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Chapter 1

R

1.1

Background

Computer code shown throughout these notes is R103. R is free and is the most widely
used statistical software in the world. It has the best graphics, statistical modeling,
nonparametric methods, survival analysis, clinical trials methods, and data manipula-
tion capabilities. R has the most comprehensive genomics analysis packages and has
advanced capabilities for reproducible analysis and reporting. R also has an excellent
graphical front-end RStudio (rstudio.org) that has the identical look and feel on all
operating systems and via a web browser. Part of R’s appeal is the thousands of add-
on packages available (at http://cran.r-project.org/web/packages), which exist
because it is easy to add to R. Many of the add-on packages are specialty packages for
biomedical research including packages for such widely diverse areas as

� interfacing R to REDCap (2 packages)

� interactive design of adaptive clinical trials

� analyzing accelerometer data

� flow cytometry

� genomics

� analyzing ICD9 codes and computing comorbidity indexes

1-1

https://www.rstudio.com/
http://cran.r-project.org/web/packages
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� downloading all annotated NHANES datasets

� interfacing to clinicaltrials.gov

� detecting whether a dataset contains personal identifiers of human subjects

� analysis of early phase cardiovascular drug safety studies

The main R web site is www.r-project.org.

https://clinicaltrials.gov/
https://www.r-project.org/
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1.2

Learning R

Start with R Tutorials at http://www.r-bloggers.com/how-to-learn-r-2, R Pro-
gramming Tutorials from Mike Marin at https://www.youtube.com/user/marinstatlectures,
or Fast Lane to Learning R at https://github.com//matloff/fasteR by Norm Mat-
loff. Or look at swirlstats.com for an interactive way to learn R. Those who have used
SPSS or SAS before will profit from R for SAS and SPSS Users by Robert Muenchen.
A current list of R books on amazon.com may be found at http://amzn.to/15URiF6.
https://stats.idre.ucla.edu/r/ and http://www.introductoryr.co.uk/R_Resources_
for_Beginners.html are useful web sites. An excellent resource is R for Data Science
by Grolemund and Wickham. See also R in Action, second ed. by Robert Kabacoff.
The online open source book on statistical modeling by Legler and Roback at https:
//bookdown.org/roback/bookdown-bysh contains a lot of R code. Jenny Bryan’s
STAT 545 Data Wrangling, Exploration, and Analysis with R course at stat545.com
is an excellent resource. http://stackoverflow.com/tags/r is the best place for
asking questions about the language and for learning from answers to past questions
asked (see also the R-help email list).

Three of the best ways to learn how to analyze data in R quickly are

1. Avoid importing and manipulating data, instead using the R load function to load
datasets that are already annotated and analysis-ready (see Section 1.6 for infor-
mation about importing your own datasets)

2. Use example R scripts as analysis templates

3. Use RStudio (rstudio.org) to run R

On the first approach, the R Hmisc packages’s getHdata function finds datasets on the
Vanderbilt Biostatistics DataSets wiki, downloads them, and load()s them in your R
session. These notes use only datasets available via this mechanism. These datasets
are fully annotated with variable labels and units of measurements for many of the
continuous variables. Concerning analysis scripts, Vanderbilt Biostatistics has collected
template analysis scripts on https://github.com/harrelfe/rscriptsa and the R
Hmisc package has a function getRs to download these scripts and to automatically

agithub has outstanding version control and issue reporting/tracking. It greatly facilitates the contribution of new scripts by users, which
are most welcomed. Contact f.harrell@vanderbilt if you have scripts to contribute or suggestions for existing scripts.

http://www.r-bloggers.com/how-to-learn-r-2
https://www.youtube.com/user/marinstatlectures
https://github.com//matloff/fasteR
swirlstats.com
https://www.amazon.com/
http://amzn.to/15URiF6
https://stats.idre.ucla.edu/r/
http://www.introductoryr.co.uk/R_Resources_for_Beginners.html
http://www.introductoryr.co.uk/R_Resources_for_Beginners.html
https://r4ds.had.co.nz/
https://bookdown.org/roback/bookdown-bysh
https://bookdown.org/roback/bookdown-bysh
https://stat545.com
stat545.com
http://stackoverflow.com/tags/r
https://www.rstudio.com/
https://github.com/harrelfe/rscripts
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populate an RStudio script editor window with the script. Many of the scripts are in
RMarkdown format for use with the R knitr package to allow mixing of text and R
code to make reproducible reports. knitr is described in Section 21.7.

The RMarkdown scripts accessed through getRs use a template that makes the result
part of a reproducible research process by documenting the versions of R and attached
packages at the end of the report. Some of the scripts make use of the knitrSet func-
tion in the Hmisc package. When running Rmarkdown, call knitrSet(lang=’markdown’).
knitrSet gets rid of ## at the start of R output lines, and makes it easy to specify
things like figure sizes in knitr chunk headers. It also causes annoying messages such
as those generated from attaching R packages to be put in a separate file messages.txt

rather than in the report.
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1.3

Setting up R

Before running examples in these notes and R markdown example scripts, you need to
do the following:

1. Make sure your operating system is up to date enough to run the most current
version of R at www.r-project.org. For Mac you must have OS X Maverick or
later.

2. Install R from www.r-project.org or upgrade your installation of R to the latest
version.

3. Install RStudio from rstudio.org or update your RStudio to the latest version.

4. Run RStudio and get it to install the packages that allow Rmarkdown to run, by
clicking on File ... New File ... R Markdown. Make sure that the knitr package
is installed.

5. Have RStudio install the Hmisc and rms packages (which will make RStudio install
several other packages). For packages you had installed previously, make sure you
update them to have the latest versions.

6. Configure RStudio Tools ... Global Options to match the images below

https://www.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/
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Here are some examples of how getRs is used once you load the Hmisc package using a
menu or by typing require(Hmisc) or library(Hmisc) in the console.
require(Hmisc) # d o t h i s o n c e p e r s e s s i o n ( o r l i b r a r y ( H m i s c ) )

options(url.method=’libcurl ’) # s o m e t i m e s n e e d e d i f u s i n g W i n d o w s

getRs() # l i s t a v a i l a b l e s c r i p t s

getRs(browse=’browser ’) # o p e n s c r i p t s c o n t e n t s i n y o u r w e b b r o w s e r

scripts ← getRs() # s t o r e d i r e c t o r y o f s c r i p t s i n a n o b j e c t t h a t c a n e a s i l y

# b e v i e w e d o n d e m a n d i n R S t u d i o ( r i g h t u p p e r p a n e )

getRs(’introda.r ’) # d o w n l o a d i n t r o d a . r a n d o p e n i n s c r i p t e d i t o r

getRs(cats=TRUE) # l i s t a v a i l a b l e m a j o r a n d m i n o r c a t e g o r i e s

categories ← getRs(cats=TRUE) # s t o r e r e s u l t s i n a l i s t f o r l a t e r v i e w i n g

getRs(cats=’reg’) # l i s t a l l s c r i p t s i n a m a j o r c a t e g o r y c o n t a i n i n g ’ reg ’

getRs(’importREDCap.r ’, put=’source ’) # s o u r c e ( ) t o d e f i n e a f u n c t i o n

You can also point your browser to https://github.com/harrelfe/rscripts/blob/
master/contents.md to see the available scripts and categories, and to be able to
click on links to see html report output.

To get started using R in RStudio to create reproducible annotated reports, finish
the above configuration instructions and type the following in the RStudio console:
getRs(’descriptives.Rmd’). The above the script editor window click on Knit HTML.

https://github.com/harrelfe/rscripts/blob/master/contents.md
https://github.com/harrelfe/rscripts/blob/master/contents.md
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1.4

Using R Markdown

See http://kbroman.org/knitr_knutshell/pages/Rmarkdown.html and print the
R Markdown cheat sheet from http://www.rstudio.com/resources/cheatsheets.

To make the code listing pretty, put this chunk at the top of your report. echo=FALSE

suppresses this setup chunk from printing in the report.

‘‘‘{r setup,echo=FALSE}

require(Hmisc)

knitrSet(’myreport’, lang=’markdown’)

‘‘‘

The argument ’myreport’ is replaced with a string to use as a prefix to all the graphics
file names, making each report in your working directory use graphics file names that do
not collide with each other. For example if your report is called acidity_analysis.Rmd

you might specify knitrSet(’acidity_analysis.Rmd’, lang=’markdown’). There are many
other options to knitrSet. A commonly used one is width=n to specify a line width for
printing code of n letters. The default is 61. You can also specify echo,results, and
other options. Type ?knitrSet for help.

The R knitr package is used to run the markdown report and insert graphics and
text output into the report at appropriate slots. It is best to specify a name for each
chunk, and you must use unique names. Each R code chunk must begin exactly with
‘‘‘{r ...} and the chunk name is the first set of characters that appear after the
space after r. Here are some example chunk headers. Chunk names must not contain
a space.

‘‘‘{r descriptives}

‘‘‘{r anova}

‘‘‘{r anova-y1}

‘‘‘{r anova_y1}

‘‘‘{r acidity_plot}

‘‘‘{r plot_residuals,top=1}

‘‘‘{r plot_residuals,mfrow=c(2,2),left=1,top=1,rt=1,bot=1}

‘‘‘{r plot-residuals,w=5,h=4}

http://kbroman.org/knitr_knutshell/pages/Rmarkdown.html
http://www.rstudio.com/resources/cheatsheets
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Chunk options that were used above are:

Options Description

top=1 Leave an extra line of space at top of graph for title
mfrow=c(2,2) Use base graphics and put the next 4 plots into a

single figure with 2 rows, 2 columns
left=1,rt=1,bot=1 Leave one extra line for margin for left, right, bottom of figure
w=5,h=4 Make the figure larger than the default that knitrSet uses

(4 inch width by 3 inch height)

Always having a chunk name also allows easy navigation of chunks by clicking to the
right of the green C at the bottom of your script. This will show the names of all chunks
and you can click on one to go there.
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1.5

Debugging R Code

When using RStudio and knitr as with RMarkdown, it is best to debug your commands a
piece at a time. The fastest way to do this is to go to some line inside your first chunk
and click the green C just above and to the right of your script. Click on Run Current

Chunk then on Run Next Chunk. Shortcut keys for these are Ctrl+Alt+C and Ctrl+Alt+N

(Command+Option+C and Command+Option+N for Mac). You can also click on a single line
of code and run it by clicking on Run.

Whenever you get a strange execution error it is sometimes helpful to show the history
of all the function calls leading to that error. This is done by typing traceback() at the
command prompt.
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1.6

Importing Other Datasets

Most of the work of getting some data sources ready for analysis involves reshaping
datasets from wide to tall and thin, recoding variables, and merging multiple datasets.
R has first-class capabilities for all of these tasks but this part of R is harder to learn,
partly because there are so many ways to accomplish these tasks in R. Getting good
variable names, variable labels, and value labels, can also be tedious but is highly worth
the time investment.

1.6.1

Stata and SPSS

If you have Stata or SPSS files that are already shaped correctly and have variable labels
and value labels, the R Hmisc package’s stata.get and spss.get functions will produce
fully annotated ready-to-analyze R data frames.

1.6.2

REDCap

REDCap exports data to R, and Biostatistics has an R function to make the import process
much easier. Here is an example showing how to fetch and use the function. In this
example, the user did not provide the name of the file to import but rather let the
function find the last created REDCap export files in the current working directory.
require(Hmisc)

getRs(’importREDCap.r ’, put=’source ’) # s o u r c e ( ) c o d e t o d e f i n e f u n c t i o n

mydata ← importREDCap () # b y d e f a u l t o p e r a t e s o n l a s t d o w n l o a d e d e x p o r t

Save(mydata) # H m i s c f u n c t i o n t o c r e a t e m y d a t a . r d a i n c o m p r e s s e d f o r m a t

Advanced users can hook into REDCap dynamically with R to avoid the need to ex-
port/import.
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1.6.3

Spreadsheets

If you have a properly formatted csv file (e.g., exported from a spreadsheet), the Hmisc

csv.get function will read it, facilitate handling of date variables, convert column names
to legal R names, and save the original column names as variable labels.

Here is an example of importing a csv file into R. First of all make sure your spread-
sheet is a “spreadsheet from heaven” and not a “spreadsheet from hell” by reading
http://biostat.app.vumc.org/DataTransmissionProcedures. Then use your
spreadsheet software to export a single worksheet to create a csv file. Small csv files
may be pasted into your R script as is done in the following example, but in most cases
you will call csv.get with an external file name as the first argument.
# W h a t i s b e t w e e n d a t a ← . . a n d ’) i s e x a c t l y l i k e a n e x t e r n a l . c s v f i l e

data ← textConnection(’

Age in Years ,sex ,race ,visit date ,m/s

23,m,w,10/21/2014,1.1

14,f,b,10/22/2014,1.3

,f,w,10/15/2014 ,1.7

’)

require(Hmisc)

d ← csv.get(data , lowernames=TRUE , datevars=’visit.date ’,

dateformat=’%m/%d/%Y’)

close(data)

# l o w e r n a m e s = T R U E : c o n v e r t v a r i a b l e n a m e s t o l o w e r c a s e

# O m i t d a t e f o r m a t i f d a t e s a r e i n Y Y Y Y - M M - D D f o r m a t

contents(d)

Data frame:d 3 observations and 5 variables Maximum # NAs:1

Labels Class Storage NAs

age.in.years Age in Years integer integer 1

sex sex character character 0

race race character character 0

visit.date visit date Date double 0

m.s m/s numeric double 0

d

age.in.years sex race visit.date m.s

1 23 m w 2014 -10 -21 1.1

2 14 f b 2014 -10 -22 1.3

3 NA f w 2014 -10 -15 1.7

In the contents output above you can see that the original column names have been

http://biostat.app.vumc.org/DataTransmissionProcedures
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placed in the variable labels, and the new names have periods in place of blanks or a
slash, since these characters are illegal in R names.

You can have as the first argument to csv.get not only a file name but a URL to a file
on the web. You can also specify delimiters other than commas.

Also see the excellent tutorial on importing from Excel found at http://www.r-

bloggers.com/r-tutorial-on-reading-and-importing-excel-files-into-r.

The Hmisc upData function may be used to rename variables and provide variable and
value labels and units of measurement. Here is another example where there is a junk
variable to delete after importing, and a categorical variable is coded as integers and
need to have value labels defined after importing. We show how csv.get automatically
renamed one illegal (to R) variable name, how to redefine a variable label, and how to
define the value labels. Suppose that file test.csv exists in our project directory and
has the following contents.

age,sys bp,sex,junk,state

23,140,male,1,1

42,131,female,2,1

45,127,female,3,2

37,141,male,4,2

Now import and modify the file.
require(Hmisc)

d ← csv.get(’test.csv ’)

names(d) # s h o w n a m e s a f t e r m o d i f i c a t i o n b y c s v . g e t

[1] "age" "sys.bp" "sex" "junk" "state"

contents(d) # s h o w l a b e l s c r e a t e d b y c s v . g e t

Data frame:d 4 observations and 5 variables Maximum # NAs:0

Labels Class Storage

age age integer integer

sys.bp sys bp integer integer

sex sex character character

junk junk integer integer

state state integer integer

d ← upData(d,

state=factor(state , 1:2, c(’Alabama ’,’Alaska ’)),

rename=c(sys.bp=’sbp’),

labels=c(age = ’Age’,

sbp = ’Systolic Blood Pressure ’),

drop=’junk’, # f o r > 1 : d r o p = c ( ’ j u n k 1 ’ , ’ j u n k 2 ’ , . . . )

units=c(sbp=’mmHg’))

http://www.r-bloggers.com/r-tutorial-on-reading-and-importing-excel-files-into-r
http://www.r-bloggers.com/r-tutorial-on-reading-and-importing-excel-files-into-r
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Input object size: 4040 bytes; 5 variables 4 observations

Renamed variable sys.bp to sbp

Modified variable state

Dropped variable junk

New object size: 3608 bytes; 4 variables 4 observations

contents(d)

Data frame:d 4 observations and 4 variables Maximum # NAs:0

Labels Units Levels Class Storage

age Age integer integer

sbp Systolic Blood Pressure mmHg integer integer

sex sex character character

state 2 integer

+--------+--------------+

|Variable|Levels |

+--------+--------------+

| state |Alabama ,Alaska|

+--------+--------------+

describe(d)

d

4 Variables 4 Observations

--------------------------------------------------------------------------------

age : Age

n missing distinct Info Mean Gmd

4 0 4 1 36.75 11.83

Value 23 37 42 45

Frequency 1 1 1 1

Proportion 0.25 0.25 0.25 0.25

--------------------------------------------------------------------------------

sbp : Systolic Blood Pressure [mmHg]

n missing distinct Info Mean Gmd

4 0 4 1 134.8 8.5

Value 127 131 140 141

Frequency 1 1 1 1

Proportion 0.25 0.25 0.25 0.25

--------------------------------------------------------------------------------

sex

n missing distinct

4 0 2

Value female male

Frequency 2 2

Proportion 0.5 0.5

--------------------------------------------------------------------------------

state

n missing distinct
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4 0 2

Value Alabama Alaska

Frequency 2 2

Proportion 0.5 0.5

--------------------------------------------------------------------------------

dim(d); nrow(d); ncol(d); length(d) # l e n g t h i s n o . o f v a r i a b l e s

[1] 4 4

[1] 4

[1] 4

[1] 4

1.6.4

Defining Small Datasets Inline

For tiny datasets it is easiest to define them as follows:
d ← data.frame(age=c(10 ,20 ,30), sex=c(’male’,’female ’,’male’),

sbp=c(120,125 ,NA))

Large files may be stored in R binary format using save(..., compress=TRUE), which
creates an incredibly compact representation of the data in a file usually suffixed with
.rda. This allows extremely fast loading of the data frame in your next R session using
load(...). The Hmisc Save and Load functions make this even easier.
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1.7

Suggestions for Initial Data Look

The datadensity function in the Hmisc package gives an overall univariable graphical
summary of all variables in the imported dataset. The contents and describe functions
are handy for describing the variables, labels, number of NAs, extreme values, and other
values.
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1.8

Operating on Data Frames

One of the most common operations is subsetting. In the following example we subset
on males older than 26.
young.males ← subset(d, sex == ’male’ & age > 26)

# I f y o u w a n t t o e x c l u d e r o w s t h a t a r e m i s s i n g o n s e x o r a g e :

young.males ← subset(d, sex == ’male’ & age > 26 & ! is.na(sex) &

! is.na(age))

# f ← l r m ( y ∼ s e x + age , d a t a = s u b s e t ( d , s e x = = ’ m a l e ’ & . . . ) )

# f ← l r m ( y ∼ s e x + age , d a t a = d , s u b s e t = s e x = = ’ m a l e ’ & a g e > 2 6 . . . )



Chapter 2

Algebra Review

2.1

Overview

Algebra and probability are underlying frameworks for basic statistics. The following
elements of algebra are particularly important:

� Understanding symbols as variables, and what they can stand for

� Factoring out common terms: axw + bx = x(aw + b)

� Factoring out negation of a series of added terms: −a− b = −(a + b)

� Simplification of fractions

� Addition, subtraction, multiplication, and division of fractions

� Exponentiation with both fractional and whole number exponents

� Re-writing exponentials of sums: bu+v = bu × bv

� Logarithms

– log to the base b of x = logb x is the number y such that by = x

– logb b = 1

2-1
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– logb bx = x logb b = x

– logb ax = x logb a

– logb a−x = −x logb a

– logb(xy) = logb x + logb y

– logb
x
y = logb x− logb y

– When b = e = 2.71828 . . ., the base of the natural log, loge(x) is often written
as ln x or just log(x)

– log e = ln e = 1

� Anti-logarithms: anti-log to the base b of x is bx

– The natural anti-logarithm is ex, often often written as exp(x)

– Anti-log is the inverse function of log; it “undoes”a log

� Understanding functions in general, including min(x, a) and max(x, a)

� Understanding indicator variables such as [x = 3] which can be thought of as true
if x = 3, false otherwise, or 1 if x = 3, 0 otherwise

– [x = 3]× y is y if x = 3, 0 otherwise

– [x = 3]× [y = 2] = [x = 3 and y = 2]

– [x = 3] + 3× [y = 2] = 4 if x = 3 and y = 2, 3 if y = 2 and x ̸= 3

– x×max(x, 0) = x2[x > 0]

– max(x, 0) or w× [x > 0] are algebraic ways of saying to ignore something if a
condition is not met

� Quadratic equations

� Graphing equations
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Once you get to multiple regression, some elements of vectors/linear algebra are helpful,
for example the vector or dot product, also called the inner product:

� Let x stand for a vector of quantities x1, x2, . . . , xp (e.g., the values of p variables
for an animal such as age, blood pressure, etc.)

� Let β stand for another vector of quantities β1, β2, . . . , βp (e.g., weights / regression
coefficients / slopes)

� Then xβ is shorthand for β1x1 + β2x2 + . . . + βpxp

� xβ might represent a predicted value in multiple regression, and is known then as
the linear predictor
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2.2

Some Resources

� http://tutorial.math.lamar.edu/pdf/Algebra_Cheat_Sheet.pdf

� https://www.khanacademy.org/math/algebra

� https://biostat.app.vumc.org/wiki/Main/PrereqAlgebra

� http://www.purplemath.com/modules/index.htm

http://tutorial.math.lamar.edu/pdf/Algebra_Cheat_Sheet.pdf
https://www.khanacademy.org/math/algebra
https://biostat.app.vumc.org/wiki/Main/PrereqAlgebra
http://www.purplemath.com/modules/index.htm
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General Overview of Biostatistics

A
B
D
1
.1
,p
.2
3
-4

There are no routine statistical questions, only questionable statistical routines. Sir David R. Cox

It’s much easier to get a result than it is to get an answer.
Christie Aschwanden,
FiveThirtyEight

3-1

http://bit.ly/yt-bbr1
http://bit.ly/datamethods-bbr1
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3.1

What is Biostatistics?

� Statistics applied to biomedical problems

� Decision making in the face of uncertainty or variability

� Design and analysis of experiments; detective work in observational studies (in
epidemiology, outcomes research, etc.)

� Attempt to remove bias or find alternative explanations to those posited by re-
searchers with vested interests

� Experimental design, measurement, description, statistical graphics, data analysis,
inference, prediction

To optimize its value, biostatistics needs to be fully integrated into biomedical research
and we must recognize that experimental design and execution (e.g., randomization
and masking) are all important.

3.1.1

Branches of Statistics

� Frequentist (traditional)

� Bayesian

� Likelihoodist (a bit like Bayes without priors)

See Section 5.3.
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3.1.2

Fundamental Principles of Statistics

� Use methods grounded in theory or extensive simulation

� Understand uncertainty

� Design experiments to maximize information and understand sources of variability

� Use all information in data during analysis

� Use discovery and estimation procedures not likely to claim that noise is signal

� Strive for optimal quantification of evidence about effects

� Give decision makers the inputs (other than the utility functiona) that optimize
decisions

– Not directly actionable: probabilities that condition on the future to predict the
past/present, i.e, those conditioning on the unknown

* sensitivity and specificity (P (test result|disease status))
Sensitivity irrelevant once it is known that the test is +

* p-values (condition on effect being zero)

� Present information in ways that are intuitive, maximize information content, and
are correctly perceived

aThe utility function is also called the loss or cost function. It specifies, for example, the damage done by making various decisions such as
treating patients who don’t have the disease or failing to treat those who do. The optimum Bayes decision is the one that minimizes expected
loss. This decision conditions on full information and uses for example predicted risk rather than whether or not the predicted risk is high.
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3.2

What Can Statistics Do?

� Refine measurements

� Experimental design

– Make sure design answers the question

– Take into account sources of variability

– Identify sources of bias

– Developing sequential or adaptive designs

– Avoid wasting subjects

� (in strong collaboration with epidemiologists) Observational study design

� (in strong collaboration with epidemiologists and philosophers) Causal inference

� Use methods that preserve all relevant information in data

� Robust analysis optimizing power, minimizing assumptions

� Estimating magnitude of effects

� Estimating shapes of effects of continuous predictors

� Quantifying causal evidence for effects if the design is appropriate

� Adjusting for confounders

� Properly model effect modification (interaction) / heterogeneity of treatment effect

� Developing and validating predictive models

� Choosing optimum measures of predictive accuracy
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� Quantify information added by new measurements / medical tests

� Handling missing data or measurements below detection limits

� Risk-adjusted scorecards (e.g., health provider profiling)

� Visual presentation of results taken into account graphical perception

� Finding alternate explanations for observed phenomena

� Foster reproducible research

See biostat.app.vumc.org/BenefitsBasicSci for more benefits of biostatistics.

3.2.1

Statistical Scientific Method

� Statistics is not a bag of tools and math formulas but an evidence-based way of
thinking

� It is all important to

– understand the problem

– properly frame the question to address it

– understand and optimize the measurements

– understand sources of variability

– much more

� MacKay & Oldford61 developed a 5-stage representation of the statistical method
applied to scientific investigation: Problem, Plan, Data, Analysis, Conclusion
having the elements below:

http://biostat.app.vumc.org/BenefitsBasicSci
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Problem Units & Target Population (Process)
Response Variate(s)
Explanatory Variates
Population Attribute(s)
Problem Aspect(s) – causative, descriptive, predictive

Plan Study Population (Process)
(Units, Variates, Attributes)

Selecting the response variate(s)
Dealing with explanatory variates
Sampling Protocol
Measuring process
Data Collection Protocol

Data Execute the Plan
and record all departures

Data Monitoring
Data Examination
for internal consistency

Data storage

Analysis Data Summary
numerical and graphical

Model construction
build, fit, criticize cycle

Formal analysis

Conclusion Synthesis
plain language, effective presentation graphics

Limitations of study
discussion of potential errors

Recommended Reading for Experimental Design

Glass34, Ruxton and Colegrave87, and Chang15.

Recommended Reading for Clinical Study Design

Hulley et al.48.

Pointers for Observational Study Design

� Understand the problem and formulate a pertinent question
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� Figure out and be able to defend observaton periods and“time zero”

� Carefully define subject inclusion/exclusion criteria

� Determine which measurements are required for answering the question while ac-
counting for alternative explanations. Do this before examining existing datasets
so as to not engage in rationalization bias.

� Collect these measurements or verify that an already existing dataset contains all
of them

� Make sure that the measurements are not missing too often and that measurement
error is under control. This is even slightly more important for inclusion/exclusion
criteria.

� Make sure the use of observational data respects causal pathways. For example
don’t use outcome/response/late-developing medical complications as if they were
independent variables.
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3.3

Types of Data Analysis and Inference

� Description: what happened to past patients

� Inference from specific (a sample) to general (a population)

– Hypothesis testing: test a hypothesis about population or long-run effects

– Estimation: approximate a population or long term average quantity

� Bayesian inference

– Data may not be a sample from a population

– May be impossible to obtain another sample

– Seeks knowledge of hidden process generating this sample (generalization of
inference to population)

� Prediction: predict the responses of other patients like yours based on analysis of
patterns of responses in your patients

Leek and Peng59 created a nice data analysis flowchart.
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They also have a succinct summary of common statistical mistakes originating from a
failure to match the question with the analysis.
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3.4

Types of Measurements by Their Role in the
Study

A
B
D
1
.3� Response variable (clinical endpoint, final lab measurements, etc.)

� Independent variable (predictor or descriptor variable) — something measured when
a patient begins to be studied, before the response; often not controllable by
investigator, e.g. sex, weight, height, smoking history

� Adjustment variable (confounder) — a variable not of major interest but one need-
ing accounting for because it explains an apparent effect of a variable of major
interest or because it describes heterogeneity in severity of risk factors across pa-
tients

� Experimental variable, e.g. the treatment or dose to which a patient is randomized;
this is an independent variable under the control of the researcher

Table 3.1: Common alternatives for describing independent and response variables

Response variable Independent variable
Outcome variable Exposure variable
Dependent variable Predictor variable
y-variables x-variable
Case-control group Risk factor

Explanatory variable

3.4.1

Proper Response Variables

It is too often the case that researchers concoct response variables Y in such a way
that makes the variables seem to be easy to interpret, but which contain several hidden
problems:

� Y may be a categorization/dichotomization of an underlying continuous response
variable. The cutpoint used for the dichotomization is never consistent with data
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(see Figure 18.2), is arbitrary (P. 18-11), and causes a huge loss of statistical
information and power (P. 18-15).

� Y may be based on a change in a subject’s condition whereas what is truly important
is the subject’s most recent condition (P. 14-11).

� Y may be based on change when the underlying variable is not monotonically
related to the ultimate outcome, indicating that positive change is good for some
subjects and bad for others (Fig. 14.2).

A proper response variable that optimizes power is one that

� Captures the underlying structure or process

� Has low measurement error

� Has the highest resolution available, e.g.

– is continuous if the underlying measurement is continuous

– is ordinal with several categories if the underlying measurement is ordinal

– is binary only if the underlying process is truly all-or-nothing

� Has the same interpretation for every type of subject, and especially has a direction
such that higher values are always good or always bad
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3.5

Types of Measurements According to Coding

A
B
D
1
.3� Binary: yes/no, present/absent

� Categorical (aka nominal, polytomous, discrete, multinomial): more than 2 values
that are not necessarily in special order

� Ordinal: a categorical variable whose possible values are in a special order, e.g., by
severity of symptom or disease; spacing between categories is not assumed to be
useful

– Ordinal variables that are not continuous often have heavy ties at one or more
values requiring the use of statistical methods that allow for strange distribu-
tions and handle ties well

– Continuous are also ordinal but ordinal variables may or may not be continuous

� Count: a discrete variable that (in theory) has no upper limit, e.g. the number of
ER visits in a day, the number of traffic accidents in a month

� Continuous: a numeric variable having many possible values representing an un-
derlying spectrum

� Continuous variables have the most statistical information (assuming the raw values
are used in the data analysis) and are usually the easiest to standardize across
hospitals

� Turning continuous variables into categories by using intervals of values is arbitrary
and requires more patients to yield the same statistical information (precision or
power)

� Errors are not reduced by categorization unless that’s the only way to get a subject
to answer the question (e.g., incomeb)

bBut note how the Census Bureau tries to maximize the information collected. They first ask for income in dollars. Subjects refusing to
answer are asked to choose from among 10 or 20 categories. Those not checking a category are asked to choose from fewer categories.
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3.6

Choose Y to Maximize Statistical Informa-
tion, Power, and Interpretability

The outcome (dependent) variable Y should be a high-information measurement that is b
lo
grelevant to the subject at hand. The information provided by an analysis, and statistical

power and precision, are strongly influenced by characteristics of Y in addition to the
effective sample size.

� Noisy Y → variance ↑, effect of interest ↓

� Low information content/resolution also → power ↓

� Minimum information Y : binary outcome

� Maximum information Y : continuous response with almost no measurement error

– Example: measure systolic blood pressure (SBP) well and average 5 readings

� Intermediate: ordinal Y with a few well-populated levels

� Exploration of power vs. number of ordinal Y levels and degree of balance in
frequencies of levels: fharrell.com/post/ordinal-info

� See Section 5.12.4 for examples of ordinal outcome scales and interpretation of
results

3.6.1

Information Content

� Binary Y : 1 bit

– all–or–nothing

– no gray zone, close calls

– often arbitrary

http://fharrell.com/post/ordinal-info
https://fharrell.com/post/ordinal-info
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� SBP: ≈ 5 bits

– range 50-250mmHg (7 bits)

– accurate to nearest 4mmHg (2 bits)

� Time to binary event: if proportion of subjects having event is small, is effectively
a binary endpoint

– becomes truly continuous and yields high power if proportion with events much
greater than 1

2 , if time to event is clinically meaningful

– if there are multiple events, or you pool events of different severities, time to
first event loses information

3.6.2

Dichotomization

Never Dichotomize Continuous or Ordinal Y

� Statistically optimum cutpoint is at the unknown population median

– power loss is still huge

� If you cut at say 2 SDs from the population median, the loss of power can be
massive, i.e., may have to increase sample size ×4

� See Sections 18.3.4 and 18.7

� Avoid“responder analysis” (see datamethods.org/t/responder-analysis-loser-x-4)

� Serious ethical issues

� Dumbing-down Y in the quest for clinical interpretability is a mistake. Example:

– Mean reduction in SBP 7mmHg [2.5, 11.4] for B:A

– Proportion of pts achieving 10mmHg SBP reduction: A:0.31, B:0.41

* Is the difference between 0.31 and 0.41 clinically significant?

http://datamethods.org/t/responder-analysis-loser-x-4
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* No information about reductions > 10 mmHg

� Can always restate optimum analysis results in other clinical metrics

3.6.3

Change from Baseline

Never use change from baseline as Y

� Affected by measurement error, regression to the mean

� Assumes

– you collected a second post-qualification baseline if the variable is part of in-
clusion/exclusion criteria

– variable perfectly transformed so that subtraction works

– post value linearly related to pre

– slope of pre on post is near 1.0

– no floor or ceiling effects

– Y is interval-scaled

� Appropriate analysis (T=treatment)
Y = α + β1 × T + β2 × Y0
Easy to also allow nonlinear function of Y0
Also works well for ordinal Y using a semiparametric model

� See Section 14.4 and Chapter 13
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3.7

Preprocessing

� In vast majority of situations it is best to analyze the rawest form of the data

� Pre-processing of data (e.g., normalization) is sometimes necessary when the data
are high-dimensional

� Otherwise normalizing factors should be part of the final analysis

� A particularly bad practice in animal studies is to subtract or divide by measurements
in a control group (or the experimental group at baseline), then to analyze the
experimental group as if it is the only group. Many things go wrong:

– The normalization assumes that there is no biologic variability or measurement
error in the control animals’ measurements

– The data may have the property that it is inappropriate to either subtract
or divide by other groups’ measurements. Division, subtraction, and percent
change are highly parametric assumption-laden bases for analysis.

– A correlation between animals is induced by dividing by a random variable

� A symptom of the problem is a graph in which the experimental group starts off
with values 0.0 or 1.0

� The only situation in which pre-analysis normalization is OK in small datasets is in
pre-post design or certain crossover studies for which it is appropriate to subject
baseline values from follow-up values

See also Section 4.3.1.
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3.8

Random Variables

� A potential measurement X

� X might mean a blood pressure that will be measured on a randomly chosen US
resident

� Once the subject is chosen and the measurement is made, we have a sample value
of this variable

� Statistics often uses X to denote a potentially observed value from some population
and x for an already-observed value (i.e., a constant)

But think about the clearer terminology of Richard McElreathc:

Convention Proposal

Data Observed variable
Parameter Unobserved variable
Likelihood Distribution

Prior Distribution
Posterior Conditional distribution
Estimate banished
Random banished

chttps://youtu.be/yakg94HyWdE?t=2890

http://bit.ly/yt-bbr2
http://bit.ly/datamethods-bbr2
https://youtu.be/yakg94HyWdE?t=2890
https://youtu.be/yakg94HyWdE?t=2890
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3.9

Probability

� Probability traditionally taken as long-run relative frequency

� Example: batting average of a baseball player (long-term proportion of at-bat
opportunities resulting in a hit)

� Not so fast: The batting average

– depends on pitcher faced

– may drop over a season as player tires or is injured

– drops over years as the player ages

� Getting a hit may be better thought of as a one-time event for which batting
average is an approximation of the probability

As described below, the meaning of probability is in the mind of the beholder. It can
easily be taken to be a long-run relative frequency, a degree of belief, or any metric that
is between 0 and 1 that obeys certain basic rules (axioms) such as those of Kolmogorov:

1. A probability is not negative.

2. The probability that at least one of the events in the exhaustive list of possible
events occurs is 1.

� Example: possible events death, nonfatal myocardial infarction (heart attack),
or neither

� P(at least one of these occurring) = 1

3. The probability that at least one of a sequence of mutually exclusive events occurs
equals the sum of the individual probabilities of the events occurring.

