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Medians and Variances

» We discuss medians and variances together because
there are not convenient, reliable formulas to estimate
confidence intervals for either one.

» Bootstrapping will help us make inference for these
parameters.

* Animportant distinction:

— Inference for medians would probably be quite widely
used if more convenient

— Inference for variances is less often of scientific
interest

Lecture Topics

Inference for Medians
Inference for Variances
Bootstrapping

Median

Scientific: The median may be the preferred summary of
effectwhen it is important to show an effect across all
subjects

— The mean detects effects that occur in a small subset

Statistical: The median tends to be more efficiently
estimated than the mean when the data are distributed
with heavy tails
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Median

“In theory,” inference for the sample median can use
asymptotic theory

The sample median is asymptotically Normally
distributed
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The formula for the standard error is difficultto use in
practice

— Depends on the distribution of the data

Median: Testing

In the PBC data, the median bilirubin across both groups
(treated/untreated) is 1.35

gen dibili=bilirubin>1.35
gen tmt=2-treatment

cs dibili tmt
| tmt

|
| Exposed Unexposed | Total
e O,
Cases | 83 73 | 156
Noncases | 75 81 | 156
e O,
Total | 158 154 | 312

| |
Risk | .5253165 .474026 | .5

| chi2(1) = 0.82 Pr>chi2 = 0.3650

Median: Testing
Testing for equality of medians can be done by creating
a binary variable indicating whether an observation is
above the pooled median for the two groups

Under the null hypothesis that the median is the same in
the two groups

— The median would be the same in the pooled data

— Any observation should have the same probability of
being above the sample median, regardless of which
group it comes from

Median: Testing

The previous slide show exactly what STATA is doing
when testing the median:

median bilirubin, by(tmt)

Median test

Greater |
than the | tmt
median | 0 11 Total
A Fm e
no | 81 75 | 156
yes | 73 83 | 156
A Fm e
Total | 154 158 | 312
Pearson chi2(1) = 0.8206 Pr = 0.365
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Median: Testing

* Note: The test gives a p-value, does not give a confidence
interval

* Note: Previous comments hold about testing baseline
variables based on group assignment in randomized
interventional trials

STATA: Testing Quantiles

» The ‘median’ function is a command to test equality of
medians across groups

» However, the methodology is general and can be applied
to other quantiles

— Just a few steps
— Rarely of interest

Testing the Median: Wilcoxon?

* The Wilcoxon Rank Sum test is sometimes described as
testing equality of medians

» Thisiis, in general, incorrect.
— Only true if you assume the shape of the distributions is
exactly the same in the two groups,
* There is only a “location shift”
— In my opinion, this is an inappropriate assumption

« Assuming something about distributions that is far more
detailed than what you are trying to detect

Variance

* Most textbook examples of comparing variances are trying
to decide which two-sample t-test to use

» Asdiscussed, this is misguided. Use the test that does not
assume the variances are equal in the two groups

» There are situations where comparing variances is
important

— Comparing different ways of measuring fine particulate
air pollution. Machines can be calibrated to remove
systematic bias, so the variability of measurement is the
most important characteristic.

— Quantitative genetics: many tests for heritability of a
trait are based on comparing the variability of the trait is
more or less genetically heterogeneous groups
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Variance

» The sampling distribution of the variance is asymptotically
Normal. However, it converges to a Normal distribution
very slowly, so this result is only useful with very large
sample sizes.

« If the data are Normally distributed, then s?/0? has a x?
distribution with n-1 degrees of freedom. In software, this
result is the basis of inference for variances.

» Unfortunately, if the distribution isn’t Normal...
— Skewed
— More outliers than Normal
. this result does not hold, and inference is anti-conservative
— Confidence intervals too narrow
— “5% test” could have type | error rate 20-30%
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Variance: STATA

Two-sample tests for equality of variances are based on
comparing the ratio of the sample variances to the ratio of
two ¥?2 distributions, which has an F distribution

STATA does not provide confidence intervals

sdtest bilirubin, by(tmt)
Variance ratio test

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

+
0] 154 3.648701 .4256316 5.281949 2.807828 4.489575
1] 158 2.873418 .2886962 3.628855 2.303188 3.443647

+
combined | 312 3.25609 .2564786 4.530315 2.751437 3.760742
ratio = sd(0) / sd(1) f = 2.1186
Ho: ratio = 1 degrees of freedom = 153, 157

Ha: ratio < 1 Ha: ratio 1= 1 Ha: ratio > 1

Pr(F < f) = 1.0000 2*Pr(F > f) = 0.0000 Pr(F > f) = 0.0000

Other Measures of Spread?

