BIOST 514/517 Biostatistics I / Applied Biostatistics I

Kathleen Kerr, Ph.D. Associate Professor of Biostatistics University of Washington

Lecture 15:

Inference for Medians and Variances; Bootstrapping November 27-December 2, 2013

Medians and Variances

•••••

- We discuss medians and variances together because there are not convenient, reliable formulas to estimate confidence intervals for either one.
- Bootstrapping will help us make inference for these parameters.
- An important distinction:
 - Inference for medians would probably be quite widely used if more convenient
 - Inference for variances is less often of scientific interest

Median

- Scientific: The median may be the preferred summary of effect when it is important to show an effect across all subjects
 - The mean detects effects that occur in a small subset
- Statistical: The median tends to be more efficiently estimated than the mean when the data are distributed with heavy tails

•••••

Lecture Topics

- Inference for Medians
- Inference for Variances
- Bootstrapping

Median

 "In theory," inference for the sample median can use asymptotic theory

 The sample median is asymptotically Normally distributed

$$X_m \sim N\left(mdn(X), \frac{1}{4n[f(mdn(X))]^2}\right)$$

- The formula for the standard error is difficult to use in practice
 - Depends on the distribution of the data

Median: Testing

- Testing for equality of medians can be done by creating a binary variable indicating whether an observation is above the pooled median for the two groups
- Under the null hypothesis that the median is the same in the two groups
 - The median would be the same in the pooled data
 - Any observation should have the same probability of being above the sample median, regardless of which group it comes from

Median: Testing

•••••

- In the PBC data, the median bilirubin across both groups (treated/untreated) is 1.35
- gen dibili=bilirubin>1.35
- gen tmt=2-treatment

• cs dibili tmt

• •	 	tmt Exposed	Unexposed	 Total
	Cases	83	73	156
•	Noncases	75	81	156
•	+			+
•	Total	158	154	312
•				I
•	Risk	.5253165	.474026	.5
•		chi2(1) =	0.82 Pr>	chi2 = 0.3650

Median: Testing

••••••

- The previous slide show exactly what STATA is doing when testing the median:
- median bilirubin, by(tmt)
- Median test

•	Greater			
•	than the	tmt		
•	median	0	1	Total
•	+-		+	
•	no	81	75	156
•	yes	73	83	156
•	+-		+-	
•	Total	154	158	312
•	Pea	rson chi2(1)	= 0.8206	Pr = 0.365

Median: Testing

•••••

- Note: The test gives a p-value, does not give a confidence interval
- Note: Previous comments hold about testing baseline variables based on group assignment in randomized interventional trials

Testing the Median: Wilcoxon?

- The Wilcoxon Rank Sum test is sometimes described as testing equality of medians
- This is, in general, incorrect.
 - Only true if you assume the shape of the distributions is exactly the same in the two groups,
 - There is only a "location shift"
 - In my opinion, this is an inappropriate assumption
 - Assuming something about distributions that is far more detailed than what you are trying to detect

STATA: Testing Quantiles

•••••

- The 'median' function is a command to test equality of medians across groups
- However, the methodology is general and can be applied to other quantiles
 - Just a few steps
 - Rarely of interest

Variance

- Most textbook examples of comparing variances are trying to decide which two-sample t-test to use
- As discussed, this is misguided. Use the test that does not assume the variances are equal in the two groups
- There are situations where comparing variances is important
 - Comparing different ways of measuring fine particulate air pollution. Machines can be calibrated to remove systematic bias, so the variability of measurement is the most important characteristic.
 - Quantitative genetics: many tests for heritability of a trait are based on comparing the variability of the trait is more or less genetically heterogeneous groups

Variance

•••••

- The sampling distribution of the variance is asymptotically Normal. However, it converges to a Normal distribution very slowly, so this result is only useful with very large sample sizes.
- If the data are Normally distributed, then s^2/σ^2 has a χ^2 distribution with n-1 degrees of freedom. In software, this result is the basis of inference for variances.
- Unfortunately, if the distribution isn't Normal...
 - Skewed
 - More outliers than Normal
- ... this result does not hold, and inference is anti-conservative
 - Confidence intervals too narrow
 - "5% test" could have type I error rate 20-30%

Variance: STATA

•••••

- Two-sample tests for equality of variances are based on comparing the ratio of the sample variances to the ratio of two χ^2 distributions, which has an F distribution
- STATA does not provide confidence intervals
- sdtest bilirubin, by(tmt)

Variance rat						
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1	158 2	.873418	.2886962	3.628855	2.303188	3.443647
combined	312	3.25609	.2564786	4.530315	2.751437	3.760742
ratio =						2.1186
Ho: ratio =	1			degrees	of freedom =	153, 157
Ha: rati	io < 1	Ha	a: ratio !=	1	Ha: ra	tio > 1
$\Pr(F < f)$	= 1.0000	2*Pr	(F > f) = 0.	0000	Pr(F > f)	= 0.0000

Other Measures of Spread?