� P(death or nonfatal MI) = P(death) + P(nonfatal MI)

Let A and B denote events, or assertions about which we seek the chances of their ve-
racity. The probabilities that A or B will happen or are true are denoted by P (A), P (B).

https://youtu.be/CBnGs9t6RxY
https://youtu.be/CDwZKyxk6Q4
https://youtu.be/GC-l345c1FY
https://youtu.be/cwADSMeiIoE
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The above axioms lead to various useful properties, e.g.

1. A probability cannot be greater than 1.

2. If A is a special case of a more general event or assertion B, i.e., A is a subset of
B, P (A) ≤ P (B), e.g. P (animal is human) ≤ P (animal is primate).

3. P (A∪B), the probability of the union of A and B, equals P (A)+P (B)−P (A∩B)
where A ∩ B denotes the intersection (joint occurrence) of A and B (the overlap
region).

4. If A and B are mutually exclusive, P (A ∩B) = 0 so P (A ∪B) = P (A) + P (B).

5. P (A ∪B) ≥ max(P (A), P (B))

6. P (A ∪B) ≤ P (A) + P (B)

7. P (A ∩B) ≤ min(P (A), P (B))

8. P (A|B), the conditional probability of A given B holds, is P (A∩B)
P (B)

9. P (A ∩ B) = P (A|B)P (B) whether or not A and B are independent. If they
are independent, B is irrelevant to P (A|B) so P (A|B) = P (A), leading to the
following statement:

10. If a set of events are independent, the probability of their intersection is the product
of the individual probabilities.

11. The probability of the union of a set of events (i.e., the probability that at least
one of the events occurs) is less than or equal to the sum of the individual event
probabilities.

12. The probability of the intersection of a set of events (i.e., the probability that all
of the events occur) is less than or equal to the minimum of all the individual
probabilities.

So what are examples of what probability might actually mean? In the frequentist
school, the probability of an event denotes the limit of the long-term fraction of occur-
rences of the event. This notion of probability implies that the same experiment which
generated the outcome of interest can be repeated infinitely oftend.

There are other schools of probability that do not require the notion of replication at
all. For example, the school of subjective probability (associated with the Bayesian

dBut even a coin will change after 100,000 flips. Likewise, some may argue that a patient is“one of a kind”and that repetitions of the same
experiment are not possible. One could reasonably argue that a“repetition”does not denote the same patient at the same stage of the disease,
but rather any patient with the same severity of disease (measured with current technology).
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school) “considers probability as a measure of the degree of belief of a given subject
in the occurrence of an event or, more generally, in the veracity of a given assertion”
(see P. 55 of56). de Finetti defined subjective probability in terms of wagers and odds
in betting. A risk-neutral individual would be willing to wager $P that an event will
occur when the payoff is $1 and her subjective probability is P for the event.

As IJ Good has written, the axioms defining the“rules”under which probabilities must
operate (e.g., a probability is between 0 and 1) do not define what a probability actually
means. He also surmises that all probabilities are subjective, because they depend on
the knowledge of the particular observer.

One of the most important probability concepts is that of conditional probability The
probability of the veracity of a statement or of an event A occurring given that a specific
condition B holds or that an event B has already occurred, is denoted by P (A|B).
This is a probability in the presence of knowledge captured by B. For example, if the
condition B is that a person is male, the conditional probability is the probability of A
for males, i.e., of males, what is the probability of A?. It could be argued that there is
no such thing as a completely unconditional probability. In this example one is implicitly
conditioning on humans even if not considering the person’s sex. Most people would
take P (pregnancy) to apply to females.

Conditional probabilities may be computed directly from restricted subsets (e.g., males)
or from this formula: P (A|B) = P (A∩B)

P (B) . That is, the probability that A is true given

B occurred is the probability that both A and B happen (or are true) divided by the
probability of the conditioning event B.

Bayes’ rule or theorem is a “conditioning reversal formula” and follows from the basic
probability laws: P (A|B) = P (B|A)P (A)

P (B) , read as the probability that event A happens
given that event B has happened equals the probability that B happens given that A

has happened multiplied by the (unconditional) probability that A happens and divided
by the (unconditional) probability that B happens. Bayes’ rule follows immediately
from the law of conditional probability, which states that P (A|B) = P (A∩B)

P (B) .

The entire machinery of Bayesian inference derives from only Bayes’ theorem and the
basic axioms of probability. In contrast, frequentist inference requires an enormous
amount of extra machinery related to the sample space, sufficient statistics, ancillary
statistics, large sample theory, and if taking more then one data look, stochastic pro-
cesses. For many problems we still do not know how to accurately compute a frequentist
p-value.
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To understand conditional probabilities and Bayes’ rule, consider the probability that a
randomly chosen U.S. senator is female. As of 2017, this is 21

100 . What is the probability
that a randomly chosen female in the U.S. is a U.S. senator?

P (senator|female) = P (female|senator)× P (senator)
P (female)

=
21
100 ×

100
326M

1
2

= 21
163M

So given the marginal proportions of senators and females, we can use Bayes’ rule to
convert“of senators how many are females” to“of females how many are senators.”

The domain of application of probability is all-important. We assume that the true
event status (e.g., dead/alive) is unknown, and we also assume that the information the
probability is conditional upon (e.g. P (death|male, age = 70) is what we would check
the probability against. In other words, we do not ask whether P (death|male, age = 70)
is accurate when compared against P (death| male, age=70, meanbp=45, patient on
downhill course). It is difficult to find a probability that is truly not conditional on
anything. What is conditioned upon is all important. Probabilities are maximally
useful when, as with Bayesian inference, they condition on what is known to provide a
forecast for what is unknown. These are “forward time” or “forward information flow”
probabilities.

Forward time probabilities can meaningfully be taken out of context more often than
backward-time probabilities, as they don’t need to consider “what might have hap-
pened.” In frequentist statistics, the P -value is a backward information flow probability,
being conditional on the unknown effect size. This is why P -values must be adjusted
for multiple data looks (what might have happened, i.e., what data might have been
observed were H0 true) whereas the current Bayesian posterior probability merely over-
rides any posterior probabilities computed at earlier data looks, because they condition
on current cumulative data.



Chapter 4

Descriptive Statistics, Distributions, and
Graphics

4.1

Distributions

A
B
D
1
.4The distribution of a random variable X is a profile of its variability and other tendencies.

Depending on the type of X, a distribution is characterized by the following.

� Binary variable: the probability of “yes” or “present” (for a population) or the pro-
portion of same (for a sample).

� k-Category categorical (polytomous, multinomial) variable: the probability that a
randomly chosen person in the population will be from category i, i = 1, . . . , k.
For a sample, use k proportions or percents.

� Continuous variable: any of the following 4 sets of statistics

– probability density: value of x is on the x-axis, and the relative likelihood of
observing a value “close” to x is on the y-axis. For a sample this yields a
histogram.

– cumulative probability distribution: the y-axis contains the probability of ob-
serving X ≤ x. This is a function that is always rising or staying flat, never

4-1
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decreasing. For a sample it corresponds to a cumulative histograma

– all of the quantiles or percentiles of X

– all of the moments of X (mean, variance, skewness, kurtosis, . . . )

– If the distribution is characterized by one of the above four sets of numbers,
the other three sets can be derived from this set

� Ordinal Random Variables

– Because there many be heavy ties, quantiles may not be good summary statis-
tics

– The mean may be useful if the spacings have reasonable quantitative meaning

– The mean is especially useful for summarizing ordinal variables that are counts

– When the number of categories is small, simple proportions may be helpful

– With a higher number of categories, exceedance probabilities or the empirical
cumulative distribution function are very useful

� Knowing the distribution we can make intelligent guesses about future observations
from the same series, although unless the distribution really consists of a single point
there is a lot of uncertainty in predicting an individual new patient’s response. It
is less difficult to predict the average response of a group of patients once the
distribution is known.

� At the least, a distribution tells you what proportion of patients you would expect
to see whose measurement falls in a given interval.

4.1.1

Continuous Distributions

x ← seq(-3, 35, length =150)

par(mfrow=c(1,2)); xl ← expression(x) # F i g . 4.1:

plot(x, dt(x, 4, 6), type=’l’, xlab=xl, ylab=’Probability Density Function ’)

plot(x, pt(x, 4, 6), type=’l’, xlab=xl, ylab=’Cumulative Distribution Function ’)

aBut this empirical cumulative distribution function can be drawn with no grouping of the data, unlike an ordinary histogram.
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Figure 4.1: Example probability density (a) and cumulative probability distribution (b) for a positively skewed random variable
(skewed to the right)

set.seed (1); x ← rnorm (1000) # F i g . 4.2:

hist(x, nclass =40, prob=TRUE , col=gray(.9), xlab=xl, ylab=’’)

x ← seq(-4, 4, length =150)

lines(x, dnorm(x, 0, 1), col=’blue’, lwd=2)

Histogram of x

x

−3 −2 −1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

Figure 4.2: Example of a continuous distribution that is symmetric: the Gaussian (normal) distribution with mean 0 and variance 1,
along with a histogram from a sample of size 1000 from this distribution

set.seed (2)

x ← c(rnorm (500, mean=0, sd=1), rnorm (500, mean=6, sd=3))

hist(x, nclass =40, prob=TRUE , col=gray(.9), xlab=xl, ylab=’’)

lines(density(x), col=’blue’, lwd=2)

abline(v=c(0, 6), col=’red’) # F i g . 4.3
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Histogram of x

x

0 5 10 15

0.00

0.05

0.10

0.15

Figure 4.3: Example of a bimodal distribution from sampling from a mixture of normal distributions with different means and
variances and estimating the underlying density function. Vertical red lines indicate true population means of the two component
populations. Such a distribution can occur naturally or by failing to condition on a binary characteristic such as sex.

4.1.2

Ordinal Variables

� Continuous ratio-scaled variables are ordinal

� Not all ordinal variables are continuous or ratio-scaled

� Best to analyze ordinal response variables using nonparametric tests or ordinal
regression

� Heavy ties may be present

� Often better to treat count data as ordinal rather than to assume a distribution
such as Poisson or negative binomial that is designed for counts

– Poisson or negative binomial do not handle extreme clumping at zero

� Example ordinal variables are below

x ← 0:14

y ← c(.8 , .04 , .03 , .02 , rep(.01 , 11))

plot(x, y, xlab=xl, ylab=’’, type=’n’) # F i g . 4.4

segments(x, 0, x, y)
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Figure 4.4: Distribution of number of days in the hospital in the year following diagnosis

x ← 1:10

y ← c(.1 , .13 , .18 , .19 , 0, 0, .14 , .12 , .08 , .06)

plot(x, y, xlab=xl, ylab=’’, type=’n’) # F i g . 4.5

segments(x, 0, x, y)
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Figure 4.5: Distribution of a functional status score that does not have points in the middle

The getHdata function in the Hmisc package40 finds, downloads, and load()s datasets
from hbiostat.org/data.
require(Hmisc)

getHdata(nhgh) # N H A N E S d a t a s e t F i g . 4.6:

scr ← pmin(nhgh$SCr , 5) # t r u n c a t e a t 5 f o r i l l u s t r a t i o n

scr[scr == 5 | runif(nrow(nhgh)) < .05] ← 5 # p r e t e n d 1/ 2 0 d i a l y z e d

hist(scr , nclass =50, xlab=’Serum Creatinine ’, ylab=’Density ’, prob=TRUE)

https://hbiostat.org/data
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Figure 4.6: Distribution of serum creatinine where the patient requiring dialysis is taken to have the worst renal function. The
variable is mostly continuous but is best analyzed as ordinal so that no assumption is made about how to score dialysis except for
being worse than all non-dialysis patients. Data taken from NHANES where no patients were actually dialyzed.
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4.2

Descriptive Statistics

A
B
D
34.2.1

Categorical Variables

� Proportions of observations in each category
Note: The mean of a binary variable coded 1/0 is the proportion of ones.

� For variables representing counts (e.g., number of comorbidities), the mean is a
good summary measure (but not the median)

� Modal (most frequent) category

4.2.2

Continuous Variables

Denote the sample values as x1, x2, . . . , xn

Measures of Location

“Center”of a sample

� Mean: arithmetic average

x̄ = 1
n

n∑
i=1

xi

Population mean µ is the long-run average (let n→∞ in computing x̄)

– center of mass of the data (balancing point)

– highly influenced by extreme values even if they are highly atypical
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� Median: middle sorted value, i.e., value such that 1
2 of the values are below it and

above it

– always descriptive

– unaffected by extreme values

– not a good measure of central tendency when there are heavy ties in the data

– if there are heavy ties and the distribution is limited or well-behaved, the mean
often performs better than the median (e.g., mean number of diseased fingers)

� Geometric mean: hard to interpret and affected by low outliers; better to use
median

Quantiles

Quantiles are general statistics that can be used to describe central tendency, spread,
symmetry, heavy tailedness, and other quantities.

� Sample median: the 0.5 quantile or 50th percentile

� Quartiles Q1, Q2, Q3: 0.25 0.5 0.75 quantiles or 25th, 50th, 75th percentiles

� Quintiles: by 0.2

� In general the pth sample quantile xp is the value such that a fraction p of the
observations fall below that value

� pth population quantile: value x such that the probability that X ≤ x is p

Spread or Variability

� Interquartile range: Q1 to Q3
Interval containing 1

2 of the subjects
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Meaningful for any continuous distribution

� Other quantile intervals

� Variance (for symmetric distributions): averaged squared difference between a ran-
domly chosen observation and the mean of all observations

s2 = 1
n− 1

n∑
i=1

(xi − x̄)2

The −1 is there to increase our estimate to compensate for our estimating the
center of mass from the data instead of knowing the population mean.b

� Standard deviation: s — √ of variance

– √ of average squared difference of an observation from the mean

– can be defined in terms of proportion of sample population within ± 1 SD of
the mean if the population is normal

� SD and variance are not useful for very asymmetric data, e.g. “the mean hospital
cost was $10000 ± $15000”

� Gini’s mean difference: mean absolute difference over all possible pairs of observa-
tions. This is highly interpretable. robust, and useful for all interval-scaled data,
and is even highly precise if the data are normalc.

� range: not recommended because range ↑ as n ↑ and is dominated by a single
outlier

� coefficient of variation: not recommended (depends too much on how close the
mean is to zero)

Example of Gini’s mean difference for describing patient-to-patient variability of sys-
tolic blood pressure: If Gini’s mean difference is 7mmHg, this means that the average
disagreement (absolute difference) between any two patients is 7mmHg.

bx̄ is the value of µ such that the sum of squared values about µ is a minimum.
cGini’s mean difference is labeled Gmd in the output of the R Hmisc describe function, and may be computed separately using the Hmisc GiniMd

function
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4.3

Graphics

A
B
D
2
,3
.4

Cleveland19,18 is the best source of how-to information on making scientific graphs. Much
information may be found at https://biostat.app.vumc.org/StatGraphCourse,
especially these notes: https://hbiostat.org/doc/graphscourse.pdf. Informa-
tion about graphics for reporting clinical trials may be found at biostat.app.vumc.org/RCTGraphics
and hbiostat.org/R/hreport. A link to John Rauser’s exceptional video about principles
of good graphics is found on that page as well as in the movie icon in the right margin.
See datamethods.org/t/journal-graphics for graphical methods for journal articles.

Murrell71 has an excellent summary of recommendations:

� Display data values using position or length.

� Use horizontal lengths in preference to vertical lengths.

� Watch your data–ink ratio.

� Think very carefully before using color to represent data values.

� Do not use areas to represent data values.

� Please do not use angles or slopes to represent data values.

� Please, please do not use volumes to represent data values.

On the fifth point above, avoid the use of bars when representing a single number. Bar
widths contain no information and get in the way of important information. This is
addressed below.

R has superior graphics implemented in multiple models, including

� Base graphics such as plot(), hist(), lines(), points() which give the user max-
imum control and are best used when not stratifying by additional variables other
than the ones being summarized

� The lattice package which is fast but not quite as good as ggplot2 when one needs

http://bit.ly/yt-bbr3
http://bit.ly/datamethods-bbr3
https://youtu.be/fSgEeI2Xpdc
https://biostat.app.vumc.org/StatGraphCourse
https://hbiostat.org/doc/graphscourse.pdf
http://biostat.app.vumc.org/RCTGraphics
https://hbiostat.org/R/hreport
https://discourse.datamethods.org/t/journal-graphics
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to vary more than one of color, symbol, size, or line type due to having more than
one categorizing variable

� The ggplot2 package which is very flexible and has the nicest defaults especially
for constructing keys (legends/guides)

� For semi-interactive graphics inserted into html reports, the R plotly package,
which uses the plotly system (which uses the Javascript D3 library) is extremely
powerful. See https://plot.ly/r/getting-started.

� Fully interactive graphics can be built using RShiny but this requires a server to be
running while the graph is viewed.

For ggplot2, http://www.cookbook-r.com/Graphs contains a nice cookbook. See
also http://learnr.wordpress.com. To get excellent documentation with examples
for any ggplot2 function, google ggplot2 functionname . ggplot2 graphs can be con-
verted into plotly graphics using the ggplotly function. But you will have more control
using R plotly directly.

The older non-interactive graphics models which are useful for producing printed and
pdf output are starting to be superceded with interactive graphics. One of the biggest
advantages of the latter is the ability to present the most important graphic information
front-and-center but to allow the user to easily hover the mouse over areas in the graphic
to see tabular details.

4.3.1

Graphing Change vs. Raw Data

A common mistake in scientific graphics is to cover up subject variability by normalizing
repeated measures for baseline (see Section 3.7). Among other problems, this prevents
the reader from seeing regression to the mean for subjects starting out at very low
or very high values, and from seeing variation in intervention effect as a function of
baseline values. It is highly recommended that all the raw data be shown, including
those from time zero. When the sample size is not huge, spaghetti plots are most
effective for graphing longitudinal data because all points from the same subject over
time are connected. An example [23, pp. 161-163] is below.
require(Hmisc) # a l s o l o a d s g g p l o t 2

getHdata(cdystonia)

https://plot.ly/r/getting-started
http://www.cookbook-r.com/Graphs
http://learnr.wordpress.com
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ggplot(cdystonia , aes(x=week , y=twstrs , color=factor(id))) +

geom_line () + xlab(’Week’) + ylab(’TWSTRS-total score’) +

facet_grid(treat ∼ site) +

guides(color=FALSE) # F i g . 4.7
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Figure 4.7: Spaghetti plot showing all the raw data on the response variable for each subject, stratified by dose and study site (1–9).
Importantly, week 0 (baseline) measurements are included.

Graphing the raw data is usually essential.

4.3.2

Categorical Variables

� pie chart

– high ink:information ratio

– optical illusions (perceived area or angle depends on orientation vs. horizon)
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– hard to label categories when many in number

� bar chart

– high ink:information ratio

– hard to depict confidence intervals (one sided error bars?)

– hard to interpret if use subcategories

– labels hard to read if bars are vertical

� dot chart

– leads to accurate perception

– easy to show all labels; no caption needed

– allows for multiple levels of categorization (see Figures 4.8 and 4.9)
getHdata(titanic3)

d ← upData(titanic3 ,

agec = cut2(age , c(10, 15, 20, 30)), print=FALSE)

d ← with(d, as.data.frame(table(sex , pclass , agec)))

d ← subset(d, Freq > 0)

ggplot(d, aes(x=Freq , y=agec)) + geom_point () +

facet_grid(sex ∼ pclass) +

xlab(’Frequency ’) + ylab(’Age’)
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Figure 4.8: Dot chart showing frequencies from cross-classifications of discrete variables for Titanic passengers
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Figure 4.9: Dot chart for categorical demographic variables, stratified by treatment and region
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Figure 4.10: Dot chart showing proportion of subjects having adverse events by treatment, sorted by risk
difference, produced by the R greport package. See test.Rnw at hbiostat.org/R/greport

hbiostat.org/R/greport
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* multi-panel display for multiple major categorizations

* lines of dots arranged vertically within panel

* categories within a single line of dots

– easy to show 2-sided error bars

� Avoid chartjunk such as dummy dimensions in bar charts, rotated pie charts, use
of solid areas when a line suffices

4.3.3

Continuous Variables

Raw Data

For graphing two continuous variable, scatterplots are often essential. The following
example draws a scatterplot on a very large number of observations in a measurement
comparison study where the goal is to measure esophageal pH longitudinally and across
subjects.
getHdata(esopH)

contents(esopH)

Data frame:esopH 136127 observations and 2 variables Maximum # NAs:0

Labels Class Storage

orophar Esophageal pH by Oropharyngeal Device numeric double

conv Esophageal pH by Conventional Device numeric double

xl ← label(esopH$conv)

yl ← label(esopH$orophar)

ggplot(esopH , aes(x=conv , y=orophar)) + geom_point(pch=’.’) +

xlab(xl) + ylab(yl) + # F i g . 4.11

geom_abline(intercept = 0, slope = 1)

With large sample sizes there are many collisions of data points and hexagonal binning
is an effective substitute for the raw data scatterplot. The number of points represented
by one hexagonal symbol is stratified into 20 groups of approximately equal numbers of
points. The code below is not currently working for the ggplot2 package version 2.1.0.
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Figure 4.11: Scatterplot of one measurement mode against another

ggplot(esopH , aes(x=conv , y=orophar)) +

stat_binhex(aes(alpha=..count.. , color=Hmisc ::cut2(..count.. , g=20)),

bins =80) +

xlab(xl) + ylab(yl) +

guides(alpha=FALSE , fill=FALSE , color=guide_legend(title=’Frequency ’))

Instead we use the Hmisc ggfreqScatter function to bin the points and represent fre-
quencies of overlapping points with color and transparency levels.
with(esopH , ggfreqScatter(conv , orophar , bins=50, g=20) +

geom_abline(intercept=0, slope =1)) # F i g . 4.12

Distributions

A
B
D
1
.4� histogram showing relative frequencies

– requires arbitrary binning of data

– not optimal for comparing multiple distributions
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Figure 4.12: Binned points (2500 total bins) with frequency counts shown as color and transparency level
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� cumulative distribution function: proportion of values ≤ x vs. x (Figure 4.13)
Can read all quantiles directly off graph.
getHdata(pbc)

pbcr ← subset(pbc , drug != ’not randomized ’)

Ecdf(pbcr[,c(’bili’,’albumin ’,’protime ’,’sgot’)], # F i g . 4.13

group=pbcr$drug , col=1:2,

label.curves=list(keys=’lines’))
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Figure 4.13: Empirical cumulative distributions of baseline variables stratified by treatment in a randomized controlled trial. m is
the number of missing values.

� Box plots shows quartiles plus the mean. They are a good way to compare many
groups as seen in Figures 4.14 and 4.16.
getHdata(support) # F i g . 4.14

bwplot(dzgroup ∼ crea , data=support , panel=panel.bpplot ,

probs=c(.05 ,.25), xlim=c(0,8), xlab=’Serum Creatinine ’)

Figure 4.16 uses extended box plots. The following schematic shows how to inter-
pret them.
bpplt() # F i g . 4.15

require(lattice) # F i g . 4.16:

getHdata(diabetes)

wst ← cut2(diabetes$waist , g=2)
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Figure 4.14: Box plots showing the distribution of serum creatinine stratified by major diagnosis. Dot: mean; vertical line: median;
large box:interquartile range. The 0.05 and 0.95 quantiles are also shown, which is not the way typical box plots are drawn but
is perhaps more useful. Asymmetry of distributions can be seen by both disagreement between Q3 − Q2 and Q2 − Q1 and by
disagreement between Q2 and x̄.
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Figure 4.15: Schematic for extended box plot
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levels(wst) ← paste(’Waist’, levels(wst))

bwplot(cut2(age ,g=4) ∼ glyhb | wst*gender , data=diabetes ,

panel=panel.bpplot , xlab=’Glycosylated Hemoglobin ’, ylab=’Age

Quartile ’)
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Figure 4.16: Extended box plots for glycohemoglobin stratified by quartiles of age (vertical), two-tiles of waist circumference
(horizontal), and sex (vertical)

Box plots are inadequate for displaying bimodality. Violin plots show the entire
distribution well if the variable being summarized is fairly continuous.

Relationships

� When response variable is continuous and descriptor (stratification) variables are
categorical, multi-panel dot charts, box plots, multiple cumulative distributions,
etc., are useful.

� Two continuous variables: scatterplot
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Figure 4.17: One-half violin plots for longitudinal data, stratified by treatment. Density estimates for groups
with insufficient sample sizes are faded. Density plots are back–to–back for treatment A and B. Points
are treatment medians. When the black vertical line does not touch the two medians, the medians are
significantly different at the α = 0.05 level. Graphic was produced by the R greport package.
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4.3.4

Graphs for Summarizing Results of Studies

� Dot charts with optional error bars (for confidence limits) can display any summary
statistic (proportion, mean, median, mean difference, etc.)

� It is not well known that the confidence interval for a difference in two means
cannot be derived from individual confidence limits.d

Show individual confidence limits as well as actual CLs for the difference.
attach(diabetes)

set.seed (1)

male ← smean.cl.boot(glyhb[gender ==’male’], reps=TRUE)

female ← smean.cl.boot(glyhb[gender ==’female ’], reps=TRUE)

dif ← c(mean=male[’Mean’]-female[’Mean’],

quantile(attr(male , ’reps’)-attr(female ,’reps’), c(.025 ,.975)))

plot(0,0,xlab=’Glycated Hemoglobin ’,ylab=’’, # F i g . 4.18

xlim=c(5,6.5),ylim=c(0,4), axes=F)

axis(1, at=seq(5, 6.5, by=0.25))

axis(2, at=c(1,2,3.5), labels=c(’Female ’,’Male’,’Difference ’),

las=1, adj=1, lwd=0)

points(c(male[1], female [1]), 2:1)

segments(female [2], 1, female [3], 1)

segments(male[2], 2, male[3], 2)

offset ← mean(c(male[1], female [1])) - dif[1]

points(dif[1] + offset , 3.5)

segments(dif [2]+ offset , 3.5, dif [3]+ offset , 3.5)

at ← c(-.5 ,-.25 ,0,.25 ,.5,.75 ,1)

axis(3, at=at+offset , label=format(at))

segments(offset , 3, offset , 4.25 , col=gray(.85))

abline(h=c(2 + 3.5)/2, col=gray(.85))

� For showing relationship between two continuous variables, a trend line or regression
model fit, with confidence bands

Bar Plots with Error Bars

� “Dynamite”Plots

� Height of bar indicates mean, lines represent standard error

� High ink:information ratio
dIn addition, it is not necessary for two confidence intervals to be separated for the difference in means to be significantly different from zero.
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Glycated Hemoglobin
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Figure 4.18: Means and nonparametric bootstrap 0.95 confidence limits for glycated hemoglobin for males and females, and confidence
limits for males - females. Lower and upper x-axis scales have same spacings but different centers. Confidence intervals for differences
are generally wider than those for the individual constituent variables.

� Hide the raw data, assume symmetric confidence intervals

� Replace with

– Dot plot (smaller sample sizes)

– Box plot (larger sample size)

getHdata(FEV); set.seed (13)

FEV ← subset(FEV , runif(nrow(FEV)) < 1/8) # 1/ 8 s a m p l e

require(ggplot2)

s ← with(FEV , summarize(fev , llist(sex , smoke), smean.cl.normal))

ggplot(s, aes(x=smoke , y=fev , fill=sex)) + # F i g . 4.19

geom_bar(position=position_dodge (), stat="identity") +

geom_errorbar(aes(ymin=Lower , ymax=Upper),

width=.1,

position=position_dodge(.9))

See http://biostat.app.vumc.org/DynamitePlots for a list of the many problems
caused by dynamite plots, plus some solutions.

Instead of the limited information shown in the bar chart, show the raw data along with
box plots. Modify default box plots to replace whiskers with the interval between 0.1
and 0.9 quantiles.
require(ggplot2) # F i g . 4.20

stats ← function(x) {

z ← quantile(x, probs=c(.1, .25 , .5, .75 , .9))

names(z) ← c(’ymin’, ’lower’, ’middle ’, ’upper’, ’ymax’)

http://biostat.app.vumc.org/DynamitePlots
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Figure 4.19: Bar plot with error bars—“dynamite plot”

if(length(x) < 10) z[c(1,5)] ← NA

z

}

ggplot(FEV , aes(x=sex , y=fev)) +

stat_summary(fun.data=stats , geom=’boxplot ’, aes(width=.75), shape=5,

position=’dodge’, col=’lightblue ’) +

geom_dotplot(binaxis=’y’, stackdir=’center ’, position=’dodge’, alpha=.4) +

stat_summary(fun.y=mean , geom=’point’, shape=5, size=4, color=’blue’) +

facet_grid(∼ smoke) +

xlab(’’) + ylab(expression(FEV [1])) + coord_flip ()

non−current smoker current smoker

1 2 3 4 5 1 2 3 4 5

female

male

FEV1

Figure 4.20: Jittered raw data and box plots. Middle vertical lines indicate medians and diamonds indicate means. Horizontal lines
indicate 0.1 to 0.9 quantiles when n ≥ 10. The ink:information ratio for this plot is far better than a dynamite plot.

Use a violin plot to show the distribution density estimate (and its mirror image) instead
of a box plot.
ggplot(FEV , aes(x=sex , y=fev)) +

geom_violin(width=.6, col=’lightblue ’) +

geom_dotplot(binaxis=’y’, stackdir=’center ’, position=’dodge’, alpha=.4) +

stat_summary(fun.y=median , geom=’point’, color=’blue’, shape=’+’, size =12) +

facet_grid(∼ smoke) +
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xlab(’’) + ylab(expression(FEV [1])) + coord_flip ()

+

+

+

+
non−current smoker current smoker

1 2 3 4 5 1 2 3 4 5

female

male

FEV1

Figure 4.21: Jittered raw data and violin plots with median indicated by +

Semi-Interactive Graphics Examples

These examples are all found in hbiostat.org/talks/rmedicine19.html.

� R for Clinical Trial Reporting

� Spike histograms with hovertext for overall statistical summary (slide 11)

� Dot plots (slide 12)

� Extended box plots (slide 13)

� Spike histograms with quantiles, mean, dispersion (slide 15)

� Survival plots with CI for difference, continuous number at risk (slide 16)

� Example clinical trial reports (slide 35)

Other examples: descriptions of BBR course participants: hbiostat.org/bbr/registrants.html.

hbiostat.org/talks/rmedicine19.html
https://hbiostat.org/talks/rmedicine19.html
https://hbiostat.org/talks/rmedicine19.html#11
https://hbiostat.org/talks/rmedicine19.html#12
https://hbiostat.org/talks/rmedicine19.html#13
https://hbiostat.org/talks/rmedicine19.html#15
https://hbiostat.org/talks/rmedicine19.html#16
https://hbiostat.org/talks/rmedicine19.html#35
https://hbiostat.org/bbr/registrants.html
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4.3.5

Graphs for Describing Statistical Model Fits

Several types of graphics are useful. These are all implemented in the R rms package41.

Partial effect plots : Show the effect on Y of varying one predictor at a time, holding
the other predictors to medians or modes, and include confidence bands. This is
the best approach for showing shapes of effects of continuous predictors.

Effect charts : Show the difference in means, odds ratio, hazard ratio, fold change,
etc., varying each predictor and holding others to medians or modese. For continu-
ous variables that do not operate linearly, this kind of display is not very satisfactory
because of its strong dependence on the settings over which the predictor is set.
By default inter-quartile-range effects are used.

Nomograms : Shows the entire model if the number of interactions is limited. Nomo-
grams show strengths and shapes of relationships, are very effective for continuous
predictors, and allow computation of predicted values (although without confidence
limits).

Here are examples using NHANES data to predict glycohemoglobin from age, sex,
race/ethnicity, and BMI.
Note: ordinary regression is not an adequate fit for glycohemoglobin; an excellent fit
comes from ordinal regression. BMI is not an adequate summary of body size. The
following ordinary regression model in the −1.75 power of glycohemoglobin resulted
in approximately normal residuals and is used for illustration. The transformation is
subtracted from a constant just so that positive regression coefficients indicate that
increasing a predictor increases glycohemoglobin. The inverse transformation raises
predicted values to the − 1

1.75 power after accounting for the subtraction, and is used
to estimate the median glycohemoglobin on the original scalef. Restricted cubic spline
functions with 4 default knots are used to allow age and BMI to act smoothly but
nonlinearly. Partial effects plots are in Fig. 4.22.
require(rms)

getHdata(nhgh) # N H A N E S d a t a

dd ← datadist(nhgh); options(datadist=’dd’)

g ← function(x) 0.09 - x ∧ - (1 / 1.75)

ginverse ← function(y) (0.09 - y) ∧ -1.75

f ← ols(g(gh) ∼ rcs(age , 4) + re + sex + rcs(bmi , 4), data=nhgh)

eIt does not matter what the other variables are set to if they do not interact with the variable being varied.
fIf residuals have a normal distribution after transforming the dependent variable, the estimated mean and median transformed values are

the same. Inverse transforming the estimates provides an estimate of the median on the original scale (but not the mean).
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cat(’{\\ small\n’)

f

Linear Regression Model

ols(formula = g(gh) ~ rcs(age, 4) + re + sex + rcs(bmi, 4), data = nhgh)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 6795 LR χ2 1861.16 R2 0.240
σ 0.0235 d.f. 11 R2

adj 0.238
d.f. 6783 Pr(> χ2) 0.0000 g 0.015

Residuals
Min 1Q Median 3Q Max

−0.09736 −0.01208 −0.002201 0.008237 0.1689

β̂ S.E. t Pr(> |t|)
Intercept -0.2884 0.0048 -60.45 <0.0001
age 0.0002 0.0001 3.34 0.0008
age’ 0.0010 0.0001 7.63 <0.0001
age” -0.0040 0.0005 -8.33 <0.0001
re=Other Hispanic -0.0013 0.0011 -1.20 0.2318
re=Non-Hispanic White -0.0082 0.0008 -10.55 <0.0001
re=Non-Hispanic Black -0.0013 0.0009 -1.34 0.1797
re=Other Race Including Multi-Racial 0.0006 0.0014 0.47 0.6411
sex=female -0.0022 0.0006 -3.90 <0.0001
bmi -0.0006 0.0002 -2.54 0.0111
bmi’ 0.0059 0.0009 6.44 <0.0001
bmi” -0.0161 0.0025 -6.40 <0.0001

print(anova(f), dec.ss=3, dec.ms =3)

Analysis of Variance for g(gh)

d.f. Partial SS MS F P

age 3 0.732 0.244 441.36 <0.0001
Nonlinear 2 0.040 0.020 35.83 <0.0001

re 4 0.096 0.024 43.22 <0.0001
sex 1 0.008 0.008 15.17 <0.0001
bmi 3 0.184 0.061 110.79 <0.0001
Nonlinear 2 0.023 0.011 20.75 <0.0001

TOTAL NONLINEAR 4 0.068 0.017 30.94 <0.0001
REGRESSION 11 1.181 0.107 194.29 <0.0001
ERROR 6783 3.749 0.001

cat(’}\n’)

# S h o w p a r t i a l e f f e c t s o f a l l v a r i a b l e s i n t h e m o d e l , o n t h e o r i g i n a l s c a l e

ggplot(Predict(f, fun=ginverse), # F i g . 4.22

ylab=expression(paste(’Predicted Median ’, HbA[’1c’])))
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Figure 4.22: Partial effects in NHANES HbA1c model

An effect chart is in Fig. 4.23 and a nomogram is in Fig. 4.24. See http://stats.

stackexchange.com/questions/155430/clarifications-regarding-reading-a-

nomogram for excellent examples showing how to read such nomograms.
plot(summary(f)) # F i g . 4.23

plot(nomogram(f, fun=ginverse , funlabel=’Median HbA1c ’)) # F i g . 4.24

Graphing Effect of Two Continuous Variables on Y

The following examples show the estimated combined effects of two continuous pre-
dictors on outcome. The two models included interaction terms, the second example
using penalized maximum likelihood estimation with a tensor spline in diastolic × sys-
tolic blood pressure.

