porosity increases, so does diffusivity (Batterman 

et al. 1996, Bartelt-Hunt and Smith 2002). However I found a straight line relationship 
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while others have proposed a curve or exponential relationship (Penman 1940, Millington 

and Quirk 1959, Currie 1970a), which may be due to the relatively small range of low 

porosities in sands as compared to soils (Shimamura 1992). The differences between the 

diffusivity of beaches could not be attributed to 50 or , and may be related to grain 

shape or tortuosity.  

Sand Repacking and the Cluster Concept 

In agriculture, plowing of the soil increases the porosity, diffusivity and 

permeability (Ball 1981); similarly, as sea turtles dig the nest, they disturb the soil and 

increase the porosity. I have demonstrated that repacking wet sand in a tube has a greater 

pore volume than with dry sand. The difference in conductivity (and to a lesser extent, 

diffusivity) between dry (0% water g g
-1

) sand and lightly wetted sand (2.5% water g g
-1

) 

is due to the specific volume because less wet sand (g) than dry sand (g) is required to fill 

the same volume. This phenomenonis consistent with the cluster concept of soil structure 

(Barden and Pavlakis 1971). The effect of increased specific volume between dry and 

lightly wetted sand was more pronounced in the conductivity column (Figure 4-7 Top) 

than the diffusivity column (Figure 4-7 Middle) and could be due to a number of factors: 

I used nearly twice the mass of sand for the conductivity experiment than for diffusivity, 

there was greater length to width ratio of the conductivity column, and there was a greater 

amount of surface area of the sand contacted by the flexible screen in the diffusivity 

column. The increase in specific volume was because air was greater for wet sand than 

for dry sand. Although it was counterintuitive that adding liquid to a solid could increase 

the amount of gas in a column, a greater mass of dry sand than wet sand could be packed 

into a conductivity column, leaving less air space. It is important that future studies 
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examine the relative gas exchange through the egg chamber versus the undisturbed sand 

surrounding the nest. 

The difference specific volume between repacked wet and dry sand is consistent 

with the cluster concept (Barden and Pavlakis 1971). When dried soil is mixed with 

water, particles will cluster, held together by soil suction, and commonly referred to as 

aggregates or peds. Water forms a membrane around each particle, with water suction 

promoting particle aggregation. Water suction is greater in the intra-cluster micropores 

than the inter-cluster macropores and, upon compaction, water gathers around the tight 

junctions, rather than in the void space (Barden and Pavlakis 1971). The wet aggregates 

essentially act as larger particles that have larger void space for air to flow through both 

inside the aggregate and between aggregates.  

The difference between the intra-cluster micropore and the inter-cluster 

macropore affects functional pore space (Fish and Koppi 1994). Since bulk flow was 

affected by pore size, conductivity showed a large response due to clustering. Diffusivity 

was affected by porosity, or the ratio of void space, and increasing the effective size of 

particles through aggregation did not drastically increase the ratio of inter-cluster 

macropore volume to aggregate volume. The beach sands that displayed an increase in 

diffusivity between dry and lightly wetted sand had functional intra-cluster micropores 

that can allow for diffusion through an aggregate. This underscores the importance of 

reporting volume relationships, rather than mass relationships, of water to soil when 

discussing gas exchange. 
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Gas exchange of underground nests 

Measurements of diffusivity on the substrate of megapode nests (0.08-0.093 cm
2 

s
-1

) were much higher than found in this study (Seymour et al. 1986). This is most likely 

due to high organic content of the megapode mounds. Large amounts of clay and organic 

material in soil can increase the porosity and affect tortuosity (Troeh et al. 1982) allowing 

for more diffusion. All of the measurements in this study were on sandy beaches with 

<1% fines (diameter of less than 63 µm) and very little organic material; increasing the 

amount of fines in soils affects diffusivity relationship with water and compaction 

(Shimamura 1992). 

My data supported previously reported D for O2 in sea turtle nesting beach sand 

of 0.015 and 0.025 cm
2 

s
-1

 (Ackerman 1977). The previous estimates of diffusivity on sea 

turtle nesting beaches did not account for bulk flow. Ackerman (1977) estimated a 

diffusivity of 0.015 cm
2 

s
-1

 for Tortuguero, Costa Rica and 0.025 cm
2 

s
-1

 for Hutchinson 

Island, Florida. My measurements of diffusivity for most beaches correspond well to 

Ackerman’s (1977) Tortuguero estimate; indeed, all beaches with water contents between 

5-7.5% could have a diffusivity of 0.015 cm
2 

s
-1

. Interestingly, the only sand that does not 

fall within that range were from Tortuguero, but there could be variation in sand along 

the beach, sand could have changed between Ackerman’s work and this study, or 

Tortuguero may have had a high water content for Ackerman’s (1977) estimate.  

In this study, less than 5% of diffusivity values were greater than 0.025 cm
2 

s
-1

, 

the estimate for Florida sand (Ackerman 1977). This overestimation may be due to bulk 

flow in the system not considered in the model. The tidal amplitude at Limon, Costa Rica 

(15 km from Tortuguero, http://www.surf-forecast.com/breaks/Tortuguero/tides/latest) is 

http://www.surf-forecast.com/breaks/Tortuguero/tides/latest
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usually below 0.5 m; however, Fort Pierce Inlet, Florida (20 km from Hutchinson Island, 

http://saltwatertides.com/cgi-local/floridaatlantic.cgi) has regular tidal amplitudes of over 

1 m. Assuming that the water table fluctuations below nests are attenuated to 20% of the 

tide (O'Connor et al. 2009), sea turtle nests would experience vertical bulk air movement 

of 10 cm (Tortugero) and 20 cm (Hutchinson Island). Ackerman’s (1977)  measurements 

of effective nest volumes suggest that the minimum diameter of a sea turtle nest of 100 

eggs is 21.6 cm (C. caretta, Florida) and 23 cm (C. mydas, Tortuguero). Bulk air 

movement would affect less than half of the nest at Tortuguero, but almost the entire nest 

air volume would be displaced at Hutchinson Island each day.  

 Wallace et al. (2004) found that a prediction from the values of diffusivity from 

Ackerman (1977) overestimated the oxygen consumption in the nests of D. coriacea at 

Playa Grande, Costa Rica. I used the calculations from Wallace et al. (2004) to compute 

diffusivity values necessary to match their observed oxygen concentration in the nest. 

The authors assumed that the oxygen concentration in the nest (PO2, kPa) was 

proportional to the nest oxygen consumption (VO2, cm
3 

s
-1

) over the gas conductance 

(GO2, cm
3 

s
-1

 kPa
-1

) and calculated the conductance from their data. Gas conductance can 

also be calculated from Wangensteen et al. (1970) by: 

 

atm

O
PT

ADT
G


0

2
           (8) 

  

where T is the temperature (ºK), T0 is freezing temperature (273.15 ºK), A is the area 

(cm
2
),   is the distance (cm) and Patm is the atmospheric pressure at T0 (101.325 kPa). 

http://saltwatertides.com/cgi-local/floridaatlantic.cgi
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Assuming that the temperature is 30ºC, the D. coriacea nest has a radius of 15 cm at a 

depth of 40 cm (Wallace et al. 2004), then the D needed to increase GO2 sufficiently for 

the data is 0.05 cm
2 

s
-1

, which is two to five times higher than my measurements suggest 

would be reasonable for beach sand. Tamarindo, Costa Rica (5 km from Playa Grande, 

http://tamarindotides.com/Months/August2012.html) has regular tidal fluctuations of 2-3 

m. Under the previous assumption of water table attenuation to 20% of tidal value, the 

vertical bulk air flow could be 40-60 cm, which is of sufficient amplitude to flush the nest 

with reoxygenated air daily.  

In Florida, some sea turtle nesting beaches are being renourished after erosion by 

hurricanes and can affect hatching success and gas concentrations in the nest (Mota 

2009). The sand that is transported to the beaches often comes from inland sand mines or 

offshore dredges, which can include higher percentages of silts and clays than is normally 

found on the beach. These sands are not generated from the same processes that produced 

the beaches; hence, this difference can affect the mean grain size, sorting, skewness, and 

kurtosis of the beach sand population (Spencer 1963). I have demonstrated that various 

properties of sand affect gas movement; therefore, it is important that beach 

renourishment programs consider the gas environment for organisms of the in-beach 

ecosystem.  

Climate change models project heating for sea turtle nesting beaches (Saba et al. 

