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Lecture Topics

• Inference for Medians
• Inference for Variances
• Bootstrapping

Medians and Variances

• We discuss medians and variances together because 
there are not convenient, reliable formulas to estimate 
confidence intervals for either one.

• Bootstrapping will help us make inference for these 
parameters.

• An important distinction:
– Inference for medians would probably be quite widely 

used if more convenient
– Inference for variances is less often of scientific 

interest

Median

• Scientific:  The median may be the preferred summary of 
effect when it is important to show an effect across all 
subjects
– The mean detects effects that occur in a small subset

• Statistical:  The median tends to be more efficiently 
estimated than the mean when the data are distributed 
with heavy tails
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Median

• “In theory,” inference for the sample median can use 
asymptotic theory

• The sample median is asymptotically Normally 
distributed

• The formula for the standard error is difficult to use in 
practice
– Depends on the distribution of the data
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Median:  Testing

• Testing for equality of medians can be done by creating 
a binary variable indicating whether an observation is 
above the pooled median for the two groups

• Under the null hypothesis that the median is the same in 
the two groups
– The median would be the same in the pooled data
– Any observation should have the same probability of 

being above the sample median, regardless of which 
group it comes from
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Median:  Testing

• In the PBC data, the median bilirubin across both groups 
(treated/untreated) is 1.35

• gen dibili=bilirubin>1.35

• gen tmt=2-treatment

• cs dibili tmt
• | tmt |

• |   Exposed   Unexposed  |      Total

• -----------------+------------------------+------------

• Cases |        83          73  |        156

• Noncases |        75          81  |        156

• -----------------+------------------------+------------

• Total |       158         154  |        312

• |                        |

• Risk |  .5253165     .474026  |         .5

• | chi2(1) =     0.82  Pr>chi2 = 0.3650
88

Median:  Testing

• The previous slide show exactly what STATA is doing 
when testing the median:

• median bilirubin, by(tmt)
• Median test

• Greater |

• than the |          tmt

• median |         0          1 |     Total

• -----------+----------------------+----------

• no |        81         75 |       156 

• yes |        73         83 |       156 

• -----------+----------------------+----------

• Total |       154        158 |       312 

• Pearson chi2(1) =   0.8206   Pr = 0.365
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Median:  Testing

• Note:  The test gives a p-value, does not give a confidence 
interval

• Note:  Previous comments hold about testing baseline 
variables based on group assignment in randomized 
interventional trials
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Testing the Median:  Wilcoxon?

• The Wilcoxon Rank Sum test is sometimes described as 
testing equality of medians

• This is, in general, incorrect.  
– Only true if you assume the shape of the distributions is 

exactly the same in the two groups,
• There is only a “location shift”

– In my opinion, this is an inappropriate assumption
• Assuming something about distributions that is far more 

detailed than what you are trying to detect
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STATA:  Testing Quantiles

• The ‘median’ function is a command to test equality of 
medians across groups

• However, the methodology is general and can be applied 
to other quantiles
– Just a few steps
– Rarely of interest

Variance

• Most textbook examples of comparing variances are trying 
to decide which two-sample t-test to use

• As discussed, this is misguided.  Use the test that does not 
assume the variances are equal in the two groups

• There are situations where comparing variances is 
important
– Comparing different ways of measuring fine particulate 

air pollution.  Machines can be calibrated to remove 
systematic bias, so the variability of measurement is the 
most important characteristic.

– Quantitative genetics:  many tests for heritability of a 
trait are based on comparing the variability of the trait is 
more or less genetically heterogeneous groups
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Variance

• The sampling distribution of the variance is asymptotically 
Normal.  However, it converges to a Normal distribution 
very slowly, so this result is only useful with very large 
sample sizes.

• If the data are Normally distributed, then s2/σ2 has a χ2

distribution with n-1 degrees of freedom.  In software, this 
result is the basis of inference for variances.

• Unfortunately, if the distribution isn’t Normal…
– Skewed
– More outliers than Normal

… this result does not hold, and inference is anti-conservative
– Confidence intervals too narrow
– “5% test” could have type I error rate 20-30%

Variance:  STATA

• Two-sample tests for equality of variances are based on 
comparing the ratio of the sample variances to the ratio of 
two χ2 distributions, which has an F distribution

• STATA does not provide confidence intervals 
• sdtest bilirubin, by(tmt)

• Variance ratio test

• ------------------------------------------------------------------------------

• Group |     Obs Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

• ---------+--------------------------------------------------------------------

• 0 |     154    3.648701    .4256316    5.281949    2.807828    4.489575

• 1 |     158    2.873418    .2886962    3.628855    2.303188    3.443647

• ---------+--------------------------------------------------------------------

• combined |     312     3.25609    .2564786    4.530315    2.751437    3.760742

• ------------------------------------------------------------------------------

• ratio = sd(0) / sd(1)                                         f =   2.1186

• Ho: ratio = 1                                    degrees of freedom = 153, 157

• Ha: ratio < 1               Ha: ratio != 1                 Ha: ratio > 1

• Pr(F < f) = 1.0000         2*Pr(F > f) = 0.0000           Pr(F > f) = 0.0000
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Other Measures of Spread?