Figure 4.26 is particularly interesting because the literature had suggested (based on
approximately 24 strokes) that pulse pressure was the main cause of hemorrhagic stroke
whereas this flexible modeling approach (based on approximately 230 strokes) suggests

http://stats.stackexchange.com/questions/155430/clarifications-regarding-reading-a-nomogram
http://stats.stackexchange.com/questions/155430/clarifications-regarding-reading-a-nomogram
http://stats.stackexchange.com/questions/155430/clarifications-regarding-reading-a-nomogram
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Figure 4.23: Partial effects chart on the transformed scale. For age and BMI, effects are inter-quartile-range effects. 0.9, 0.95, and
0.99 confidence limits are shown.
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Figure 4.24: Nomogram for predicting median HbA1c. To use the nomogram, use the top Points scale to convert each predictor
value to a common scale. Add the points and read this number on the Total Points scale, then read down to the median.
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Figure 4.25: Estimated median survival time for critically ill adults
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Figure 4.26: Logistic regression estimate of probability of a hemorrhagic stroke for patients in the GUSTO-I trial given t-PA, using
a tensor spline of two restricted cubic splines and penalization (shrinkage). Dark (cold color) regions are low risk, and bright (hot)
regions are higher risk.
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that mean arterial blood pressure (roughly a 45◦ line) is what is most important over a
broad range of blood pressures. At the far right one can see that pulse pressure (axis
perpendicular to 45◦ line) may have an impact although a non-monotonic one.
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4.4

Tables

What are tables for?

� Lookup of details

� Not for seeing trends

� For displaying a summary of a variable stratified by a truly categorical variable

� Not for summarizing how a variable changes across levels of a continuous indepen-
dent variable

Since tables are for lookup, they can be complex. With modern media, a better way to
think of a table is as a pop-up when viewing elements of a graph.

What to display in a table for different types of response variables:

� Binary variables: Show proportions first; they should be featured because they are
normalized for sample size

– Don’t need to show both proportions (e.g., only show proportion of females)

– Proportions are better than percents because of reduced confusion when speak-
ing of percent difference (is it relative or absolute?) and because percentages
such as 0.3% are often mistaken for 30% or 3%.

� Make logical choices for independent and dependent variables.
E.g., less useful to show proportion of males for patients who lived vs. those who
died than to show proportion of deaths stratified by sex.

� Continuous response variables

– to summarize distributions of raw data: 3 quartiles
recommended format: 35 50 67 or 35/50/67

– summary statistics: mean or median and confidence limits (without assuming

http://bit.ly/yt-bbr3a
http://bit.ly/datamethods-bbr3
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normality of data if possible)

� Continuous independent (baseline) variables

– Don’t use tables because these requires arbitrary binning (categorization)

– Use graphs to show smooth relationships

� Show number of missing values

� Add denominators when feasible

� Confidence intervals: in a comparative study, show confidence intervals for differ-
ences, not confidence intervals for individual group summaries

Table 4.1: Descriptive Statistics: Demographic and Clinical variables

N
Age 27 28 32 52

C-reactive protein 27 1.0 1.8 10.1

Fecal Calprotectin 26 128 754 2500

Gender 27
Female 0.52 14

27

Location of colitis 27
Left side 0.41 11

27

Middle 0.52 14
27

Right side 0.07 2
27

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.
N is the number of non–missing values.

See also hbiostat.org/talks/rmedicine19.html#18.

https://hbiostat.org/talks/rmedicine19.html#18


Chapter 5

Statistical Inference

A
B
D
65.1

Overview

� Inferential modes

– hypothesis testing

– relative model fit/relative support for hypotheses (likelihood ratios, Bayes fac-
tors)

– estimation (including interval estimation; often more appropriate than hypoth-
esis testing)

– Bayesian probability of an effect in the right direction (more relevant to decision
making; more actionable)

� Contrast inference with decision making:

– acting as if something is true whether or not it is actually true

� Hypothesis testing is most useful for inferential “existence”questions

– is indirect for other types of questions

� Majority of hypothesis tests are on a single point

� These place asymmetric importance on “special values” such as zero treatment

5-1

http://bit.ly/yt-bbr4
http://bit.ly/datamethods-bbr4
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effect

� What does it mean to“not reject a hypothesis”?

– often very little

� What does it mean to reject a hypothesis with a statistical test?

– in statistics it means that some aspect of a model is under suspicion (e.g.,
normality assumption)

– even if all other assumptions of the data model are satisfied, when the hypoth-
esis involves a single point (e.g. zero effect), the alternative space is infinite
so what have we learned about a specific alternative (e.g., that a treatment
lowers blood pressure by 10 mmHg)?

Statistical hypothesis testing involves a model for data:

� Parametric tests have very specific models

� Nonparametric tests have semi-specific models without a distribution assumption

� Permutation tests make an assumption about the best data summarization (e.g.,
mean, and the mean may not be the best summary for a heavy-tailed data distri-
bution)

This chapter covers parametric tests for the following reasons:

1. historical

2. they are very useful for sample size estimation

3. occasionally one has prior information that the raw data, or differences from pre to
post, actually follow a normal distribution, and with large effects one can get quite
significant results in very small samples with parametric tests

4. to show that Bayesian parametric tests make fewer assumptions about the data
model

Nonparametric methods are covered in Chapter 7.
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Back to data model—the primary basis for statistical inference:

� Assume a model for how the data were generated

� Model contains

– main parameters of interest (e.g., means)

– auxiliary parameters for other variables (e.g., confounders)

– parameters for sources of between-subject variability

– if parametric, a distribution function such as Gaussian (normal)

– if nonparametric/semiparametric, a connection between distributions for differ-
ent types of subjects (link function)

– if longitudinal, a correlation pattern for multiple measurements within a subject

– assumptions about censoring, truncation, detection limits if applicable

– . . .

� Example (2-sample t-test): Y = µ0 + δ[treatment B] + ϵ

– µ0: unknown data-generating mean for treatment A

– δ: unknown data-generating difference in means (B-A)

– [treatment B]: an indicator variable (1 if observation is from treatment B, 0 if
from treatment A)

– ϵ: irreducible error, i.e., unaccountable subject-to-subject variation; biologic
variability; has variance σ2

– Primary goal: uncover the hidden value of δ generating our dataset in the
presence of noise ϵ

* higher σ2 → larger |ϵ| → harder to uncover δ (the signal) from the noise

* were ϵ always zero (no uncertainties), one directly observes δ and no statis-
tical analysis is needed
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� Rejecting a straw-man hypothesis implies that some aspect of the model is in doubt

– that aspect may be the distribution or an assumption about equal variances,
not the difference in means you care about

Common error: Using a two-stage approach to select which data model to use:

� Assumes the data contain rich enough information to lead to a correct decision

� Alters the operating characteristics of the final test

� Fails to realize that nonparametric tests have excellent power

Example: Testing normality to decide on whether to use a t-test vs. a Wilcoxon-Mann-
Whitney two-sample rank test. A two-stage test with a test for normality in the first
stage assumes that

1. the test for normality has power near 1.0 for our sample size

2. if the test rejects H0:normality, the magnitude of non-normality is worth bothering
about

3. pre-testing for normality does not modify the type I error of the overall testing
procedure

4. nonparametric tests are less efficient than parametric tests

In fact it may be that none of these assumptions is true (4. is very seldom true). As
will be seen later, a full Bayesian model can be completely honest and provide exactly
the right amount of caution:

� flexible parametric model allowing uncertainty about equal variances for groups A
and B

� allows uncertainty about the normality assumption

� still results in inference about δ, properly more cautious (wider credible interval)
because

– we don’t know if normality truly holds
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– we don’t know if equality of variance truly holds

5.1.1

Central Limit Theorem

� Assume observations are independent with the same distribution and have finite
variance

� Assume that the sample size n can increase without bound

� Limiting distribution of the sample mean is normal

The CLT is frequently used to justify the use of parametric statistical tests and con-
fidence intervals even when their assumptions are violated. But the CLT (and the t

distribution) are much less helpful for computing confidence intervals and P–values
than it seems113:

� since the standard deviation is unknown, one must estimate it while estimating the
mean to use the CLT

� SD may be a completely inappropriate summary of dispersion (e.g., if one should
have first log-transformed but computed SD on the raw scale)

� if the data distribution is asymmetric, the SD is not independent of the mean (so
the t distribution does not hold) and the SD is not a good dispersion measure

� the sample size for which the CLT is an adequate approximation is unknown for
any given situation

� example: log-normal distribution—the CLT is not accurate even for n = 50000
(see below)

� even when the CLT provides somewhat accurate P -values, it provides no comfort
with regard to statistical power. Example: analyzing Y when you should have
analyzed log(Y ) will result in a devastating increase in type II error.

Example simulation to compute confidence-coverage when using the t-distribution con-



CHAPTER 5. STATISTICAL INFERENCE 5-6

fidence interval for n = 50, 000 when analyzing data from a log-normal distribution but
not taking logs. We want the confidence limits to be such that the fraction of samples
for which the true population mean is to the left of the lower limit is 0.025, and the
fraction to the right of the upper limit to also be 0.025.
n ← 50000

nsim ← 5000 # n u m b e r o f s i m u l a t i o n s

mul ← 0; sdl ← 1.65 # o n l o g s c a l e

mu ← exp(mul + sdl * sdl / 2) # p o p u l a t i o n m e a n o n o r i g . s c a l e

count ← c(lower=0, upper =0)

set.seed (1)

z ← qt(0.975 , n - 1) # t c r i t i c a l v a l u e ( n e a r 1 . 9 6 )

for(i in 1 : nsim) {

x ← exp(rnorm(n, mul , sdl))

ci ← mean(x) + c(-1, 1) * z * sqrt(var(x) / n)

count [1] ← count [1] + (ci[1] > mu)

count [2] ← count [2] + (ci[2] < mu)

}

count / nsim # n o n - c o v e r a g e p r o b . i n l e f t a n d r i g h t t a i l

lower upper

0.0182 0.0406

See stats.stackexchange.com/questions/204585 for more information and discussion.

https://stats.stackexchange.com/questions/204585
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5.2

Hypotheses

5.2.1

Scientific Hypotheses and Questions

Scientific questions are usually stated with a direction or with regard to an expected
effect, not with respect to a null effect. Scientific questions often involve estimating a
quantify of interest. Here are some examples:

� Does the risk of death increase when serum triglyceride increases?

� To what extent is mechanism x responsible for regulation of physiologic parameter
y?

� What is the average decrease in blood pressure when the dose of a drug goes from
0 to 10mg/day to 20mg/day?

5.2.2

Statistical Hypotheses

� Hypothesis: usually a statement to be judged of the form
“population value = specified constant”

– µ = 120mmHg

– µ1 − µ2 = 0mmHg

– Correlation between wealth and religiosity = 0

� Null hypothesis is usually a hypothesis of no effect but can be H0 : µ = constant
or H0 : Probability of heads = 1

2 ;
H0 is often a straw man; something you hope to disprove

� Alternative hypothesis: H1; e.g.: H1 : µ ̸= 120mmHg
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� One-sided hypothesis (tested by 1-tailed test): H1 is an inequality in one direction
(H1 : µ > 120mmHg)

� Two-sided hypothesis (2-tailed test, most common type): H1 involves values away
from the hypothesized value in either direction
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5.3

Branches of Statistics

� Classical (frequentist or sampling statistics)

– Emphasizes (overemphasizes?) hypothesis testing

– Assumes H0 is true and tries to amass evidence casting doubt on this assump-
tion

– Conceives of data as one of many datasets that might have happened; considers
the process by which the sample arose

– Inference is based on long-run operating characteristics not about direct evi-
dence from the sample at hand

* probability of making an assertion of an effect if there is no effect

* proportion of the time that varying confidence intervals over replicates of
the experiment cover the true unknown parameter; no statement about the
chance that the current confidence interval covers the true parameter

– See if data are consistent with H0

– Are data extreme or unlikely if H0 is really true?

– Proof by contradiction: if assuming H0 is true leads to results that are“bizarre”
or unlikely to have been observed, casts doubt on premise

– Evidence summarized through a single statistic capturing a tendency of data,
e.g., x̄

– Look at probability of getting a statistic as or more extreme than the calculated
one (results as or more impressive than ours) if H0 is true (the P -value)a

– If the statistic has a low probability of being more extreme we say that if H0
is true we have acquired data that are very improbable, i.e., have witnessed a
low probability event

aWe could drop the “as” and just say “more extreme” because for continuous data the probability of getting a result exactly as extreme as
ours is exactly zero.
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– William Briggs in wmbriggs.com/public/Briggs.EverthingWrongWithPvalues.pdf
described a basic flaw in the logic of P -value-guided hypothesis testing dating
all the way back to Fisher:
A version of an argument given first by Fisher appears in every introductory statistics book.

The original argument is this, [33]:

“Belief in a null hypothesis as an accurate representation of the population sampled is con-

fronted by a logical disjunction: Either the null hypothesis is false, or the p-value has attained

by chance an exceptionally low value.”

A logical disjunction would be a proposition of the type“Either it is raining or it is not raining.”

Both parts of the proposition relate to the state of rain. The proposition“Either it is raining or

the soup is cold”is a disjunction, but not a logical one because the first part relates to rain and

the second to soup. Fisher’s “logical disjunction” is evidently not a logical disjunction because

the first part relates to the state of the null hypothesis and the second to the p-value. Fisher’s

argument can be made into a logical disjunction, however, by a simple fix. Restated: Either

the null hypothesis is false and we see a small p-value, or the null hypothesis is true and we see

a small p-value. Stated another way,“Either the null hypothesis is true or it is false, and we see

a small p-value.” The first clause of this proposition,“Either the null hypothesis is true or it is

false”, is a tautology, a necessary truth, which transforms the proposition to (loosely) “TRUE

and we see a small p-value.” Adding a logical tautology to a proposition does not change its

truth value; it is like multiplying a simple algebraic equation by 1. So, in the end, Fisher’s

dictum boils down to: “We see a small p-value.” In other words, in Fisher’s argument a small

p-value has no bearing on any hypothesis (any hypothesis unrelated to the p-value itself, of

course). Making a decision about a parameter or data because the p-value takes any particular

value is thus always fallacious: it is not justified by Fisher’s argument, which is a non sequitur.

Ignoring all that and plunging ahead:

– P -value is a measure of surprise that is well described by Nicholas Maxwellb: “A
p value is a measure of how embarrassing the data are to the null hypothesis”

– Then evidence mounts against H0 and we might reject it

– A failure to reject does not imply that we have gathered evidence in favor of
H0 — many reasons for studies to not be impressive, including small sample
size (n)

bData Matters: Conceptual Statistics for a Random World. Emeryville CA: Key College Publishing, 2004.

https://wmbriggs.com/public/Briggs.EverthingWrongWithPvalues.pdf
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– Ignores clinical significance

– Is fraught with how to deal with multiplicity problems

* No principled recipe for how they should be handled

* Arise because

· type I error is fixed at a number > 0

· backward time ordering of information (transposed conditional)

* Evidence about one question is changed according to whether other ques-
tions are asked (regardless of their answers)

� Classical parametric statistics: assumes the data to arise from a certain distribution,
often the normal (Gaussian distribution)

� Nonparametric statistics: does not assume a data distribution; generally looks at
ranks rather than raw values

� Bayesian statistics:

– Considers the sample data, not how it arose from a sequence of samples but
rather the data generating mechanism for this sample

– Computes the probability that a clinically interesting statement is true, e.g. that
the new drug lowers population mean SBP by at least 5mmHg, given what we
observed in the data

– Instead of trying to amass evidence against a single hypothesized effect size,
Bayes tries to uncover the hidden parameter generating the data aside from
noise (e.g., treatment effect) whatever its value

* Provides evidence for all possible values of an unknown parameter

– More natural and direct approach but requires more work

– Because respects forward flow of time/information there is no need for nor
availability of methods for correcting for multiplicityc

cBayesian inference assumes only that the prior distribution is“well calibrated”in the sense that one sticks to the pre-specified prior no matter
what information is unveiled.
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– Evidence about one question is not tilted by whether other questions are asked

– Can formally incorporate knowledge from other studies as well as skepticism
from a tough audience you are trying to convince to use a therapy

– Starting to catch on (only been available for about 240 years) and more software
becoming available

� Likelihood inferenced:

– Considers the sample data, not how it arose

– Akin to Bayesian but without the prior

– Interval estimates are based on relative likelihood (from the likelihood function)
and are called likelihood support intervals

– For testing, allows both type I and type II errors→ 0 as n→∞, whereas with
frequentist methods the type I error never shrinks as n→∞

– This greatly reduces problems with multiplicities

– Likelihood methods do not deal well with complex assertions (e.g., either the
treatment reduces mortality by any amount or reduces blood pressure by at
least 10 mmHg) and do not allow the use of external information

� Bayesian and likelihood inference use the likelihood principle; frequentist inference
does not

– Likelihood principle: All of the evidence in a sample relevant to model param-
eters is in the likelihood function

– If we want to know our current location, frequentist inference asks the following:
If I am in Nashville, what fraction of routes to here involved the southern route
I took? There are many paths to get where we are, and frequentists have to
consider all possible relevant paths. Bayesian and likelihood inference states it
differently: Where am I now? This involves an assessment of current evidence
about my location. Asking“how did I get here?” (i.e., how did the data arise?)
involves multiplicity issues that answering the simpler question does not.

dA key thinker and researcher in the field is Richard Royall.
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– Consider a sequentially monitored randomized experiment. Bayesians and like-
lihoodists can make infinitely many assessments of efficacy with no penalty. On
the other hand, a frequentist must think the following way:

I am at the first interim analysis. I am going to make later assessments
of efficacy so I need to discount the current assessment and be more
conservative or I will spend all my α already.
. . .
I am at the fifth interim analysis. I made four previous efficacy assess-
ments, and even though none of them mattered, I spent α so I need to
discount the current assessment and be more conservative.

� We will deal with classical parametric and nonparametric statistical tests more than
Bayesian methods just because of time and because of abundance of software for
the former
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5.4

Errors in Hypothesis Testing; P Values

� Can attempt to reject a formal hypothesis or just compute P -value

� Type I error: rejecting H0 when it is true
α is the probability of making this error (typically set at α = 0.05—for weak
reasons)

– To be specific: α = P(asserting an effect exists when in fact it doesn’t)

– So it is an assertion probability or false alarm probability like 1 minus specificity

– It is not a false positive probability (P(effect=0) given an assertion that it is
nonzero) since α is based on an assumption that effect=0

� Type II error: failing to reject H0 when it is false
probability of this is β

True state of H0
Decision H0 true H0 false

Reject H0 Type I error (α) Correct

Do Not Reject H0 Correct Type II error (β)

� Power: 1− β: probability of (correctly) rejecting H0 when it is false

Within the frequentist framework of statistics there are two schools. One, the Neyman-
Pearson school, believes that the type I error should be pre-set at α (say α = 0.05)
so that binary decisions can be made (reject/fail to reject). The other school due to
Fisher believes that one should compute P -values and quote the result in the report or
publication. This is the more popular approach, being less dichotomous.

� Simplest definition of α: probability that a P -value will be less than it

A P -value is something that can be computed without speaking of errors. It is the
probability of observing a statistic as or more extreme than the observed one if H0
is true, i.e., if the population from which the sample was randomly chosen had the
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characteristics posited in the null hypothesis.e The P -value to have the usual meaning
assumes that the data model is correct.

5.4.1

Problems With Type I Error

� It’s not really an“error”

– Error = being wrong in asserting an effect

– Type I = P(asserting effect |H0) =“effect assertion probability”

� Frequentist designs attempt to preserve type I error

� This is not the probability of making a mistake in concluding an effect is present

� When α = 0.05 the probability of asserting an effect when there is none never
decreases even as n→∞
(statistical vs. clinical significance problem)

� α does not depend on any observed data. It is a pre-study concept.

� α increases because of chances you give data to be more extreme (multiplicity),
not because of chances you give hypotheses to be false. Bayesian and likelihood
approaches do not look at sampling (sample space giving rise to data extremes).
See fharrell.com/post/bayes-seq

� Probability of making a mistake in asserting an effect, given the data, is one minus
the Bayesian posterior probability of efficacy

5.4.2

Misinterpretation of P -values

P -values have come under extreme criticism since 2000, partially because they are often
misinterpreted. Greenland et al.38 is the best paper that summarizes the misinterpreta-

eNote that Rosner’s Equation 7.4 in his section 7.3 is highly problematic. Classifications of “significant” or “highly significant” are arbitrary,
and treating a P -value between 0.05 and 0.1 as indicating a“trend towards significance” is bogus. If the P -value is 0.08, for example, the 0.95
confidence interval for the effect includes a “trend” in the opposite (harmful) direction.

http://fharrell.com/post/bayes-seq
fharrell.com/post/bayes-seq
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tions and explains them. Some quotes from this paper are below, with their explanations
for the first two.

1. The P value is the probability that the test hypothesis is true; for
example, if a test of the null hypothesis gave P = 0.01, the null
hypothesis has only a 1% chance of being true; if instead it gave
P = 0.40, the null hypothesis has a 40% chance of being true. No!
The P value assumes the test hypothesis is true—it is not a hypothesis
probability and may be far from any reasonable probability for the test
hypothesis. The P value simply indicates the degree to which the data
conform to the pattern predicted by the test hypothesis and all the other
assumptions used in the test (the underlying statistical model). Thus P =
0.01 would indicate that the data are not very close to what the statistical
model (including the test hypothesis) predicted they should be, while P =
0.40 would indicate that the data are much closer to the model prediction,
allowing for chance variation.

2. The P value for the null hypothesis is the probability that chance
alone produced the observed association; for example, if the P

value for the null hypothesis is 0.08, there is an 8% probability
that chance alone produced the association. No! This is a common
variation of the first fallacy and it is just as false. To say that chance alone
produced the observed association is logically equivalent to asserting that
every assumption used to compute the P value is correct, including the
null hypothesis. Thus to claim that the null P value is the probability that
chance alone produced the observed association is completely backwards:
The P value is a probability computed assuming chance was operating
alone. The absurdity of the common backwards interpretation might be
appreciated by pondering how the P value, which is a probability deduced
from a set of assumptions (the statistical model), can possibly refer to the
probability of those assumptions. Note: One often sees “alone” dropped
from this description (becoming“the P value for the null hypothesis is the
probability that chance produced the observed association”), so that the
statement is more ambiguous, but just as wrong.

3. A significant test results (P ≤ 0.05) means that the test hypothesis
is false or should be rejected. No!

4. A nonsignificant test results (P > 0.05) means that the test hy-
pothesis is true or should be accepted. No!

5. A large P value is evidence in favor of the test hypothesis. No!
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6. A null-hypothesis P value greater than 0.05 means that no effect
was observed, or that absence of an effect was shown or demon-
strated. No!

7. Statistical significance indicates a scientifically or substantively im-
portant relation has been detected. No!

8. Lack of statistical significance indicates that the effect size is small.
No!

9. The P value is the chance of our data occurring if the test hy-
pothesis is true; for example, P = 0.05 means that the observed
association would occur only 5% of the time under the test hy-
pothesis. No!

10. If you reject the test hypothesis because P ≤ 0.05, the change you
are in error (the chance your“significant finding”is a false positive)
is 5%. No!

11. P = 0.05 and P ≤ 0.05 mean the same thing. No!

12. P values are properly reported as inequalities (e.g., report “P <

0.02”when P = 0.015 or report P > 0.05 when P = 0.06 or P = 0.70).
No!

13. Statistical significance is a property of the phenomenon being stud-
ied, and thus statistical tests detect significance. No!

14. One should always use two-sided P values. No!

15. When the same hypothesis is tested in different studies and none
or a minority of the tests are statistically significant (all P > 0.05),
the overall evidence supports the hypothesis. No!

16. When the same hypothesis is tested in two different populations
and the resulting P values are on opposite sides of 0.05, the results
are conflicting. No!

17. When the same hypothesis is tested in two different populations
and the same P values are obtained, the results are in agreement.
No!

18. If one observes a small P value, there is a good chance that the
next study will produce a P value at least as small for the same
hypothesis. No!

19. The specific 95% confidence interval presented by a study has a
95% chance of containing the true effect size. No!
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20. An effect size outside the 95% confidence interval has been refuted
(or excluded) by the data. No!

21. If two confidence intervals overlap, the difference between the two
estimates or studies is not significant. No!

22. An observed 95% confidence interval predicts that 95% of the
estimates from future studies will fall inside the observed interval.
No!

23. If one 95% confidence interval includes the null value and another
excludes that value, the interval excluding the null is the more
precise one. No!

24. If you accept the null hypothesis because the null P value exceeds
0.05 and the power of your test is 90%, the chance you are in error
(the chance that your finding is a false negative) is 10%. No!

25. If the null P value exceeds 0.05 and the power of this test is 90%
at an alternative, the results support the null over the alternative.
. . . counterexamples are easy to construct . . .
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5.5

Interval Estimation

5.5.1

Frequentist Confidence Intervals

A 1− α two-sided confidence interval is an interval computed such that

� if the experiment were repeated N times one would expect N × (1 − α) of the
recomputed varying intervals to contain the true unknown quantity of interest

� equivalently the set of all unknown population parameter values that if null hy-
pothesized one would not reject that null hypothesis at the α level in a two-sided
test

– e.g. when estimating the population mean µ, the set µ0 such that the test
H0 : µ = µ0 has a P -value > α

For this reason confidence intervals may better be called compatibility intervals.

Pros:

� The P -value can be computed from the confidence interval but not vice-versa, so
confidence limits have more information

� Confidence intervals do not allow the“absence of evidence is not evidence of absence
error”

– large P -values can come from small n or large σ2

– these make confidence intervals wide, giving a rational sense of uncertainty

– A confidence interval that is compatible with both large benefit and large detri-
ment indicates that we don’t know much

* large P -value means nothing more than“get more data”
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Cons:

� Confidence intervals have only a long-run interpretation over many experiments

� They don’t provide a probability statement about whether a single interval includes
the true population value

– In the frequentist world, the probability that the parameter is in a given interval
is either zero or one

� They are often taken to provide a measure of precision of a statistical estimate,
but they’re not really that either

� The experimenter controls the long-run inclusion probability 1−α and gets interval
endpoints, but is often more interested in the probability that the population effect
is in a pre-chosen fixed interval

� It is very difficult to make confidence intervals incorporate known uncertainties
(e.g., amount of non-normality), making them often too narrow (overoptimistic)

5.5.2

Bayesian Credible Intervals

� Credible intervals have the interpretation that most researchers seek when they
compute confidence intervals

� A 1 − α credible interval is an interval [a, b] (computed, under a certain prior
distribution encapsulating prior knowledge about the parameter µ) so that
P (a ≤ µ ≤ b| data) = 1− α

Pros:

� Pertains to the single, current dataset and does not provide just long-run operating
characteristics

� Provides a true probability statement even when the experiment could never be
repeated
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� Is symmetric with Bayesian posterior probabilities of pre-chosen limits

– Researchers can specify a, b and then compute whatever probability it is that
the unknown parameter is in that interval

� The credible interval can take into account all sorts of uncertainties (e.g., non-
normality) that make it (correctly) wider

Cons:

� One must specify a prior distribution



CHAPTER 5. STATISTICAL INFERENCE 5-22

5.6

One Sample Test for Mean

5.6.1

Frequentist Method

� Assuming continuous response from a normal distribution

� One sample tests for µ = constant are unusual except when data are paired, e.g.,
each patient has a pre– and post–treatment measurement and we are only interested
in the mean of post - pre values

� t tests in general:

t = estimate - hypothesized value

standard deviation of numerator

� The standard deviation of a summary statistic is called its standard error, which is
the √ of the variance of the estimate

� The one-sample t statistic for testing a single population mean against a constant
µ0 (H0: µ = µ0; often µ0 = 0) is

t = x̄− µ0

se

where se = s√
n
, is the standard error of the mean (SEM) and x̄ is the sample mean

� When your data comes from a normal distribution and H0 holds, the t ratio statistic
follows the t distribution

� With small sample size (n), the t ratio is unstable because the sample standard
deviation (s) is not precise enough in estimating the population standard deviation
(σ; we are assuming that σ is unknown)

� This causes the t distribution to have heavy tails for small n

� As n ↑ the t distribution becomes the normal distribution with mean zero and
standard deviation one

http://bit.ly/yt-bbr5
http://bit.ly/datamethods-bbr5
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� The parameter that defines the particular t distribution to use as a function of n
is called the degrees of freedom or d.f.

� d.f. = n - number of means being estimated

� For one-sample problem d.f. = n− 1

� Symbol for distribution tn−1
x ← seq(-3, 3, length =200) # F i g . 5.1

w ← list(Normal = list(x=x, y=dnorm(x)),

’t (50 df)’= list(x=x, y=dt(x, 50)),

’t (5 df)’ = list(x=x, y=dt(x, 5)),

’t (2 df)’ = list(x=x, y=dt(x,2)))

labcurve(w, pl=TRUE , keys=’lines ’, col=c(1,2,4,5), lty=c(2,1,1,1),

xlab=expression(x), ylab=’’)

0.0

0.1

0.2

0.3

0.4

x

y

−3 −2 −1 0 1 2 3

Normal
t (50 df)
t (5 df)
t (2 df)

Figure 5.1: Comparison of probability densities for t2, t5, t50, and normal distributions

� Two-tailed P -value: probability of getting a value from the tn−1 distribution as big
or bigger in absolute value than the absolute value of the observed t ratio

� Computer programs can compute the P -value given t and n.f R can compute all
probabilities or critical values of interest. See the help files for pt,pnorm,pf,pchisq.

fR has the function pt for the cumulative distribution function for the t distribution, so the 2-tailed P -value would be obtained using
2*(1-pt(abs(t),n-1)).
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– don’t say“P < something”but instead P = something

� In the old days tables were used to provide critical values of t, i.e., a value c of t
such that Prob[|t| > c] = α for“nice”α such as 0.05, 0.01.

� Denote the critical value by tn−1;1−α/2 for a 2-tailed setup

� For large n (say n ≥ 500) and α = 0.05, this value is almost identical to the value
from the normal distribution, 1.96

� Example: We want to test if the mean tumor volume is 190 mm3 in a population
with melanoma, H0 : µ = 190 versus H1 : µ ̸= 190.

x̄ = 181.52, s = 40, n = 100, µ0 = 190

t = 181.52− 190
40/
√

100
= −2.12

t99,.975 = 1.984→ reject at arbitrary α = .05 if using Neyman− Pearson paradigm
P = 0.037

xbar ← 181.52

s ← 40

n ← 100

mu0 ← 190

tstat ← (xbar - mu0) / (s / sqrt(n))

pval ← 2 * (1 - pt(abs(tstat), n - 1))

c(tstat=tstat , pval=pval)

tstat pval

-2.12000000 0.03650607

5.6.2

Bayesian Methods

� All aspects of Bayesian probabilistic inference follow from the general form of Bayes’
rule allowing for the response Y to be continuous:
The probability density function for the unknown parameters given the data and
prior is proportional to the density function for the data multiplied by the density
function for the priorg

gWhen Y is a discrete categorical variable we use regular probabilities instead of densities in Bayes’ formula. The density at x is the limit as
ϵ→ 0 of the probability of the variable being in the interval [x, x + ϵ] divided by ϵ.
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� The Bayesian counterpart to the frequentist t-test-based approach can use the same
model

� But brings extra information for the unknowns—µ, σ—in the form of prior distri-
butions for them

� Since the raw data have a somewhat arbitrary scale, one frequently uses nearly flat
“weakly-informative”priors for these parameters

– But it would be easy to substitute a prior for µ that rules out known-to-be
impossible values or that assumes very small or very large µ are very unlikely

� Note: the assumption of a Gaussian distribution for the raw data Y is a strong
one

– Bayes makes it easy to relax the normality assumption but still state the infer-
ence in familiar terms (e.g., about a population mean)h

– See later for an example

� For now assume that normality is known to hold, and use relatively uninformative
priors

Bayesian Software
In most Bayesian analyses that follow we use the R brms package by Paul-Christian
Bürkner that is based on the general Stan system because brms is easy to use, makes
good default choices for priors, and uses the same notation as used in frequentist models
in Ri.

Except for the one-sample proportion example in the next section, our Bayesian calcu-
lations are general and do not assume that the posterior distribution has an analytic
solution. Statistical samplers (Markov chain Monte Carlo, Gibbs, and many variants)
can sample from the posterior distribution only by knowing the part of Bayes’ for-
mula that is the simple product of the data likelihood and the prior, without having
to integrate to get a marginal distributionj. We are generating 4000 samples from the
posterior distribution (4000 random draws) in this chapter. When high precision of

hSome analysts switch to trimmed means in the presence of outliers but it is hard to interpret what they are estimating.
iThanks to Nathan James of the Vanderbilt Department of Biostatistics for providing brms code for examples in this chapter.
jThe simple product is proportional to the correct posterior distribution and just lacks a normalizing constant that makes the posterior

probabilities integrate to 1.0.

http://mc-stan.org
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posterior probabilities is required, one can ensure that all probability calculations have
a margin of simulation error of < 0.01 by using 10,000 samples, or margin of error
< 0.005 by taking 40,000 drawsk.

Example
To introduce the Bayesian treatment for the one-sample continuous Y problem consider
the following made-up dataset that has an“outlier”:

98 105 99 106 102 97 103 132

� Start with regular frequentist analysis

� Most interested in confidence interval

� Also test H0 : µ = 110

Five measures of dispersion are computedl.
y ← c(98, 105, 99, 106, 102, 97, 103, 132)

median(y)

[1] 102.5

sd(y)

[1] 11.28526

mean(abs(y - mean(y)))

[1] 6.875

mean(abs(y - median(y)))

[1] 6.25

GiniMd(y) # G i n i ’ s m e a n d i f f e r e n c e i s m o r e r o b u s t t o o u t l i e r s

[1] 10.85714

# I t i s t h e m e a n a b s o l u t e d i f f e r e n c e o v e r a l l p a i r s o f o b s e r v a t i o n s

median(abs(y - median(y))) # E v e n m o r e r o b u s t , n o t a s e f f i c i e n t

kThese numbers depend on the sampler having converged and the samples being independent enough so that the number of draws is the
effective sample size. Stan and brms have diagnostics that reveal the effective sample size in the face of imperfect posterior sampling.

lIn a standard normal(0,1) distribution, the measures are, respectively, 1.0, 0.8, 0.8, 1.13, and 0.67.
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[1] 3.5

t.test(y, mu=110)

One Sample t-test

data: y

t = -1.1905, df = 7, p-value = 0.2727

alternative hypothesis: true mean is not equal to 110

95 percent confidence interval:

95.81528 114.68472

sample estimates:

mean of x

105.25

Now consider a Bayesian counterpart. A one-sample problem is a linear model contain-
ing only an intercept, and the intercept represents the overall unknown data-generating
(population) mean of Y . In R an intercept-only model has ~ 1 on the right-hand side
of the model formula.