2012) that can affect hatchling mortality (Santidrian Tomillo et al. 2012). In addition, 

heating would create a deeper dry sand layer that is less permeable to gases than the 

repacked wet sand. This would restrict the tidal flow of gases, which contributed to the 

higher than expected oxygen concentrations for D. coriacea nests at Playa Grande 
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(Wallace et al. 2004). Furthermore, introduction of dry sand into nests through relocation 

could decrease gas exchange with the sea turtle nest, and may be a contributing factor to 

lower hatching success in relocated nests (Sieg 2011). 

Sea turtles are important environmental engineers of beaches, with the 

construction of nests being hypothesized to maximize gas exchange (Ackerman 1975). 

Recent modeling attempts on the gas exchange of sea turtle nests have assumed that the 

sand surrounding the nest is uniform (O'Connor et al. 2009, O'Connor et al. 2011). The 

nest shaft is filled with repacked sand by the female turtle as she finishes laying, and so 

would have air greater than that of the undisturbed sand to the side of the nest, leading to 

less resistance to gas movement above the nest than to the sides. Although densely nested 

beaches have lower gas concentrations in neighboring nests, this effect was only seen at 

densities of 9 nests per meter (O'Connor et al. 2009). It is therefore imperative to measure 

the air-filled porosities of undisturbed sand to determine the difference between gas 

movement within the nest versus the rest of the beach. As beaches continue to be 

developed, eroded or renourished, the undisturbed state of the interstitial environment 

must be understood in order to properly mitigate and restore specific beach ecosystems.  
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Figure 4-1. Diagram of the laboratory set-up for testing sand conductivity. I measured differential pressure (manometer) 

across a column of sand using unidirectional flow-controlled (rotameter) water-saturated nitrogen.   
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Figure 4-2. Diagram of the laboratory set-up for testing sand diffusivity. I measured [O2] on either end of column of sand 

using bi-directional flow-controlled (rotameter) water-saturated nitrogen and oxygen gases. I measured the differential pressure 

to ensure no unidirectional flow.   
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Table 4-1. Median grain size and sorting. The values represent the mean ± 2 SE.  

 
Beach  Country 50  

Kyparissia O Greece -0.43 (0.180) 0.86 (0.083) 

Kyparissia A Greece -0.45 (0.076) 0.77 (0.034) 

Thiafi  Greece 1.14 (0.062) 1.16 (0.035) 

Marathonissi Greece 1.37 (0.123) 0.77 (0.032) 

Playa Ostional Costa Rica 1.56 (0.363) 1.17 (0.037) 

Sekania East Greece 1.68 (0.047) 0.44 (0.011) 

Play Sand Commercial 1.75 (0.029) 0.71 (0.015) 

Playa Naranjo Costa Rica 1.76 (0.035) 0.76 (0.004) 

Sekania West Greece 1.79 (0.041) 0.48 (0.034) 

Gerakas Greece 2.14 (0.091) 0.49 (0.006) 

Tortuguero Costa Rica 2.24 (0.139) 0.61 (0.014) 

Playa Moaba, Bioko 

Island 

Ecuatorial Guinea 2.41 (0.047) 0.53 (0.039) 
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Figure 4-3. Cumulative grain size for all experimental beaches. Each point represents the cumulative percentage of sand mass 

retained in each sieve and all coarser screened sieves. The coarser sands have lower . Median grain size (50) is the  at 

which the cumulative distribution is equal to 50%. Sorting () can be visualized on this graph through the slope: poorly 

sorted sands have less steep slopes.  
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Figure 4-4. Distributions of pooled samples vary according to median grain size and sorting. The beach samples for this study  

(black letters) overlap with distributions from Mortimer (1990) (gray X) and samples from turtle nests on the experimental 

beaches (all other gray letters). Error bars represent the range of the pooled samples that could be expected from subsampling 

(N=7 for each); bars which did not extend beyond the limit of the symbol are not shown. Low values of 50 are coarse-grained 

sand. Low values of  are well sorted and high values are poorly sorted. 
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Figure 4-5. Porosity (T) varied as a function of sorting () on the beaches. The well sorted beaches had higher porosities. 

The equation for the regression is T = -0.16 *  + 0.44 (R
2
 = 0.67).  
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Figure 4-6. Beaches cluster according to their porosity and median grain size. The linear regression line is not shown. 
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Figure 4-7. Dry sand (0% moisture by mass) had lower conductivity (Top) and 

diffusivity (Middle) than lightly wetted sand (2% moisture by mass). Specific volume 

(bottom) increases between 0 and 2% moisture, but plateaus as water is added beyond 

that.
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Figure 4-8. Conductivity varies with median grain size and air-filled porosity. The median grain size can be used to estimate 

pore size (Bezrukov et al. 2001). 
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Figure 4-9. Diffusivity of O2 in sand varies by beach and air-filled porosity. Values shown here range from 2-16% of the 

diffusivity for O2 in air (0.230 cm
2 

s
-1

).  
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CHAPTER 5: ABIOTIC AND BIOTIC EFFECTS ON THE GAS EXCHANGE 

ENVIRONMENT OF LOGGERHEAD TURTLE NESTS IN GREECE 

 

Introduction 

Sea turtle eggs are an immobile life stage exposed to the environment for 40-80 

days without parental care. In all sea turtle species, a clutch of eggs is buried deep in the 

sand of a beach where the highly porous eggs are adapted to the high humidity and low 

oxygen in the underground environment (Seymour 1980). To survive this life stage, eggs 

respond to stressors physiologically. Proper development requires food, water, oxygen 

and temperature in a range suitable for development. While the egg comes preloaded with 

food in the form of yolk, the incubation medium affects the thermal, hydric and gaseous 

environment (Ackerman 1977, Seymour 1980, Seymour et al. 1986).  

If the incubation medium does not allow for adequate gas exchange, the sea turtle 

nest may become chronically hypoxic resulting in lower hatching success (Ackerman 

1980, Garrett 2010), or growth and metabolism of the eggs in the clutch may be 

depressed (Kam 1993). Embryos exposed to hypoxia do show some physiological 

plasticity in ability to transport oxygen (Kam 1993, Crossley et al. 2003), smaller size 

with larger hearts (Crossley and Altimiras 2005, van Bergen 2005), and vasodilation 

(Crossley and Altimiras 2005) that may reduce the physiological response to future 

hypoxia (Eme et al. 2011b) but may also result in hypertension and low heart rate (Eme 

et al. 2011a). The reptilian sympathetic and parasympathetic reflex loops may play 

important roles in the response of embryos to naturally occurring hypoxic nest conditions 

(Eme et al. 2011b). 
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The sea turtle egg shell is flexible and parchment-like (Packard et al. 1979) with 

gas permeability across the sea turtle eggshell being twice that of the chicken egg 

(Wangensteen et al. 1970) due to a higher shell porosity (Ackerman and Prange 1972) 

that allows for a greater flux of gas and water across the shell (Tracy et al. 1978). In avian 

eggs, the resistance to gas exchange is through the hard shell that minimizes water loss in 

the air. In contrast, in the turtle egg, the major resistance to gas exchange is in the sand 

around the nest rather than in the porous shell (Ackerman and Prange 1972). Ackerman 

(1977) hypothesized that the sand surrounding the nest acts as an extension of the turtle 

eggshell, thereby decreasing the effective gas permeability to that of a hard-shelled avian 

egg. Female sea turtles influence the gas exchange of their clutch of eggs by constructing 

a nest and by ovipositing an appropriate metabolic mass in the nest (Ackerman 1977, 

Warner and Andrews 2002).  Gas exchange is ultimately limited by the physical 

characteristics of the nest and beach (Ackerman 1975) and affects survivorship of eggs 

(Ackerman 1980, Wallace et al. 2004, Honarvar et al. 2008, Garrett 2010). Embryos at 

the center of the clutch may suffer greater mortality, grow more slowly and hatch later 

than the eggs at the periphery of the nest (Ackerman 1980, Wallace et al. 2004). 

Within the amniote egg, yolk serves as a source of food for the developing 

embryo; it consists of proteins, fats and sugars that form the building blocks for structural 

development, and acts as an energy sounce. Yolk composition depends upon the 

condition of the mother, and is representative of the condition of the foraging site. The 

predominant hypothesis for differences in remigration intervals among sea turtle 

populations is that foraging in low productivity areas increases the time between nesting 

bouts (Saba et al. 2007, Wallace et al. 2007, Reina et al. 2009). Other maternal effects, 
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linked with foraging site and female condition, include egg size and clutch size. In this 

study, I measured the clutch characteristics as a proxy for maternal effects on hatching 

success. 

Generally, the oxygen consumption of a clutch exhibits a peaked pattern, low at 

first, with exponential increase that may either flatten or decrease just before hatching 

(Prange and Ackerman 1974, Ackerman 1981, Thompson 1989), which would allow for 

improved gas exchange in the final days of development (Kraemer and Richardson 

1979). Increased embryonic growth rates are associated with increased oxygen 

consumption (Ackerman 1980). 