• We might consider other measures of spread, e.g. the IQR, 
but there are no simple formulas for their distributions
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BOOTSTRAPPING

Sampling Distributions

• The concept of a Sampling Distribution underlies 
inferential statistics
– The distribution of a statistic across conceptual 

replications of a study
• In practice, we do not see sampling distributions

– We only have our 1 study
– Statistical theory tells us about the sampling 

distribution
• E.g., In Hypothesis Testing, statistical theory tells us 

about the sampling distribution of the test statistic when 
the null hypothesis is true

Bootstrapping

• Perform in silico replication of the study.
• If the sample size is large enough, the sample “stands 

in” for the population
• Your data are an independent sample from the 

population.
• Take independent samples from your data to mimic 

replications of your study.

Basic Strategy

• Pretend that the sample is the population.
• Sample randomly (and with replacement) from the 

sample to generate pseudosamples.
– Each psuedosample uses same sample size.
– Each observation equally likely to be sampled at each 

“draw” when making a pseudosample
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Why sample with replacement?

• Theoretical reason:
Mimic independent sampling

• Practical reason:

If we sampled without replacement, every bootstrap 
sample would be exactly the original sample.

Population
(unobserved)

Sample 
(Observed Data)

Bootstrap 
Sample 1

Bootstrap 
Sample 2

Bootstrap 
Sample 1000

Statistic

Statistic* Statistic* Statistic*

Bootstrap Standard Errors

• From a large number of pseudosamples, we can 
estimate the sampling distribution of a wide variety of 
statistics

• The statistic is calculated on each pseudosample
• Across lots of pseudosamples (100s or 1000s), we have 

a distribution of the statistic.  This can be taken as an 
estimate of the sampling distribution of the statistic.

• The SE of a statistic is just the SD of its sampling 
distribution.
– Thus the SD of statistics* estimates SE(statistic)
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Inference with Bootstrapped SE

• Providing that we know the statistic is approximately 
Normally distributed
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Ex: SE of Sample Median

• Bootstrapped estimates of the standard error for sample 
median

Data         Median

Original sample:  {1, 5, 8, 3, 7}    5

Bootstrap 1    :  {1, 7, 1, 3, 7}    3

Bootstrap 2    :  {7, 3, 8, 8, 3}    7

Bootstrap 3    :  {7, 3, 8, 8, 3}    7

Bootstrap 4    :  {3, 5, 5, 1, 5}    5

Bootstrap 5    :  {1, 1, 5, 1, 8}    1

etc.
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1000 Bootstrapped Samples

• Descriptive statistics for the sample medians from 1000 
bootstrapped samples

n                       1000

Mean                    4.964

Standard Deviation      1.914

Median                     5

Minimum, Maximum        1, 8

25th, 75th %ile         3, 7 
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Inference for Sample Median

• From the above bootstrapped samples:

• Estimated SE sample median is 1.914
– The standard deviation of the sample medians across 

the 1000 pseudosamples

• A 95% asymptotic (with n=5?) confidence interval (using 
the 0.975 quantile of the standard normal distribution) is 
thus

5 +/- 1.96 * 1.914 = 1.25, 8.75
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Bootstrapped Standard Errors

• There are some instances when bootstrapping does not 
work

– For instance, no sample of continuous data is ever 
adequate to bootstrap the sampling distribution of the 
minimum or maximum

• We can never mimic the chance to have observed more 
extreme values than were in our sample

• But as a general rule, bootstrapping behaves remarkably 
well for measures of location and variability
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STATA: SE for Sample Median

• Stata can find bootstrapped standard errors and 
confidence intervals

• The summarize command computes the median; the 
manual tells me it is saved as r(p50)

• bootstrap r(p50), reps(1000):  summarize 
bilirubin, detail

– STATA takes a few seconds to run this command, as 
opposed to “instantaneously”

3030

STATA: SE for Sample Median
• Bootstrap results     Number of obs =       312

• Replications       =      1000

• command:  summarize bilirubin, detail

• _bs_1:  r(p50)

• -----------------------------------------------------------------------

• |   Observed   Bootstrap                         Normal-based

• |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

• ------+----------------------------------------------------------------

• _bs_1 |       1.35   .1371632     9.84   0.000     1.081165    1.618835

• -----------------------------------------------------------------------
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Bootstrap Confidence Intervals

• “Normal confidence intervals” uses the bootstrap to 
estimate the standard error of the statistic, than uses +/-
1.96 standard errors for the confidence interval

• “Percentile confidence intervals” use the 2.5th and 97.5th

percentiles of the bootstrap distribution as the 
confidence interval

• “BC” method tries to adjust the percentile limits for 
asymmetry of the distribution
– BC=Bias-corrected

• When they all agree they are all likely to be reasonable 
reliable
– STATA post-estimation command estat
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STATA: SE for Sample Median

• estat bootstrap, all

• Bootstrap results     Number of obs =       312

• Replications       =      1000

• command:  summarize bilirubin, detail

• _bs_1:  r(p50)

• -------------------------------------------------------------------

• |Observed               Bootstrap

• |   Coef.       Bias    Std. Err.  [95% Conf. Interval]

• ------+------------------------------------------------------------

• _bs_1 |    1.35     .03725   .13716324    1.081165   1.618835   (N)

• |                                        1.2        1.8   (P)

• |                                        1.2        1.8  (BC)

• -------------------------------------------------------------------

• (N)    normal confidence interval

• (P)    percentile confidence interval

• (BC)   bias-corrected confidence interval