For the prior distribution for the mean we assume a most likely value (mean of distribu-
tion, since symmetric) of 150 and a standard deviation of 50, indicating the unknown
mean is likely to be between 50 and 250. This is a weakly informative prior.
# T e l l b r m s / S t a n t o u s e a l l a v a i l a b l e C P U c o r e s

options(mc.cores=parallel :: detectCores ())

require(brms)

d ← data.frame(y)

priormu ← prior(normal (150 ,50), class=’Intercept ’)

f ← brm(y ∼ 1, family=gaussian , prior=priormu , data=d, seed =1)

See which prior distributions are being assumed. The data model is Gaussian. Also
display parameter distribution summaries. Estimate represents the mean of the posterior
distribution.
prior_summary(f)

prior class coef group resp dpar nlpar bound

1 normal (150, 50) Intercept

2 student_t(3, 0, 10) sigma

f

Family: gaussian

Links: mu = identity; sigma = identity

Formula: y ∼ 1
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Data: d (Number of observations: 8)

Samples: 4 chains , each with iter = 2000; warmup = 1000; thin = 1;

total post -warmup samples = 4000

Population -Level Effects:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 105.53 4.46 96.50 114.35 1.00 1893 1531

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 12.18 3.38 7.56 20.22 1.00 1807 1941

Samples were drawn using sampling(NUTS). For each parameter , Eff.Sample

is a crude measure of effective sample size , and Rhat is the potential

scale reduction factor on split chains (at convergence , Rhat = 1).

draws ← as.data.frame(f)

mu ← draws$b_Intercept

sigma ← draws$sigma

length(mu)

[1] 4000

� Note how Bayes provides uncertainty/precision information about σ

� Credible intervals are quantiles of posterior samples, e.g. we can duplicate the
above credible interval (CI) for µ (the intercept) using the following:
quantile(mu, c(.025 , 0.975))

2.5% 97.5%

96.50034 114.35211

� Compare 0.95 credible interval with the 0.95 frequentist confidence interval above

� Compare posterior means for µ, σ with the point estimates from the traditional
analysis

– Posterior modes (the most likely values) may be more relevantm. These are
printed below along with sample estimates. The posterior mode is computed
by fitting a nonparametric kernel density estimator to the posterior draws for
the parameter of interest and finding the peak. The number of draws needed
to compute the mode accurately is more than the number we are using here.

mThe sample mean is the maximum likelihood estimate (MLE) and the sample standard deviation is, except for a factor of n−1
n

, the maximum
likelihood estimate. When priors are flat, MLEs equal posterior modes
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# F u n c t i o n t o c o m p u t e p o s t e r i o r m o d e g i v e n d r a w s

pmode ← function(x) {

z ← density(x)

z$x[which.max(z$y)]

}

n ← length(y)

c(mean(y), sd(y), sd(y)*sqrt((n-1)/n))

[1] 105.25000 11.28526 10.55640

c(pmode(mu), pmode(sigma))

[1] 105.85115 10.98257

� Instead of a hypothesis test we compute direct evidence for µ exceeding 110

– posterior probability that µ > 110 given the data and priors is approximated
(to within simulation error) by the proportion of posterior draws for µ for which
the value of µ exceeded 110

– define a“probability operator”P that is just the proportion

P ← mean

P(mu > 110) # c o m p a r e t o 1 - t a i l e d p - v a l u e : 0 . 1 3 6

[1] 0.14275

Here are posterior distributions for the two parameters along with convergence diag-
nostics
plot(f)

� Normality is a strong assumption

� Heavy tails can hurt validity of the estimate of the mean, uncertainty intervals, and
P -values

� Easy to allow for heavy tails by adding a single parameter to the modeln

� Assume the data come from a t distribution with unknown degrees of freedom ν

– Use of t for the raw data distribution should not be confused with the use of
the same t distribution for computing frequentist probabilities about the sample
mean.

nOne could use a data distribution with an additional parameter that allows for asymmetry of the distribution. This is not addressed here.
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Figure 5.2: Posterior distributions for µ and σ using a normal data model with weak priors (left panels), and convergence diagnostics
for posterior sampling (right panels)
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– John Kruschke has championed this Bayesian t-test approach in BEST (Bayesian
Estimation Supersedes the t-Test)

� ν > 20→ almost Gaussian

� Have a prior for ν that is a gamma distribution with parameters α = 2, β = 0.1
with ν constrained to be > 1

� Prior P (ν > 20) is (in R code) pgamma(20,2,0.1,lower.tail=FALSE) which is 0.41.
So our prior probability that normality approximately holds is a little less than 1

2 .

g ← brm(y ∼ 1, family=student , prior=priormu , data=d, seed =2)

prior_summary(g)

prior class coef group resp dpar nlpar bound

1 normal (150, 50) Intercept

2 gamma(2, 0.1) nu

3 student_t(3, 0, 10) sigma

g

Family: student

Links: mu = identity; sigma = identity; nu = identity

Formula: y ∼ 1

Data: d (Number of observations: 8)

Samples: 4 chains , each with iter = 2000; warmup = 1000; thin = 1;

total post -warmup samples = 4000

Population -Level Effects:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 103.75 3.72 97.00 111.99 1.00 1722 1619

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 9.05 3.79 3.21 17.53 1.00 1400 1990

nu 14.30 12.87 1.47 47.98 1.00 1502 1585

Samples were drawn using sampling(NUTS). For each parameter , Eff.Sample

is a crude measure of effective sample size , and Rhat is the potential

scale reduction factor on split chains (at convergence , Rhat = 1).

draws ← as.data.frame(g)

mu ← draws$b_Intercept

P(mu > 110)

[1] 0.054

plot(g)

nu ← draws$nu

snu ← c(mean(nu), median(nu), pmode(nu))

ssd ← c(sd(y), pmode(sigma), pmode(draws$sigma))

fm ← function(x) paste(round(x, 2), collapse=’, ’)

https://cran.r-project.org/web/packages/BEST/vignettes/BEST.pdf
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Figure 5.3: Posterior distributions for µ, σ, ν for a data model that is the t distribution with ν d.f. (left panels), and convergence
diagnostics (right panels)
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� Posterior means discount the high outlier a bit and shows lower chance of µ > 110

� The credible interval for µ is significantly smaller than the confidence interval due
to allowance for heavy tails

� The posterior mean, median, and mode of ν (14.3, 10.37, 3.97) provide evidence
that the data come from a distribution that is heavier tailed than the normal.
Posterior P (ν > 20) = 0.25 which is essentially the probability of approximate
normality under a t data model.

� The traditional SD estimate, posterior median SD assuming normal Y , and posterior
median SD assuming Y has a t-distribution are respectively 11.29, 10.98, 8.8. The
ordinary SD is giving too much weight to the high outlier.

This latter analysis properly penalizes for not knowing normality in Y to hold (i.e., not
knowing the true value of ν).

Decoding the Effect of the Prior

� One can compute the effective number of observations added or subtracted by
using, respectively, an optimistic or a skeptical prior

� This is particularly easy when the prior is normal, the data model is normal, and
the data variance is known

� Let
µ0 = prior mean
σ0 = prior standard deviation
Y = sample mean of the response variable
σ = population SD of Y
n = sample size for Y

� Then the posterior variance of µ is
σ2

p = 1
1

σ2
0

+ 1
σ2
n

� The posterior mean is
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µp = σ2
p

σ2
0
× µ0 + σ2

p

σ2
n

× Y

� For a given Y , sample size n and posterior P (µ > 110), what sample size m would
yield the same posterior probability under a flat prior?

� For a flat prior σ0 =∞ so the posterior variance of µ would be σ2

n and the posterior
mean would be Y

� Equating P (µ > 110) for the weakly informative prior at sample size n to that
from noninformative prior at a sample size m is the same as setting P (µ < 110)
to be equal

� The probability that a Gaussian random variable with mean a and standard deviation
b is less than 110 is Φ(110−a

b ) where Φ is the standard normal cumulative distribution
function

� Solve for m for a variety of n, Y , σ
calc ← function(n, m, ybar , sigma , mu0 , sigma0 , cutoff) {

vpost1 ← 1 / ((1 / (sigma0∧2)) + 1 / ((sigma∧2) / n))

mupost1 ← mu0 * vpost1 / (sigma0 ∧ 2) + ybar * vpost1 / ((sigma ∧ 2) / n)

vpost2 ← (sigma ∧ 2) / m

(110 - mupost1) / sqrt(vpost1) - (110 - ybar) / sqrt(vpost2)

}

# F o r a g i v e n n , y b a r , s i g m a s o l v e f o r m t o g e t e q u a l p o s t . p r o b .

m ← function(n, ybar , sigma , sigma0 =50, cutoff =110)

round(uniroot(calc , interval=c(n / 2, 2 * n), n=n, ybar=ybar , sigma=sigma ,

mu0=150, sigma0=sigma0 , cutoff=cutoff)$root , 1)

# M a k e s u r e t h a t m = n w h e n p r i o r v a r i a n c e i s h u g e

m(8, 100, 10, sigma0 =50000)

[1] 8

# F r o m h e r e o n u s e t h e o r i g i n a l p r i o r s t a n d a r d d e v i a t i o n o f 5 0

# N o w c o m p u t e m w h e n n = 8 u s i n g o u r o r i g i n a l p r i o r a s s u m i n g s i g m a = 1 0 y b a r = 1 0 5

m(8, 105, 10)

[1] 7.3

# W h a t a b o u t f o r t w o o t h e r s i g m a s

m(8, 105, 5)

[1] 7.8

m(8, 105, 15)

[1] 6.6
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# W h a t a b o u t t w o o t h e r y b a r

m(8, 80, 10)

[1] 7.9

m(8, 120, 10)

[1] 8.3

# W h a t i f n w e r e l a r g e r

m(15, 105, 10)

[1] 14.3

m(30, 105, 10)

[1] 29.3

m(300, 105, 10)

[1] 299.3

m(3000, 105, 10)

[1] 2999.3

� Typical effect of prior in this setting is like adding or dropping one observation

� Simpler example where Y is irrelevant: σ = 1, µ0 = 0 and posterior probability of
interest is P (µ > 0)

� Vary the prior variance σ2
0 and for each prior variance compute the prior probability

that µ > 1 (with prior centered at zero, lower variance → lower P (µ > 1))
z ← list()

n ← seq(1, 100, by=2)

for(v in c(.05 , .1, .25 , .5, 1, 4, 100))

z[[ paste0(’v=’, v, ’ P(mu >1)=’,

format (1 - pnorm(sqrt(1 / v)), digits=3, scientific =1))]] ←
list(x=n, y=0.5 * (n + sqrt(n∧2 + 4 * n / v)) - n)

labcurve(z, pl=TRUE , xlab=’Sample Size With No Skepticism ’,

ylab=’Extra Subjects Needed Due to Skepticism ’, adj =1)

� For typical priors the effect of skepticism is like dropping 3 observations, and this
is not noticeable when n > 20o

� Note: For a specific problem one can just run the brm function again with a non-
informative prior to help judge the effect of the informative prior

oSee here for the derivation.

http://hbiostat.org/doc/bayes/course.html#331_alternative_take_on_the_prior
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Figure 5.4: Effect of discounting by a skeptical prior with mean zero and variance v: the increase needed in the sample size in order
to achieve the same posterior probability of µ > 0 as with the flat (non-informative) prior. Prior variance v=0.05 corresponds to a
very skeptical prior, given almost no chance to a large µ (µ > 1).
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5.6.3

Power and Sample Size

� Bayesian power is the probability of hitting a specified large posterior probability
and is usually obtained by simulation

� Frequentist power, though often arbitrary (and inviting optimistic single point values
for an effect to detect) is easier to compute and will provide a decent approximation
for Bayesian sample size calculations when the main prior is weakly informative

� Frequentist power ↑ when

– allow larger type I error (α; trade-off between type I and II errors)

– true µ is far from µ0

– σ ↓

– n ↑

� Power for 2-tailed test is a function of µ, µ0 and σ only through |µ− µ0|/σ

� Sample size to achieve α = 0.05, power = 0.9 is approximately

n = 10.51
[

σ

µ− µ0

]2

� Some power calculators are at statpages.info/#Power

� PS program by Dupont and Plummer http://biostat.mc.vanderbilt.edu/

PowerSampleSize

� Example: The mean forced expiratory volume (FEV) in a population of asthmatics
is 2.5 liters per second and the population standard deviation is assumed to be 1.
Determine the number of subjects needed if a new drug is expected to increase
FEV to 3.0 liters per second (α = .05, β = 0.1)

µ = 2.5, µ0 = 3, σ = 1

n = 10.51
[ 1
3− 2.5

]2
= 42.04

statpages.info/#Power
http://biostat.mc.vanderbilt.edu/PowerSampleSize
http://biostat.mc.vanderbilt.edu/PowerSampleSize
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– Rounding up, we need 43 subjects to have 0.9 power (42 subjects would
have less than 0.9 power)

sigma ← 1

mu ← 2.5

mu0 ← 3

n ← 10.51 * (1 / (mu - mu0)) ∧ 2

# G e n e r a l f o r m u l a f o r a p p r o x i m a t e p o w e r o f 1 - s a m p l e t - t e s t

# A p p r o x i m a t e b e c a u s e i t u s e s t h e n o r m a l d i s t r i b u t i o n t h r o u g h o u t ,

# n o t t h e t d i s t r i b u t i o n

alpha ← 0.05

power ← 0.9

delta ← mu - mu0

za ← qnorm(1 - alpha / 2)

zb ← qnorm(power)

n ← ((za + zb) * sigma / delta) ∧ 2

c(alpha=alpha , power=power , delta=delta , za=za, zb=zb , n=n)

alpha power delta za zb n

0.050000 0.900000 -0.500000 1.959964 1.281552 42.029692

A slightly more accurate estimate can be obtained using the t distribution, requiring
iterative calculations programmed in R packages such as pwr.
# M a k e s u r e p w r p a c k a g e i s i n s t a l l e d

require(pwr)

pwr.t.test(d = delta / sigma , power = 0.9 , sig.level = 0.05 , type=’one.sample ’)

One -sample t test power calculation

n = 43.99548

d = 0.5

sig.level = 0.05

power = 0.9

alternative = two.sided

5.6.4

Confidence Interval

A
B
D
6
.6A 2-sided 1− α confidence interval for µ under normality for Y is

x̄± tn−1,1−α/2 × se

The t constant is the 1 − α/2 level critical value from the t-distribution with n − 1
degrees of freedom. For large n it equals 1.96 when α = 0.05.
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An incorrect but common way to interpret this is that we are 0.95 confident that the
unknown µ lies in the above interval. The exact way to say it is that if we were able to
repeat the same experiment 1000 times and compute a fresh confidence interval for µ
from each sample, we expect 950 of the samples to actually contain µ. The confidence
level is about the procedure used to derive the interval, not about any one interval.
Difficulties in providing exact but still useful interpretations of confidence intervals has
driven many people to Bayesian statistics.

The 2-sided 1−α CL includes µ0 if and only if a test of H0 : µ = µ0 is not rejected at
the α level in a 2-tailed test.

� If a 0.95 CL does not contain zero, we can reject H0 : µ = 0 at the α = 0.05
significance level

1−α is called the confidence level or confidence coefficient, but it is better to refer to
compatibility

5.6.5

Sample Size for a Given Precision

A
B
D
1
4
.7

There are many reasons for preferring to run estimation studies instead of hypothesis
testing studies. A null hypothesis may be irrelevant, and when there is adequate pre-
cision one can learn from a study regardless of the magnitude of a P -value. A nearly
universal property of precision estimates is that, all other things being equal, increasing
the sample size by a factor of four improves the precision by a factor of two.

� May want to estimate µ to within a margin of error of ±δ with 0.95 confidencep

� “0.95 confident” that a confidence interval includes the true value of µ

� If σ were known but we still used the t distribution in the formula for the interval,
the confidence interval would be x̄± δ where

δ = tn−1,1−α/2σ√
n

pAdcock1 presents both frequentist and Bayesian methods and for precision emphasizes solving for n such that the probability of being within
ϵ of the true value is controlled, as opposed to using confidence interval widths explicitly.



CHAPTER 5. STATISTICAL INFERENCE 5-40

� Solving for n we get

n =
[
tn−1,1−α/2σ

δ

]2

� If n is large enough and α = 0.05, required n = 3.84[σ
δ ]2

� Example: if want to be able to nail down µ to within ±1mmHg when the patient
to patient standard deviation in blood pressure is 10mmHg, n = 384
sigma ← 10

delta ← 1

3.84 * (sigma / delta) ∧ 2

[1] 384

� Advantages of planning for precision rather than powerq

– do not need to select a single effect to detect

– many studies are powered to detect a miracle and nothing less; if a miracle
doesn’t happen, the study provides no information

– planning on the basis of precision will allow the resulting study to be interpreted
if the P -value is large, because the confidence interval will not be so wide
as to include both clinically significant improvement and clinically significant
worsening

qSee Borenstein M: J Clin Epi 1994; 47:1277-1285.
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5.7

One Sample Method for a Probability

A
B
D
75.7.1

Frequentist Methods

� Estimate a population probability p with a sample estimate p̂

� Data: s“successes”out of n trials

� Maximum likelihood estimate of p is p̂ = s
n (value of p making the data most likely

to have been observed) = Bayesian posterior mode under a flat prior

� Approximate 2-sided test of H0 : p = p0 obtained by computing a z statistic

� A z-test is a test assuming that the statistic has a normal distribution; it is a t-test
with infinite (∞) d.f.

z = p̂− p0√
p0(1− p0)/n

� The z-test follows the same general form as the t-test

z = estimate - hypothesized value

standard deviation of numerator

� Example: n = 10 tosses of a coin, 8 heads; H0: coin is fair (p = p0 = 1
2)

z = .8− .5√
(1

2)(1
2)/10

= 1.897

� P -value = 2× area under a normal curve to the right of 1.897 = 2×0.0289 = 0.058
(this is also the area under the normal curve to the right of 1.897 + the area to
the left of −1.897)
p ← 0.8

p0 ← 0.5

n ← 10

z ← (p - p0) / sqrt(p0 * (1 - p0) / n)

c(z=z, Pvalue =2 * pnorm(-abs(z)))
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z Pvalue

1.89736660 0.05777957

� Approximate probability of getting 8 or more or 2 or fewer heads if the coin is fair is
0.058. This is indirect evidence for fairness, is not the probability the null
hypothesis is true, and invites the“absence of evidence is not evidence of
absence” error.

� Use exact methods if p or n is small
# P r ( X ≥ 8 ) = 1 - P r ( X < 8 ) = 1 - P r ( X ≤ 7 )

pbinom(2, 10, 0.5) + 1 - pbinom(7, 10, 0.5)

[1] 0.109375

# A l s o c o m p u t e a s t h e p r o b a b i l i t y o f g e t t i n g 0 , 1 , 2 , 8 , 9 , 1 0 h e a d s

sum(dbinom(c(0, 1, 2, 8, 9, 10), 10, 0.5))

[1] 0.109375

� Confidence interval for p

– Wilson’s method without continuity correction is recommended

– for 8 of 10 heads here is the Wilson interval in addition to the exact binomial
and normal approximation. The Wilson interval is the most accurate of the
three.

binconf(8, 10, method=’all’)

PointEst Lower Upper

Exact 0.8 0.4439045 0.9747893

Wilson 0.8 0.4901625 0.9433178

Asymptotic 0.8 0.5520820 1.0479180

5.7.2

Bayesian

� The single unknown probability p for binary Y -case is a situation where there is a
top choice for prior distributions

� Number of events follows a binomial distribution with parameters p, n

https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
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� The beta distribution is for a variable having a range of [0, 1], has two parameters
α, β for flexibility, and is conjugate to the binomial distribution

– The posterior distribution is simple: another beta distribution

� The mean of a beta-distributed variable is α
α+β and its standard deviation is√

αβ
α+β+1/(α + β)

� Using a beta prior is equivalent to adding α successes and β failures to the data

� Posterior distribution of p is beta(s + α, n− s + β)

� A uniform prior sets α = β = 1

� In general an intuitive way to set the prior is to preset the mean then solve for the
parameters that force P (p > c) = a for given c and a

� For the 10 coin toss example let’s set the prior mean of P(heads) = 1
2 and P (p >

0.8) = 0.05, i.e. only a 0.05 chance that the probability of heads exceeds 0.8. Here
are α and β satisfying these requirements:
# a l p h a / ( a l p h a + b e t a ) = 0 . 5 - > a l p h a = b e t a

alphas ← seq(0, 20, length =100000)

exceedanceProb ← 1 - pbeta(0.8, alphas , alphas)

alpha ← alphas[which.min(abs(exceedanceProb - 0.05))]

beta ← alpha

alpha.post ← 8 + alpha

beta.post ← 10 - 8 + beta

� The solution is α = β = 3.26

� With the data s = 8 out of n = 10 the posterior distribution is beta(11.26, 5.26)
p ← seq(0, 1, length =300)

prior ← dbeta(p, alpha , beta)

post ← dbeta(p, alpha.post , beta.post)

curves ← list(Prior=list(x=p, y=prior),

Posterior=list(x=p, y=post))

labcurve(curves , pl=TRUE , xlab=’p’, ylab=’Probability Density ’)

� From the posterior distribution we can get the credible interval, the probability that
the probability of heads exceeds 1

2 , and the probability that the probability of heads
is within ±0.05 of fairness:
qbeta(c(.025 , .975), alpha.post , beta.post)
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Figure 5.5: Prior and posterior distribution for the unknown probability of heads. The posterior is based on tossing 8 heads out of
10 tries.

[1] 0.4464199 0.8751905

1 - pbeta(0.5, alpha.post , beta.post)

[1] 0.9374297

pbeta(0.55 , alpha.post , beta.post) - pbeta(0.45 , alpha.post , beta.post)

[1] 0.100748

� Unlike the frequentist analysis, these are direct measures that are easier to interpret

� Instead of just providing evidence against a straw-man assertion, Bayesian posterior
probabilities measure evidence in favor (as well as against) all possible assertions

5.7.3

Power and Sample Size

� Power ↑ as n ↑, p departs from p0, or p0 departs from 1
2

� n ↓ as required power ↓ or p departs from p0
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5.7.4

Sample Size for Given Precision

� Approximate 0.95 CL: p̂± 1.96
√

p̂(1− p̂)/n

� Assuming p is between 0.3 and 0.8, it would not be far off to use the worst case
standard error

√
1/(4n) when planning

� n to achieve a margin of error δ in estimating p:

n = 1
4

[1.96
δ

]2
= 0.96

δ2

� Example: δ = .1 → n = 96 to achieve a margin of error of ±0.1 with 0.95
confidence

nprec ← function(delta) round(0.25 * (qnorm(0.975) / delta) ∧ 2)

nprec(0.1)

[1] 96

To achieve a margin of error of ±0.05 even in the worst case where p = 0.5 one needs
n = 384.

For Bayesian precision calculations we can solve n that achieves a given width of, say,
a 0.95 credible interval:

� Use a flat beta prior, i.e., with α = β = 1

� Posterior distribution for p is beta(s + 1, n− s + 1)

� Compute CI half-widths for varying n for selected values of s
n ← seq(10, 400, by=5)

k ← c(1/8, 1/4, 1/2, 3/4, 7/8)

ck ← paste0(’s=’, c(’1/8’, ’1/4’, ’1/2’, ’3/4’, ’7/8’), ’ n’)

r ← list()

for(i in 1 : 5) {

ciu ← qbeta(0.975 , k[i] * n + 1, n - k[i] * n + 1)

cil ← qbeta(0.025 , k[i] * n + 1, n - k[i] * n + 1)

r[[ck[i]]] ← list(x=n, y=(ciu - cil) / 2)

}

labcurve(r, xlab=’n’, ylab=’Precision ’, col=1:5, pl=TRUE)

abline(h=c(0.05 , 0.1), col=gray(0.9))
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Figure 5.6: Half-widths of 0.95 credible intervals for p using a flat prior

� As with confidence intervals, precision is worst when 1
2 of observations are successes,

so often best to plan on worst case

� Same sample size needed as with frequentist (since prior is flat)

� Easy to modify for other priors

To put this in the context of relative errors, suppose that one wants to estimate the odds
that an event will occur, to within a certain multiplicative margin of error (MMOE) with
0.95 confidence using frequentist methods. What is the MMOE as a function of the
unknown p when n = 384? The standard error of the log odds is approximately

√
1

np(1−p) ,

and the half-width of a 0.95 confidence interval for the log odds is approximately 1.96
times that. Fix n = 384 and vary p to get the MMOE that is associated with the same
sample size as a universal absolute margin of error of 0.05.
p ← seq(0.01 , 0.99 , length =200)

mmoe ← exp(1.96 / sqrt (384 * p * (1 - p)))

plot(p, mmoe , type=’l’, xlab=’Unknown Probability p’, ylab=’MMOE’)

minor.tick ()
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Figure 5.7: Multiplicative margin of error in estimating odds when n = 384 and the margin of error in estimating the absolute
probability is ≤ 0.05.
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5.8

Paired Data and One-Sample Tests

A
B
D
1
1� To investigate the relationship between smoking and bone mineral density, Rosner

presented a paired analysis in which each person had a nearly perfect control which
was his or her twin

� Data were normalized by dividing differences by the mean density in the twin pair
(need to check if this normalization worked)

� Note: It is almost never appropriate to compute mean percent change (a 100%
increase is balanced by a 50% decrease) but we plunge ahead anyway

� Computed density in heavier smoking twin minus density in lighter smoking one

� Mean difference was −5% with se=2.0% on n = 41

� The t statistic we’ve been using works here, once within-pair differences are formed

� H0 : mean difference between twins is zero (µ0 = 0)

t40 = x̄− µ0

se
= −2.5

P = 0.0166

xbar ← -5

se ← 2

n ← 41

mu0 ← 0

tstat ← (xbar - mu0) /se

pval ← 2 * (1 - pt(abs(tstat), n - 1))

c(tstat=tstat , Pvalue=pval)

tstat Pvalue

-2.50000000 0.01662035
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5.9

Two Sample Test for Means

A
B
D
1
2� Two groups of different patients (unpaired data)

� Much more common than one-sample tests

� As before we are dealing for now with parametric tests assuming the raw data arise
from a normal distribution

� We assume for now that the two groups have the same spread or variability in the
distributions of responsesr

5.9.1

Frequentist t-Test

� Test whether population 1 has the same mean as population 2

� Example: pop. 1=all patients with a certain disease if given the new drug, pop.
2=standard drug

� H0 : µ1 = µ2 (this can be generalized to test µ1 = µ2 + δ, i.e., µ1 − µ2 = δ). The
quantity of interest or QOI is µ1 − µ2

� 2 samples, of sizes n1 and n2 from two populations

� Two-sample (unpaired) t-test assuming normality and equal variances—recall that
if we are testing against an H0 of no effect, the form of the t test is

t = point estimate of QOI
se of numerator

� Point estimate QOI is x̄1 − x̄2

� As with 1-sample t-test the difference in the numerator is judged with respect to
rRosner covers the unequal variance case very well. As nonparametric tests have advantages for comparing two groups and are less sensitive

to the equal spread assumption, we will not cover the unequal variance case here.

http://bit.ly/yt-bbr6
http://bit.ly/datamethods-bbr6
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the precision in the denominator (combination of sample size and subject-to-subject
variability); like a signal:noise ratio

� Variance of the sum or difference of two independent means is the sum of the
variance of the individual means

� This is σ2

n1
+ σ2

n2
= σ2[ 1

n1
+ 1

n2
]

� Need to estimate the single σ2 from the two samples

� We use a weighted average of the two sample variances:

s2 = (n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2

� True standard error of the difference in sample means: σ
√

1
n1

+ 1
n2

� Estimate: s
√

1
n1

+ 1
n2
, so

t = x̄1 − x̄2

s
√

1
n1

+ 1
n2

� d.f. is the sum of the individual d.f., n1 + n2− 2, where the −2 is from our having
to estimate the center of two distributions

� If H0 is true t has the tn1+n2−2 distribution

� To get a 2-tailed P -value we compute the probability that a value from such a
distribution is farther out in the tails of the distribution than the observed t value
is (we ignore the sign of t for a 2-tailed test)

� Example: n1 = 8, n2 = 21, s1 = 15.34, s2 = 18.23, x̄1 = 132.86, x̄2 = 127.44

s2 = 7(15.34)2 + 20(18.23)2

7 + 20 = 307.18

s =
√

307.18 = 17.527

se = 17.527
√√√√1

8 + 1
21 = 7.282

t = 5.42
7.282 = 0.74
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on 27 d.f.

� P = 0.463 (see R code below)

� Chance of getting a difference in means as larger or larger than 5.42 if the two
populations really have the same means is 0.463

� → little evidence for concluding the population means are different

n1 ← 8; n2 ← 21

xbar1 ← 132.86; xbar2 ← 127.44

s1 ← 15.34; s2 ← 18.23

s ← sqrt (((n1 - 1) * s1 ∧ 2 + (n2 - 1) * s2 ∧ 2) / (n1 + n2 - 2))

se ← s * sqrt(1 / n1 + 1 / n2)

tstat ← (xbar1 - xbar2) / se

pval ← 2 * (pt(- abs(tstat), n1 + n2 - 2))

c(s=s, se=se, tstat=tstat , Pvalue=pval)

s se tstat Pvalue

17.5265589 7.2818380 0.7443176 0.4631137

5.9.2

Confidence Interval

Assuming equal variances

x̄1 − x̄2 ± tn1+n2−2,1−α/2 × s×
√√√√ 1

n1
+ 1

n2

is a 1−α CL for µ1−µ2, where s is the pooled estimate of σ, i.e., s
√

. . . is the estimate
of the standard error of x̄1 − x̄2

5.9.3

Bayesian t-Test

� As with one-sample Bayesian t-test we relax the normality assumption by using a t
distribution for the raw data (more robust analysis)

� A linear model for the two-sample t test is
Y = µ0 + δ[group B] + ϵ
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where µ0 (the intercept) is the unknown group A mean, δ is the B-A difference in
means, and ϵ is the irreducible residual (assuming we have no covariates to adjust
for)

� Assume:

– ϵ has a t-distribution with ν d.f.

– ν has a prior that allows the data distribution to be anywhere from heavy-tailed
to normal

– µ0 has a fairly wide prior distribution (no prior knowledge may be encoded by
using a flat prior)

– δ has either a prior that is informed by prior reliable research or biological
knowledge, or has a skeptical prior

– residual variance σ2 is allowed to be different for groups A and B, with a normal
prior on the log of the variance ratio that favors equal variance but allows the
ratio to be different from 1 (but not arbitrarily different)

Note: by specifying independent priors for µ0 and δ we

– induce correlations in priors for the two means

– assume we know more about δ than about the individual true per-group means

To specify the SD for the prior for the log variance ratio:

� Let r be unknown ratio of variances

� Assume P (r > 1.5) = P (r < 1
1.5) = γ

� The required SD is log 1.5
−Φ−1(γ)

� For γ = 0.15 the required SD is:
log(1.5) / -qnorm (0.15)

[1] 0.3912119
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We are assuming a mean of zero for log(r) so we favor r = 1 and give equal chances
to ratios smaller or larger than 1.

5.9.4

Power and Sample Size

� Consider the frequentist model

� Power increases when

– ∆ = |µ1 − µ2| ↑

– n1 ↑ or n2 ↑

– n1 and n2 are close

– σ ↓

– α ↑

� Power depends on n1, n2, µ1, µ2, σ approximately through

∆
σ
√

1
n1

+ 1
n2

� Note that when computing power using a program that asks for µ1 and µ2 you can
just enter 0 for µ1 and enter ∆ for µ2, as only the difference matters

� Often we estimate σ from pilot data, and to be honest we should make adjustments
for having to estimate σ although we usually run out of gas at this point (Bayes
would help)

� Use the R pwr package, or the power calculator at statpages.org/#Power or PS

� Example:
Get a pooled estimate of σ using s above (17.52656)
Use ∆ = 5, n1 = n2 = 100, α = 0.05
delta ← 5

require(pwr)

pwr.t2n.test(n1=100, n2=100, d=delta / s, sig.level = 0.05)

statpages.org/#Power
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t test power calculation

n1 = 100

n2 = 100

d = 0.2852813

sig.level = 0.05

power = 0.5189751

alternative = two.sided

� Sample size depends on k = n2
n1
, ∆, power, and α

� Sample size ↓ when

– ∆ ↑

– k → 1.0

– σ ↓

– α ↑

– required power ↓

� An approximate formula for required sample sizes to achieve power = 0.9 with
α = 0.05 is

n1 = 10.51σ2(1 + 1
k)

∆2

n2 = 10.51σ2(1 + k)
∆2

� Exact calculations assuming normality
pwr.t.test(d = delta / s, sig.level = 0.05 , power = 0.8)

Two -sample t test power calculation

n = 193.8463

d = 0.2852813

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group
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� If used same total sample size of 388 but did a 2:1 randomization ratio to get 129
in one group and 259 in the other, the power is less
pwr.t2n.test(n1 = 129, n2 = 259, d = delta / s, sig.level = 0.05)

t test power calculation

n1 = 129

n2 = 259

d = 0.2852813

sig.level = 0.05

power = 0.7519836

alternative = two.sided

What is the difference in means that would yield a 2-sided P -value of exactly 0.05 for
a two-sample t-test with normality and equal variances when the sample sizes are both

equal to n
2? We solve for ∆̂ = x̄1 − x̄2 such that tn−2,1−α/2 = ∆̂

2s/
√

n
, giving

∆̂ = 2× tn−2,1−α/2 × s√
n

For total sample sizes of 10, 50, and 100, the“magic”values of the observed difference
are the following multiples of the observed standard deviation s:
n ← c(10, 50, 100)

tcrit ← qt(0.975 , n-2)

2 * tcrit / sqrt(n)

[1] 1.4584451 0.5686934 0.3968935

Note that these thresholds are independent of the power and the effect size used in the
power calculation.

5.9.5

Sample Size for a Given Precision

To design a study that will nail down the estimate of µ1 − µ2 to within ±δ with 1− α

confidence when n1 = n2 = n, and when n is large enough so that the critical value
t2n−2,1−α/2 may be approximated by the critical value from the normal distribution, say
z (z = 1.96 when α = 0.05):

n = 2
[
zσ

δ

]2

When α = 0.05, n = 7.68[σ
δ ]2
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5.9.6

Equating Margin of Error to Detectable Difference

Suppose that a two-arm study is designed to detect a difference ∆ in two means with
power 0.9 at the α = 0.05 level. For large enough sample sizes, the margin of error for
estimating the true difference in means for that study will be δ = ∆

√ 7.68
21.02 = 0.604∆.