Many studies have examined the effects of sand grain size on sea turtle nesting. Sand 

grain size in Brazil appeared to affect incubation duration, but the authors did not 

measure nest temperature as an explanatory variable (Ferreira Júnior 2008). Mortimer 

(1990) found that sands with larger air-filled porosities had lower hatching success in 

Chelonia mydas nests, which was most likely due to lower water exchange. Bustard 

(1968) found that C. mydas nesting success on Heron Island, Australia, was highest when 

there were many roots and high moisture. Chelonia mydas nest oxygen concentration was 

influenced by numbers of eggs and temperature, but not sand grain size on Wan-an 

Island, Taiwan (Chen et al. 2010). Sand oxygen concentrations of Lepidochelys olivacea 

in Costa Rica may be affected by nest density (Honarvar et al. 2008) and organic material 

in the sand (Clusella Trullas 2007). Hatching success of Caretta caretta nests in Florida 

is affected by salinity and water content from inundations (Foley et al. 2006), as well as 

compaction and calcium carbonate content (Mota 2009). Sand characteristics did not 

affect hatching success of Dermochelys coriacea in Costa Rica (Clune 2005). 
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In this study, I investigated the physical properties of a series of beaches in 

Greece and the hatching success of loggerhead turtle eggs laid in those beaches. 

Zakynthos Island and the mainland site of Kyparissia, Greece, host the two largest 

loggerhead rookeries in the Mediterranean accounting for 857-2018 (16 years) and 286-

927 (15 years) nests per year, respectively (Rees 2005).  

Occasional records of interchange have been reported between these rookeries 

from external flipper tags of nesting females (Margaritoulis 1998). From 2006-2008, out 

of 13 tracked females from Laganas Bay, there were four forays to neighboring rookeries 

at Kyparissia, other neighboring Peleponesse bays and Kefalonia Island (Schofield et al. 

2010). Given the differences between sand characteristics of these beaches, it is not clear 

if turtle nesting behaviors are selected for laying their eggs on a particular beach. 

Loggerheads in Greece use sand characteristics for oviposition sites displaying 

preferences for sand grain size distributions that maximize aeration and water drainage 

and provide structural support during egg chamber construction (Karavas 2005, Mazaris 

et al. 2006). Since adaptive behaviors are related to survival and reproductive success 

(Williams and Nichols 1984), the same sand characteristics that influence nest placement 

should influence the survival of the eggs within the nest (Hays and Speakman 1993). 

Sands on the beaches of Zakynthos and Kyparissia differ visually in grain size and color 

(personal observation). These differences in sand characteristics may affect development 

of turtle eggs. I hypothesized that the beaches with larger sand grains would produce 

clutches with higher oxygen concentrations due to increased nest ventilation and that 

those clutches would have higher hatching success than clutches on beaches with smaller 

grain sizes. 
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Methods 

 

Locations 

I conducted this study on the Greek island of Zakynthos (Figure 5-1A) in the 

Ionian Sea and on the beach at Kyparissia Bay (Figure 5-1B) on the Peleponesse 

Peninsula of mainland Greece. Laganas Bay is located at the southern end of Zakynthos 

Island, and has 6 nesting beaches: Marathonissi, Laganas, Kalamaki, Sekania (East, West 

and Thiafi), Daphni, and Gerakas. Laganas Bay is a NATURA 2000 site protected under 

the National Marine Park of Zakynthos (NMPZ) and the beaches have limited public 

access and strict regulations. I monitored nests on Marathonissi, Sekania, and Gerakas. 

Daphni beach experienced an increased number of cobbles and pebbles prior to the 2009 

season due to winter storms, and turtles had difficulty nesting there. Laganas and 

Kalamaki beaches had grain size distributions between those found at Sekania East and 

Gerakas. For these reasons, I decided not to include those beaches in this study.  

Marathonissi is a spit on a beach consisting of white rocky and biogenic sand of 

moderate coarseness. The beach is on the northeastern side of the island of Marathonissi 

within Laganas Bay and is separated from the mainland by a channel to the north and 

west and shallow sea grass beds to the east that constitute most of the bay floor. Between 

2008 and 2009, sand was deposited on the east side of the spit from winter storms, 

increasing the size of the beach (G. Schofield, unpublished data). Marathonissi has cool 

nest temperatures and long incubation times and is an important male-producing beach 

(Zbinden 2007). Visitors to the beach are restricted to the area adjacent to the water to 
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preserve nesting habitat and nests are caged by NMPZ wardens and ARCHELON 

volunteers to protect from human trampling.  

Sekania consists of three crescent beaches (East, West and Thiafi) connected via 

rocky outcroppings. For this study, I differentiated between the three beaches of Sekania 

because of differences in sand grain size distribution and nest density. All three beaches 

have limited access via a steep walking path only accessible to personnel and volunteers 

from ARCHELON, The Sea Turtle Protection Society of Greece, NMPZ and World 

Wildlife Foundation; the marine area falls within Zone A of the NMPZ, with all water 

craft being prohibited to protect sea turtles and fisheries resources. Sekania East and West 

had similar moderately fine sand but Sekania East also had occasional pebbles, cobbles 

and hard packed clay, especially in the river bed discharge area (Karavas 2005). During 

the 2009 and 2010 nesting seasons, the river beds were dry and had relatively few 

successful nesting attempts. Both beaches are less than 200 m in length, but Sekania West 

has a spit with steeper slope and decreased beach width on the west side. There are three 

coves of calm water separated by a rocky outcrop between East and West and the spit on 

Sekania West. 

Thiafi is located west of Sekania West and has a small nesting area about 10 m 

wide nestled between a rocky outcrop and a cliff. The beach consists of moderate and 

poorly sorted rocky sand and contained between 10 and 20 nests in 2009 and 2010; as 

such, Thiafi had high nesting density. The beach of Thiafi continued less than 100 m west 

to a tall cliff, but there was no suitable nesting area and very few attempts. Turtles usually 

accessed the nesting beach on Thiafi from the cove to the west, but occasionally would 

access it from the cove between Sekania West and Thiafi.  
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Kyparissia Bay is on the western coast of Greece and the beach, dunes and coastal 

forest are a NATURA 2000 site (Rees 2005). The nesting beach extends the entire 44 km 

length of the bay, but the majority of nesting occurs in the southern 9.5 km (Figure 5-1B). 

For this study, only sectors A and O were used. Kyparissia A consists of the first 2500 

meters of the beach north of the village of Kalo Nero to the hillock, Vounaki, and has 

coarse sand grains with very little clay. I monitored nests on the first 1500 meters of 

sector A. Kyparissia O consisted of the beaches directly in front of Kalo Nero and had 

coarse grained sand with some clay that often made it slightly muddy. Kyparissia O had 

rocky outcrops that separated nesting areas on the beach. There was greater wave action 

in Kyparissia Bay than Laganas Bay that can account for a one-meter berm next to the 

water and large amounts of debris from winter storms.  

For definitions and description of the Kyparissia Bay sectors see Margaritoulis 

and Rees (2001). For descriptions of all Zakynthos nesting beaches, see Margaritoulis 

(1982). 

Field Studies of Nests 

In 2009, I monitored nine nests on Kyparissia and 21 nests on Zakanthos Island. 

In 2010, I monitored 15 nests on Kyparissia and 41 nests on Zakanthos Island (Table 5-

1). Turtles laid the clutches in this study between 23 June and 30 July 2009 and 29 June 

and 23 July 2010. I collected gas samples from nests via a sampling port constructed 

from a perforated film canister (volume ≈ 75-cm
3
). I placed a sampling port in the center 

of each clutch as the female turtle was laying her eggs, and I held it in place as she 

covered the nest naturally. A 70-mm length of Tygon tubing (2-mm internal diameter) 

extended to the surface through the neck of the nest chamber to allow for gas samples to 
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pass from the nest to the gas analyzing equipment (Wallace et al. 2004, Honarvar et al. 

2008, Garrett 2010).  

I also collected gas samples from 2-4 control sites on each beach. I excavated a 

nest similar to a turtle nest in a location that would be suitable for a turtle nest.  I 

determined suitable nesting sites by selecting locations that were surrounded by visible 

body pits or previously marked nests within 15 meters, and at an intermediate distance to 

the sea. Each control site contained the same gas sampling port as the nests, placed at nest 

depth of 40-cm (Margaritoulis 2005). I covered the hole and packed it with sand to 

approximate the conditions of a natural nest, but without eggs. 

