# BIOST 514/517 <br> Biostatistics I / Applied Biostatistics I 

$\qquad$

Kathleen Kerr, Ph.D
Associate Professor of Biostatistics University of Washington

## Lecture 15:

Inference for Medians and Variances;
Bootstrapping
November 27-December 2, 2013

## Medians and Variances

- We discuss medians and variances together because there are not convenient, reliable formulas to estimate confidence intervals for either one.
- Bootstrapping will help us make inference for these parameters.
- An important distinction:
- Inference for medians would probably be quite widely used if more convenient
- Inference for variances is less often of scientific interest


## Lecture Topics

- Inference for Medians
- Inference for Variances
- Bootstrapping


## Median

Scientific: The median may be the preferred summary of effect when it is important to show an effect across all subjects

- The mean detects effects that occur in a small subset
- Statistical: The median tends to be more efficiently estimated than the mean when the data are distributed with heavy tails


## Median

- "In theory," inference for the sample median can use asymptotic theory
- The sample median is asymptotically Normally distributed

$$
X_{m} \dot{\sim} N\left(m d n(X), \frac{1}{4 n[f(m d n(X))]^{2}}\right)
$$

- The formula for the standard error is difficult to use in practice
- Depends on the distribution of the data


## Median: Testing

- In the PBC data, the median bilirubin across both groups (treated/untreated) is 1.35
- gen dibili=bilirubin>1.35
- gen tmt=2-treatment
- cs dibili tmt



## Median: Testing

- Testing for equality of medians can be done by creating a binary variable indicating whether an observation is above the pooled median for the two groups
- Under the null hypothesis that the median is the same in the two groups
- The median would be the same in the pooled data
- Any observation should have the same probability of being above the sample median, regardless of which group it comes from


## Median: Testing

The previous slide show exactly what STATA is doing when testing the median:

- median bilirubin, by (tmt)
- Median test



## Median: Testing <br> -....................................

- Note: The test gives a p-value, does not give a confidence interval
- Note: Previous comments hold about testing baseline variables based on group assignment in randomized interventional trials


## Testing the Median: Wilcoxon?

.......................................

- The Wilcoxon Rank Sum test is sometimes described as testing equality of medians
- This is, in general, incorrect.
- Only true if you assume the shape of the distributions is exactly the same in the two groups,
- There is only a "location shift"
- In my opinion, this is an inappropriate assumption
- Assuming something about distributions that is far more detailed than what you are trying to detec


## Variance

- Most textbook examples of comparing variances are trying to decide which two-sample t-test to use
- As discussed, this is misguided. Use the test that does not assume the variances are equal in the two groups
- There are situations where comparing variances is important
- Comparing different ways of measuring fine particulate air pollution. Machines can be calibrated to remove systematic bias, so the variability of measurement is the most important characteristic.
- Quantitative genetics: many tests for heritability of a trait are based on comparing the variability of the trait is more or less genetically heterogeneous groups


## Variance

- The sampling distribution of the variance is asymptotically Normal. However, it converges to a Normal distribution very slowly, so this result is only useful with very large sample sizes.
- If the data are Normally distributed, then $\mathrm{s}^{2} / \sigma^{2}$ has a $\mathrm{X}^{2}$ distribution with $\mathrm{n}-1$ degrees of freedom. In software, this result is the basis of inference for variances.
- Unfortunately, if the distribution isn't Normal...
- Skewed
- More outliers than Normal
... this result does not hold, and inference is anti-conservative
- Confidence intervals too narrow
- "5\% test" could have type I error rate 20-30\%



## Variance: STATA

Two-sample tests for equality of variances are based on comparing the ratio of the sample variances to the ratio of two $X^{2}$ distributions, which has an $F$ distribution

- STATA does not provide confidence intervals
- sdest bilirubin, by (tmt)
- variance ratio test

| Group \| | obs | Mean | Std. Err. | sta. Dev. | [95\% Conf. | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 154 | 3.648701 | 4256316 | 5.281949 | 2.807828 | 4.489575 |
| 1 \| | 158 | 2.873418 | . 2886962 | 3.628855 | 2.303188 | 3.443647 |


ratio $=$ sd(0) /sd(1)
Ho: ratio $=1$ Ha: ratio < 1 $\operatorname{Pr}(F<f)=1.0000$
$\qquad$ degrees of freedom $=153,157$ Ha: ratio != 1 Ha: ratio > 1 $2 * \operatorname{Pr}(F>f)=0.0000$ (1) $>$ +

Other Measures of Spread?
-..................................................