5.9.7

Checking Assumptions of the t-test

� Comprehensive assessment of all assumptions except independence of observations:

– Compute the two empirical cumulative distribution functions

– Transform each using the inverse normal z transformation

– See of both curves are linear (checks normality assumption) and parallel (equal
variance assumption)s

� Box plot (one box for each of 2 groups): look for equal spread (IQR)

� Informally compare s1 and s2
t

� With the Bayesian t-test the only important assumption to check is symmetry of
the data distributionu

sThere are formal tests of normality but in smaller samples these have insufficient power to detect important non-normality.
tRosner 8.6 shows how to make formal comparisons, but beware that the variance ratio test depends on normality, and it may not have

sufficient power to detect important differences in variances.
uSince we are allowing for heavier tails than the Gaussian distribution by using a t distribution for the raw data
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5.10

Comprehensive Example: Two sample t-test

5.10.1

Study Description

From bit.ly/data-t2

� Assess the effect of caffeine (vs. placebo) on muscle metabolism, measured by the
respiratory exchange ratio (RER; ratio of CO2 produced to O2 consumed)

� Treatment was randomized to 18 subjects; parallel group RCT

� Goal: study effect of caffeine on RER

� Must take log of RER to have a symmetric measure

– µ0 = mean log RER for placebo

– µ1 = mean log RER for caffeine

– Fold-change effect: exp(µ1 − µ0)

– Estimate µ1 − µ0

– H0 : µ0 = µ1

– H1 : µ0 ̸= µ1

� Note: a good statistician will take such ratios with a grain of salt; need to verify
that the meaning of the ratio is independent of O2

http://learntech.uwe.ac.uk/da/Default.aspx?pageid=1438
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5.10.2

Power and Sample Size

� Suppose that a pilot study or previous published research estimated σ = 0.1 for
log RER

� Effect size ∆ is on the log RER scale

� Anti-log to get effect in terms of fold change

� Determine the number of subjects needed (in each group) for several value of effect
size ∆ (∆ = |µ1 − µ0|) in order to have 0.9 power with α = 0.05

require(pwr)

s ← 0.1

fc ← c(1.1, 1.15 , 1.2 , 1.25 , 1.5)

n ← integer(length(fc))

i ← 0

for(foldchange in fc) {

i ← i + 1

n[i] ← ceiling(pwr.t.test(d=log(foldchange) / s, power=0.9)$n)

}

data.frame(’Fold Change ’=fc, Delta=round(log(fc), 3), ’N per group’=n,

check.names=FALSE)

Fold Change Delta N per group

1 1.10 0.095 25

2 1.15 0.140 12

3 1.20 0.182 8

4 1.25 0.223 6

5 1.50 0.405 3

� If caffeine modifies RER by a factor of 1.15, by enrolling 12 subjects in each group
we will have 0.9 power to detect an effect

� For n = 12 per group the margin of error for estimating ∆ at the 0.95 level is given
below
See Section 5.9.5

� This is anti-logged to obtain the multiplicative margin of error for estimating the
caffeine:placebo ratio of RERs

z ← qnorm(0.975); n ← 12

# T h i s i s a p p r o x i m a t e ; u s e z ← q t ( 0 . 9 7 5 , 1 2 + 1 2 - 2 ) f o r a c c u r a c y



CHAPTER 5. STATISTICAL INFERENCE 5-59

moe ← z * s * sqrt(2 / n)

mmoe ← exp(moe)

c(’Margin of Error’=moe , ’Multiplicative Margin of Error’=mmoe)

Margin of Error Multiplicative Margin of Error

0.08001519 1.08330353

5.10.3

Collected Data

tx ← factor(c(rep(’placebo ’, 9), rep(’caffeine ’, 9)), c(’placebo ’, ’caffeine ’))

rer ← c(105, 119, 100, 97, 96, 101, 94, 95, 98,

96, 99, 94, 89, 96, 93, 88, 105, 88) / 100

d ← data.frame(subject =1:18, tx, rer , logrer=log(rer))

print(d, digits=3, row.names=FALSE)

subject tx rer logrer

1 placebo 1.05 0.04879

2 placebo 1.19 0.17395

3 placebo 1.00 0.00000

4 placebo 0.97 -0.03046

5 placebo 0.96 -0.04082

6 placebo 1.01 0.00995

7 placebo 0.94 -0.06188

8 placebo 0.95 -0.05129

9 placebo 0.98 -0.02020

10 caffeine 0.96 -0.04082

11 caffeine 0.99 -0.01005

12 caffeine 0.94 -0.06188

13 caffeine 0.89 -0.11653

14 caffeine 0.96 -0.04082

15 caffeine 0.93 -0.07257

16 caffeine 0.88 -0.12783

17 caffeine 1.05 0.04879

18 caffeine 0.88 -0.12783

require(ggplot2) # F i g 5.8

ggplot(d, aes(x=tx, y=rer , group=tx)) +

geom_boxplot(col=’lightyellow1 ’, alpha=.3, width=.3) +

geom_dotplot(binaxis=’y’, stackdir=’center ’, position=’dodge’) +

stat_summary(fun.y=median , geom="point", col=’red’, shape=5, size =3) +

xlab(’’) + ylab(’RER’) + coord_flip ()

5.10.4

Frequentist t-Test

To demonstrate difficulties in checking model assumptions with small n, consider the
comprehensive approach by checking for linearity and parallelism (if equal variance
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Figure 5.8: Data for two-sample RCT for effect of caffeine on respiratory exchange ratio. Diamonds depict medians.

assumption is used) of z-transformed empirical cumulative distributions.
Ecdf(∼ log(rer), groups=tx, fun=qnorm , data=d,

xlab=’log(RER)’, ylab=’Inverse Normal ECDF’) # F i g . 5.9

It is more accepted in practice to now use the form of the t-test that does not assume
equal variances in the two independent groups. The unequal-variance t-test is used
here. Note that to compute a decent approximation to the P -value requires the use of
a“trick”d.f. when looking up against a t distribution.
ttest ← t.test(log(rer) ∼ tx, data=d)

# N o t e t h a t f o r t h e C I t . t e s t i s u s i n g c a f f e i n e a s t h e r e f e r e n c e g r o u p

ttest

Welch Two Sample t-test

data: log(rer) by tx

t = 2.0622 , df = 15.337 , p-value = 0.05655

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.002027639 0.130381419

sample estimates:

mean in group placebo mean in group caffeine

0.003115688 -0.061061202

� Interpretation

– Subjects given caffeine have on average a log RER that is 0.064 lower (0.95 CI:
[-0.13, 0.002]) than individuals given placebo
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Figure 5.9: Stratified empirical cumulative distribution functions by treatment for checking all assumptions of the two-sample t-test.
ECDFs are inverse normal transformed.

– By anti-logging these 3 numbers we get the fold change scale:

* Medianv fold change is 0.94

* 0.95 CI for caffeine:placebo fold change: [0.878, 1.002]

5.10.5

Bayesian t-Test

The R brms package makes it easy to specify an unequal variance model, because it
allows one to specify a separate model for the log of the standard deviation. log(σ) can
even depend on continuous covariates!w brms models standard deviation parameters on
the log scale. As before, analysis is on the log(RER) scale.
require(brms)

# s e t p r i o r s

# f l a t ( n o n - i n f o r m a t i v e ) p r i o r f o r i n t e r c e p t

pr0 ← set_prior("", class="Intercept")

vIf the log ratio has a normal distribution, the log ratio has the same mean as the median and its median anti-logged value is the anti-log
of the mean (=median) log difference. The mean on the anti-logged scale is a more complex function that involves SD of log RER.

wThanks to Nathan James of the Vanderbilt Department of Biostatistics for providing R code for this section, and for providing the explanation
for the output of the prior_summary function.
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# n o r m a l ( 0 , 3 ) p r i o r f o r d i f f e r e n c e i n l o g r a t i o s

pr1 ← set_prior("normal (0,0.25)", class="b", coef="txcaffeine")

# n o r m a l ( 0 , 0 . 3 9 1 2 ) f o r l o g S D r a t i o

pr2 ← set_prior("normal (0,0 .3912)", class="b", coef="txcaffeine",

dpar="sigma")

# f i t m o d e l f o r t w o g r o u p s a s s u m i n g Y f o l l o w s a t d i s t r i b u t i o n s o l e s s

# s e n s i t i v e t o o u t l i e r s

# E a c h g r o u p h a s d i f f e r e n t m e a n a n d S D b u t s a m e d f

# T h e p r i o r f o r t h e l o g S D f o r t h e r e f e r e n c e g r o u p i s s c a l e t w i t h 3 d . f .

# P r i o r f o r n u i s g a m m a (2 , 0 . 1 )

# T h e b f f u n c t i o n i s u s e d t o c r e a t e a c o m p o u n d R m o d e l f o r m u l a , h e r e

# f o r t h e m e a n m o d e l a n d t h e l o g s i g m a m o d e l

f ← brm(bf(log(rer) ∼ tx, sigma ∼ tx), data=d, family=student ,

prior=c(pr0 ,pr1 ,pr2), seed =1202)

There are 5 parameters in this model (2 for the regression on student-t mean, 2 for
the regression on student-t scale (σ), and 1 for student-t d.f. ν). The output from
prior_summary() shows all the parameters and parameter classes that can be assigned.
Lines 1 & 3 in the output below are the ‘classes‘ of all non-intercept regression coeffi-
cients for the student-t mean and student-t scale, respectively. When there are multiple
coefficients it is often convenient to specify a prior for all parameters in a class rather
than for each individual parameter. For example, in a model with 10 covariates using
set_prior("normal(0,1)", class="b") would give each of the 10 corresponding coeffi-
cient parameters a standard normal prior. For our model the class priors are superseded
by the individual parameter priors.
# S h o w p r i o r s i n e f f e c t

prior_summary(f)

prior class coef group resp dpar nlpar bound

1 b

2 normal (0 ,0.25) b txcaffeine

3 b sigma

4 normal (0 ,0.3912) b txcaffeine sigma

5 Intercept

6 student_t(3, 0, 10) Intercept sigma

7 gamma(2, 0.1) nu

# m o d e l s u m m a r y

# N o t e : s i g m a i s o n l o g s c a l e , u s e e x p ( s i g m a ) t o g e t t o n a t u r a l s c a l e

# I n t e r c e p t i s m e a n f o r p l a c e b o

# s i g m a _ I n t e r c e p t i s l o g ( s d ) f o r p l a c e b o

# t x c a f f e i n e i s c h a n g e i n m e a n f o r c a f f e i n e c o m p a r e d t o p l a c e b o

# s i g m a _ t x c a f f e i n e i s c h a n g e i n l o g ( s d ) f o r c a f f e i n e c o m p a r e d t o p l a c e b o

f

Family: student

Links: mu = identity; sigma = log; nu = identity
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Formula: log(rer) ∼ tx

sigma ∼ tx

Data: d (Number of observations: 18)

Samples: 4 chains , each with iter = 2000; warmup = 1000; thin = 1;

total post -warmup samples = 4000

Population -Level Effects:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept -0.00 0.02 -0.05 0.04 1.00 3747 2751

sigma_Intercept -2.79 0.30 -3.43 -2.22 1.00 2642 2230

txcaffeine -0.06 0.03 -0.12 0.01 1.00 4127 2533

sigma_txcaffeine -0.05 0.30 -0.63 0.57 1.00 4114 2775

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

nu 18.17 14.05 2.28 53.10 1.00 2671 1753

Samples were drawn using sampling(NUTS). For each parameter , Eff.Sample

is a crude measure of effective sample size , and Rhat is the potential

scale reduction factor on split chains (at convergence , Rhat = 1).

# p l o t k e r n e l d e n s i t y e s t a n d t r a c e p l o t s f o r p o s t e r i o r p a r a m e t e r s

plot(f)
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# p o s t e r i o r p r e d i c t i v e c h e c k

pp_check(f)

−0.2 −0.1 0.0 0.1 0.2

y

y rep

# m a r g i n a l e f f e c t s
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plot(marginal_effects(f), points = TRUE)
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# p o s t e r i o r p a r a m e t e r s a m p l e s

p ← as.data.frame(f)

meanplacebo ← p[, ’b_Intercept ’]

delta ← p[, ’b_txcaffeine ’]

sdplacebo ← exp(p[, ’b_sigma_Intercept ’])

sdratio ← exp(p[, ’b_sigma_txcaffeine ’])

nu ← p[, ’nu’]

# h i s t o g r a m o f p o s t e r i o r d i s t r i b u t i o n o f d i f f e r e n c e i n m e a n l o g R E R

hist(delta , nclass =50, main=’’)

# P o s t e r i o r d e n s i t y f o r c a f f e i n e : p l a c e b o f o l d c h a n g e i n R E R

plot(density(exp(delta)), xlab=’Fold Change in RER’, main=’’)

abline(v=1, col=gray(0.85))

# P o s t e r i o r d e n s i t y o f S D r a t i o

plot(density(sdratio), main=’’, xlab=’SD Ratio’)

abline(v=1, col=gray(0.85))

# P o s t e r i o r p r o b t h a t d i f f e r e n c e i n m e a n s < 0

# R e c a l l t h a t t h e P o p e r a t o r w a s d e f i n e d p r e v i o u s l y

# ( b a s e d o n m e a n o f l o g i c a l o r 0/ 1 v a l u e s = p r o p o r t i o n p o s i t i v e =

# p o s t e r i o r p r o b a b i l i t y t o w i t h i n s i m u l a t i o n e r r o r

# T h i s i s t h e s a m e a s P ( f o l d c h a n g e < 1 )

P(delta < 0)

[1] 0.965

P(exp(delta) < 1)

[1] 0.965

# P r o b t h a t c a f f e i n e r e s u l t s i n a p h y s i o l o g i c a l l y n o t i c e a b l e r e s p o n s e

P(exp(delta) < 0.95)

[1] 0.56825
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# P r o b t h a t c a f f e i n e a n d p l a c e b o h a v e s i m i l a r r e s p o n s e

P(exp(delta) > 0.975 & exp(delta) < 1/0.975)

[1] 0.141

# C o m p u t e p o s t e r i o r p r o b a b i l i t y o f a p p r o x i m a t e n o r m a l i t y

P(nu > 20)

[1] 0.3535
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Note that the 2-tailed P -value of 0.057 may tempt bright-line threshold advocates to
conclude nothing more than insufficient evidence to reject the assumption that caffeine
does not modify RER (or worse yet to just declare an“insigificant”result or even worse
that caffeine does not modify RER). The Bayesian result shows that under a fairly
skeptical prior for log RER one would do well to play the odds in betting on caffeine
having an effect.
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There is little evidence to support an assumption of normality of log RER within a
treatment group.

Now compare other results results with the frequentist analysis.
means ← with(d, tapply(logrer , tx , mean))

sds ← with(d, tapply(logrer , tx , sd))

a ← c(means[1], pmode(meanplacebo), mean(meanplacebo), median(meanplacebo))

b ← c(sds[1], pmode(sdplacebo), mean(sdplacebo), median(sdplacebo))

w ← c(diff(means), pmode(delta), mean(delta), median(delta))

z ← c(sds[2] / sds[1], pmode(sdratio), mean(sdratio), median(sdratio))

x ← rbind(a, b, w, z)

colnames(x) ← c(’Sample ’, ’Posterior Mode’, ’Posterior Mean’,

’Posterior Median ’)

rownames(x) ← c(’Placebo mean’, ’Placebo SD’, ’Caffeine - Placebo Mean’,

’Caffeine / Placebo SD’)

round(x, 2)

Sample Posterior Mode Posterior Mean Posterior Median

Placebo mean 0.00 -0.01 0.00 -0.01

Placebo SD 0.07 0.06 0.06 0.06

Caffeine - Placebo Mean -0.06 -0.06 -0.06 -0.06

Caffeine / Placebo SD 0.81 0.86 1.00 0.95

# 0 . 9 5 c r e d i b l e i n t e r v a l f o r d e l t a

quantile(delta , c(0.025 , .975))

2.5% 97.5%

-0.120428468 0.005351076

# 0 . 9 5 c o n f i d e n c e i n t e r v a l f o r d e l t a

rev(- ttest$conf.int) # n e g a t e s i n c e t . t e s t u s e d d i f f e r e n t r e f e r e n c e

[1] -0.130381419 0.002027639

For an excellent tutorial on the use of brms for a two-sample t-test see bit.ly/brms-t by
Matti Vuorre

https://vuorre.netlify.com/post/2017/01/02/how-to-compare-two-groups-with-robust-bayesian-estimation-using-r-stan-and-brms
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5.11

The Problem with Hypothesis Tests and P -
values Revisited

5.11.1

Hypothesis Testing

� Existence of ESP is a hypothesis

� Assessing effects of drugs, procedures, devices involves estimation

� Many studies powered to detect huge effect

� If effect is not huge, no information from study

5.11.2

P -Values

A
B
D
6
.2� Only provide evidence against a null hypothesis, never evidence for something

� Probability of a statistic more impressive as yours if H0 true

� Not a probability of an effect or difference (same problem with sensitivity and
specificity)

� No conclusion possible from large P -values

� Cannot conclude clinical relevance from small P

� Adjustment of P -values for multiple tests is controversial and there is insufficient
consensus on how to choose an adjustment method

� Declaring a result as“significant”or“non-significant”is completely arbitrary and has
come to mean almost nothing
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– They rely on completely arbitrary P -value cutoffs such as 0.05

– American Statistical Association is on record recommending not using any cutoff
or words like significant: bit.ly/asa-p bit.ly/asa-p2

5.11.3

How Not to Present Results

A
B
D
6
.2� P = 0.02 — let’s put this into clinical practice ignoring the drug’s cost or clinical

effectiveness

� P = 0.4 — this drug does not kill people

� P = 0.2 but there is a trend in favor of our blockbuster drug

� The observed difference was 6mmHg and we rejected H0 so the true effect is
6mmHg.

� The proportion of patients having adverse events was 0.01 and 0.03; the study
wasn’t powered to detect adverse event differences so we present no statistical
analysis

� The reduction in blood pressure was 6mmHg with 0.95 C.L. of [1mmHg, 11mmHg];
the drug is just as likely to only reduce blood pressure by 1mmHg as it is by 6mmHg.

� The serum pH for the 15 dogs was 7.3± 0.1 (mean ± SE instead of SD or IQR)

5.11.4

How to Present Results

A
B
D
6
.2� Estimates should be accompanied by uncertainty intervals or posterior distributions

� Confidence limits can be computed without regard to sample size or power

� A computed value from a sample is only an estimate of the population value,
whether or not you reject H0

https://amstat.tandfonline.com/doi/full/10.1080/00031305.2016.1154108
https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913
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� Best to think of an estimate from a study as a fuzz, not a point

� To present variability of subjects, use SD or IQR, not SE (SE is the precision of
the mean of subjects)

� If you must use P -values, provide the P -value to 3 significant digits and don’t
declare results as significant or no significant difference

� See http://bit.ly/datamethods-freq-results for some guidelines for presenting fre-
quentist results, and fharrell.com/post/bayes-freq-stmts for examples of Bayesian
vs. frequentist summaries

https://discourse.datamethods.org/t/language-for-communicating-frequentist-results-about-treatment-effects
https://www.fharrell.com/post/bayes-freq-stmts
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5.12

Study Design Considerations

The majority of studies phrased as hypothesis testing experiments are actually estima-
tion studies, so it is usually preferred to based sample size justifications on precision
(margin of error). Whether using effect sizes in power calculations or margins of error in
precision calculations, the quantity of interest should be taken on the original dependent
variable scale or a transformation of it such as odds or hazard.

5.12.1

Sizing a Pilot Study

Frequently, pilot studies are used to obtain estimates of variability that allow the sample
sized to be calculated for a full study. With a continuous response variable, one can
think of the adequacy of the sample size in terms of the fold change or multiplicative
margin of error (MMOE) in the estimate s of the population standard deviation σ.

When a sample of size n is drawn from a normal distribution, a 1 − α two-sided
confidence confidence interval for the unknown population variance σ2 is given by

n− 1
χ2

1−α/2,n−1
s2 < σ2 <

n− 1
χ2

α/2,n−1
s2, (5.1)

where s2 is the sample variance and χ2
α,n−1 is the α critical value of the χ2 distribution

with n− 1 degrees of freedom. The MMOE for estimating σ is√√√√√max(
χ2

1−α/2,n−1

n− 1 ,
n− 1

χ2
α/2,n−1

) (5.2)

n ← 10:300

low ← sqrt((n - 1) / qchisq(.975 , n - 1))

hi ← sqrt((n - 1) / qchisq(.025 , n - 1))

m ← pmax(1 / low , hi)

ggplot(data.frame(n, m), aes(x=n, y=m)) + geom_line () +

ylab(’MMOE for s’)

nmin ← min(n[m ≤ 1.2])

From the above calculations, to achieve a MMOE of no worse than 1.2 with 0.95
confidence when estimating σ requires a sample size of 70 subjects. A pilot study with

http://bit.ly/yt-bbr7
http://bit.ly/datamethods-bbr7
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Figure 5.10: Multiplicative margin of error in estimating σ as a function of sample size, with 0.95 confidence

n = 20 will achieve a MMOE of 1.46 in estimating σ.

5.12.2

Problems with Standardized Effect Sizes

Many researchers use Cohen’s standardized effect sizes in planning a study. This has
the advantage of not requiring pilot data. But such effect sizes are not biologically
meaningful and may hide important issues60. Studies should be designed on the basis of
effects that are relevant to the investigator and human subjects. If, for example, one
plans a study to detect a one standard deviation (SD) difference in the means and the
SD is large, one can easily miss a biologically important difference that happened to be
much less than one SD in magnitude. Note that the SD is a measure of how subjects
disagree with one another, not a measure of an effect (e.g., the shift in the mean). One
way to see that standardized effect sizes are problematic is to note that if one were to
make the measurements more noisy, the SD will increase and the purported clinically
important difference to detect will increase proportionately.
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5.12.3

Choice of Effect Size

If a study is designed to detect a certain effect size with a given power, the effect
size should never be the observed effect from another study, which may be estimated
with error and be overly optimistic. The effect size to use in planning should be
the clinically or biologically relevant effect one would regret missing. Usually the only
information from prior studies that is useful in sample size estimation are (in the case of
a continuous response variable with a symmetric distribution) estimates of the standard
deviation or the correlation between two measurements on the same subject measured
at two different times, or (in the case of a binary or time to event outcome) event
probabilities in control subjects. An excellent resource by Senn for understanding effect
sizes in power calculations may be found at bit.ly/ssenn-effect.

� Effect size for power/sample size calculation is never an observed effect in previous
data

� It is not the difference we believe is true

� It is the difference you would not like to miss

� Clinically relevant to patients or at least to physiology

� Not greater than clinically relevant

5.12.4

Multiple Estimands and Hypotheses

In many experiments there are more than one estimand (what is to be estimated based
on the question of interest) or hypothesis. Some frequentist statisticians and biomedical
investigators believe that in such situations the familywise error probability should be
controlledx. This probability is the probability of rejecting any null hypothesis given
that all null hypotheses are true. One may accomplish this by testing every hypothesis
at the α∗ level, where the constant α∗ < α is chosen so that the overall type one error
is α, or one may elect to differentially “spend α”by, for example, setting α = 0.04 for

xAs stated elsewhere, multiplicity adjustments are a byproduct of faults in frequentist inference and are completely arbitrary.

http://bit.ly/ssenn-effect
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a primary hypothesis and α = 0.01 for a less important secondary analysis. Another
alternative is closed testing procedures whereby later hypotheses can be tested at less
stringent α levels as long as all earlier hypotheses were rejected. Unfortunately there is
no unique path to deriving multiplicity adjustments, and they have the odd property of
requiring one to be more stringent in assessing evidence for one hypothesis just because
one had other hypotheses.

An alternative, and what we believe to be more reasonable, view is by Cook and
Farewell22 who stated that if a study has more than one question and each question
is to be answered on its own, there is no need for a multiplicity adjustment. This is
especially true if a strong priority ordering for hypotheses is stated in advance. For
example, an investigator may specify three hypotheses about efficacy of a treatment
for the following endpoints in a cardiovascular trial, sorted from most important to
least important: overall mortality, cardiovascular mortality, and cardiovascular death
or myocardial infarction. As long as the researcher always reports all of the results in
context, in this pre-specified order, each P -value can stand on its own.

Contrast this with an exploratory study in which the hypothesis is essentially that there
exists an endpoint for which the treatment is effective. One should expect to have
to employ a conservative multiplicity adjustment in that situation, e.g., Bonferroni’s
inequality.

Consider a frequentist study with four efficacy endpoints and corresponding P -values in
the given pre-specified priority order: all-cause mortality (P = 0.09), stroke (P = 0.01),
myocardial infarction (P = 0.06), hospitalization (P = 0.11)

� OK to quantify evidence against each of the 4 null hypotheses if all 4 reported in
context, using the pre-specified order with separate interpretations

� Reasonable conclusion: With the current sample size, there is little evidence to
reject the supposition that treatment does not lower mortality. There is evidence
against the supposition that treatment does not lower the rate of stroke. . . .

� Contrast with a report that merely reports the stroke result, essentially saying“there
exists an endpoint for which treatment is effective”

� Example Bayesian statement: Treatment probably (0.92) lowers mortality, prob-
ably (0.995) lowers the rate of stroke, probably (0.96) lowers MI, and probably
(0.96) lowers hospitalization (posterior probabilities of a treatment benefit are in
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parentheses)y.

� Perhaps better: create a 5 or more level ordinal endpoint and use the worst event
as the response variable

– Y = 0, 1, 2, 3, 4 corresponding to no event, hospitalization, MI, stroke, death

– Interpretation 1: treatment lowered the odds of an outcome or a worse outcome
by a factor of 0.8

– Interpretation 2: chance of MI, stroke, or death with treatment estimated as
0.167 and for control as 0.2
chances of stroke or death: 0.082, 0.1

– Bayesian probability of treatment benefit = P (OR < 1) = 0.998

� See Section 3.6 for how properties of ordinal scales relate to power

5.12.5

Study Design Big Picture

� Choose the right question or estimand

� Think hard about subject/animal selection criteria

� Decide whether you are doing a pilot study or a more definitive study

– Pilot study is not used to nail down the effect of an intervention

– Is to show you can make the measurements, carry out the intervention, refine
existing measurements, enroll enough subjects per month, etc.

– Power is not relevant

– May size the pilot study to be able to estimate something simple with precision
(proportion, SD); adequate estimation of SD for continuous Y is important for
sample size calculation for the full study

yA Bayesian analysis would quickly add the (lower) probabilities that treatment lowers event rates by more than a trivial amount. Bayesian
methods can also compute the probability that any 2 of the efficacy targets were achieved, and the expected number of targets hit—in this case
0.92+0.995+0.96+0.96=3.8 of 4 targets hit.
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� Make sure the design can answer that question were the sample size 1,000,000
subjects

� Decide whether you are required to have a fixed sample size

– If budgeting is flexible, use fully sequential design and stop when evidence is
adequatez

– For fixed budget/study duration be realistic about the effect size

� If there is inadequate budget for detecting the minimal clinically important effect
with high probability, be realistic about stating the study’s likely yield

– Best: compute the likely margin of error for the primary estimand

– Next best: compute the power that will be achieved with the limited sample
size

� Choose a response variable Y that answers the question and has the greatest
frequentist or Bayesian power (section 3.6))

– Example: primary interest is patient’s inability to function physically on a 0-100
scale (100=bedridden)

– Some patients will be too sick to have their function assessed and some will die

– Define Y =0-100 overridden with 101 for too sick or 102 for deatha

– Analyze with the proportional odds model

– Interpretation:

* Primary endpoint is degree of functional disability, penalized by death or
being physically unable to be assessed

* Proportional odds model provides an overall odds ratio for treatments B:A
(ratio of odds that Y ≥ j for any j)

* Model can also be used to estimate the median disability, where sickness or
death will shift the median to the right a little

zBayesian sequential designs require no penalty for infinitely many such data looks. See fharrell.com/post/bayes-seq.
aOrdinal analysis will not be affected by placing the clinical events at 1001 and 1002 or any other levels that are higher than the highest

functional disability level.

https://www.fharrell.com/post/bayes-seq
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* May also be summarized by estimating for each treatment the probability
that a patient has level 50 functional disability or worse where “or worse”
means 51-100, too sick, or dead, after estimating the overall odds ratio for
treatment

� Use multiple measurements over time to increase power/precision and to allow
more questions to be answered

� Greatest power comes from having a continuous Y or ordinal Y with many well-
populated levels, where Y is also measured at baseline and is adjusted for as a
covariate in ANCOVA, allowing for a smooth nonlinear effect (without assuming
the slope is 1.0 as is assumed by change-from-baseline analysis)

� Never use change from baseline as the response variable except in a non-randomized
pre-post design (the weakest of all designs)

� If treatment is short-term and wears off, fully using each subject as her own control
in a randomized crossover study may be ideal

� For a parallel-group randomized study, accurately collect key baseline variables that
explain outcome heterogeneity

� For an observational study, accurately capture a host of baseline variables that are
likely to result in adequate confounder adjustment

– don’t merely rationalize that variables available in an existing dataset are ade-
quate

� Use a research data management tool such as REDCap that allows for extensive
data quality checking

� Don’t forget the many subject selection, ethical, and good clinical practice issues

� Recommended reading: Hulley et al. Designing Clinical Research48
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5.13

One-Sample t-Test Revisited

5.13.1

Study Description

� Compare the effects of two soporific drugs (optical isomers of hyoscyamine hydro-
bromide)

� Crossover study

� Each subject receives placebo run-in, then Drug 1, then Drug 2

� Investigator may not have randomized order of treatments

� Dependent variable: Number of hours of increased sleep when compared to a
placebo run-in period (raw data not shown)

� Drug 1 given to n subjects, Drug 2 given to same n subjects

� Study question: Is Drug 1 or Drug 2 more effective at increasing sleep?

– H0 : µd = 0 where µd = µ1 − µ2

– H1 : µd ̸= 0

5.13.2

Power and Sample Size

� Pilot study or previous published research shows the standard deviation of the
difference (σd) is 1.2 hours

� Determine the number of subjects needed for several value of effect size ∆ (∆ =
|µ1 − µ2|)with 0.9 power, α = 0.05
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∆ 0.5 1 1.5 2
n 62 16 8 5

� If Drug 1 (or 2) increases sleep by 1.5 hours more than Drug 2 (or 1), by enrolling
8 subjects we will have 0.9 power to detect an association.

� More powerful than the two sample test (need 10 subjects in each group for ∆ = 3.0
hours)

5.13.3

Collected Data

Here are the data for the 10 subjects. This is the R built-in dataset sleep.

Subject Drug 1 Drug 2 Diff (2-1)

1 0.7 1.9 1.2
2 −1.6 0.8 2.4
3 −0.2 1.1 1.3
4 −1.2 0.1 1.3
5 −0.1 −0.1 0.0
6 3.4 4.4 1.0
7 3.7 5.5 1.8
8 0.8 1.6 0.8
9 0.0 4.6 4.6
10 2.0 3.4 1.4

Mean 0.75 2.33 1.58
SD 1.79 2.0 1.2

drug1 ← c(.7 , -1.6 , -.2 , -1.2 , -.1 , 3.4 , 3.7, .8, 0, 2)

drug2 ← c(1.9, .8, 1.1, .1, -.1 , 4.4, 5.5, 1.6, 4.6, 3.4)

d ← data.frame(Drug=c(rep(’Drug 1’, 10), rep(’Drug 2’, 10),

rep(’Difference ’, 10)),

extra=c(drug1 , drug2 , drug2 - drug1))

w ← data.frame(drug1 , drug2 , diff=drug2 - drug1)

ggplot(d, aes(x=Drug , y=extra)) + # F i g . 5.11

geom_boxplot(col=’lightyellow1 ’, alpha=.3, width=.5) +

geom_dotplot(binaxis=’y’, stackdir=’center ’, position=’dodge’) +

stat_summary(fun.y=mean , geom="point", col=’red’, shape=18, size =5) +

geom_segment(data=w, aes(x=’Drug 1’, xend=’Drug 2’, y=drug1 , yend=drug2),

col=gray(.8)) +



CHAPTER 5. STATISTICAL INFERENCE 5-80

geom_segment(data=w, aes(x=’Drug 1’, xend=’Difference ’, y=drug1 , yend=drug2 -

drug1),

col=gray(.8)) +

xlab(’’) + ylab(’Extra Hours of Sleep’) + coord_flip ()
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●
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●
● ● ●●

●
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Difference

Drug 1

Drug 2

−2 0 2 4
Extra Hours of Sleep

Figure 5.11: Raw data and box plots for paired data and their paired differences, with lines connecting points from the same subject.
Diamonds depict means.

5.13.4

Statistical Test

with(d, t.test(drug1 , drug2 , paired=TRUE))

Paired t-test

data: drug1 and drug2

t = -4.0621, df = 9, p-value = 0.002833

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.4598858 -0.7001142

sample estimates:

mean of the differences

-1.58

� Interpretation

– A person who takes Drug 2 sleeps on average 1.58 hours longer (0.95 CI: [0.70,
2.46]) than a person who takes Drug 1
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5.14

Comprehensive Example: Crossover Design
and Analysis

� In the previous example, it was not clear if the order of placebo, Drug 1, and Drug
2 was the same for every patient

� In a crossover design, each patient receives both drugs

– Can serve as own control

– Effectively adjusts for all baseline variables without measuring themb

– Order is randomized

� Carryover effects

– Def: An effects that carries over from one experimental condition to another

– Need a washout period between drugs to remove carryover effects

– Time to remove carryover effects should be based on biology, not statistics

– Statistical tests for carryover effects are often not precise enough to make
definitive conclusions (see example)

– The test for carryover is correlated with the overall test of efficacy

– Pre-testing for carryover then deciding whether to only use phase 1 data results
in a huge inflation of type I error in the test for efficacy

5.14.1

Study Description

� Compare the effects of two soporific drugs.
bIf there is no interaction between covariate and treatment order
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� Each subject either (1) starts with Drug 1 and crosses over to Drug 2 or (2) starts
with Drug 2 and crosses over to Drug 1

– No placebo run-in in this example

– Order randomly assigned

– Suitable period of time (∼ 5 half-lives) between drug crossovers to washout
effects of previous drug

� Dependent variable: Number of hours of sleep on each drug

� Drug 1 given to n subjects, Drug 2 given to same n subjects

� Study question: Is Drug 1 or Drug 2 more effective at increasing sleep?

– H0 : µd = 0 where µd = µ1 − µ2

– H1 : µd ̸= 0

5.14.2

Power and Sample Size

� Pilot study or previous published research shows the standard deviation of the
difference (σd) is 1.2 hours

� Determine the number of subjects needed for several value of effect size ∆ (∆ =
|µ1 − µ2|)with 0.9 power, α = 0.05

� Assume no carryover effects

∆ 0.5 1 1.5 2
n 62 16 8 5

� If Drug 1 (or 2) increases sleep by 1.5 hours more than Drug 2 (or 1), by enrolling
8 subjects we will have 0.9 power to detect an association.