I collected gas samples twice per week from the nests and controls on individual 

beaches in the morning or evening.  For real-time measurements I used a Qubit Systems 

RP2LP-FCM High Ranges Respiration Package. I used a gas pump calibrated to 50 mL 

min
-1

 and drew air from the nest for three minutes for dependable gas measurements.  I 

compared O2 readings within the nest to atmospheric readings immediately prior to 

sampling and to samples from control sites. Due to unreliable measurements, I do not 

report CO2 concentrations.  

Each sampling port also contained a Cu/Cn thermocouple to record nest 

temperature concurrent with gas sampling throughout incubation. The control locations 

also had thermocouples at depths of 0, 10, 25, 40, and 50 cm for a thermal profile of the 

beach. I used OMEGA HH200A thermocouple readers (±0.1) for real-time temperature 

measurements of the nests and beach thermal conditions. I calibrated thermocouples to 

±0.05 °C. I calculated metabolic heating from temperature measurements in the nests 
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compared to the grand mean temperatures of the beach from control thermocouples at 25, 

40, and 50 cm depth.  

Nests within close proximity of each other affect gas tensions and, at high 

densities, decrease hatching success (Honarvar et al. 2008). In 2009, I counted and 

measured the distance to all hatched nests within 10 m of a monitored nest or control site. 

On many beaches, the distance from the back of the beach to the sea was less than 30 m. 

Hence, when inter-nest distances were large, this technique underestimated the density of 

nests on beaches because the circular quadrat would overlap with areas that were not 

suitable for nesting, such as vegetation behind the beach, rocky outcrops, and the sea. In 

addition, some beaches had many areas where a monitored nest or control site had no 

nests within the quadrat. Due to this underestimation, nest densities from 2009 are not 

reported here. 

In 2010, I measured the distance from the center of each nest or control site to the 

center of the nearest five hatched nests. For each nest I determined the mean distance to 

the nearest five nests. Distance is reported as the grand mean for nests on each beach. 

Egg and hatchling characteristics 

In 2010, I collected up to twenty (20) eggs from each monitored clutch as they 

were laid, individually weighed them in a plastic bag attached to a 60 g PESOLA spring 

scale, before carefully placing them back in the egg chamber prior to covering. Eggs were 

not manipulated in any way during handling, and I recorded the mass of the empty bag 

before each measurement as sand and cloacal fluid accumulated. This usually totaled less 

than 10 g. I attempted to return as much sand as possible to the nest. I measured masses 

to the nearest 0.5 g.  
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In 2010, I collected up to 20 hatchlings after they emerged from each nest through 

a boxing method (Hays and Speakman 1993). This method was already being used by 

ARCHELON monitoring program at Kyparissia. At sunset I placed a box on each of the 

monitored nests that was expected to hatch and checked it every 1.5 hours throughout the 

night. I removed the boxes at dawn. The first 20 hatchlings were weighed, measured 

(straight carapace length and width) with calipers to the nearest mm and released 

together. No hatchling was held captive for longer than 3 hours and most for less than 30 

minutes. These measurements were taken as a proxy of maternal condition. If I did not 

already have 20 measurements, I measured hatchlings found in the nest during 

excavations but did not weigh them because they were not representative of a healthy 

hatchling. 

Hatching Success 

I excavated nests by hand 10-days (Kyparissia) and 17-days (Zakynthos) post-

emergence. I carefully removed eggs and egg shells from the nest and sorted them into 

hatched eggs, unhatched eggs and hatchlings (dead or alive). I determined the number of 

hatched eggs by counting egg shells greater than 50% of a whole egg shell. I calculated 

clutch size as the sum of hatched and unhatched eggs, and hatching success as the 

percentage of hatched eggs relative to clutch size. I opened all unhatched eggs and 

recorded the embryonic stage at death according to ARCHELON monitoring protocols 

as: no visible embryo, embryo contains an eyespot, embryo has visible carapace with 

coloration but smaller than the yolk sac (stage 1), embryo size is approximately equal to 

the size of the yolk sac (stage 2), or embryo is larger than the yolk sac (stage 3). For this 

study, I considered embryos in stages 2 and 3 to have contributed to the gas 
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concentrations in the final 10 days of incubation. During excavations, I also measured the 

distance from the surface to the top and bottom of the egg chamber and used these 

measurements to calculate the depth of the middle of the nest. 

Sand Collection 

In 2009, I only collected sand from beaches before clutches were laid and after 

they hatched, so water content was not considered for that year because the samples did 

not reflect hydric conditions during the incubation period. Those samples were used only 

for grain size analyses. In 2010, I collected sand in 50 mL screw top Falcon tubes from 

the side of the egg chamber during laying, from control sites every 2-3 weeks, and from 

nests at excavation in order to measure water content throughout the season. When sand 

was sampled at control locations, the depth of the dry sand layer was measured as the 

distance from the surface to the wet, hard-packed layer. This measurement was only done 

on the Zakynthos beaches during 2010. 

Water Content 

I determined sample water mass by weighing samples to the nearest 0.01 g, 

drying for 24 hours at 100 C and reweighing using an OHAUS balance calibrated at 200 

g. The mass difference between the wet and dry sand was water mass. I calculated 

volume of sand and water (mL) by converting from mass through preliminary 

measurements of specific volume (mL g
-1

) on sand from the beaches and water density at 

25 °C (0.99704 g mL
-1

). Volumetric water content was equal to the volume of water per 

volume of dry sand. I did not include any samples in the analysis that had longer than one 

week between collection and weighing. A preliminary analysis showed that properly 
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sealed screw top Falcon tubes did not lose substantial moisture (>1%) until almost two 

weeks. When discussing gas exchange issues in sea turtle nests, volumetric water content 

of the sand is the most appropriate measurement because it can be used to calculate air-

filled porosity.   

Sand grain size characteristics 

I manually shook dried sand through a stack of 2, 1.4, 1, 0.5, 0.355, 0.25, 0.15, 

0.09, and 0.063 mm sieves (-1, -0.5, 0, 1, 1.5, 2, 3, 3.5, and 4 , respectively) and 

recorded the mass of the contents of each sieve to nearest 0.01g. I recorded cumulative 

grain size for each beach as the percent mass greater than each sieve size. Statistical 

analyses were performed on the median sand grain size (50), calculated for each sample 

using the equation: 

   
 LowHi

LowHiLow
Low

CC

C






50
50       (1) 

where Low was the size of the sieve that accounted for the largest cumulative mass less 

than 50%, Hi was the size of the sieve that accounted for the smallest cumulative mass 

greater than 50%, CLow was cumulative mass in the lower sieve and CHi was cumulative 

mass in the lower sieve. This assumed a straight-line distribution of grain sizes between 

the two sieves. 

 I also calculated the sorting factor (σΦ) for the beaches according to Folk (1966):  








 








 


6.64

5951684        (2) 

where Φ values for each cumulative percentile (5, 16, 84 and 95) were calculated 

according to equation 1, with the desired percentile substituted in for 50. Sorting 
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describes the spread of the grain sizes and can be considered analogous to standard 

deviation (Folk 1966). There is also a strong correlation between σΦ and air-filled 

porosity (Beard 1973), an important component for gas movement through sand. 

Data Analysis 

I performed all statistical analyses using R. I tested differences among nests on the 

minimum PO2 and maximum temperature experienced during the 3-10 days prior to 

emergence. Since grain sizes are naturally log-normally distributed, I present all sand 

grain data as  = -log2 (mm), such that finer grains have larger . I arcsine transformed 

the hatching success data, all other data were normally distributed. I used ANOVAs for 

all tests, except for an ANCOVA of water content during the incubation period and 

accepted a significance level of  = 0.05. Post-hoc tests from ANOVAs were performed 

using a Tukey-Kramer test. Means are reported with two standard errors. I used the 

physical characteristics of nests to predict minimum oxygen concentration, and I 

compared these predicted values to the observed minimum oxygen concentration using a 

paired t-test. 

 

Results 

 

Hatching Success 

Hatching success ranged from a mean of 70% on Kyparissia A to 92% on Thiafi. 

Kyparissia A had lower hatching success than all other beaches, except Sekania East and 

West (ANOVA: F(6,78) = 2.81, p = 0.016; Figure 5-2). One nest on Sekania East was 
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inundated by sea water during high winds on 22-23August 2010, but may have been 

affected by the water table prior to that date due to its close proximity (5.37 m) to the 

water. That nest was removed from all analyses because of unreliable gas measurements 

and my inability to excavate underwater to collect accurate clutch size or development 

stage data. 