• We might consider other measures of spread, e.g. the IQR, but there are no simple formulas for their distributions

BOOTSTRAPPING

Sampling Distributions

• The concept of a Sampling Distribution underlies

- inferential statistics
- The distribution of a statistic across conceptual replications of a study
- In practice, we do not see sampling distributions
 - We only have our 1 study
 - Statistical theory tells us about the sampling distribution
- E.g., In Hypothesis Testing, statistical theory tells us about the sampling distribution of the test statistic when the null hypothesis is true

Bootstrapping

- Perform in silico replication of the study.
- If the sample size is large enough, the sample "stands in" for the population
- Your data are an independent sample from the population.
- Take independent samples from your data to mimic replications of your study.

Basic Strategy

- Pretend that the sample is the population.
- Sample randomly (and with replacement) from the sample to generate pseudosamples.
 - Each psuedosample uses same sample size.
 - Each observation equally likely to be sampled at each "draw" when making a pseudosample

Why sample with replacement? • Theoretical reason: • Practical reason: • Practical reason: • Bootstrap Bo

Bootstrap Standard Errors

••••••

- From a large number of pseudosamples, we can estimate the sampling distribution of a wide variety of statistics
- The statistic is calculated on each pseudosample
- Across lots of pseudosamples (100s or 1000s), we have a distribution of the statistic. This can be taken as an estimate of the sampling distribution of the statistic.
- The SE of a statistic is just the SD of its sampling distribution.
 - Thus the SD of statistics* estimates SE(statistic)

Inference with Bootstrapped SE

Providing that we know the statistic is approximately
 Normally distributed

$$100(1-\alpha)\%$$
 confidence interval is (θ_L, θ_U)

$$\begin{aligned} \theta_{L} &= \hat{\theta} - z_{1-\alpha/2} \, s\hat{e}(\hat{\theta}) \\ \theta_{U} &= \hat{\theta} + z_{1-\alpha/2} \, s\hat{e}(\hat{\theta}) \end{aligned}$$

Hypothesis tests based on

$$Z = \frac{\hat{\theta} - \theta_0}{s\hat{e}(\hat{\theta})} \sim N(0, 1)$$

Ex: SE of Sample Median

••••••

 Bootstrapped estimates of the standard error for sample median

	Data	Median		
Original sample:	{1, 5, 8,	3,7} 5		
Bootstrap 1 :	{1, 7, 1,	3,7} 3		
Bootstrap 2 :	{7,3,8,	8,3} 7		
Bootstrap 3 :	{7,3,8,	8,3} 7		
Bootstrap 4 :	{3, 5, 5,	1,5} 5		
Bootstrap 5 :	{1, 1, 5,	1,8} 1		
etc.				

1000 Bootstrapped Samples

• Descriptive statistics for the sample medians from 1000 bootstrapped samples

n	1000		
Mean	4.964		
Standard Deviation	1.914		
Median	5		
Minimum, Maximum	1, 8		
25th, 75th %ile	3,7		

Inference for Sample Median

- From the above bootstrapped samples:
- Estimated SE sample median is 1.914
 - The standard deviation of the sample medians across the 1000 pseudosamples
- A 95% asymptotic (with n=5?) confidence interval (using the 0.975 quantile of the standard normal distribution) is thus

5 +/- 1.96 * 1.914 = 1.25, 8.75

Bootstrapped Standard Errors

- There are some instances when bootstrapping does not work
 - For instance, no sample of continuous data is ever adequate to bootstrap the sampling distribution of the minimum or maximum
 - We can never mimic the chance to have observed more extreme values than were in our sample
- But as a general rule, bootstrapping behaves remarkably well for measures of location and variability

STATA: SE for Sample Median

•••••

- Stata can find bootstrapped standard errors and confidence intervals
- The summarize command computes the median; the manual tells me it is saved as r(p50)
- bootstrap r(p50), reps(1000): summarize bilirubin, detail
 - STATA takes a few seconds to run this command, as opposed to "instantaneously"

STATA: SE for Sample Median

Bootstrap results Number of obs = 312 Replications = 1000

command: summarize bilirubin, detail
 _bs_1: r(p50)

•						
•	1	Observed	Bootstrap			Normal-based
•	1	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
•	+					
•	_bs_1	1.35	.1371632	9.84	0.000	1.081165 1.618835

Bootstrap Confidence Intervals

•••••

- "Normal confidence intervals" uses the bootstrap to estimate the standard error of the statistic, than uses +/-1.96 standard errors for the confidence interval
- "Percentile confidence intervals" use the 2.5th and 97.5th percentiles of the bootstrap distribution as the confidence interval
- "BC" method tries to adjust the percentile limits for asymmetry of the distribution
 - BC=Bias-corrected
- When they all agree they are all likely to be reasonable reliable
 - STATA post-estimation command estat

STATA: SE for Sample Median

••••••

estat bootstrap, all

• Bootst	rap results		N	Number of ob	s =	312			
•			F	eplications	=	1000			
•	command: summarize bilirubin, detail								
•	_bs_1: r(p	50)							
•									
•	Observed		Bootstrap						
•	Coef.	Bias	Std. Err.	[95% Conf.	Interval]				
•	+								
• _bs_1	1.35	.03725	.13716324	1.081165	1.618835	(N)			
•	I			1.2	1.8	(P)			
•	I			1.2	1.8	(BC)			
•									
• (N)	(N) normal confidence interval								
• (P)	(P) percentile confidence interval								

• (BC) bias-corrected confidence interval