� Same power calculation as paired t-test
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5.14.3

Collected Data

Subject Drug 1 Drug 2 Diff (2-1)

1 8.7 9.9 1.2
2 6.4 8.8 2.4
3 7.8 9.1 1.3
4 6.8 8.1 1.3
5 7.9 7.9 0.0
6 11.4 12.4 1.0
7 11.7 13.5 1.8
8 8.8 9.6 0.8
9 8.0 12.6 4.6
10 10.0 11.4 1.4

Mean 8.75 10.33 1.58
SD 1.79 2.0 1.2

5.14.4

Statistical Tests

drug1 ← c(87, 64, 78, 68, 79, 114, 117, 88, 80, 100)/10

drug2 ← c(99, 88, 91, 81, 79, 124, 135, 96, 126, 114)/10

t.test(drug1 , drug2 , paired=TRUE)

Paired t-test

data: drug1 and drug2

t = -4.0621, df = 9, p-value = 0.002833

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.4598858 -0.7001142

sample estimates:

mean of the differences

-1.58

� Interpretation

– A person who takes Drug 2 sleeps on average 1.58 hours longer (0.95 CI: [0.70,
2.50]) than a person who takes Drug 1
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5.14.5

Carryover Effects

� Is there any evidence for a carryover effect?

� Assume that the first 5 subjects received Drug 1 first and the second 5 subjects
received drug 2 first

� If we assume there are no carryover effects, then the mean difference in sleep for
subjects receiving drug 1 first should be the same as the mean difference for subjects
receiving drug 2 first

� Assessing carryover effect distorts the efficacy analysis inference

� Null hypothesis is that there are no carryover effects

� Can rearrange the difference data to clarify the structure

Subject Drug 1 First Drug 2 First

1 1.2
2 2.4
3 1.3
4 1.3
5 0.0
6 1.0
7 1.8
8 0.8
9 4.6
10 1.4

Mean 1.24 1.92
SD 0.85 1.55

For this design we might expect the variance of the differences to be the same for both
orders, so we use the equal-variance t-test.
# U n p a i r e d t - t e s t

t.test ((drug2 - drug1)[1:5], (drug2 - drug1)[6:10] , var.equal=TRUE)
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Two Sample t-test

data: (drug2 - drug1 )[1:5] and (drug2 - drug1 )[6:10]

t = -0.86152 , df = 8, p-value = 0.414

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.500137 1.140137

sample estimates:

mean of x mean of y

1.24 1.92

� Interpretation

– Large P -value has no interpretation

– With 0.95 confidence, the carryover effect is between [-2.5 and 1.1] hours, which
is not scientifically convincing either way

– In general, be very cautious when the null hypothesis is something you want to
fail to reject in order to validate your analysis method

* Tests of normality are sometimes used to validate using a parametric over a
non-parametric test

* There are also statistical tests for equal variance

* Both tests may be unreliable and will distort the final inference that is
conditional on preassessments being correct

� As Stephen Senn has warned, be wary of doing anything about empirically quantified
carryover effects, as the carryover effect estimate has a correlation of 1

2 with the
overall treatment effect estimate, causing the carryover test to ruin the operating
characteristics of the treatment test

5.14.6

Bayesian Analysis

� Reasonable to put prior knowledge on parameters, especially carryover event

� Reasonable to restrict carryover effect to be less than the treatment effect

https://www.amazon.com/Cross-over-Trials-Clinical-Research-Stephen/dp/0471496537
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� For related discussions and references for Bayesian crossover analysis see
bit.ly/datamethods-bbr7

http://bit.ly/datamethods-bbr7


Chapter 6

Comparing Two Proportions

6.1

Overview

� Compare dichotomous independent variable with a dichotomous outcome

– Independent variables: Exposed/Not, Treatment/Control, Knockout/Wild Type,
etc.

– Outcome (dependent) variables: Diseased/Not or any Yes/No outcome

� Continuous outcomes often dichotomized for analysis (bad idea)

– Consider t-tests (Chapter 5) or Non-parameteric methods (Chapter 7)

6-1

http://bit.ly/yt-bbr8
http://bit.ly/datamethods-bbr8
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6.2

Normal-Approximation Test

� Two independent samples

Sample 1 Sample 2
Sample size n1 n2
Population probability of event p1 p2
Sample probability of event p̂1 p̂2

� Null Hypothesis, H0 : p1 = p2 = p

� Estimating the variance

– Variance of p̂i = pi(1− pi)/ni for i = 1, 2

– Variance of (p̂1 − p̂2) is the sum of the variances, which under H0 is

p(1− p)[ 1
n1

+ 1
n2

]

– We estimate this variance by plugging p̂ into p, where

p̂ = n1p̂1 + n2p̂2

n1 + n2

is the pooled estimate of the probability under H0 : p1 = p2 = p

� Test statistic which has approximately a normal distribution under H0 if nip̂i are
each large enough:

z = p̂1 − p̂2√
p̂(1− p̂)[ 1

n1
+ 1

n2
]

� To test H0 we see how likely it is to obtain a z value as far or farther out in the
tails of the normal distribution than z is

� We don’t recommend using the continuity correction

� Example:
Test whether the population of women whose age at first birth ≤ 29 has the same
probability of breast cancer as women whose age at first birth was ≥ 30. This
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dichotomization is highly arbitrary and we should really be testing for an association
between age and cancer incidence, treating age as a continuous variable.

� Case-control study (independent and dependent variables interchanged); p1 = prob-
ability of age at first birth ≥ 30, etc.

with Cancer without Cancer
Total # of subjects 3220(n1) 10245(n2)
# age ≥ 30 683 1498

Sample probabilities 0.212(p̂1) 0.146(p̂2)

Pooled probability 683+1498
3220+10245 = 0.162

� Estimate the variance

– variance(p̂1 − p̂2) = p̂(1− p̂)×
[

1
n1

+ 1
n2

]
= 5.54× 10−5

– SE =
√

variance = 0.00744

� Test statistic

– z = 0.212−0.146
0.00744 = 8.85

� 2-tailed P -value is < 10−4

n1 ← 3220; n2 ← 10245

p1 ← 683 / n1; p2 ← 1498 / n2

pp ← (n1 * p1 + n2 * p2) / (n1 + n2)

se ← sqrt(pp * (1 - pp) * (1 / n1 + 1 / n2))

z ← (p1 - p2) / se

pval ← 2 * (1 - pnorm(abs(z)))

round(c(p1=p1, p2=p2, pooled=pp, se=se, z=z, pval=pval), 4)

p1 p2 pooled se z pval

0.2121 0.1462 0.1620 0.0074 8.8527 0.0000

� We do not use a t-distribution because there is no σ to estimate (and hence no
“denominator d.f.” to subtract)
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6.3

χ2 Test

� If z has a normal distribution, z2 has a χ2 distribution with 1 d.f. (are testing a
single difference against zero)

� The data we just tested can be shown as a 2× 2 contingency table

Cancer + Cancer -
Age ≤ 29 2537 8747 11284
Age ≥ 30 683 1498 2181

3220 10245 13465

� In general, the χ2 test statistic is given by

∑
ij

(Obsij − Expij)2

Expij

� Obsij is the observed cell frequency for row i column j

� Expij is the expected cell frequency for row i column j

– Expected cell frequencies calculating assuming H0 is true

– Expij = row i total×column j total
grand total

– e.g. Exp11 = 11284×3220
13465 = 2698.4

� For 2 × 2 tables, if the observed cell frequencies are labeled
a b

c d
the χ2 test

statistic simplifies to
N [ad− bc]2

(a + c)(b + d)(a + b)(c + d) ,

where N = a + b + c + d. Here we get χ2
1 = 78.37

� 78.37 is z2 from above!
x ← matrix(c(2537, 8747, 683, 1498) , nrow=2, byrow=TRUE)

x
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[,1] [,2]

[1,] 2537 8747

[2,] 683 1498

chisq.test(x, correct=FALSE)

Pearson ’s Chi -squared test

data: x

X-squared = 78.37, df = 1, p-value < 2.2e-16

# A l s o c o m p u t e m o r e a c c u r a t e P - v a l u e b a s e d o n 1 M M o n t e - C a r l o s i m u l a t i o n s

chisq.test(x, correct=FALSE , simulate.p.value=TRUE , B=1e6)

Pearson ’s Chi -squared test with simulated p-value (based on 1e+06

replicates)

data: x

X-squared = 78.37, df = NA, p-value = 1e-06

� Don’t need Yates’ continuity correction

� Note that even though we are doing a 2-tailed test we use only the right tail of the
χ2

1 distribution; that’s because we have squared the difference when computing the
statistic, so the sign is lost.

� This is the ordinary Pearson χ2 test
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6.4

Fisher’s Exact Test

� Is a misnomer in the sense that it computes probabilities exactly, with no normal
approximation, but only after changing what is being tested to condition on the
number of events and non-events

� Because frequencies are discrete and because of the conditioning, the test is con-
servative (P -values too large)

� Is exact only in the sense that actual type I error probability will not exceed the
nominal level

� The ordinary Pearson χ2 works fine (even when an expected cell frequency is as
low as 1.0, contrary to popular belief)

� We don’t use Yates’ continuity correction because it was developed to make the
normal approximation test yield P -values that are more similar to Fisher’s test, i.e.,
to be more conservative

� The attempt to obtain exact unconditional P -values for the simple 2×2 contingency
table has stumped frequentist statisticians for many decades17

� By contrast, Bayesian posterior probabilities for the true unconditional quantity of
interest are exact

– Frequentist confidence limits and P -values are approximate because they use
the sample space, and the sample space is discrete when the response variable
is categorical

– Bayes does not consider the sample space, only the parameter space, which is
almost always continuous

� See stats.stackexchange.com/questions/14226 for discussion

https://stats.stackexchange.com/questions/14226
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6.5

Sample Size and Power for Comparing Two
Independent Samples

� Power ↑ as

– n1, n2 ↑

– n2
n1
→ 1.0 (usually)

– ∆ = |p1 − p2| ↑

– α ↑

� There are approximate formulas such as the recommended methods in Altman
based on transforming p̂ to make it have a variance that is almost independent of
p

� Example:

Using current therapy, 0.5 of the population is free of infection at 24 hours. Adding
a new drug to the standard of care is expected to increase the percentage infection-
free to 0.7. If we randomly sample 100 subjects to receive standard care and 100
subjects to receive the new therapy, what is the probabilty that we will be able to
detect a certain difference between the two therapies at the end of the study?

p1 = .5, p2 = .7, n1 = n2 = 100

results in a power of 0.83 when α = 0.05
require(Hmisc)

bpower(.5, .7, n1=100, n2=100)

Power

0.8281098

� When computing sample size to achieve a given power, the sample size ↓ when

– power ↓
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– n2
n1
→ 1.0

– ∆ ↑

– α ↑

� Required sample size is a function of both p1 and p2

� Example:

How many subjects are needed to detect a 0.8 fold decrease in the probability of
colorectal cancer if the baseline probability of cancer is 0.0015? Use a power of 0.8
and a type-I error probability of 0.05.

p1 = 0.0015, p2 = 0.8× p1 = 0.0012, α = 0.05, β = 0.2
n1 = n2 = 235, 147

(Rosner estimated 234,881)

bsamsize(.0015 , 0.8 * .0015 , alpha=0.05 , power=0.8)

n1 n2

235147.3 235147.3

Formulas for power and sample size may be seen as R code found at
github.com/harrelfe/Hmisc/blob/master/R/bpower.s.

https://github.com/harrelfe/Hmisc/blob/master/R/bpower.s
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6.6

Confidence Interval

An approximate 1− α 2-sided CL is given by

p̂1 − p̂2 ± z1−α/2 ×
√√√√ p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2

where z1−α/2 is the critical value from the normal distribution (1.96 when α = 0.05).

The CL for the number of patients needed to be treated to save one event may simply
be obtained by taking the reciprocal of the two confidence limits.a

aIf a negative risk reduction is included in the confidence interval, set the NNT to∞ for that limit instead of quoting a negative NNT. There
is more to this; see bit.ly/datamethods-nnt.

http://bit.ly/datamethods-nnt


CHAPTER 6. COMPARING TWO PROPORTIONS 6-10

6.7

Sample Size for a Given Precision

� Goal: Plan a study so that the margin of error is sufficiently small

� The margin of error (δ) is defined to be half of the confidence interval width. For
two proportions,

δ = z1−α/2 ×
√√√√ p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2

� Basing the sample size calculations on the margin of error can lead to a study that
gives scientifically relevant results even if the results are not statistically significant.

� Example: Suppose that the infection risk in a population is 0.5 and a reduction to
0.4 is believed to be a large enough reduction that it would lead to a change in
procedures. A study of a new treatment is planned so that enough subjects will be
enrolled for the margin of error is 0.05. Consider these two possible outcomes:

1. The new treatment is observed to decrease infections by 0.06 (0.95 CI: [0.11, 0.01]).
The confidence interval does not contain 0, so we have indirect evidenceb that
the new treatment is effective at reducing infections. 0.1 is also within the
confidence interval limits.

2. The new treatment is observed to decrease infections by only 0.04 (0.95 CI:
[0.09,−0.01]). The confidence interval now contains 0, so we do not have
enough evidence to reject the supposition that there is no effect of the treatment
on reducing infections if we are bound to an arbitrary α = 0.05. However, the
confidence interval also does not contain 0.10, so we are able to indirectly rule
out a scientifically relevant decrease in infections.

� For fixed n1 = n2 = n, confidence intervals for proportions have the maximum
width, when p1 = p2 = 0.5. This can be shown by:

– Recall that the variance formula for the difference in two proportions when
calculating a confidence interval is

p1(1− p1)
n1

+ p2(1− p2)
n2

bTo obtain direct evidence requires Bayesian posterior probabilities.
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– When p1 = p2 = p and n1 = n2 = n, the variance formula simplifies to

p(1− p)
n

+ p(1− p)
n

= 2p(1− p)
n

– Then, for any fixed value of n (e.g.n = 1 or 10), 2p(1−p)
n is largest when p = 0.5.

With p = 0.5, the variance formula further simplifies to

2 .25
n

= 1
2n

� Using α = 0.05 (z1−α/2 = 1.96), the worst-case margin of error will be

δ = 1.96
√√√√ 1

2n

� By solving for n, we can rearrange this formula to be

n = 1.92
δ2

� This formula then gives the number of subjects needed in each group n to obtain a
given margin of error δ. For a margin of error of 0.05 (δ = 0.05), n = 1.92

0.052 = 768
subjects in each group.
diff ← .05

qnorm(.975)∧2 / 2 / (diff ∧ 2)

[1] 768.2918
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6.8

Relative Effect Measures

� We have been dealing with risk differences which are measures of absolute effect

� Measures of relative effect include risk ratios and odds ratios

� Risk ratios are easier to interpret but only are useful over a limited range of prognosis
(i.e., a risk factor that doubles your risk of lung cancer cannot apply to a subject
having a risk above 0.5 without the risk factor)

� Odds ratios can apply to any subject

� In large clinical trials treatment effects on lowering probability of an event are often
constant on the odds ratio scale

� OR = Odds ratio =
p1

1−p1
p2

1−p2

� Testing H0: OR=1 is equivalent to testing H0 : p1 = p2

� There are formulas for computing confidence intervals for odds ratios

� Odds ratios are most variable when one or both of the probabilities are near 0 or 1

� We compute CLs for ORs by anti-logging CLs for the log OR

� In the case where p1 = p2 = 0.05 and n1 = n2 = n, the standard error of the log
odds ratio is approximately

√42.1
n

� The common sample size n needed to estimate the true OR to within a factor of
1.5 is 984 with ps in this range

� To show the multiplicative margins of errorc for a range of sample sizes and values
cValue by which to multiply the observed odds ratio to obtain the upper 0.95 confidence limit or to divide the observed odds ratio to obtain

the lower 0.95 limit. The confidence interval for a ratio should always be constructed on the log scale (unless using the excellent profile likelihood
interval which is transformation-invariant). We compute the margin of error on the log ratio scale just as we do for means. The margin of error
can be defined as 1

2 of the width of the confidence interval for the log ratio. If you antilog that margin of error you get the multiplicative factor,
i.e., the multiplicative margin of error. Suppose that the MMOE is 1.5. This means that you can get the 0.95 confidence interval for the ratio
by taking the ratio’s point estimate and dividing it by 1.5 and then multiplying it by 1.5. You can loosely say that our point estimate can easily
be off by a factor of 1.5.
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of p. For each scenario, the margin of error assumes that both unknown probability
estimates equal p.

require(ggplot2)

d ← expand.grid(n=c(seq(10, 1000, by=10), seq(1100, 50000, by=100)),

p=c(.02 , .05 , .075 , .1, .15 , .2 , .25 , .3, .4, .5))

d$selor ← with(d, sqrt(2 / (p * (1 - p) * n)))

d$mmoe ← with(d, exp(qnorm(0.975) * selor))

mb ← c(1, 1.25 , 1.5, 2, 2.5, 3, 4, 5, 10, 20, 30, 40, 50, 100, 400)

ggplot(aes(x=n, y=mmoe , color=factor(p)), data=d) + # F i g . 6.1

geom_line () +

scale_x_log10(breaks=c(10 ,20 ,30 ,50 ,100 ,200 ,500 ,1000 ,2000 ,5000 ,10000 ,

20000 ,50000)) +

scale_y_log10(breaks=mb, labels=as.character(mb)) +

xlab(expression(n)) + ylab(’Multiplicative Margin of Error for OR’) +

guides(color=guide_legend(title=expression(p)))
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Figure 6.1: Multiplicative margin of error related to 0.95 confidence limits of an odds ratio, for varying n and p (different curves),
assuming the unknown true probability in each group is no lower than p
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6.9

Comprehensive example

6.9.1

Study Description

� Consider patients who will undergo coronary artery bypass graft surgery (CABG)

� Mortality risk associated with open heart surgery

� Study question: Do emergency cases have a surgical mortality that is different from
that of non-emergency cases?

� Population probabilities

– p1: Probability of death in patients with emergency priority

– p2: Probability of death in patients with non-emergency priority

� Statistical hypotheses

– H0 : p1 = p2 (or OR = 1)

– H1 : p1 ̸= p2 (or OR ̸= 1)

6.9.2

Power and Sample Size

� Prior research shows that just over 0.1 of surgeries end in death

� Researchers want to be able to detect a 3 fold increase in risk

� For every 1 emergency priority, expect to see 10 non-emergency

� p1 = 0.3, p2 = 0.1, α = 0.05, and power = 0.90
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� Calculate sample sizes using the PS software for these values and other combina-
tions of p1 and p2

(p1, p2) (0.3, 0.1) (0.4, 0.2) (0.03, 0.01) (0.7, 0.9)
n1 40 56 589 40
n2 400 560 5890 400

Check PS calculations against the R Hmisc package’s bsamsize function.
round(bsamsize(.3, .1, fraction =1/11, power=.9))

n1 n2

40 399

round(bsamsize(.4, .2, fraction =1/11, power=.9))

n1 n2

56 561

round(bsamsize(.7, .9, fraction =1/11, power=.9))

n1 n2

40 399

6.9.3

Collected Data

In-hospital mortality figures for emergency surgery and other surgery

Discharge Status
Surgical Priority Dead Alive
Emergency 6 19
Other 11 100

� p̂1 = 6
25 = 0.24

� p̂2 = 11
111 = 0.10

6.9.4

Statistical Test
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n1 ← 25; n2 ← 111

p1 ← 6 / n1; p2 ← 11 / n2

or ← p1 / (1 - p1) / (p2 / (1 - p2))

or

[1] 2.870813

# S t a n d a r d e r r o r o f l o g o d d s r a t i o :

selor ← sqrt(1 / (n1 * p1 * (1 - p1)) + 1 / (n2 * p2 * (1 - p2)))

# G e t 0 . 9 5 c o n f i d e n c e l i m i t s

cls ← exp(log(or) + c(-1, 1) * qnorm(0.975) * selor)

cls

[1] 0.946971 8.703085

tcls ← paste0(round(or, 2), ’ (0.95 CI: [’, round(cls[1], 2),

’, ’, round(cls[2], 2), ’])’)

# M u l t i p l y i n g a c o n s t a n t b y t h e v e c t o r -1 , 1 d o e s +/ -

x ← matrix(c(6, 19, 11, 100), nrow=2, byrow=TRUE)

x

[,1] [,2]

[1,] 6 19

[2,] 11 100

chisq.test(x, correct=FALSE)

Pearson ’s Chi -squared test

data: x

X-squared = 3.7037 , df = 1, p-value = 0.05429

� Interpretation

– Compare odds of death in the emergency group
(

p̂1
1−p̂1

)
to odds of death in

non-emergency group
(

p̂2
1−p̂2

)

– Emergency cases have 2.87 (0.95 CI: [0.95, 8.7]) fold increased odds of death
during surgery compared to non-emergency cases.
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Fisher’s Exact Test

Observed marginal totals from emergency surgery dataset
Dead Alive

Emergency a b 25
Other c d 111

17 119 136

� With fixed marginal totals, there are 18 possible tables (a = 0, 1, . . . 17)

� Can calculated probability of each of these tables

– p-value: Probability of observing data as extreme or more extreme than we
collected in this experiment

� Exact test: p-value can be calculated “exactly” (not using the χ2 distribution to
approximate the p-value)

fisher.test(x)

Fisher ’s Exact Test for Count Data

data: x

p-value = 0.08706

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.7674155 9.6831351

sample estimates:

odds ratio

2.843047

Note that the odds ratio from Fisher’s test is a conditional maximum likelihood
estimate, which differs from the unconditional maximum likelihood estimate we
obtained earlier.

� Fisher’s test more conservative than Pearson’s χ2 test (larger P -value)
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6.10

Logistic Regression for Comparing Propor-
tions

� When comparing ≥ 2 groups on the probability that a categorical outcome variable
will have a certain value observed (e.g., P (Y = 1)), one can use the Pearson χ2

test for a contengency table (or the less powerful Fisher’s“exact” test)

� Such analyses can also be done with a variety of regression models

� It is necessary to use a regression model when one desires to analyze more than
the grouping variable, e.g.

– analyze effects of two grouping variables

– adjust for covariates

� For full generality, the regression model needs to have no restrictions on the regres-
sion coefficients

– Probabilities are restricted to be in the interval [0, 1] so an additive risk model
cannot fit over a broad risk range

– Odds ( p
1−p) are restricted to be in [0,∞]

– Log odds have no restrictions since they can be in [−∞,∞]

� So log odds is a good basis for regression analysis of categorical Y

– default assumption of additivity of effects needs no restrictions

– will still translate to probabilities in [0, 1]

� The binary logistic regression model is a model to estimate the probability of an
event as a flexible function of covariates

http://bit.ly/yt-bbr9
http://bit.ly/datamethods-bbr9
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� Let the outcome variable Y have the values Y = 0 (non-event) or Y = 1 (event)

Prob(Y = 1|X) = 1
1 + exp(−(β0 + β1x1 + β2x2 + β3x3 + . . .)) (6.1)

� The sum inside the inner () is called the linear predictor (LP)

� The binary logistic model relates LP (with no restrictions) to the event probability
as so:
lp ← seq(-5, 5, length =150)

plot(lp, plogis(lp), xlab=’Linear Predictor ’, ylab=’P(Y=1)’, type=’l’)
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� Notes about LP:

– for a given problem the range may be much narrower than [−4, 4]

– when any predictor Xj with a non-zero βj is categorical, LP cannot take on all
possible values within its range, so the above plot will have gaps

� As a special case the model can estimate and compare two probabilities as done
above, through an odds ratio

� Logistic regression seems like an overkill here, but it sets the stage for more complex
frequentist analysis as well as Bayesian analysis

� For our case the model is as follows

� Consider groups A and B, A = reference group
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[x] denotes 1 if x is true, 0 if x is false
Define the expit function as the inverse of the logit function, or expit(x) = 1

1+exp(−x)

P (Y = 1|group) = 1
1 + exp(−(β0 + β1[group B]))

= expit(β0 + β1[group B])
P (Y = 1|group A) = expit(β0)
P (Y = 1|group B) = expit(β0 + β1)

β0 = log odds of probability of event in group A = log( p1
1−p1

) = logit(p1)
β1 = increase in log odds in going from group A to group B =
log( p2

1−p2
)− log( p1

1−p1
) = logit(p2)− logit(p1)

exp(β1) = group B : group A odds ratio =
p2

1−p2
p1

1−p1
expit(β0) = p1
expit(β0 + β1) = p2

� Once the βs are estimated, one quickly gets the B:A odds ratio and p̂1 and p̂2

� This model is saturated

– has the maximum number of parameters needed to fully describe the situation
(here, 2 since 2 groups)

– saturated models must fit the data if the distributional and independence as-
sumptions are met

– logistic model has no distributional assumption

� Logistic regression is more general and flexible than the specialized tests for pro-
portions

– allows testing association on continuous characteristics

– easily extends to more than two groups

– allows adjustment for covariates

� Examples:
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– assess effects of subjects’ sex and country (Canada vs. US) on P (Y = 1)
denoted by p
logit p = constant + logit male effect + logit Canada effect

– same but allow for interaction
logit p = constant + logit male effect + logit Canada effect + special effect
of being male if Canadian

– latter model is saturated with 3 d.f. so fits as well as a model with 4 proportions

* unlike the overall Pearson χ2 test, allows testing interaction and

* separate effects of sex and country (e.g., 2 d.f. chunk test for whether there
is a sex difference for either country, allowing for the sex effect to differ by
country)

6.10.1

Test Statistics

For frequentist logistic models there are 3 types of χ2 test statistics for testing the same
hypothesis:

� likelihood ratio (LR) test (usually the most accurate) and is scale invariantd

– Can obtain the likelihood ratio χ2 statistic from either the logistic model or
from a logarithmic equation in the two proportions and sample sizes

� Score test (identical to Pearson test for overall model if model is saturated)

� Wald test (square of β̂
s.e. in the one parameter case; misbehaves for extremely large

effects)

� Wald test is the easiest to compute but P -values and confidence intervals from it
are not as accurate. The score test is the way to exactly reproduce the Pearson χ2

statistic from the logistic model.

� As with t-test vs. a linear model, the special case tests are not needed once you
use the logistic model framework

dThe LR test statistic is the same whether testing for an absolute risk difference of 0.0, or for an odds or risk ratio of 1.0.
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� Three usages of any of these test statistics:

– individual test, e.g. sex effect in sex-country model without interaction

– chunk test, e.g. sex + sex × country interaction 2 d.f. test
tests overall sex effect

– global test of no association, e.g. 3 d.f. test for whether sex or country is
associated with Y

6.10.2

Frequentist Analysis Example

� Consider again our emergency surgery example

� String the observations out to get one row = one patient, binary Y

require(rms)

options(prType=’latex ’)

priority ← factor(c(rep(’emergency ’, 25), rep(’other’, 111)), c(’other’, ’

emergency ’))

death ← c(rep(0, 19), rep(1, 6), rep(0, 100), rep(1, 11))

table(priority , death)

death

priority 0 1

other 100 11

emergency 19 6

d ← data.frame(priority , death)

dd ← datadist(d); options(datadist=’dd’)

# r m s p a c k a g e n e e d s c o v a r i a t e s u m m a r i e s c o m p u t e d b y d a t a d i s t

f ← lrm(death ∼ priority)

f

Logistic Regression Model

lrm(formula = death ~ priority)
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Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 136 LR χ2 3.20 R2 0.044 C 0.597
0 119 d.f. 1 g 0.319 Dxy 0.193
1 17 Pr(> χ2) 0.0737 gr 1.375 γ 0.483

max |∂ log L
∂β | 4×10−9 gp 0.043 τa 0.043

Brier 0.106

β̂ S.E. Wald Z Pr(> |Z|)
Intercept -2.2073 0.3177 -6.95 <0.0001
priority=emergency 1.0546 0.5659 1.86 0.0624

� Compare the LR χ2 of 3.2 with the earlier Pearson χ2 of 3.70

� The likelihood ratio (LR) χ2 test statistic and its P -value are usually a little more
accurate than the other association tests

– but χ2 distribution is still only an approximation to the true sampling distribu-
tion

� See that we can recover the simple proportions from the fitted logistic model:
p̂1 = 11

111 = 0.099 = expit(−2.2073)
p̂2 = 6

25 = 0.24 = expit(−2.2073 + 1.0546)

summary(f)

Low High ∆ Effect S.E. Lower 0.95 Upper 0.95

priority — emergency:other 1 2 1.0546 0.56587 -0.054487 2.1637
Odds Ratio 1 2 2.8708 0.946970 8.7031

� The point estimate and CLs for the odds ratio is the same as what we obtained
earlier.

Add a random binary variable to the logistic model—one that is correlated with the
surgical priorty—to see the effect on the estimate of the priority effect
set.seed (10)

randomUniform ← runif(length(priority))



CHAPTER 6. COMPARING TWO PROPORTIONS 6-25

random ← ifelse(priority == ’emergency ’, randomUniform < 1/3,

randomUniform > 1/3) * 1

d$random ← random

table(priority , random)

random

priority 0 1

other 39 72

emergency 17 8

lrm(death ∼ priority + random)

Logistic Regression Model

lrm(formula = death ~ priority + random)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 136 LR χ2 6.03 R2 0.082 C 0.659
0 119 d.f. 2 g 0.638 Dxy 0.319
1 17 Pr(> χ2) 0.0489 gr 1.892 γ 0.464

max |∂ log L
∂β | 1×10−8 gp 0.073 τa 0.070

Brier 0.103

β̂ S.E. Wald Z Pr(> |Z|)
Intercept -1.6851 0.4157 -4.05 <0.0001
priority=emergency 0.7811 0.5909 1.32 0.1862
random -0.9319 0.5621 -1.66 0.0973

The effect of emergency status is diminished, and the random grouping variable, created
to have no relation to death in the population, has a large apparent effect.

6.10.3

Bayesian Logistic Regression Analysis

� Has several advantages

– All calculations are exact (to within simulation error) without changing the
model
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– Can incorporate external information

– Intuitive measures of evidence

– Automatically handles zero-frequency cells (priors shrink probabilities a bit away
from 0.0)

� Simple to use beta priors for each of the two probabilities

� But we’d need to incorporate a complex dependency in the two priors because we
know more about how the two probabilities relate to each other than we know
about each absolute risk

� Simpler to have a wide prior on p1 and to have a non-flat prior on the log odds
ratio

– could backsolve and show dependency between knowledge of p1 and p2

� Use the same data model as above

� As before we use the R brms package which makes standard modeling easy

� Need two priors: for intercept β0 and for log odds ratio β1

� β0: use a normal distribution that makes p1 = 0.05 the most likely value (put mean
at logit(0.05) = -2.944) and allows only a 0.1 chance that p1 > 0.2; solve for SD
σ that accomplishes that
# G i v e n m u a n d v a l u e , s o l v e f o r S D s o t h a t t h e t a i l a r e a o f t h e n o r m a l

d i s t r i b u t i o n b e y o n d v a l u e i s p r o b

normsolve ← function(mu, value , prob) (value - mu) / qnorm(1 - prob)

normsolve(qlogis (0.05), qlogis (0.2), 0.1) # q l o g i s i s R l o g i t ( )

[1] 1.215827

� We round σ to 1.216

� For β1 put a prior that has equal chance for OR < 1 as for OR > 1, i.e., mean for
log OR of zero
Put a chance of only 0.1 that OR > 3
normsolve(0, log(3), 0.1)
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[1] 0.8572517

� Round to 0.857

Compute the correlation between prior evidence for p1 and p2 by drawing 100,000
samples from the prior distributions. Also verify that prior probability p2 > p1 is 1

2 =
prob. OR > 1.
b0 ← rnorm (100000 , qlogis (0.05), 1.216)

b1 ← rnorm (100000 , 0, 0.857)

p1 ← plogis(b0)

p2 ← plogis(b0 + b1)

cor(b0, b1, method=’spearman ’)

[1] 0.003724938

cor(p1, p2, method=’spearman ’)

[1] 0.8066422

# D e f i n e f u n c t i o n s f o r p o s t e r i o r p r o b a b i l i t y o p e r a t o r a n d p o s t e r i o r m o d e

P ← mean # p r o p o r t i o n o f p o s t e r i o r d r a w s f o r w h i c h a c o n d i t i o n h o l d s

pmode ← function(x) {

z ← density(x)

z$x[which.max(z$y)]

}

P(p2 > p1)

[1] 0.50106

P(b1 > 0)

[1] 0.50106

P(exp(b1) > 1)

[1] 0.50106

To show that prior knowledge about p1 and p2 is uncorrelated when we don’t know
anything about the odds ratio, repeat the above calculation use a SD of 1000 for the
log odds ratio:
b1 ← rnorm (100000 , 0, 1000)

p2 ← plogis(b0 + b1)

cor(p1, p2, method=’spearman ’)

[1] 0.001448724
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Now do Bayesian logistic regression analysis.
require(brms)

# T e l l b r m s / S t a n t o u s e a l l a v a i l a b l e C P U c o r e s

options(mc.cores=parallel :: detectCores ())

p ← c(prior(normal(-2.944 , 1.216), class=’Intercept ’),

prior(normal(0, 0.857), class=’b’))

f ← brm(death ∼ priority , data=d, prior=p, family=’bernoulli ’, seed =123)

f

Family: bernoulli

Links: mu = logit

Formula: death ∼ priority

Data: d (Number of observations: 136)

Samples: 4 chains , each with iter = 2000; warmup = 1000; thin = 1;

total post -warmup samples = 4000

Population -Level Effects:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept -2.19 0.30 -2.78 -1.63 1.00 2789 2493

priorityemergency 0.72 0.51 -0.33 1.66 1.00 2655 2181

Samples were drawn using sampling(NUTS). For each parameter , Eff.Sample

is a crude measure of effective sample size , and Rhat is the potential

scale reduction factor on split chains (at convergence , Rhat = 1).

plot(f)
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# B r i n g o u t p o s t e r i o r d r a w s

w ← as.data.frame(f)

b0 ← w[, ’b_Intercept ’]

b1 ← w[, ’b_priorityemergency ’]

r ← rbind(c(mean(b0), median(b0), pmode(b0)),

c(mean(b1), median(b1), pmode(b1)),

c(mean(exp(b1)), median(exp(b1)), pmode(exp(b1))))

colnames(r) ← c(’Posterior Mean’, ’Posterior Median ’, ’Posterior Mode’)

rownames(r) ← c(’b0’, ’b1’, ’OR’)

round(r, 3)

Posterior Mean Posterior Median Posterior Mode

b0 -2.188 -2.184 -2.203

b1 0.724 0.748 0.865

OR 2.333 2.113 1.721

Because the prior on the OR is conservative, the Bayesian posterior mode for the OR
is smaller than the frequentist maximum likelihood estimate of 2.87.
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Below notice how easy it is to do Bayesian inference on derived quantities p1 and p2
which are functions of b0 and b1.
# 0 . 9 5 c r e d i b l e i n t e r v a l f o r l o g o d d s r a t i o a n d o d d s r a t i o

quantile(b1 , c(0.025 , 0.975))

2.5% 97.5%

-0.326236 1.656346

quantile(exp(b1), c(.025 , 0.975))

2.5% 97.5%

0.721635 5.240131

exp(quantile(b1, c(0.025 , 0.975)))

2.5% 97.5%

0.7216349 5.2401303

# P o s t e r i o r d e n s i t y o f e m e r g e n c y : o t h e r o d d s r a t i o

plot(density(exp(b1)), xlab=’OR’, main=’’)

abline(v=c(1, pmode(exp(b1))), col=gray(0.85))

# P r o b a b i l i t y t h a t O R > 1

P(exp(b1) > 1)

[1] 0.91875

# P r o b a b i l i t y i t i s > 1 . 5

P(exp(b1) > 1.5)

[1] 0.74925

# P r o b a b i l i t y t h a t r i s k w i t h e m e r g e n c y s u r g e r y e x c e e d s t h a t o f

# n o n - e m e r g e n c y ( s a m e a s P ( O R > 1 ) )

# p l o g i s i n R i s 1/ ( 1 + e x p ( - x ) )

P(plogis(b0 + b1) > plogis(b0))

[1] 0.91875

# P r o b . t h a t r i s k w i t h e m e r g e n c y s u r g e r y e l e v a t e d b y m o r e t h a n 0 . 0 3

P(plogis(b0 + b1) > plogis(b0) + 0.03)

[1] 0.8165
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Even though the priors for the intercept and log odds ratio are independent, the con-
nection of these two parameters in the data likelihood makes the posteriors dependent
as shown with Spearman correlations of the posterior draws below. Also get the cor-
relation between evidence for the two probabilities. These have correlated priors even
though they are unconnected in the likelihood function. Posteriors for p1 and p2 are
less correlated than their priors.
cor(b0, b1, method=’spearman ’)

[1] -0.4439781

cor(plogis(b0), plogis(b0 + b1), method=’spearman ’)

[1] 0.1385611

To demonstrate the effect of a skeptical prior:

� Add random grouping to model as we did with the frequentist analysis

� Make use of prior information that this variable is unlikely to be important

� Put a prior on the log OR for this variable centered at zero with chance that the
OR > 1.25 of only 0.05

normsolve(0, log(1.25), 0.05)

[1] 0.1356616
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p ← c(prior(normal(-2.944 , 1.216), class=’Intercept ’),

prior(normal(0, 0.857), class=’b’, coef=’priorityemergency ’),

prior(normal(0, 0.136), class=’b’, coef=’random ’))

f2 ← brm(death ∼ priority + random , data=d, prior=p, family=’bernoulli ’,

seed =121, refresh=FALSE)

f2

Family: bernoulli

Links: mu = logit

Formula: death ∼ priority + random

Data: d (Number of observations: 136)

Samples: 4 chains , each with iter = 2000; warmup = 1000; thin = 1;

total post -warmup samples = 4000

Population -Level Effects:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept -2.16 0.31 -2.82 -1.61 1.00 2804 2922

priorityemergency 0.71 0.50 -0.27 1.66 1.00 3614 3020

random -0.06 0.13 -0.31 0.19 1.00 3879 3110

Samples were drawn using sampling(NUTS). For each parameter , Eff.Sample

is a crude measure of effective sample size , and Rhat is the potential

scale reduction factor on split chains (at convergence , Rhat = 1).