During excavations, I noticed that some nests had many unhatched eggs that were 

already broken, suggesting mechanical crushing of the eggs. When I removed nests with 

more than 20% of eggs broken from the analysis, Kyparissia A had significantly lower 

hatching success than all other beaches, including Sekania East and West (ANOVA: F 

(6,59) = 4.26, p = 0.001). There were seven, six, five and one nests from Kyparissia A, 

Sekania East, Sekania West, and Gerakas, respectively removed from that analysis.  

Nest Oxygen 

Loggerhead turtle nest PO2 decreased throughout incubation (Figure 5-3). Oxygen 

concentration in all nests followed a peaked pattern, with an initial period of slow 

decrease followed by exponential decrease until concentrations steady or even increase 

before hatching. Maximum PO2 deficit differed between Marathonissi and Gerakas 

(ANOVA: F (6,74) = 3.17, p = 0.008; Tukey-Kramer: M < G, p = 0.04), but did not differ 

significantly between any other beaches (Figure 5-4). Minimum oxygen partial pressure 

in nests varied by beach as a function of the number of developing embryos (ANCOVA: 

F (7,73) = 6.10, p < 0.0001, R
2
 = 0.37); however, median grain size did not contribute to 

the multiple regression as an explanatory variable of PO2 (F (1,72) = 0.29, p > 0.05). 

Thiafi and Kyparissia O had low sample sizes, which may have contributed to the low R
2 

value. The number of developing embryos (of at least stage 2) was a better explanatory 
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variable for oxygen levels by beach than the number of hatched and pipped eggs 

(ANCOVA: F (7,73) = 5.41, p < 0.0001, R
2 

= 0.34), although both were significant. Since 

the minimum oxygen was usually between 3 and 14 days before emergence, the number 

of developing embryos at a late stage of development more accurately described the 

metabolic mass at that time.  

Nest Temperature 

Maximum nest temperature (Figure 5-5) was lower on Marathonissi than other 

beaches, but did not differ among any other beaches (ANOVA: F (6,64) = 24.26, p < 

0.001). Metabolic heating did not differ between the beaches (ANOVA: F (6,64) = 0.59, 

p > 0.05). Maximum nest temperature also explained some of the variation in nest oxygen 

concentration along with beach and number of developing embryos (ANCOVA: F(8,60) 

= 5.83, p < 0.0001, R
2 

= 0.44).  

Physical factors on the beaches and nest density 

Beaches differed in median particle size of sand grains (ANOVA: F(6,404) = 

271.9, p < 0.001). Kyparissia sectors A and O had medium-coarse sand, Marathonissi and 

Thiafi had medium sand, Sekania East and Sekania West had medium-fine sand, and 

Gerakas had fine sand (Table 5-2).  

Thiafi, Sekania West and Sekania East had the shortest distance between nests 

and Marathonissi, Kyprissia A, Gerakas, and Kyparissia O had the longest distance 

between nests (ANOVA: F (6,368) = 15.45, p < 0.001; Table 5-2). There were no 

differences between the water content of all beaches and there was no significant change 

in water content of the beaches during the incubation period in 2010 (ANCOVA: F 
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(13,176) = 1.72, p = 0.061; Figure 5-7). The nesting season in Greece is characterized by 

a seasonally arid summer. Because of the lack of rain, the surface sand dried out to a 

depth of 7-35 cm on the beaches of Zakynthos. Within the first two days after a rain event 

on 12 Sept 2010, the dry sand depth was between two and six cm, but after a week of dry 

weather, the dry sand depth was back to 10-26 cm before another rain event on 23 

September. Dry front was not measured during sand collection on Kyparissia. The dry 

sand layer did not penetrate to the depth of the loggerhead turtle nests. Rain storms from 

23-30 September 2010 totaled 41 mm and increased surface sand water content on 

Marathonissi so there was no dry sand layer, but did not affect the water content at nest 

depth. No other beaches were sampled after that time for water content since all 

monitored nests had hatched. 

Egg and hatchling characteristics 

There were no significant differences (p >0.05) among the beaches for egg and 

hatchling characteristics of egg mass, hatchling mass, hatchling width, hatchling length 

(Figure 5-6), or clutch size (not shown). Loggerhead egg mass was 33.0 ± 0.2 g from a 

total of 791 eggs from 43 clutches (N = 10 (Sekania East, Sekania West, Gerakas and 

Marathonissi), N = 2 (Kyparissia A), N = 1 (Thiafi)).  Hatchling mass was 15.6 ± 0.1 g 

from a total of 706 hatchlings from 44 clutches (N = 10 (Gerakas), N = 9 (Sekania East, 

Kyparissia A), N = 8 (Sekania West), N = 4 (Kyparissia O), N = 3 (Marathonissi), N = 1 

(Thiafi)). Hatchling length was 41.9 ± 0.1 mm and hatchling width was 32.4 ± 0.1 mm 

from 770 hatchlings from 50 clutches (N = 10 (Gerakas), N = 9 (Sekania East, Kyparissia 

A, Marathonissi), N = 8 (Sekania West), N = 4 (Kyparissia O), N = 1 (Thiafi)).  Clutch 

size was 103.3 ± 4.3 eggs from 85 clutches over both seasons (N = 19 (Kyparissia A), N 
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= 15 (Gerakas, Marathonissi, Sekania West), N = 14 (Sekania East), N = 5 (Kyparissia 

O), N = 2 (Thiafi)). 

 

Discussion 

 

 In this chapter, I have reported the oxygen concentration in developing 

loggerhead turtle nests on a series of beaches in Greece. The nesting beaches of Laganas 

Bay, Zakynthos, and Kyparissia Bay, Peleponessus, have different sand grain size 

characteristics but this did not affect hatching success or nest oxygen concentration. 

Oxygen concentration in all nests followed a peaked pattern, with an initial period 

of slow decrease followed by exponential decrease until concentrations steady or increase 

before hatching (Figure 5-3). This trend is similar to those found in previous studies of 

sea turtle nests (Ackerman 1977, Maloney et al. 1990, Wallace et al. 2004, Honarvar et 

al. 2008, Chen et al. 2010, Garrett 2010). Although early embryonic oxygen consumption 

may be underestimated in most studies that use void-volume sampling (Miller 2008), the 

increased cost of using a fiber-optic method for gas sampling was not feasible for this 

study. Nest density has been shown to affect the oxygen concentration in neighboring 

nests (Honarvar et al. 2008), while microbial activity in decomposing nests may be 

responsible for lower sand oxygen concentration (Clusella Trullas 2007); however, these 

effects were not seen in this study. Volumetric water content was not different among 

beaches or throughout the incubation period, and did not affect the gas exchange 

environment for the nests (Figure 5-7).  Although low oxygen concentration can be an 
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important stressor for turtle clutches (Ackerman 1977, Kam 1993), it did not threaten sea 

turtle clutch development in Greece. 

The values of egg mass from this study were higher than those reported 

previously for Kyparissia of 30.3 g (Reid et al. 2009) and is probably due to the inability 

to clean eggs of cloacal fluid and sand. Margaritoulis (2005) reports the typical clutch 

characteristics for Caretta caretta in Greece to be 120 eggs of 32g. Previous reports of 

hatchling mass, carapace length and carapace width were similar to this study (Reid et al. 

2009).  

Hatching success in this study was among the highest for loggerheads. The 

hatching success for all of the beaches of Laganas Bay, Zakynthos has previously been 

reported to be 73.6% (N=4017) from 2003-2009 (Margaritoulis et al. 2011). Clutches on 

Zakynthos and Kyparissia have much higher hatching success than on other nesting 

beaches. For example, loggerhead nests in Turkey have a hatching success of 10.7% in a 

good month, and most of the mortality is due to predation (Erk'akan 1993). Loggerhead 

nesting beaches in Florida have hatching success of 68% (Antworth 2006), but can vary 

between 30-80% and differences may be due to sand characteristics (T. Tucker, personal 

communication).  

Hatching success was similar on most beaches of Zakanthos Island and 

Kyparissia Bay. However, hatching success on Kyparissia A was the lowest and was 

significantly lower than on all the beaches except Sekania East and West (Figure 5-2). 

There were no data to support the hypothesis that physical factors of the beaches 

measured were responsible for this difference. While grain size parameters differed 

between the beaches it did not appear to affect hatching success or oxygen concentration. 
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While Kyparissia O had among the largest median grain size with Kyparissia A (Table 5-

2), that beach did not have the lower hatching success of its counterpart. There were 

farms behind the dunes at Kyparissia A, but there have been no investigations into what if 

any effects those farms had on the conditions on the beach. Since the physical factors in 

the sand did not appear to be affected, it may be that some form of contamination was 

reaching the beach from the agricultural activities. Future studies should investigate the 

possibility of contamination of the beach sand by pesticides, heavy metals and other 

agricultural byproducts. The grain size analysis for Sekania East and West are similar to 

previous studies (Karavas 2005) and suggests that the beach has been under a stable 

sedimentation dynamic for the last decade. 