* We might consider other measures of spread, e.g. the IQR,
but there are no simple formulas for their distributions
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Sampling Distributions

» The concept of a Sampling Distribution underlies
inferential statistics

— The distribution of a statistic across conceptual
replications of a study

 In practice, we do not see sampling distributions

BOOTSTRAPP' NG — We only have our 1 study

— Statistical theory tells us about the sampling
distribution

* E.g., In Hypothesis Testing, statistical theory tells us
about the sampling distribution of the test statistic when
the null hypothesis is true

Bootstrapping Basic Strategy
» Performin silico replication of the study. * Pretend that the sample is the population.
» Ifthe sample size is large enough, the sample “stands » Sample randomly (and with replacement) from the
in” for the population sample to generate pseudosamples.
* Your data are an independent sample from the — Each psuedosample uses same sample size.
population. — Each observation equally likely to be sampled at each
» Take independent samples from your data to mimic “draw” when making a pseudosample

replications of your study.
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Why sample with replacement?

00 00 000000000000 OCOCRCCROCROCORROONNONOOOTDONTS Population
» Theoretical reason: (unobserved)
Sample Statistic

» Practical reason: (Observed Data)

000
Bootstrap Bootstrap Bootstrap
Sample 1 Sample 2 Sample 1000
k Statistic* Statistic* Statistic*
Bootstrap Standard Errors Inference with Bootstrapped SE
* From a large number of pseudosamples, we can » Providing that we know the statistic is approximately
estimate the sampling distribution of a wide variety of Normally distributed
statistics

100(1 - o)% confidence interval is (4, ,6, )

0, =0-1 sélo

 Across lots of pseudosamples (100s or 1000s), we have Lo ez (A)
a distribution of the statistic. This can be taken as an 0,=0+12_,, sé(@)
estimate of the sampling distribution of the statistic.

» The statistic is calculated on each pseudosample

» The SE of a statistic is just the SD of its sampling Hypothesis tests based on
distribution. ~

— Thus the SD of statistics* estimates SE(statistic) Z= 9“_(923 =N (0,1)
sé
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Ex: SE of Sample Median

» Bootstrapped estimates of the standard error for sample
median
Data Median
Original sample: {1, 5, 8, 3, 7} 5

Bootstrap 1 - {1, 7,1, 3, 7} 3

Bootstrap 2 - {7, 3, 8, 8, 3} 7

Bootstrap 3 - {7, 3, 8, 8, 3} 7

Bootstrap 4 - {8, 5, 5,1, 5} 5

Bootstrap 5 - {1, 1, 5, 1, 8} 1
etc.

Inference for Sample Median

» From the above bootstrapped samples:

» Estimated SE sample medianis 1.914

— The standard deviation of the sample medians across
the 1000 pseudosamples

* A 95% asymptotic (with n=57?) confidence interval (using
the 0.975 quantile of the standard normal distribution) is
thus

5+/- 1.96*1.914=1.25,8.75

1000 Bootstrapped Samples

» Descriptive statistics for the sample medians from 1000
bootstrapped samples

n 1000
Mean 4.964
Standard Deviation 1.914
Median 5
Minimum, Maximum 1, 8
25th, 75th %ile 3,7

Bootstrapped Standard Errors

» There are some instances when bootstrapping does not
work

— For instance, no sample of continuous data is ever
adequate to bootstrap the sampling distribution of the
minimum or maximum

* We can never mimic the chance to have observed more
extreme values than were in our sample

» Butas a general rule, bootstrapping behaves remarkably
well for measures of location and variability
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STATA: SE for Sample Median

» Stata can find bootstrapped standard errors and
confidence intervals

» The summarize command computes the median; the
manual tells me it is saved as r(p50)

e bootstrap r(p50), reps(1000): summarize
bilirubin, detail

— STATA takes a few seconds to run this command, as
opposed to “instantaneously”

Bootstrap Confidence Intervals

* “Normal confidence intervals” uses the bootstrap to
estimate the standard error of the statistic, than uses +/-
1.96 standard errors for the confidence interval

« “Percentile confidence intervals” use the 2.5% and 97.5t
percentiles of the bootstrap distribution as the
confidence interval

» “BC” method tries to adjust the percentile limits for
asymmetry of the distribution

— BC=Bias-corrected

* When they all agree they are all likely to be reasonable
reliable

— STATA post-estimation command estat

STATA: SE for Sample Median

Bootstrap results Number of obs = 312
Replications = 1000
command: summarize bilirubin, detail
_bs_1: r(p50)
| Observed  Bootstrap Normal -based
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
+
bs 1 | 1.35 .1371632 9.84 0.000 1.081165 1.618835
00 0000000000000 0000000000000000
estat bootstrap, all
Bootstrap results Number of obs = 312
Replications = 1000
command: summarize bilirubin, detail
_bs_1: r(p50)
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]
+
_bs_1] 1.35 .03725 .13716324 1.081165 1.618835 )
1 1.2 1.8 (P)
1 1.2 1.8 (BC)
) normal confidence interval
) percentile confidence interval

(BC) bias-corrected confidence interval