- We might consider other measures of spread, e.g. the IQR, but there are no simple formulas for their distributions


## Sampling Distributions

- The concept of a Sampling Distribution underlies inferential statistics
- The distribution of a statistic across conceptual replications of a study
- In practice, we do not see sampling distributions
- We only have our 1 study
- Statistical theory tells us about the sampling distribution
- E.g., In Hypothesis Testing, statistical theory tells us about the sampling distribution of the test statistic when the null hypothesis is true


## Basic Strategy

- Pretend that the sample is the population.
- Sample randomly (and with replacement) from the sample to generate pseudosamples.
- Each psuedosample uses same sample size.
- Each observation equally likely to be sampled at each "draw" when making a pseudosample


## Why sample with replacement?

## -•••••••••••••••••

- Theoretical reason:
- Practical reason:



## Bootstrap Standard Errors

ge number of pseudosamples, we can

- From a large number of pseudosamples, we can estimate the sampling distribution of a wide variety of statistics
- The statistic is calculated on each pseudosample
- Across lots of pseudosamples (100s or 1000s), we have a distribution of the statistic. This can be taken as an estimate of the sampling distribution of the statistic.
- The SE of a statistic is just the SD of its sampling distribution.
- Thus the SD of statistics* estimates SE(statistic)



## Inference with Bootstrapped SE

- Providing that we know the statistic is approximately Normally distributed
$100(1-\alpha) \%$ confidence interval is $\left(\theta_{L}, \theta_{U}\right)$

$$
\begin{aligned}
& \theta_{L}=\hat{\theta}-z_{1-\alpha / 2} s \hat{e}(\hat{\theta}) \\
& \theta_{U}=\hat{\theta}+z_{1-\alpha / 2} \operatorname{se}(\hat{\theta})
\end{aligned}
$$

Hypothesis tests based on

$$
Z=\frac{\hat{\theta}-\theta_{0}}{s \hat{e}(\hat{\theta})} \dot{\sim} N(0,1)
$$

## Ex: SE of Sample Median

- Bootstrapped estimates of the standard error for sample median

|  | Data |  |  | Median |
| :--- | :--- | :--- | :--- | :--- |
| Original sample: | $\{1,5,8,3,7\}$ | 5 |  |  |

etc.

## Inference for Sample Median

.................................................

- From the above bootstrapped samples:
- Estimated SE sample median is 1.914
- The standard deviation of the sample medians across the 1000 pseudosamples
- A 95\% asymptotic (with $n=5$ ?) confidence interval (using the 0.975 quantile of the standard normal distribution) is thus

$$
5+/-1.96 * 1.914=1.25,8.75
$$

## 1000 Bootstrapped Samples

.........................................

- Descriptive statistics for the sample medians from 1000 bootstrapped samples

| n | 1000 |
| :--- | :---: |
| Mean | 4.964 |
| Standard Deviation | 1.914 |
| Median | 5 |
| Minimum, Maximum | 1,8 |
| 25th, 75th \%ile | 3,7 |

## Bootstrapped Standard Errors

- There are some instances when bootstrapping does not work
- For instance, no sample of continuous data is ever adequate to bootstrap the sampling distribution of the minimum or maximum
- We can never mimic the chance to have observed more extreme values than were in our sample
- But as a general rule, bootstrapping behaves remarkably well for measures of location and variability


## STATA: SE for Sample Median

-•••

- Stata can find bootstrapped standard errors and confidence intervals
- The summarize command computes the median; the manual tells me it is saved as $\mathrm{r}(\mathrm{p} 50)$
- bootstrap r(p50), reps(1000): summarize bilirubin, detail
- STATA takes a few seconds to run this command, as opposed to "instantaneously"


## Bootstrap Confidence Intervals

nfidence intervals" uses the bootstrap to estimate the standard error of the statistic, than uses +/1.96 standard errors for the confidence interval

- "Percentile confidence intervals" use the $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles of the bootstrap distribution as the confidence interval
- "BC" method tries to adjust the percentile limits for asymmetry of the distribution
- BC=Bias-corrected
- When they all agree they are all likely to be reasonable reliable
- STATA post-estimation command estat


## STATA: SE for Sample Median

-...........................................


## STATA: SE for Sample Median



- estat bootstrap, all

| - Bootstrap results | Number of obs  <br>   <br> Replications  <br>  $=$ | 1000 |
| :--- | :--- | :--- | ---: |

command: surmarize bilirubin, detail _bs_1: r(p50)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