� Effect of random is greatly discounted

� Posterior mean priority effect and its credible interval is virtually the same as the
model that excluded random

James Rae and Nils Reimer have written a nice tutorial on using the R brms package
for binary logistic regression available at bit.ly/brms-lrm

http://bit.ly/brms-lrm


Chapter 7

Nonparametric Statistical Tests

7.1

When to use non-parametric methods

� Short answer: Good default when P -values are needed and there are no covariates
to adjust for

� Nonparametric methods are those not requiring one to assume a certain distribution
for the raw data

– In contrast, parametric methods assume data come from some underlying dis-
tribution

– t-tests assume the data come form a Gaussian distribution

� Response variable ordinal or interval

� For ordinal responses nonparametric methods are preferred because they assume
no spacing between categories

� No problem in using nonparametric tests on interval data

– if normality holds, nonpar. test 0.95 efficient, i.e., has about the same power
as the parametric test done on 0.95 of the observationsa

– if normality does not hold, nonpar. tests can be arbitrarily more efficient and
aThe large-sample efficiency of the Wilcoxon and Spearman tests compared to t and r tests is 3

π
= 0.9549.

7-1

http://bit.ly/yt-bbr10
http://bit.ly/datamethods-bbr10
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powerful than the corresponding parametric test

– an elegant and non-arbitrary way to deal with extreme values or outliers

– rank-based nonparametric tests give the analyst freedom from having to choose
the correct transformation of the measurement (as long as the optimum trans-
formation is monotonic)

� Nonparametric methods are robust, many parametric methods are not

– Example: t-test comparing two sets of measurements
1 2 3 4 5 6 7 8 9 10 vs. 7 8 9 10 11 12 13 14 15 16 17 18 19 20
means: 5.5 and 13.5, P = 0.000019
1 2 3 4 5 6 7 8 9 10 vs. 7 8 9 10 11 12 13 14 15 16 17 18 19 20 200
means: 5.5 and 25.9, P = 0.12
The SD is a particularly non-robust statistical estimator.

� Example: Fecal calprotectin being evaluated as a possible biomarker of disease
severity (Figure 7.1)

– Calprotectin has an upper detection limit

– Median can be calculated (mean cannot)

� If all you want is a P -value nonpar. tests are preferred

– Especially if response is univariate and no need to adjust for covariates

� Pre-testing for normality and deciding nonparametric vs. parametric analysis is a
bad idea

– Tests for normality do not have a power of 1.0 and type I error of 0.0

– Leads to temptation, e.g., an investigator might “forget” to do the test of
normality if the t-test is significant

– Doesn’t acknowledge that nonparametric tests are very efficient even under
normality

– Pre-testing for normality alters the type I error and confidence interval coverage



CHAPTER 7. NONPARAMETRIC STATISTICAL TESTS 7-3

� A drawback is that nonpar. tests do not correspond to usual confidence limits for
effects

– E.g., a CL for the difference in 2 means may include zero whereas the Wilcoxon
test yields P = 0.01

– Point estimate that exactly corresponds to the Wilcoxon two-sample test is the
Hodges-Lehman estimate of the location difference

* median of all possible differences between a measurement from group 1 and
a measurement from group 2

� Nonparametric tests are often obtained by replacing the data with ranks across
subjects and then doing the parametric test

� Many nonpar. tests give the same P -value regardless of how the data are trans-
formed; a careful choice of transformation (e.g., log) must sometimes be used in
the context of parametric tests

� P -values computed using e.g. the t distribution are quite accurate for nonparametric
tests

� In case of ties, midranks are used, e.g., if the raw data were 105 120 120 121 the
ranks would be 1 2.5 2.5 4

Parametric Test Nonparametric Counterpart Semiparametric Model
Counterpart

1-sample t Wilcoxon signed-rank
2-sample t Wilcoxon 2-sample rank-sum Proportional odds
k-sample ANOVA Kruskal-Wallis Proportional odds
Pearson r Spearman ρ
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7.2

One Sample Test: Wilcoxon Signed-Rank

� Almost always used on paired data where the column of values represents differences
(e.g., post-pre) or log ratios

� The sign test is the simplest test for the median difference being zero in the pop-
ulation

– it just counts the number of positive differences after tossing out zero differences

– tests H0 :Prob[x > 0] = 1
2 , i.e., that it is equally likely in the population to

have a value below zero as it is to have a value above zero

– as it ignores magnitudes completely, the test is inefficient

� By contrast, with the much more powerful Wilcoxon signed rank one-sample test,
ranks of absolute differences are given the sign of the original difference

� Magnitudes of raw data matter more here than with the Wilcoxon 2-sample test

� Example: A crossover study in which the treatment order is randomized
Data arranged so that treatment A is in the first column, no matter which order
treatment A was given

A B B-A Rank |B− A| Signed Rank

5 6 1 1.5 1.5
6 5 -1 1.5 -1.5
4 9 5 4.0 4.0
7 9 2 3.0 3.0

� A good approximation to an exact P -value may be obtained by computing

z =
∑

SRi√∑
SR2

i

,

where the signed rank for observation i is SRi. This formula already takes ties into
account without using Rosner’s messy Eq. 9.5. We look up |z| against the normal
distribution. Here z = 7√

29.5 = 1.29 and and the 2-tailed P -value is given below.
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sr ← c(1.5, -1.5 , 4, 3)

z ← sum(sr) / sqrt(sum(sr ∧ 2))

pval ← 2 * (1 - pnorm(abs(z)))

c(z=z, pval=pval)

z pval

1.2888045 0.1974661

� If all differences are positive or all are negative, the exact 2-tailed P -value is 1
2n−1

– implies that n must exceed 5 for any possibility of significance at the α = 0.05
level for a 2-tailed test

7.2.1

One sample/Paired Test Example

� Sleep Dataset

– Compare the effects of two soporific drugs.

– Each subject receives placebo, Drug 1, and Drug 2

– Study question: Is Drug 1 or Drug 2 more effective at increasing sleep?

– Dependent variable: Difference in hours of sleep comparing Drug 2 to Drug 1

– H0 : For any given subject, the difference in hours of sleep is equally likely to
be positive or negative

– See P. 5-79 for a parametric test on these data

drug1 ← c(.7 , -1.6 , -.2 , -1.2 , -.1 , 3.4 , 3.7, .8, 0, 2)

drug2 ← c(1.9, .8, 1.1, .1, -.1 , 4.4, 5.5, 1.6, 4.6, 3.4)

wilcox.test(drug2 , drug1 , paired=TRUE)

Wilcoxon signed rank test with continuity correction

data: drug2 and drug1

V = 45, p-value = 0.009091

alternative hypothesis: true location shift is not equal to 0

wilcox.test(drug2 - drug1)
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Wilcoxon signed rank test with continuity correction

data: drug2 - drug1

V = 45, p-value = 0.009091

alternative hypothesis: true location is not equal to 0

wilcox.test(drug2 - drug1 , correct=FALSE)

Wilcoxon signed rank test

data: drug2 - drug1

V = 45, p-value = 0.007632

alternative hypothesis: true location is not equal to 0

sr ← c(3, 8, 4.5, 4.5 , 0, 2, 7, 1, 9, 6)

z ← sum(sr) / sqrt(sum(sr ∧ 2))

c(z=z, pval=2 * (1 - pnorm(abs(z))))

z pval

2.667911250 0.007632442

d ← data.frame(Drug=c(rep(’Drug 1’, 10), rep(’Drug 2’, 10),

rep(’Difference ’, 10)),

extra=c(drug1 , drug2 , drug2 - drug1))

� Interpretation: Reject H0, Drug 2 increases sleep by the same hours as Drug 1
(p = 0.008)

� Could also perform sign test on sleep data

– If drugs are equally effective, should have same number of ‘+’ and ’-’

– Observed data: 0 ‘-’, 9 ‘+’, throw out 1 ‘no change’

Subject Drug 1 Drug 2 Diff (2-1) Sign Rank
1 0.7 1.9 1.2 + 3
2 −1.6 0.8 2.4 + 8
3 −0.2 1.1 1.3 + 4.5
4 −1.2 0.1 1.3 + 4.5
5 −0.1 −0.1 0.0 NA
6 3.4 4.4 1.0 + 2
7 3.7 5.5 1.8 + 7
8 0.8 1.6 0.8 + 1
9 0.0 4.6 4.6 + 9
10 2.0 3.4 1.4 + 6

Table 7.1: Hours of extra sleep on drugs 1 and 2, differences, signs and signed ranks of sleep study data
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– Sign test (2-sided) P -value: Probability of observing 9 of 9 + or 9 of 9 -

– p = 0.004, so evidence against H0

2 * (1 / 2) ∧ 9 # 2 * t o m a k e i t t w o - t a i l e d

[1] 0.00390625

� The signed rank test assumes that the distribution of differences is symmetric

� It tests whether the median difference is zero

� Also tests that the mean is zero

� In general it tests that, for two randomly chosen observations i and j with values
(differences) xi and xj, that the probability that xi + xj > 0 is 1

2

� The estimator that corresponds exactly to the test in all situations is the pseudo-
median, the median of all possible pairwise averages of xi and xj, so one could say
that the signed rank test tests H0: pseudomedian=0

� The value SR
n+1−

1
2 estimates the probability that two randomly chosen observations

have a positive sum, where SR is the mean of the column of signed ranks

� To test H0 : η = η0, where η is the population median (not a difference) and η0 is
some constant, we create the n values xi − η0 and feed those to the signed rank
test, assuming the distribution is symmetric

� When all nonzero values are of the same sign, the test reduces to the sign test and
the 2-tailed P -value is (1

2)n−1 where n is the number of nonzero values

Test whether the continuity correction makes P -values closer to the exact calculationb,
and compare to our simple formula.
# A s s u m e w e a r e a l r e a d y s t a r t i n g w i t h s i g n e d r a n k s a s x

wsr ← function(x, ...) wilcox.test(x, ...)$p.value

sim ← function(x) {

z ← sum(x) / sqrt(sum(x ∧ 2))

2 * (1 - pnorm(abs(z))) }

all ← function(x) round(c(

continuity=wsr(x, correct=TRUE , exact=FALSE),

bThe exact P -value is available only when there are no ties.
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nocontinuity=wsr(x, correct=FALSE , exact=FALSE),

exact=wsr(x, exact=TRUE),

simple=sim(x)), 4)

all (1:4)

continuity nocontinuity exact simple

0.1003 0.0679 0.1250 0.0679

all(c(-1, 2 : 4))

continuity nocontinuity exact simple

0.2012 0.1441 0.2500 0.1441

all(c(-2, c(1, 3, 4)))

continuity nocontinuity exact simple

0.3613 0.2733 0.3750 0.2733

all(c(-1, -2, 3 : 5))

continuity nocontinuity exact simple

0.2807 0.2249 0.3125 0.2249

all(c(-5, -1, 2, 3, 4, 6))

continuity nocontinuity exact simple

0.4017 0.3454 0.4375 0.3454

From these examples the guidance is to:

� Use the exact calculation if there are no ties

� Otherwise use the continuity correction (i.e., the default in wilcox.test) unlike the
recommendation for the Pearson χ2 test
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7.3

Two Sample Test: Wilcoxon–Mann–Whitney

� The Wilcoxon–Mann–Whitney (WMW) 2-sample rank sum test is for testing for
equality of central tendency of two distributions (for unpaired data)

� Ranking is done by combining the two samples and ignoring which sample each
observation came from

� Example:

Females 120 118 121 119
Males 124 120 133

Ranks for Females 3.5 1 5 2
Ranks for Males 6 3.5 7

� Doing a 2-sample t-test using these ranks as if they were raw data and computing
the P -value against 4+3-2=5 d.f. will work quite well

� Some statistical packages compute P -values exactly (especially if there are no ties)

� Loosely speaking the WMW test tests whether the population medians of the two
groups are the same

� More accurately and more generally, it tests whether observations in one population
tend to be larger than observations in the other

� Letting x1 and x2 respectively be randomly chosen observations from populations
one and two, WMW tests H0 : c = 1

2 , where c =Prob[x1 > x2]

� The c index (concordance probability) may be estimated by computing

c = R̄− n1+1
2

n2
,

where R̄ is the mean of the ranks in group 1;
For the above data R̄ = 2.875 and c = 2.875−2.5

3 = 0.125, so we estimate that
the probability is 0.125 that a randomly chosen female has a value greater than a
randomly chosen male.
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� In diagnostic studies where x is the continuous result of a medical test and the
grouping variable is diseased vs. non-diseased, c is the area under the receiver
operating characteristic (ROC) curve

� Test still has the “probability of ordering” interpretation when the variances of the
two samples are markedly different, but it no longer tests anything like the difference
in population medians

If there is no overlap between measurements from group 1 and those from group 2, the
exact 2-sided P -value for the Wilcoxon test is 2/ n!

n1!n2! . If n1 = n2, n1 must be ≥ 4 to
obtain P < 0.05 (in this case P = 0.029).

7.3.1

Two Sample WMW example

� Fecal calprotectin being evaluated as a possible biomarker of disease severity

� Calprotectin measured in 26 subjects, 8 observed to have no/mild activity by en-
doscopy

� Calprotectin has upper detection limit at 2500 units

– A type of missing data, but need to keep in analysis

� Study question: Are calprotectin levels different in subjects with no or mild activity
compared to subjects with moderate or severe activity?

� Statement of the null hypothesis

– H0 : Populations with no/mild activity have the same distribution of calpro-
tectin as populations with moderate/severe activity

– H0 : c = 1
2

# F e c a l C a l p r o t e c t i n : 2 5 0 0 i s a b o v e d e t e c t i o n l i m i t

calpro ← c(2500, 244, 2500, 726, 86, 2500, 61, 392, 2500, 114, 1226,

2500, 168, 910, 627, 2500, 781, 57, 483, 30, 925, 1027,

2500, 2500, 38, 18)

# E n d o s c o p y s c o r e : 1 = N o / M i l d , 2 = M o d / S e v e r e D i s e a s e

# W o u l d h a v e b e e n f a r b e t t e r t o c o d e d o s e a s 4 o r d i n a l l e v e l s
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endo ← c(2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2,

2, 2, 2, 2, 2, 1, 1)

endo ← factor(endo , 1 : 2,

c("No or Mild Activity", "Moderate or Severe Activity"))

require(ggplot2) # F i g . 7.1

ggplot(data.frame(endo , calpro), aes(y=calpro , x=endo)) +

geom_boxplot(color=’lightblue ’, alpha=.85 , width=.4) +

geom_dotplot(binaxis=’y’, stackdir=’center ’, position=’dodge’) +

xlab(’’) + ylab(’Fecal Calprotectin ’) + coord_flip () +

geom_hline(aes(yintercept =2500, col=I(’red’)), linetype=’dotted ’)

wilcox.test(calpro ∼ endo)

Wilcoxon rank sum test with continuity correction

data: calpro by endo

W = 23.5, p-value = 0.006814

alternative hypothesis: true location shift is not equal to 0

●
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●
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●
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No or Mild Activity

Moderate or Severe Activity

0 1000 2000
Fecal Calprotectin

Figure 7.1: Fecal calprotectin by endoscopy severity rating. Red dotted line is the detection limit. Ordinal disease categories should
not have been combined.

The following plots the ranks that are used in the Wilcoxon-Mann-Whitney two-sample
rank sum test.
ggplot(data.frame(endo , calpro), aes(y=rank(calpro), x=endo)) + # F i g 7.2

geom_dotplot(binaxis=’y’, stackdir=’center ’, position=’dodge’) +

xlab(’’) + ylab(’Rank of Fecal Calprotectin ’) + coord_flip ()

� Test statistic W equals the sum of the ranks in the no/mild group minus n1 ∗ (n1 +
1)/2, where n1 is the number of subjects in then no/mild sample

� W = 59.5− 8∗9
2 = 23.5
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Figure 7.2: Ranks of calprotectin

� A common (but loose) interpretation: People with moderate/severe activity have
higher median fecal calprotectin levels than people with no/mild activity (p =
0.007).

� Better: remove median and supplement with the c-index (concordance probability)
or Somers’ Dxy rank correlation between calprotectin and endoscopy status. The
code for the R somers2 function shows how the concordance probability is computed
from the mean of the ranks in one of the two groups.

require(Hmisc)

# C o n v e r t e n d o t o a b i n a r y v a r i a b l e

somers2(calpro , endo==’Moderate or Severe Activity ’)

C Dxy n Missing

0.8368056 0.6736111 26.0000000 0.0000000

If you type somers2 to list the code for the function you will see that the c-index is
tightly related to the Wilcoxon test when you see this code:
mean.rank ← mean(rank(x)[y == 1])

c.index ← (mean.rank - (n1 + 1)/2) / (n - n1)
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7.3.2

Point and Interval Estimates for Wilcoxon Two-Sample
Comparison

As mentioned earlier, the effect estimate that is exactly consistent with the Wilcoxon
two-sample test is the robust Hodges-Lehman estimator—the median of all possible
differences between a measurement from group 1 and a measurement from group 2.
There is a confidence interval for this estimator.

� Assume data come from distributions with same shape and differ only in location

� Consider a sample of 4 males and 3 females

� Difference in sample medians is 124 - 119.5 = 4.5

� Consider all possible differences between sample 1 and sample 2

Female
Male 120 118 121 119

124 4 6 3 5
120 0 2 -1 1
133 13 15 12 14

� Hodges-Lehman estimate of the sex effect: median of the 12 differences = 4.5

� In this case equaled difference in sample medians just by coincidence

female ← c(120, 118, 121, 119)

male ← c(124, 120, 133)

differences ← outer(male , female , ’-’)

differences

[,1] [,2] [,3] [,4]

[1,] 4 6 3 5

[2,] 0 2 -1 1

[3,] 13 15 12 14

median(differences)

[1] 4.5
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# Can ’ t f i g u r e o u t h o w d i f f e r e n c e i n l o c a t i o n i s c o m p u t e d b e l o w

# It ’ s n o t t h e H o d g e s - L e h m a n e s t i m a t e

wilcox.test(male , female , conf.int=TRUE)

Wilcoxon rank sum test with continuity correction

data: male and female

W = 10.5, p-value = 0.1536

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-1 15

sample estimates:

difference in location

4.791134

In general, 1−α confidence intervals are the set of values that if hypothesized to be the
true location parameter would not be rejected at the α level. wilcox.test computes the
location shift by solving for the hypothesized value that yields P = 1.0 instead of the
more proper median of all differences. Look into this further by plotting the P -value
as a function of the hypothesized value.
dif ← seq(-3, 15, by=.1)

n ← length(dif)

pval ← numeric(n)

for(i in 1 : n) pval[i] ← wilcox.test(male - dif[i], female)$p.value

ggplot(data.frame(dif , pval), aes(x=dif , y=pval)) +

geom_step () +

geom_hline(yintercept=.05 , col=’red’, linetype=’dotted ’) +

geom_vline(xintercept=c(4.5, 4.791 , -1, 15), col=’red’, linetype=’dotted ’) +

xlab(’Difference ’) + ylab(’P-value ’)

See Section 7.4 for a more approximate confidence interval.
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Figure 7.3: Wilcoxon P -value vs. hypothesized male-female difference. Horizontal line is P = 0.05. Vertical lines from left to
right are the lower 0.95 confidence limit from wilcox.test, the median difference, the Hodges-Lehman estimator as computed by
wilcox.test, and the upper 0.95 confidence limit from wilcox.test.
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7.4

Confidence Intervals for Medians and Their
Differences

� Confidence intervals for the median (one sample)

– Table 18.4 (Altman) gives the ranks of the observations to be used to give
approximate confidence intervals for the median

– e.g., if n = 12, the 3rd and 10th largest values give a 0.961 confidence interval

– For larger sample sizes, the lower ranked value (r) and upper ranked value (s)
to select for an approximate 0.95 confidence interval for the population median
is

r = n

2 − 1.96 ∗
√

n

2 and s = 1 + n

2 + 1.96 ∗
√

n

2

– e.g., if n = 100 then r = 40.2 and s = 60.8, so we would pick the 40th and
61st largest values from the sample to specify a 0.95 confidence interval for the
population median

– For exact confidence interval for the median see
stats.stackexchange.com/questions/186957, which also discusses why there is
no exact nonparametric confidence interval for the mean. Let’s get the exact
order statistics that result in an exact confidence interval for the median:
# E x a c t C I f o r m e d i a n f r o m D e s c T o o l s p a c k a g e S i g n T e s t . d e f a u l t

# S e e a l s o t t p :// w w w . s t a t . u m n . e d u / g e y e r / o l d 0 3 / 5 1 0 2 / n o t e s / r a n k . p d f ,

# h t t p :// d e . s c r i b d . c o m / d o c / 7 5 9 4 1 3 0 5 /

C o n f i d e n c e - I n t e r v a l - f o r - M e d i a n - B a s e d - o n - S i g n - T e s t

cimed ← function(x, alpha=0.05 , na.rm=FALSE) {

if(na.rm) x ← x[! is.na(x)]

n ← length(x)

k ← qbinom(p=alpha / 2, size=n, prob=0.5, lower.tail=TRUE)

# # A c t u a l C L : 1 - 2 * p b i n o m ( k - 1 , s i z e = n , p r o b = 0 . 5 ) ≥ 1 - a l p h a

sort(x)[c(k, n - k + 1)]

}

cimed(1 : 100)

[1] 40 61

For n = 100 we see that the approximate interval happened to be exact.

� Confidence intervals for the difference in two medians (two samples)

https://stats.stackexchange.com/questions/186957
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– We don’t have a nonparametric interval for this

– Instead get Hodges-Lehman estimate

– Assume data come from distributions with same shape and differ only in location

– Considers all possible differences between sample 1 and sample 2 using male-
female data on P. 7-13

– An estimate of the median difference (males - females) is the median of these

12 differences, with the 3rd and 10th largest values giving an (approximate)
0.95 CI

– Median estimate = 4.5, 0.95 CI = [1, 13]

– Specific formulas found in Altman, pages 40-41

� Bootstrap

– General method, not just for medians

– Non-parametric, does not assume symmetry (but may not be accurate)

– Iterative method that repeatedly samples from the original data

– Algorithm for creating a 0.95 CI for the difference in two medians

1. Sample with replacement from sample 1 and sample 2

2. Calculate the difference in medians, save result

3. Repeat Steps 1 and 2 1000 times

– A (naive) 0.95 CI is given by the 25th and 975th largest values of your 1000
median differences

– For the male/female data, median estimate = 4.5, 0.95 CI = [-0.5, 14.5], which
agrees with the conclusion from a WMW rank sum test (p = 0.15). Note that
the more accurate CI for the Hodges-Lehman estimate of [−1, 15] was given
earlier (output of wilcox.test).

diffs ← numeric (1000)

set.seed (13)

for(i in 1 : 1000) diffs[i] ←
median(sample(male , replace=TRUE)) - median(sample(female , replace=TRUE))
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ggplot(data.frame(diffs), aes(x=diffs)) + xlab(’Differences in Medians ’) +

geom_histogram(bin_widith=.01 , color=’blue’, fill=’white’)

quantile(diffs , c(0.025 , 0.975))

2.5% 97.5%

-0.5 14.5

0

50

100

0 5 10 15
Differences in Medians

co
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But recall that the Wilcoxon test does not really test the difference in medians but
rather the median of all differences.
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7.5

Strategy

� Don’t assess normality of data

� Use nonparametric test in any case, to get P -values

� Use nonparametric confidence intervals for means and mediansc which will be more
in conformance to what the nonpar. test is testing

� To obtain nonparametric confidence limits for means and differences in means, the
bootstrap percentile method may easily be used and it does not assume symmetry
of the data distribution

cA good nonparametric confidence for a population mean that does not even assume a symmetric distribution can be obtained from the
bootstrap simulation procedure.
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7.6

Generalization of the Wilcoxon/Kruskal-Wallis
Test

� Proportional odds (PO) ordinal logistic model

� Contains Wilcoxon 2-sample and Kruskal-Wallis tests as special cases

– numerator of the score test for the PO model, when there is only the grouping
variable in the model, is exactly the Wilcoxon statistic

� Special case of PO model is the ordinary binary logistic model

� Advantages over nonparametric tests:

– can adjust for covariates

– more accurate P -values even with extreme number of tied values

– provides a framework for consistent pairwise comparisonsd

– provides estimates of means, quantiles, and exceedance probabilities

– sets the stage for a Bayesian PO model, so can get a Bayesian Wilcoxon test

� Other ordinal response models are available, e.g., Cox proportional hazards model

� These models are semiparametric models

– parametric in additivity and linearity (by default) assumptions

– nonparametric in not assuming a distribution for the response variable

� Like nonparametric tests, P -values are unaffected by monotonic transformations of
Y

dWhen using the Kruskal-Wallis test followed by pairwise Wilcoxon tests, these pairwise tests can be inconsistent with each other, because
they re-rank the data based only on two groups, destroying the transitivity property, e.g. treatment A can be better than B which is better than
C but C is better than A.

http://bit.ly/yt-bbr11
http://bit.ly/datamethods-bbr11
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� If the response variable Y has k distinct values y1, y2, . . . , yk in the sample, semi-
parametric models have k − 1 intercepts

� Binary logistic model deals with prob. of only one event (Y = 1 vs. Y = 0)

� For ordinal Y there are k − 1 events

� Model these as cumulative probabilities to make use of ordering of Y values

� Model: P (Y ≥ y|X) = 1
1+exp[−(αy+β1x1+β2x2+...)]

� αy is the jth intercept when y = yj+1, e.g. the first intercept corresponds to the
second lowest distinct Y value y2

� Special case: 2-group problem: P (Y ≥ y|group) = 1
1+exp[−(αy+β1[group B])]

– exp(β1) is the ratio of odds that Y ≥ y in group B vs. Y ≥ y in group A, for
all y > y1

– as before [x] is the 0-1 indicator variable for x being true

– β1 > 0→ Y values higher in group B

– k = 2→ model is the binary logistic model (where we take α1 = β0)

� These intercepts α1, α2, . . . , αk−1 encode the entire empirical distribution of Y for
one of the groups

– → the model assumes nothing about the Y distribution

– it only assumes how the distribution of Y for one type of subject is connected
to the distribution for another type of subject

– PO model for a two-group problem assumes that the logit of the two cumulative
distribution functions are parallel

– if PO doesn’t hold, PO model may still be better than alternatives

– PO is also what the Wilcoxon/Kruskal-Wallis test assumes to have optimal
power
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– don’t need an α for the lowest observed Y value since P (Y ≥ minimum Y ) = 1

� R rms package orm function fits the PO modele and is especially made for continuous
Y , with fast run times for up to 6000 intercepts

7.6.1

Kruskal-Wallis Test

� Notice we haven’t described rank ANOVA—the Kruskal-Wallis test

� Don’t need it; just form a PO model with more than one indicator variable

� E.g., to test for any differences among four groups A B C D form 3 indicator
variables for B C D and let A be the reference cell that corresponds to the α
intercepts

– model is logitP (Y ≥ y|group) = αy + β1[B] + β2[C] + β3[D]

� Use the likelihood ratio χ2 test from this model to test the global null hypothesis
A=B=C=D with 3 d.f.

� Solves the transitivity problem mentioned earlier

� Can obtain consistent pairwise comparisons by forming odds ratios for any com-
parison

– e.g. C:A comparison will use exp(β̂2)

– C:B comparison OR: exp(β̂2 − β̂1)

� As before can convert the ORs to differences in medians/means because unlike the
original nonparametric tests, the PO model can be used to obtain many types of
predictionsf

� Illustrate this by a non-PO example, checking to see how well the PO model can
recover the sample means when assuming (the slightly incorrect) PO

eorm also fits other models using link functions other than the logit.
fThe predicted mean for a set of covariate settings is obtained by using all the intercepts and βs to get exceedance probabilities for Y ≥ y,

taking successive differences in those probabilities to get cell probabilities that Y = y, then multiplying cell probabilities by the y value attached
to them, and summing. This is the formula for the mean for a discrete distribution.
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� Take 4 samples from normal distributions with the same variances but different
means

� Also show how to compare two of the samples without re-ranking the data as
inconsistent Wilcoxon tests would do

set.seed (1)

group ← rep(c(’A’,’B’,’C’,’D’), 100)

y ← rnorm (400, 100, 15) + 10*(group == ’B’) + 20*(group==’C’) + 30*(group==’D’)

require(rms)

options(prType=’latex ’)

dd ← datadist(group , y); options(datadist=’dd’)

f ← orm(y ∼ group)

f # u s e L R c h i - s q u a r e t e s t a s r e p l a c e m e n t f o r K r u s k a l - W a l l i s

Logistic (Proportional Odds) Ordinal Regression Model

orm(formula = y ~ group)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 400 LR χ2 193.31 R2 0.383 ρ 0.633
Distinct Y 400 d.f. 3 g 1.532
Y0.5 115.0935 Pr(> χ2) <0.0001 gr 4.626
max |∂ log L

∂β | 2×10−6 Score χ2 193.21 |Pr(Y ≥ Y0.5)− 1
2 | 0.256

Pr(> χ2) <0.0001

β̂ S.E. Wald Z Pr(> |Z|)
group=B 1.4221 0.2579 5.51 <0.0001
group=C 2.6624 0.2762 9.64 <0.0001
group=D 3.6606 0.2925 12.52 <0.0001

# D e r i v e R f u n c t i o n t o u s e a l l i n t e r c e p t s a n d b e t a s t o c o m p u t e p r e d i c t e d m e a n s

M ← Mean(f)

Predict(f, group , fun=M)

group yhat lower upper

1 A 99.32328 95.87128 102.8162

2 B 111.21326 108.05575 114.3752

3 C 121.63880 118.56543 124.6699

4 D 129.70290 126.48067 132.8164

Response variable (y):

Limits are 0.95 confidence limits
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# C o m p a r e w i t h s a m p l e m e a n s

summarize(y, group , smean.cl.normal)

group y Lower Upper

1 A 98.72953 95.81508 101.6440

2 B 111.69464 108.61130 114.7780

3 C 121.80841 118.93036 124.6865

4 D 130.05275 127.40318 132.7023

# C o m p a r e B a n d C

k ← contrast(f, list(group=’C’), list(group=’B’))

k

Contrast S.E. Lower Upper Z Pr(>|z|)

11 1.240366 0.2564632 0.7377076 1.743025 4.84 0

Confidence intervals are 0.95 individual intervals

# S h o w o d d s r a t i o s i n s t e a d o f d i f f e r e n c e s i n b e t a s

print(k, fun=exp)

Contrast S.E. Lower Upper Z Pr(>|z|)

11 3.456879 NA 2.091136 5.714604 4.84 0

Confidence intervals are 0.95 individual intervals

7.6.2

PO Re-analysis

� Reconsider the calprotectin data analyzed in Section 7.3.1

� Wilcoxon: P = 0.0068, c = 0.837

� Frequentist PO model:
require(rms)

options(prType=’latex’)

dd ← datadist(calpro , endo); options(datadist=’dd’)

f ← orm(calpro ∼ endo)

print(f, intercepts=TRUE)

Logistic (Proportional Odds) Ordinal Regression Model

orm(formula = calpro ~ endo)

Frequencies of Responses
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18 30 38 57 61 86 114 168 244 392 483 627 726 781 910 925

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1027 1226 2500

1 1 8

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 26 LR χ2 9.84 R2 0.317 ρ 0.547
Distinct Y 19 d.f. 1 g 1.222
Y0.5 726 Pr(> χ2) 0.0017 gr 3.395
max |∂ log L

∂β
| 5×10−5 Score χ2 9.86 |Pr(Y ≥ Y0.5)− 1

2 | 0.251
Pr(> χ2) 0.0017

β̂ S.E. Wald Z Pr(> |Z|)
y≥30 2.0969 1.0756 1.95 0.0512
y≥38 1.3395 0.8160 1.64 0.1007
y≥57 0.8678 0.7135 1.22 0.2239
y≥61 0.4733 0.6689 0.71 0.4792
y≥86 0.1122 0.6575 0.17 0.8645
y≥114 -0.1956 0.6558 -0.30 0.7655
y≥168 -0.4710 0.6608 -0.71 0.4760
y≥244 -0.7653 0.6868 -1.11 0.2652
y≥392 -1.0953 0.7427 -1.47 0.1403
y≥483 -1.4155 0.8015 -1.77 0.0774
y≥627 -1.6849 0.8383 -2.01 0.0445
y≥726 -1.9227 0.8641 -2.23 0.0261
y≥781 -2.1399 0.8836 -2.42 0.0154
y≥910 -2.3439 0.8993 -2.61 0.0092
y≥925 -2.5396 0.9128 -2.78 0.0054
y≥1027 -2.7312 0.9249 -2.95 0.0031
y≥1226 -2.9224 0.9365 -3.12 0.0018
y≥2500 -3.1166 0.9482 -3.29 0.0010
endo=Moderate or Severe Activity 2.7586 0.9576 2.88 0.0040

� Intercept -3.1166 corresponds Y being at or above the upper detection limit

� Use the likelihood ratio (LR) χ2 test from the model

� To estimate an exceedance probability just select the corresponding intercept and
compute as for a binary logistic model

� The 18 intercepts for 19 distinct Y values represent the logit of the empirical
cumulative distribution function for the no/mild reference group if the two groups
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are in proportional oddsg. Add 2.7586 to those intercepts to get the logit CDF for
the moderate/severe group.