Temperature was lower on Marathonissi than the other beaches, but this did not 

affect hatching success or metabolic heating. It did affect the oxygen concentration in the 

nest most likely by decreasing the oxygen consumption. Beach temperatures were similar 

to those found previously (Zbinden 2007). The lower temperature slowed developmental 

rates on Marathonissi, but did not affect hatchling size. Nests on Marathonissi had the 

lowest oxygen deficit as well, but it did not affect hatching success. Due to the beach 

temperature being below the pivotal sex-determining temperature, Marathonissi appears 

to be an important male-producing beach for this rookery (Zbinden 2007), although early 

season nesting tends to produce males on all beaches (Katselidis et al. 2102).  

Sekania East and West had slightly higher hatching success than Kyparissia A, 

but not significantly different from either group. During excavations, I noticed that the 

nests with lower hatching success had many of their eggs broken (personal observation). 

Because of the high density of nests (Margaritoulis 2005), access to these beaches was 
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restricted to Marine Park, World Wildlife Fund and ARCHELON personnel; however, 

nests were not marked, and while care was taken to minimize stepping on nests, it was 

likely that it occurred (G. Schofield, unpublished data). When these nests were removed 

from the analysis, the hatching success of Sekania East and West was 92.4 (±2.1)% and 

90.8 (±2.3)%, accounting for 10-15% fewer hatchlings produced. Increasing the hatching 

success on Sekania beaches can have a greater positive effect on the population than any 

other nesting beach conservation effort. Indeed, modeling results have estimated that a 

15% hatching success increase on Sekania would result in 10,000 more hatchlings 

produced (Mazaris et al. 2009).  

The high hatching success for loggerhead clutches on all beaches in the 

Zakynthos and Kyparissia rookeries suggest that the physical conditions on the beach are 

very supportive for egg incubation. For instance, temperatures are moderate, sand grain 

size varies but allows for sufficient gas exchange, water content is within normal range 

for maintenance of water balance in the eggs. Minimum oxygen percentages were related 

to the number of developing late term embryos in the nests. This relationship also occurs 

in leatherback turtle nests (Wallace et al. 2004) and green turtle nests (Chen et al. 2010). 

Clutch size is the strongest determinant of the concentration of oxygen in the nest. 

Conductance of the sand is limiting in that oxygen content does drop as metabolism of 

the clutch increases. However, in general these beaches are excellent incubators for 

loggerhead turtle eggs. 

Modeling abiotic and biotic factors affecting clutch metabolism 

In order to determine the relationship of the biotic and abiotic factors that shaped 

nest metabolism, I modeled gas exchange between clutches in their nests and the sand in 
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the beach beyond the nest. I calculated a predicted nest oxygen value inside the nest using 

Fick’s Law (Wangensteen and Rahn 1970, Wallace et al. 2004) and the beach 

characteristics and nest variables that I measured such that: 

 

2

2 )(

GO

xVO
POPO SandNest          (3) 

 

where PONest was the partial pressure of oxygen in the nest (kPa), POSand was the partial 

pressure of oxygen in the sand without a nest (kPa), VO2 was the oxygen consumption 

(cm
3
 s

-1
) per embryo, x was the number of developing embryos and GO2 was the gas 

conductance of the sand (cm
3
 s

-1
 kPa

-1
).   

Since there were no trends in POSand measurements from the control sites for any 

beach in either year (ANCOVA: F(13,128)=1.62, p>0.05), I used mean sand oxygen level 

for beach and year as POSand in this model.  

The maximum VO2 for C. caretta hatchlings is 1.13*10
-3

, 1.06*10
-3

 and 8.66*10
-4

 

(cm
3
 s

-1
 egg

-1
) at 27.6, 30, and 31.8 °C, respectively (Reid et al. 2009). I used the 

maximum nest temperature (T) with the curve generated from those values to estimate the 

VO2 for each egg:  

 

VO2  = -1.045*10
-5

*T
2
 + 6.843*10

-4
*T – 1.006*10

-2
.     (4) 

 

I then multiplied by the number of developing eggs to get the numerator in equation 3.  

I calculated  GO2 for each nest from equation (8) of Wangensteen et al. (1970): 
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where A was the surface area of the nest (cm
2
), DSand was the diffusivity of the sand (cm

2
 

s
-1

), T0 was the standard temperature (273.15 °K), P0 was the pressure at sea level 

(101.325 kPa), was the depth of the middle of the nest from the surface of the sand 

(cm), and T was the maximum nest temperature (°K).  

 Diffusivity of the sand (DSand) was calculated as: 

 

baD AirSand            (6) 

 

where a and b were the slope and intercept unique to the beach in Table 5-3 and εAir was 

the air-filled porosity (% volume) for sand from each beach. I estimated εAir of the 

beaches as 

 

SandTotalAir W           (7) 

 

where εTotal was the total porosity of packed dry sand and WSand was the mean volumetric 

water content for the beach over the season. I calculated εTotal from preliminary 

relationship measurements from the equation of the least squares regression, 
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where σΦ is the sorting of the sand grain sizes in Φ units.  

 I assumed that the eggs were arranged in a tetrahedral lattice in a spherical nest 

and that the minimum air-filled space was 34.01% (Hilbert and Cohn-Vossen 1999). 

Therefore I calculated the surface area (A) of the nest where the volume of the nest was 

equal to the sum of the volume of the total number of eggs laid plus 34.01% of that 

volume. I used 2.1 cm as the radius of C. caretta eggs from Ackerman (1977). The 

average volume (5371 cm
3
) and surface area (1477 cm

2
) for 86 nests with an average 

clutch size of 103 eggs were similar to values calculated by Ackerman (1977) of 5242 

cm
3
 and 1465 cm

2
 for a nest 100 eggs. 

 I input variables that I measured specific to each nest or beach into Equation 3 to 

obtain predicted values for PONest. I compared these values to measured minimum 

oxygen in each nest to test the accuracy of the model.  

 The PONest predictions from this model underestimated the oxygen deficit 

observed in the nests by 0.9 to 1.2 kPa (Paired T (80) = -12.55, p < 0.0001; Figure 5-8). 

Although significantly different from the observed values, this predictive model 

improved upon previous models by providing insights into the process of gas exchange 

between the nest and the beach. Previous models assumed that GO2 and VO2 were 

constants and that PONest was a function of clutch size (Wallace et al. 2004).  

From equation 1, there are three ways to decrease the PONest. First, a lower POSand 

decreases the maximum oxygen levels that could be found in the nest. Second, a higher 

VO2 means that more oxygen is consumed by the eggs and that would decrease the 

oxygen levels in the nest. Finally, a smaller GO2 would allow less gas exchange so that 



101 

 

 

less of the low oxygen gas in the nest would be replaced by the higher oxygen in the 

surrounding sand. I address each of these possibilities as I discuss the assumptions of this 

model. 

The first assumption was that the beach was uniform in water content, grain size, 

temperature, and gas concentration. I considered water content of the nest to be equal to 

the average of the water content measured at the control sites throughout the season. 

Although there was no significant temporal difference of water content at nest depth, 

seasonal summer dry weather and winter rainfall common to Mediterranean climates may 

account for the visual trend of higher water content at the beginning and end of 

incubation (Figure 5-7). Control location sampling does not account for cloacal fluid that 

could penetrate the sand immediately adjacent to the nest during oviposotion, further 

decreasing the air-filled porosity of a thin layer of sand around the nest. Another factor to 

consider in beach heterogeneity is the location of old nests. Microbial and fungal 

decomposers are abundant on densely nested beaches (Clusella Trullas 2007), indeed old 

nests were found during excavations, attempts at control locations, and during nesting 

events, especially on Sekania (personal observation). While all of these are possible, the 

measurements of water content and sand grain size were not different between control 

sites and nests, temperature at nest depth and oxygen concentration did not differ among 

control sites on the same beach, and there was no difference in nest density among nests 

and controls from the same beach. I have no reason to suspect that beach measurements 

used in these calculations affected the POSand. 

The depth to the surface is assumed to be the minimum distance of the diffusive 

path length, although this may not always be the case. Another nest may have been (and 
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in some cases was) closer to the nest in question than was the surface. This situation 

would also change the assumption that the POSand was equal to the control location for 

the beach. Nests in close proximity can affect the PONest and the hatching success of that 

nest (Honarvar et al. 2008). Mathematical models suggest that sea turtle nests can affect 

the POSand up to 1 m distance (O'Connor et al. 2009, O'Connor et al. 2011). The estimates 

of POSand that I used for the model were from measurements of the control nests and there 

was no difference in distance to the nearest 5 nests between controls and nests among 

beaches. Again, control location sampling was sufficient to account for any variation in 

POSand due to nest placement. 

I also assumed that the relationship of temperature to maximum VO2 was a 

constant curve and, as such, many of these values were extrapolations, especially for the 

higher temperatures. I used the maximum values of VO2 reported in (Reid et al. 2009), 

but they only measured temperatures at 27.6, 30, and 31.8 °C, while I measured 

temperatures up to 35 °C. This extrapolation may have underestimated the VO2 at high 

temperatures and could reasonably contribute to an underestimation of oxygen deficit in 

the nest. The VO2 also assumed that all of the oxygen consumed was due to the sea turtle 

eggs, yet many bacterial and fungal species exhibit metabolic activity in the nest 

(Clusella Trullas 2007) that may not be contributing equally to the metabolic heating; 

however, data on microbial metabolism in the sand would have been seen in the estimates 

of POSand from the control sites. 

I further assumed that there was no influence of convection in these nests. For 

some systems, a tidal pressure gradient can drive bulk air flow though the beach (Wallace 

et al. 2004, O'Connor et al. 2011). Greece has very small tides and thus total pressure 
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gradients on the beach would be driven stochastically by wind and weather events. For 

most of the incubation duration, the weather is dominated by a high pressure system, 

typical for a Mediterranean summer climate, and changes in weather are rare. 

Additionally, gas sink convection due to the lower CO2 production than oxygen 

consumption at a respiratory quotient (RQ) of 0.7 (Ackerman and Prange 1972, Reid et 

al. 2009) can drive bulk flow of gases into the nest. An addition of bulk flow would 

increase the estimate of GO2, but this is unlikely to occur for sea turtle nests in Greece.  

The most reasonable explanation for the underestimation of oxygen deficit by the 

model is that sand diffusivities (DSand) were higher in the model than they may have been 

in nature. From equation (5), smaller DSand decreases GO2. I estimated DSand to be in the 

two-standard-deviation range of 0.015 to 0.026 cm
2
 s

-1
 based on the air-filled porosity 

(εAir) from equations (6-8). These values are reasonable estimates and correspond to the 

two-standard-deviation (2SD) range from my laboratory experiments (0.007 to 0.027 cm
2
 

s
-1

; Chapter 4) and values from previous models (0.015 and 0.025 cm
2
 s

-1
; Ackerman 

(1977)). However, by removing the inactive pore space (εin) from equation (6) such that: 

 

  baD inAirSand  *         (9) 

 

where εin was 40% of εAir, or a mean of 0.11 cm
3
 cm

-3
, the 2SD range of DSand became 

0.09 to 0.017 cm
2
 s

-1
 and there was no difference between the observed and predicted 

values (Paired T (80) = -0.30, p > 0.05, Figure 5-9). It is common to overestimate the soil 

diffusion coefficient when transferring from laboratory models to field measurements, 

especially in moist soils, and the adjustment has been to subtract the inactive pore space 
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(0.07 to 0.13 cm
3
 cm

-3
 for Yolo County, CA loam, for example) from εAir  (Moldrup 

2005). In moist soils, water accumulates in the tight junctions and reduces the effective 

pore space by increasing the constrictivity (Freijer 1994) and decreasing the pore 

continuity (Bruckler et al. 1989). 

The number of eggs explained half of the variation in predicted oxygen 

concentration from the adjusted model (Least Squares Regression F (1,79) = 73.5, p < 

0.0001, R
2
 = 0.48), the rest of the variation was generated in the model by other biotic 

and abiotic factors unique to each nest. Biotic factors include the nest size, depth, 

metabolic heating, and oxygen concentration in the sand affected by other nearby nests 

and microorgainisms; abiotic factors include ambient beach temperature and sand 

physical characteristics such as grain size, sorting and water content as it relates to 

porosity. Overall, the model shows the importance factors that can affect POSand, VO2, 

and GO2. Each nest has individual factors, both biotic and abiotic, that affect the oxygen 

concentration so we cannot assume that GO2 is constant among nests, even if they are on 

the same beach. 

The model demonstrates that the physical attributes of the beach are important 

components for sea turtle egg incubation. The adjustment for inactive pore space in the 

model underscores the importance of ground-truthing for models and understanding the 

limitations of laboratory experiments. It also demonstrates that changes in beach 

conditions to lower porosity conditions could decrease the oxygen levels in the nests. 

Under the beach conditions at Zakynthos and Kyparissia, Greece in 2009 and 2010, the 

nests did not experience hypoxic conditions that negatively affected hatching success. In 

the absence of tidal ventilation, the nests rely on diffusion for aeration, and lower 
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porosities due to increased water content or increased grain sorting would be detrimental.  

It is important to continue to monitor the beach activities in Greece so that the conditions 

stay in the range that continues to provide recruits to the Mediterranean loggerhead turtle 

population.   
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Figure 5-1. The loggerhead nesting beaches of Zakynthos Island (A) and Kyparissia Bay 

(B), on the Peleponesse peninsula of Greece. 
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Table 5-1. Number of loggerhead turtle nests and controls on each beach on Zakanthos 

Island and Kyparissia Bay in Greece in 2009 and 2010. The code is used in the graphs.  

 

Beach Code Nests Controls 

  2009 2010 2009 2010 

Kyparissia O O 0 5 0 3 

Kyparissia A A 9 10 4 3 

Thiafi T 1 1 2 2 

Marathonissi M 5 10 3 3 

Sekania East E 5 10 3 3 

Sekania West W 5 10 3 3 

Gerakas G 5 10 3 3 
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Table 5-2. Median sand grain size, sand grain sorting and nest density for loggerhead 

nesting beaches on Zakynthos Island and Kyparissia Bay in Greece. 

 

Beach Sand Density 

 50 (2 SEM) σΦ (2 SEM) Distance to nearest 5 nests 

(m) (2 SEM) 

Kyparissia O -0.09 (0.19)  0.66 (0.03) 17.90 (5.15) 

Kyparissia A 0.17 (0.10) 0.69 (0.02) 12.33 (2.12) 

Thiafi 1.26 (0.10) 1.20 (0.06) 2.09 (0.70) 

Marathonissi 1.29 (0.07) 0.77 (0.04) 11.48 (1.84) 

Sekania East 1.64 (0.12) 0.57 (0.05) 6.91 (0.92) 

Sekania West 1.78 (0.03) 0.51 (0.01) 3.94 (0.77) 

Gerakas 2.00 (0.06) 0.54 (0.01) 13.46 (2.87) 
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Figure 5-2. Hatching success for loggerhead turtle clutches on Kyparissia A was lower than on all other beaches except 

Sekania East and West. Error bars are 2 standard errors of the mean; numbers in brackets are the sample size.
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Figure 5-3. Loggerhead turtle nest PO2 decreased throughout incubation. Each beach is represented with the profiles for the 

three nests that had the median and penultimate high and low minimum PO2.  
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Figure 5-4. Maximum PO2 deficit in loggerhead turtle nests differed between Marathonissi and Gerakas on Zakynthos. Error 

bars are 2 standard errors of the mean; numbers in brackets are the sample size.  
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Figure 5-5. Maximum nest temperature was lower on Marathonissi than on all other beaches. Error bars are 2 standard errors 

of the mean; numbers in brackets are the sample size. 
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Figure 5-6. Egg mass (top left), hatchling mass (top right), hatchling length (bottom left) and hatchling width (bottom right) 

did not differ among hatchlings of loggerhead turtles from different beaches  on Zakynthos Island and Kyparissia Bay 

suggesting that there was no difference in maternal quality of loggerheads nesting on the different beaches. Error bars are 2 

standard errors of the mean, numbers in brackets are the number of clutches. The mean value represents the grand mean for the 

beach of the clutch mean values. 
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Table 5-3. Slope and intercept from equations used to predict diffusivity from air-filled 

porosity in sand on loggerhead turtle nesting beaches of Zakynthos and Kyparissia, 

Greece.   

 

Beach Intercept Slope 

Kyparissia O 1.90 x 10
-5

 7.68 x 10
-2

 

Kyparissia A 4.93 x 10
-3

 6.93 x 10
-2

 

Thiafi 7.26 x 10
-3

 6.24 x 10
-2

 

Marathonissi 3.00 x 10
-3

 6.19 x 10
-2

 

Sekania East 2.54 x 10
-3

 6.93 x 10
-2

 

Sekania West 2.48 x 10
-3

 5.70 x 10
-2

 

Gerakas 4.88 x 10
-4

 7.50 x 10
-2
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Figure 5-7. The volumetric water content of the beaches on Zakynthos Island and Kyparissia Bay did not differ statistically 

between the beaches or during the incubation period in 2010. Rain occurred at the beginning of the nesting season in May and 

June, and in September after most nests had hatched, except for the nests on Marathonissi Island. Error bars are 2 standard 

errors of the mean. 
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Figure 5-8. Minimum oxygen concentration in the sea turtle nest as a function of the number of eggs where the embryo 

developed to at least the size of the yolk. The open circles (○) are the observed minimum oxygen concentration from 

loggerhead turtle nests at Zakynthos and Kyparissia, Greece. The closed circles (●) are oxygen concentrations predicted from 

equation (3). The dashed line indicates atmospheric oxygen concentration.  



 

 

1
1
7
 

 

 

 

 

Figure 5-9. Minimum oxygen concentration in the sea turtle nest as a function of the number of eggs where the embryo 

developed to at least the size of the yolk. The open circles (○) are the observed minimum oxygen concentration from 

loggerhead turtle nests at Zakynthos and Kyparissia, Greece. The closed circles (●) are the adjusted predictions of oxygen 

concentrations from equation (3) when equation (9) is used to predict sand diffusivity instead of equation (6). The dashed line 

indicates atmospheric oxygen concentration. 
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CHAPTER 6: CONCLUSION AND MANAGEMENT SUGGESTIONS 

 

Many reptiles, including testudines, iguanids, megapodes and some snakes, bury 

clutches of eggs underground where they are incubated by the soil environment. These 

eggs contain the embryo and the yolk resources needed for growth and development, but 

must exchange heat, water and gases with the environment. The rates of these exchanges 

are limited by egg shell and soil permeability. Soil is a matrix of solid, liquid and gas 

phases, and the movement of materials through the matrix depends on the relative 

proportions of each of these phases. The herpetological literature provides relatively few 

examples about how the incubation medium affects the physiology of egg clutches, but 

there is increasing awareness that climate can influence soil properties.  

Sea turtles bury large masses of eggs on many different types of beaches 

worldwide. These beaches may vary in water availability, temperature, texture and tidal 

amplitude, but they are all favorable for egg development. Burying eggs deeply in sand 

offers protection from predation and provides a humid environment with fairly constant 

temperature, but also constrains the diffusion of gases. Other underground nesters, such 

as megapodes, crocodilians, freshwater turtles, snakes and iguanids bury the nests less 

deeply, provide burrows of free air for the incubating eggs, or bury in soils with greater 

air-filled porosity (Seymour 1980, Seymour et al. 1986, Booth 2000). Gas exchange is 

such a problem for mudskipper nests that the adult males gulp air to transport to the 

incubating eggs (Ishimatsu et al. 1998).   

Oxygen concentration in loggerhead turtle (Caretta caretta) nests in Greece 

reduced throughout incubation and approached, but never reached a physiological 
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threshold affecting hatching success. The threshold for oxygen levels in leatherback turtle 

(Dermochelys coriacea) nests was 14 to 16 kPa (Garrett 2010), but oxygen deficits that 

do not reach this point are functions of the number of developing embryos (Wallace et al. 

2004). This relationship describes a limit to the clutch size that should approach, but not 

exceed the point that the total metabolic output would suffocate itself.  

I have described a relationship that can be useful in determining the limits of 

reproduction parameters for sea turtles (see Chapter 5). Accordingly, lower oxygen 

concentrations in the ambient sand could occur through the metabolic output of high nest 

density (Honarvar et al. 2008) and microbial and fungal decomposers (Clusella Trullas 

2007). In addition to increasing the number of eggs, higher nest temperature also 

increases the oxygen consumption (Reid et al. 2009) and beach topography can play an 

important role in sand heating. Wet sand has among the lowest air-filled porosity of all 

unsaturated soils (Fredlund and Rahardjo 1993), and therefore the lowest diffusivity. 

Indeed, the diffusion coefficient of oxygen in sand was 2-16% of oxygen in free air but 

40% for the diffusion coefficient of oxygen through the mound soil of megapode nests 

(Seymour et al. 1986).  

The surface area of the nest is limited by the number of eggs and the shape of the 

nest where the smallest surface area to volume is a sphere. Curiously, sea turtle nests are 

roughly spherical which allows for the lowest possible gas conductance, especially for 

the eggs in the center of the clutch (Ackerman 1977). To this point, it would appear that 

either there is no strong selection against incubation under depressed oxygen conditions 

or that there is a selective advantage to these conditions. Gas exchange may limit clutch 
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size, and may be an important factor in the evolution of multiple nesting events in sea 

turtles. 

Embryos exposed to hypoxia show physiological plasticity by an increased ability 

to transport oxygen (Kam 1993, Crossley et al. 2003), smaller body size with larger 

hearts (Crossley and Altimiras 2005, van Bergen 2005), and vasodilation (Crossley and 

Altimiras 2005) that may reduce the response to future hypoxia exposure (Eme et al. 

2011b) but also result in hypertension and low heart rate (Eme et al. 2011a). The reptilian 

sympathetic and parasympathetic reflex loops may play important roles in the response of 

embryos to naturally occurring hypoxic nest conditions (Eme et al. 2011b). Among the 

underground nesters, sea turtles, freshwater turtles, crocodilians and mudskippers spend 

portions of their lives underwater where gas exchange is limited, so exposure to 

depressed but non-lethal oxygen concentration during incubation could provide an 

advantage for diving or brumation.  

Depth is another important component that can affect the gas conductance in the 

nest such that deeper nests have a smaller conductance and a greater oxygen deficit per 

egg. The importance of depth is two-fold however, because the nest must not be exposed 

to the dry sand layer or risk desiccation due to the low water potential of dry sand. Dry 

sand also has lower specific volume than the repacked wet sand in the egg chamber. This 

may have important consequences for gas exchange, especially on beaches with large 

tidal excursion where bulk flow of gases can be a large component of gas exchange 

(O'Connor et al. 2011).  
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Management Suggestions 

Overall, the loggerhead turtle nesting beaches of Zakynthos and Kyparissia, 

Greece, are capable of sustaining a healthy population if the hatching success is kept 

above 70%. These rookeries are the largest for loggerheads in the Mediterranean 

(Margaritoulis 2003); therefore, improving the hatching success of nests on these beaches 

can have a greater positive effect on the population than any other nesting beach 

conservation effort. Indeed, modeling results have estimated that increasing hatching 

success by 15% on Sekania alone would result in 10,000 more hatchlings produced 

(Mazaris et al. 2009). Public usage and population monitoring techniques need to be 

constantly scrutinized for minimizing damages to nests and eggs. 

The Greek loggerhead turtle sub-population is a vital source of genetic variation 

for the Mediterranean population (Carreras et al. 2007); hence, protection of these 

beaches is crucial for maintaining population sustainability. Regulations already in place 

at Zakynthos through the National Marine Park must continue to be strictly enforced on 

all beaches. However, at Kyparissia, local species-specific conservation efforts through 

ARCHELON, The Sea Turtle Protection Society of Greece, remain the most visible face 

of European Union regulations.  

In Florida, some sea turtle nesting beaches are being renourished after erosion by 

hurricanes and this can affect hatching success and gas concentrations in the nest (Mota 

2009). The sand that is transported to the beaches often comes from inland sand mines or 

offshore dredges which can include higher percentages of silts and clays than is normally 

found on the beach. These sands are not generated from the same processes that produced 

the beaches, this difference can affect the mean grain size, sorting, skewness and kurtosis 
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of the beach sand population (Spencer 1963). I have demonstrated that various properties 

of sand affect gas movement, it is important that the beach renourishment consider the 

gas environment for organisms of the in-beach ecosystem.  

Climate change models project heating for sea turtle nesting beaches (Saba et al. 

2012) that can affect hatchling mortality (Santidrian Tomillo et al. 2012). In addition, 

heating would create a deeper dry sand layer that is less permeable to gases than the 

repacked wet sand. This would restrict the tidal flow of gases, which can aerate nests 

(Wallace et al. 2004, O'Connor et al. 2011). Furthermore, introduction of dry sand into 

nests through relocation could decrease gas exchange with the sea turtle nest and may be 

a contributing factor to lower hatching success in relocated nests (Sieg 2011). 

Sea turtles are important environmental engineers of the beaches, and they are 

adapted to construct nests conforming to an optimal gas exchange environment. As 

beaches continue to be developed, eroded or renourished, the undisturbed state of the 

interstitial environment must be understood in order to properly mitigate and restore the 

beach ecosystem.  
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