� Compute odds ratio and CI
summary(f, endo=’No or Mild Activity ’)

Low High ∆ Effect S.E. Lower 0.95 Upper 0.95
endo — Moderate or Severe Activity:No or Mild Activity 1 2 2.7586 0.95757 0.88175 4.6354
Odds Ratio 1 2 15.7770 2.41510 103.0700

� The above odds ratio of 15.8 is the odds of having calprotectin ≥ y in the moder-
ate/severe activity group vs. the no/mild activity group

– By the PO assumption this odds ratio is the same for all y

� Simulations provided an empirical conversion of the PO regression coefficient to
c:
b ← coef(f)[’endo=Moderate or Severe Activity ’]

cindex ← plogis ((b - 0.0029) / 1.5405)

cindex

endo=Moderate or Severe Activity

0.8567812

Compare this to the exact value of 0.837.

� From the fitted PO model obtain for each group, compute along with sample
estimates:

– prob. calprotectin at or above the upper limit of normal

– mean

– median

� In the output of Predict() see the point estimates under yhat, starting with the
estimates for P (Y ≥ 2500), i.e., marker value at or above the upper detection
limit
ex ← ExProb(f)

exceed ← function(lp) ex(lp, y=2500)

ymean ← Mean(f)

yquant ← Quantile(f)

ymed ← function(lp) yquant (0.5, lp=lp)

Predict(f, endo , fun=exceed)

gThe intercepts really represent the logit of one minus the CDF, moved one Y value.
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endo yhat lower upper

1 No or Mild Activity 0.04242948 0.008080776 0.1941982

2 Moderate or Severe Activity 0.41144485 0.209594428 0.6482557

Response variable (y):

Limits are 0.95 confidence limits

# C o m p u t e e m p i r i c a l e x c e e d a n c e p r o b a b i l i t i e s

tapply(calpro ≥ 2500, endo , mean)

No or Mild Activity Moderate or Severe Activity

0.1250000 0.3888889

# N o t e t h a t i m p o s i n g P O a s s u m p t i o n m a d e m o d e l e d m e a n s c l o s e r t o g e t h e r t h a n

# s t r a t i f i e d s a m p l e m e a n s

Predict(f, endo , fun=ymean)

endo yhat lower upper

1 No or Mild Activity 300.259 91.55091 851.9429

2 Moderate or Severe Activity 1387.660 895.58358 1868.2181

Response variable (y):

Limits are 0.95 confidence limits

tapply(calpro , endo , mean)

No or Mild Activity Moderate or Severe Activity

400.000 1372.944

Predict(f, endo , fun=ymed)

endo yhat lower upper

1 No or Mild Activity 69.59518 23.59636 488.0126

2 Moderate or Severe Activity 940.32171 549.13891 1653.9661

Response variable (y):

Limits are 0.95 confidence limits

tapply(calpro , endo , median)

No or Mild Activity Moderate or Severe Activity

87.5 976.0

� Note: confidence intervals for these derived quantities are approximate
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7.7

Checking Assumptions of the Wilcoxon Test

� Proportional odds (PO) model and its special case the Wilcoxon test assume PO

� What does it mean to assume PO?

– Under H0: the two distributions are identical there is no assumption, i.e., type
I error probability will behave as advertised

– Under H1 the test may still work OK but it will not be optimal unless PO holds

� To check PO:

– Compute the empirical cumulative distribution function (ECDF) for the re-
sponse variable, stratified by group (see Section 4.3.3)

– Take the logit transformation of each ECDF

– Check for parallelism

– Linearity would be required only if using a parametric logistic distribution in-
stead of using our semiparametric PO model

� Parametric t-test requires parallelism and linearity when the ECDFs are normal-
inverse transformed

– linearity: normal distribution (like q-q plot)

– parallelism: equal variances

� Problem with assumption checking is that with small samples ECDFs are too noisy
to see patterns clearly

� Example from a larger dataset: Mayo Clinic Primary Biliary Cirrhosis Dataset

� Compare distribution of serum bilirubin for those patients with spider veins vs. those
without
getHdata(pbc)

# T a k e l o g i t o f E C D F
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Ecdf(∼ bili , group = spiders , data=pbc , fun=qlogis)

Serum Bilirubin (mg/dl)

−5

0

5

0 5 10 15 20 25

absent

present

� The curves are primarily parallel (even at the far left, despite the optical illusion)

� Nonlinearity is irrelevant

� Check t-test assumptions
Ecdf(∼ bili , group=spiders , data=pbc , fun=qnorm)

Serum Bilirubin (mg/dl)

−2

0

2

0 5 10 15 20 25

absent

present

� Curves are primarily parallel (variances are equal)

� But they are not straight lines as required by t-test normality assumption
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7.8

Power and Sample Size

7.8.1

Normal Approximation

� Common to get power/sample size estimates for the Wilcoxon two-sample com-
parison using the unpaired t-test power formula

� Are assuming normality and (usually) equal variances

� To reflect the slight inefficiency of the Wilcoxon two-sample test if normality were
to magically hold, multiply the t-test sample size by π

3 = 1.047

� When the response within-group distribution is far from normal this approach is
suspect

– e.g., Y has many ties at one value, has a floor or ceiling effect, is asymmetric,
or has heavy tails

� Need a general approach

7.8.2

More on Relative Efficiency

� Relative efficiency of 3
π for the Wilcoxon 2-sample test can be derived as a correla-

tion coefficient

� As n → ∞ it is the squared correlation between the weights Wilcoxon gives to
order statistics (sorted data values) and the optimal weights

� Wilcoxon is a linear rank statistic with weights equal to ordinary ranks

� Optimal linear rank test (normal scores test) for a normal distribution uses the

probit link (normal inverse weights), i.e., Φ−1(ranksn+1 )
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� Compute correlation of ordinary ranks with normal scores
for(n in c(10, 100, 1000, 10000, 100000 , 1000000)) {

ranks ← 1 : n

zranks ← qnorm(ranks / (n + 1))

cat(’n:’, n, ’ r2:’, cor(ranks , zranks)∧2, ’\n’)

}

n: 10 r2: 0.9923288

n: 100 r2: 0.9688625

n: 1000 r2: 0.958053

n: 10000 r2: 0.9554628

n: 1e+05 r2: 0.955008

n: 1e+06 r2: 0.9549402

cat(’3/pi: ’, 3 / pi, ’\n’)

3/pi: 0.9549297

7.8.3

Tailoring Power Calculations to the Wilcoxon Test

� Whitehead112 derived simple formulas related to the proportional odds model score
test

� Formulas assume that a frequency-tabulated distribution estimate is available for
the combined groups

� Power is computed as a function of the group 2 : group 1 odds ratio for exceedance
probabilities

� See example below for conversion of ORs to differences in means or medians

– OR=1 → distributions are the same, so differences in means/medians are zero

� See R Hmisc package popower and posamsize functions

7.8.4

Discrete Y

� Example: response variable has clumping at zero (with prob. 0.3) and is otherwise
uniformly distributed over the values 1, 2, 4, 8, 16, 32, 64
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– note: actual data values do not affect power Calculations

– don’t come into play until translate to means/medians

p ← c(.3, rep(.1, 7))

popower(p, 1.25 , 1000) # c o m p u t e p o w e r t o d e t e c t O R = 1 .25 , c o m b i n e d N = 1 0 0 0

Power: 0.516

Efficiency of design compared with continuous response: 0.966

posamsize(p, 1.25 , power=0.9) # N f o r p o w e r = 0 . 9

Total sample size: 2621.4

Efficiency of design compared with continuous response: 0.966

� Show how cell probabilities are translated by OR=1.25, and compute the mean and
median of Y for a series of ORs for simpler interpretation
pomodm(p=p, odds.ratio =1.25)

[1] 0.25531915 0.09250694 0.09661836 0.10101010 0.10570825 0.11074197 0.11614402

[8] 0.12195122

x ← c(0, 2 ∧ (0:6))

sum(p * x) # c h e c k m e a n w i t h O R = 1

[1] 12.7

ors ← c(1, 1.05 , 1.1, 1.2, 1.25 , 1.5, 2)

w ← matrix(NA, nrow=length(ors), ncol=2,

dimnames=list(OR=ors , c(’mean’, ’median ’)))

i ← 0

for(or in ors) {

i ← i + 1

w[i, ] ← pomodm(x, p, odds.ratio=or)

}

w

OR mean median

1 12.70000 3.000000

1.05 13.14602 3.364286

1.1 13.58143 3.709091

1.2 14.42238 4.350000

1.25 14.82881 4.650000

1.5 16.73559 6.000000

2 20.03640 9.900000
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7.8.5

Gaussian Y

� Suppose response variable for control group has a normal distribution with mean
100 and SD 10

� Start by assuming the experimental arm has the same distribution as control except
with the mean shifted upwards 3 units

� This will result in non-proportional odds so the Wilcoxon test is not optimal but
will still be 0.95 efficient

� When the sample size per group is 150, the power of the t-test to detect a 3-unit
difference in means is:
require(pwr)

pwr.t.test(d=3 / 10, n=150, sig.level =0.05 , type=’two.sample ’)

Two -sample t test power calculation

n = 150

d = 0.3

sig.level = 0.05

power = 0.7355674

alternative = two.sided

NOTE: n is number in *each* group

� To get the power of the Wilcoxon test when both populations have a normal
distribution, we can easily use simulation
s ← 1000 # n u m b e r o f s i m u l a t e d t r i a l s

pval ← numeric(s)

set.seed (1) # s o c a n r e p r o d u c e r e s u l t s

for(i in 1 : s) {

y1 ← rnorm (150, 100, 10)

y2 ← rnorm (150, 103, 10)

w ← wilcox.test(y1, y2)

pval[i] ← w$p.value

}

mean(pval < 0.05) # p r o p o r t i o n o f s i m u l a t i o n s w i t h p < 0 . 0 5

[1] 0.713

# S i m u l a t e t h e p o w e r b y a c t u a l l y r u n n i n g t h e p r o p . o d d s m o d e l 3 0 0 t i m e s

simRegOrd (300, nsim =400, delta=3, sigma =10)$power # s l o w e r
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[1] 0.71

� For the Wilcoxon test to be optimal (PO holds) shifting the control distribution by
an odds ratio will result in a non-Gaussian distribution for the experimental arm

� Solve for the odds ratio that shifts the mean from 100 to 103, assume PO and
compute the power
# U s e a n a r b i t r a r y l a r g e s a m p l e t o m i m i c p o p u l a t i o n c o m p u t a t i o n s

m ← 200000

y1 ← sort(rnorm(m, 100, 10))

ors ← means ← seq(1, 4, by=.025)

i ← 0

for(or in ors) {

i ← i + 1

means[i] ← pomodm(y1, rep(1/m, m), odds.ratio=or)[’mean’]

}

plot(ors , means , xlab=’Group B:A Odds Ratio’,

ylab=’Mean in Population B’, type=’l’)

abline(h=103, col=gray(.85))

needed.or ← approx(means , ors , xout =103)$y

needed.or

[1] 1.708958

abline(v=needed.or , col=gray(.85))

# C o m p u t e p o w e r a t t h a t o d d s r a t i o a s s u m i n g n o t i e s i n d a t a

popower(rep(1/300, 300), odds.ratio=needed.or , n=300)

Power: 0.761

Efficiency of design compared with continuous response: 1
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� Check how non-normal the experimental arm responses would be if PO holds and
OR=10
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# F i r s t d o t h i s t h e o r e t i c a l l y

# C o n t r o l a r m h a s G a u s s i a n Y w i t h m e a n 1 0 0 , S D 1 0

# C r e a t e e x p e r i m e n t a l a r m d i s t r i b u t i o n u s i n g O R = 1 0

y ← seq(60, 145, length =150)

Fy ← 1 - pnorm(y, mean =100, sd=10) # P ( Y ≥ y | g r o u p A )

Gy ← 1 - plogis(qlogis(Fy) + log (10)) # P ( Y ≥ y | g r o u p B )

# P l o t n e w C D F v s . n o r m a l a p p r o x i m a t i o n a g r e e i n g a t q u a r t i l e s

plot(y, Gy, type=’l’, ylab=expression(P(Y ≤ y)))

qu ← approx(Gy, y, xout=c(0.25 , 0.5 , 0.75))$y

qu # Q1 , m e d i a n , Q 2

[1] 107.3628 113.3506 118.4894

s ← (qu[3] - qu[1]) / (qnorm(0.75) - qnorm(0.25))

mu ← qu[1] - s * qnorm(0.25)

lines(y, pnorm(y, mean=mu, sd=s), col=’blue’) # G a u s s i a n f i t

60 80 100 120 140
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0.6
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≤
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# T h e o r e t i c a l q - q p l o t : c h e c k l i n e a r i t y o f i n v e r s e n o r m a l l y t r a n s f o r m e d

# e x p e r i m e n t a l a r m d i s t r i b u t i o n

plot(y, qnorm(Gy), type=’l’)

abline(lsfit(y, qnorm(Gy)), col=’blue’)
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# C o m p u t e a n e w d i s c r e t e d i s t r i b u t i o n i f w e c o n v e r t t h e c o n t r o l

# d i s t r i b u t i o n u s i n g p r o p o r t i o n a l o d d s

# D o n e b y u s i n g a d i s c r e t e d i s t r i b u t i o n w i t h 2 0 0 , 0 0 0 p o i n t s

p ← pomodm(p=rep(1/m, m), odds.ratio =10)

range(p) # c o n t r o l a r m : a l l 1/ 2 0 0 0 0 0

[1] 5.000023e-07 4.999775e-05

wtd.mean(y1, p) # m e a n s h i f t e d b y a b o u t 1 2 u n i t s

[1] 112.4126

# F o r m n e w d i s t r i b u t i o n b y r e p e a t i n g e a c h o b s e r v a t i o n a n u m b e r

# o f t i m e s e q u a l t o t h e r a t i o o f t h e n e w p r o b a b i l i t y t o t h e

# m i n i m u m o f a l l n e w p r o b a b i l i t i e s

y2 ← rep(y1, round(p / min(p))) # 2 M o b s i n s t e a d o f 2 0 0 K

mean(y2)

[1] 112.4714

quantile(y2, c(.25 , .5, .75))

25% 50% 75%

107.4240 113.3446 118.5467

# T h e f o l l o w i n g p l o t i s s i m i l a r t o t h e p r e v i o u s o n e

Ecdf(y2, subtitles=FALSE)

lines(y, pnorm(y, mean=mean(y2), sd=sd(y2)), col=’blue’)
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� Little non-normality of the 2nd group if the treatment effect operates by multiplying
the odds that Y ≥ y instead of incrementing the mean

– relates to similarity of normal and logistic distributions

7.8.6

Heavy-tailed Y

� Get power to detect a shift in mean of 0.3 units for a heavy-tailed control distri-
bution (t with 4 d.f.) with 150 subjects per group

� Loss of efficiency of t-test

– mean and SD are no longer optimal data summaries

� Can use above method to compute Wilcoxon power quickly if willing to assume PO

� Let’s not assume PO, and instead use simulation

� Compare with power of t-test

� Do for both null and non-null cases to verify type I error prob.
s ← 1000 # n u m b e r o f s i m u l a t e d t r i a l s

pvalt ← pvalw ← numeric(s)

set.seed (1) # s o c a n r e p r o d u c e r e s u l t s

for(delta in c(0, 0.3)) {
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for(i in 1 : s) {

y1 ← rt(150, 4)

y2 ← rt(150, 4) + delta

pvalt[i] ← t.test(y1, y2)$p.value

pvalw[i] ← wilcox.test(y1, y2)$p.value

}

cat(’Delta:’, delta , ’\n’)

P ← function(x) round(mean(x), 2)

cat(’Proportion of simulations with W p-value < t p-value:’,

P(pvalw < pvalt), ’\n’)

cat(’Mean p-value for t:’, P(pvalt), ’\n’)

cat(’Mean p-value for W:’, P(pvalw), ’\n’)

cat(’Power for t:’, P(pvalt < 0.05), ’\n’)

cat(’Power for W:’, P(pvalw < 0.05), ’\n\n’)

}

Delta: 0

Proportion of simulations with W p-value < t p-value: 0.51

Mean p-value for t: 0.5

Mean p-value for W: 0.49

Power for t: 0.05

Power for W: 0.06

Delta: 0.3

Proportion of simulations with W p-value < t p-value: 0.73

Mean p-value for t: 0.17

Mean p-value for W: 0.12

Power for t: 0.47

Power for W: 0.6

� Hmisc simRegOrd function can also simulate power for an adjusted two-sample com-
parison if there is one adjustment covariate
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7.9

Bayesian Proportional Odds Model

� PO model and other cumulative probability semiparametric ordinal regression mod-
els are readily extended to a Bayesian framework

� Need special care in selecting priors for the intercepts for the continuous Y case

� Nathan James of Vanderbilt University has an implementation using Stan available
at
github.com/ntjames/bayes cpm

� See also the R brms package: bit.ly/brms-ordinal and this discussion:
github.com/paul-buerkner/brms/issues/762

� Bayesian version of the Wilcoxon test is the posterior probability that β1 > 0 in the
PO model

� Advantages of Bayes for PO models:

– does not need approximations such as large sample normality of β̂ or χ2 distri-
bution approximation to likelihood ratio test statistic

– inference is more interpretable and direct

– can bring outside information to the analysis

– can incorporate shrinkage/penalization/skepticism and still have exact inference

– automatically obtain exact distributions and credible intervals for derived quan-
titiesh, e.g. mean, quantiles, differences in means and quantiles, differences in
exceedance probs, P (Y = y|X)

– can relax PO assumption without huge instabilities that result from using poly-
tomous logistic models; prior distributions can favor PO while allowing non-PO

hOne merely takes each posterior sample for the αs and βs and computes the quantity of interest, thereby automatically generating posterior
samples for the derived quantity for which quantiles can compute credible intervals, etc.

https://github.com/ntjames/bayes_cpm
http://bit.ly/brms-ordinal
http://github.com/paul-buerkner/brms/issues/762


Chapter 8

Correlation

8.1

Overview

Outcome Predictor Normality? Linearity? Analysis Method
Interval Binary Yes 2-sample t-test or linear regression
Ordinal Binary No Wilcoxon 2-sample test
Categorical Categorical Pearson χ2 test
Interval Interval Yes Yes Correlation or linear regression
Ordinal Ordinal No No Spearman’s rank correlation

� Examine association between continuous/interval outcome (y) and continous/in-
terval predictor (x)

� Scatterplot of y versus x

8-1

http://bit.ly/yt-bbr12
http://bit.ly/datamethods-bbr12
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8.2

Pearson’s correlation coefficient

� r = Σ(xi−x̄)(yi−ȳ)√
Σ(xi−x̄)2Σ(yi−ȳ)2

� Range: −1 ≤ r ≤ 1

� Correlation coefficient is a unitless index of strength of association between two
variables (+ = positive association, - = negative, 0 = no association)

� Measures the linear relationship between X and Y

� Can test for significant association by testing whether the population correlation is
zero

t = r
√

n− 2√
1− r2

which is identical to the t-test used to test whether the population r is zero;
d.f.=n− 2.

� Use probability calculator for t distribution to get P -value (2-tailed if interested in
association in either direction)

� 1-tailed test for a positive correlation between X and Y tests H0 : when X ↑ does
Y ↑ in the population?

� Confidence intervals for population r calculated using Fisher’s Z transformation

Z = 1
2 loge

(1 + r

1− r

)

– For large n, Z follows a Normal distribution with standard error 1√
n−3

– To calculate a confidence interval for r, first find the confidence interval for Z
then transform back to the r scale

Z = 1
2 loge

(1 + r

1− r

)

2 ∗ Z = loge

(1 + r

1− r

)
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exp(2 ∗ Z) =
(1 + r

1− r

)
exp(2 ∗ Z) ∗ (1− r) = 1 + r

exp(2 ∗ Z)− r ∗ exp(2 ∗ Z) = 1 + r

exp(2 ∗ Z)− 1 = r ∗ exp(2 ∗ Z) + r

exp(2 ∗ Z)− 1 = r (exp(2 ∗ Z) + 1)
exp(2 ∗ Z)− 1
exp(2 ∗ Z) + 1 = r

� Example (Altman 89-90): Pearson’s r for a study investigating the association of
basal metabolic rate with total energy expenditure was calculated to be 0.7283 in
a study of 13 women. Derive a 0.95 confidence interval for r.

Z = 1
2 loge

(1 + 0.7283
1− 0.7283

)
= 0.9251

The lower limit of a 0.95 CI for Z is given by

0.9251− 1.96 ∗ 1√
13− 3 = 0.3053

and the upper limit is

0.9251 + 1.96 ∗ 1√
13− 3 = 1.545

A 0.95 CI for the population correlation coefficient is given by transforming these
limits from the Z scale back to the r scale

exp(2 ∗ 0.3053)− 1
exp(2 ∗ 0.3053) + 1 to

exp(2 ∗ 1.545)− 1
exp(2 ∗ 1.545) + 1

Which gives a 0.95 CI from 0.30 to 0.91 for the population correlation

n ← 13

r ← 0.7283

z.transform ← 0.5 * log((1 + r) / (1 - r))

clz ← z.transform + c(-1, 1) * qnorm(0.975) / sqrt(n - 3)

clr ← (exp(2 * clz) - 1) / (exp(2 * clz) + 1)

round(c(z.transform , clz , clr), 4)

[1] 0.9251 0.3053 1.5449 0.2962 0.9129
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8.3

Spearman’s Rank Correlation

� Pearson’s r assumes linear relationship between X and Y

� Spearman’s ρ (sometimes labeled rs) assumes monotonic relationship between X
and Y

– when X ↑, Y always ↑ or stays flat, or Y always ↓ or stays flat

– does not assume linearity

� ρ = r once replace column of Xs by their ranks and column of Y s by ranks

� To test H0 : ρ = 0 without assuming linearity or normality, being damaged by
outliers, or sacrificing much power (even if data are normal), use a t statistic:

t = ρ
√

n− 2√
1− ρ2

which is identical to the t-test used to test whether the population r is zero;
d.f.=n− 2.

� Use probability calculator for t distribution to get P -value (2-tailed if interested in
association in either direction)

� 1-tailed test for a positive correlation between X and Y tests H0 : when X ↑ does
Y ↑ in the population?
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8.4

Correlation Examples

� Correlation difficult to judge by eye

� Example plots on following pages

# G e n e r a t e 5 0 d a t a p o i n t s w i t h P o p l u a t i o n c o r r e l a t i o n s o f 0 , .2 , .4 , .6 ,

# .8 , a n d . 9 a n d p l o t r e s u l t s

require(ggplot2)

n ← 50

set.seed (123)

x ← rnorm(n, 5, 1)

d ← expand.grid(x=x, R=c(0, .2, .4, .6, .8 , .9))

d ← transform(d, y = x + rnorm(nrow(d), 0,

ifelse(R == 0, 5, sqrt(R ∧ -2 - 1))))

sfun ← function(i) {

x ← d$x[i]; y ← d$y[i]; R ← d$R[i][1]

r ← cor(x, y)

tr ← r * sqrt(n - 2) / sqrt(1 - r∧2)

rho ← cor(rank(x), rank(y))

trho ← rho * sqrt(n - 2) / sqrt(1 - rho∧2)

label ← paste(’True r:’, R[1], ’ r:’, round(r,2), ’ t:’, round(tr ,2),

’ rho:’, round(rho ,2), ’ t:’, round(trho ,2), sep=’’)

names(label) ← R

label

}

stats ← tapply (1 : nrow(d), d$R, sfun)

d$stats ← factor(stats[as.character(d$R)], unique(stats))

ggplot(d, aes(x=x, y=y)) + geom_point () + facet_wrap(∼ stats) +

theme(strip.text.x = element_text(size =7)) # F i g . 8.1

# D i f f e r e n t s c e n a r i o s t h a t c a n l e a d t o a c o r r e l a t i o n o f 0 . 7

set.seed (123) # F i g . 8.2

rho ← 0.7; n ← 50

var.eps ← rho∧-2 - 1

x ← rnorm(n, 5, 1)

y ← x + rnorm(n, 0, sqrt(var.eps))

cor(x,y)

[1] 0.6951673

plot(x,y,xlab=’’,ylab=’’)

x ← c(1:20 ,30)

y ← c(1:20 ,6.2)

cor(x,y)

[1] 0.6988119
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Figure 8.1: Samples of size n = 50 for X and Y are drawn from bivariate normal populations with true correlations ranging from 0.0
to 0.9. Pearson and Spearman sample correlations are shown for samples of size 50. Besides the population correlation coefficient,
each panel is labeled with the estimated Pearson r, its t statistic, the estimated Spearman ρ, and its t statistic
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plot(x,y,xlab=’’,ylab=’’)

set.seed (123)

x ← rnorm (40)

y ← rnorm (40)

x[21] ← y[21] ← 8.5

cor(x,y)

[1] 0.7014825

plot(x,y,xlab=’’,ylab=’’)

x ← rep (0:19 ,2)

y ← c(rep(.62 ,20),rep(2,20)) * x

cor(x,y)

[1] 0.701783

plot(x,y,xlab=’’,ylab=’’)

x ← -7:12

y ← x∧2

cor(x,y)

[1] 0.6974104

plot(x,y,xlab=’’,ylab=’’)

set.seed (123)

tmp ← 1:20 / 2

x ← c(rnorm(20, tmp , 1), tmp + rnorm (20 ,14.5 ,1))

y ← c(rnorm(20, -tmp , 1), -tmp + rnorm (20,14.5 ,1))

cor(x,y)

[1] 0.703308

plot(x,y,xlab=’’,ylab=’’)
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Figure 8.2: Different observed datasets that have the same correlation. All six plots have a sample Pearson correlation of 0.7.
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8.5

Correlation and Agreement

� Compare two methods of measuring the same underlying value

– Lung function measured using a spirometer (expensive, accurate) or peak flow
meter (cheap, less accurate)

– Two devices (oropharyngeal and conventional) used to mesured acidity (pH) in
the esophagus as a marker of reflux

� Typical (incorrect) approach begins with scatterplot of one method vs. the other
with a 1:1 line indicating perfect agreement

� See Figure 4.11

� Incorrect approach would report a high correlation (r = 0.90) and conclude good
agreement

� Problems with the correlation approach

1. r measures the degree of linear association between two variables, not the
agreement. If, for example, the Sandhill consistently gave pH values that were
0.5 unit higher than the Restech, we could still have high correlation, but
poor agreement between the two devices. We can have high correlation if the
two devices lie closely to any line, not just a 1:1 line that indicates perfect
agreement.

2. A change in scale does not affect correlation, but does influence agreement.
For example, if the Sandhill always registered 2 times larger than the Restech,
we would have perfect correlation but the agreement would get progressively
worse for larger values of pH.

3. Correlation depends on the range of the data so that larger ranges lead to larger
correlations. This can lead to vary strange interpretations

4. Tests of significance (testing if r = 0) are irrelevant to the question at hand,
but often reported to demonstrate a significant association. The two devices
are measuring the same quantity, so it would be shocking if we did not observe a
highly significant p-value. A p < .0001 is not impressive. A regression analysis
with a highly significant slope would be similarly unimpressive.
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r ρ
all data 0.90 0.73
avg pH ≤ 4 0.51 0.58
avg pH > 4 0.74 0.65

Table 8.1: Pearson (r) and Spearman (ρ) correlations for Restech and Sandhill pH data. The correlation calculated using all of the
data is larger than the correlation calculated using a retricted range of the data. However, it would be difficult to claim that the
overall agreement is better than both the agreement when pH is less than 4 and when pH is greater than 4.

5. Data can have high correlation, but poor agreement. There are many examples
in the literature, but even in our analysis with r = 0.90, the correlation is high,
but we will show that the agreement is not as good as the high correlation
implies.

See Chapter 16 for simple approaches to assessing agreement and analyzing observer
variability studies.

8.5.1

Bland-Altman Plots

� See Bland and Altman (1986, Lancet)

� Earlier: Tukey mean-difference plot

� Create plots of the difference in measurements on the y-axis versus the average
value of the two devices on the x-axis

� If the two devices agree, the difference should be about zero

� The average of the two devices is our best estimate of the true, unknown (pH)
value that is we are trying to measure

� Measurements will often vary in a systematic way over the range of measurement.
By plotting the difference versus the average, we can visually determine if the
difference changes over our estimate of the truth.

� Solid line indicated the mean, dashed lines are approximate 0.95 confidence intervals
(assuming Normality)
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But there is controversy about what should be on the x-axis of the plot. Krouwer58

concluded that:

� When the two measures have nearly equal variability, i.e., when comparing two
“field measurements”, the Bland-Altman approach is preferred

� When one measurement is a “reference standard” having much less variation than
the field measurement, the reference standard and not the average of the two
measurements should be on the x-axis

require(Hmisc)

getHdata(esopH)

esopH$diff ← with(esopH , orophar - conv)

ggplot(esopH , aes(x=(conv + orophar)/2, y=diff)) + # F i g . 8.3

stat_binhex(aes(alpha=..count.. , color=Hmisc ::cut2(..count.. , g=20)),

bins =80) +

stat_smooth () +

geom_hline(yintercept = mean(esopH$diff , na.rm=TRUE) +

c(-1.96 , 0, 1.96) * sd(esopH$diff , na.rm=TRUE),

linetype=c(2,1,2), color=’brown’) +

xlab(’Average of Conventional and Oropharyngeal pH’) +

ylab(’Oropharyngeal Minus Conventional pH’) +

guides(alpha=FALSE , fill=FALSE , color=guide_legend(title=’Frequency ’))

� We will also consider differences in the two measurements over the time of day

� The added smooth curve is called a locally weighted scatterplot smooth (loess)

getHdata(esopH2)

ggplot(esopH2 , aes(x=time , y=diffpH)) + # F i g . 8.4

geom_point(pch=’.’) + stat_smooth () +

geom_hline(yintercept = 0, col=’gray60 ’) +

scale_x_continuous(breaks=seq(16, 38, by=4),

labels=c("4 PM", "8 PM", "12 AM",

"4 AM", "8AM", "12 PM"),

limits=c(14, 14+24)) +

ylab(’Average of Oropharyngeal Minus Conventional pH’) +

xlab(’Time of Day’)

8.5.2

Sample Size for r

� Without knowledge of population variances, etc., r can be useful for planning
studies
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Figure 8.3: Bland-Altman plot for the oroesophageal and conventional pH measurements, using hexagonal binning because of the
large sample size. The difference in pH mesaurements (oro. -conventional) is presented on the y-axis and the average of the two
devices on the x-axis. We see poor agreement around pH values of 4-5
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Figure 8.4: Difference in pH measurements (oro. - conventional) by time of day along with a loess smoother and pointwise 0.95
confidence bands. Is the difference modified by a subject being in a supine position rather than being upright?

� Choose n so that margin for error (half-width of C.L.) for r is acceptable

� Precision of r in estimating ρ is generally worst when ρ = 0

� This margin for error as well as that for three other choices of the unknown true ρ

are shown in Figure 8.5.
require(Hmisc)

plotCorrPrecision(rho=c(0, .25 , .5, .75),

n=seq(10, 1000, length =100) ,

ylim=c(0, .4), col=1:4, opts=list(keys=’lines’))

abline(h=seq(0, .4, by=0.025),

v=seq(25, 975, by=25), col=gray(.9))

See also stats.stackexchange.com/questions/415131.

8.5.3

Comparing Two r’s

� Rarely appropriate

https://stats.stackexchange.com/questions/415131
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Figure 8.5: Margin for error (length of longer side of asymmetric 0.95 confidence interval) for r in estimating ρ, when ρ =
0, 0.25, 0.5, 0.75. Calculations are based on Fisher z transformation of r.
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� Two r’s can be the same even though slopes may differ

� Usually better to compare effects on a real scale (slopes)
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8.6

Avoiding Overinterpretation

� Often researchers

– compute many correlations then

– make a big deal out of the largest observed correlation

� This is double dipping : using the same dataset to tell you which features to test,
then testing those features

� This is a ranking and selection problem, and the data seldom contain enough
information to be reliable in the choices

8.6.1

Simulate Data

� For our analysis experiments, simulate a sample of size 50 from a 10-variate normal
distribution with a known correlation matrix

� To specify this correlation matrix take the easy way out: compute an observed
correlation matrix from a small sample where all correlations in the population are
zero

� The usual sample noise will generate some large observed correlations
require(Hmisc)

require(mvtnorm)

# G e t a p o p u l a t i o n c o r r e l a t i o n m a t r i x b y g e t t i n g s a m p l e c o r r e l a t i o n s

# o n a r a n d o m n o r m a l s a m p l e w i t h N = 2 0 a n d a l l t r u e c o r r e l a t i o n s = 0

# t h e n p r e t e n d t h e s e s a m p l e c o r r e l a t i o n s w e r e r e a l p o p u l a t i o n v a l u e s

set.seed (3)

x ← rmvnorm (20, sigma=diag (10))

R ← rcorr(x)$r

# T r u e c o r r e l a t i o n s w e w i l l s i m u l a t e f r o m :

round(R, 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1.00 0.01 0.47 -0.09 -0.31 -0.07 0.14 0.05 0.02 -0.49

[2,] 0.01 1.00 0.48 0.27 0.27 0.14 0.40 -0.17 -0.59 0.60
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[3,] 0.47 0.48 1.00 -0.11 0.26 -0.31 0.45 -0.12 -0.50 -0.06

[4,] -0.09 0.27 -0.11 1.00 0.42 0.42 -0.07 -0.35 0.16 0.35

[5,] -0.31 0.27 0.26 0.42 1.00 -0.04 0.03 -0.40 -0.25 0.34

[6,] -0.07 0.14 -0.31 0.42 -0.04 1.00 0.19 -0.36 0.08 0.40

[7,] 0.14 0.40 0.45 -0.07 0.03 0.19 1.00 -0.37 -0.65 -0.07

[8,] 0.05 -0.17 -0.12 -0.35 -0.40 -0.36 -0.37 1.00 0.17 -0.24

[9,] 0.02 -0.59 -0.50 0.16 -0.25 0.08 -0.65 0.17 1.00 -0.18

[10,] -0.49 0.60 -0.06 0.35 0.34 0.40 -0.07 -0.24 -0.18 1.00

# G e t a h u g e s a m p l e f r o m a m u l t i v a r i a t e n o r m a l d i s t r i b u t i o n t o s e e

# t h a t i t m i m i c s t h e r e a l c o r r e l a t i o n m a t r i x R

x ← rmvnorm (50000 , sigma=R)

table(round(R - rcorr(x)$r, 2))

-0.01 0 0.01

14 76 10

# N o w s a m p l e f r o m t h e p o p u l a t i o n t o g e t o u r d a t a s e t w i t h N = 5 0

x ← rmvnorm (50, sigma=R)

rorig ← rcorr(x)$r

round(rorig , 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1.00 -0.01 0.50 0.11 0.00 -0.16 0.07 -0.04 -0.04 -0.43

[2,] -0.01 1.00 0.50 0.19 0.43 0.13 0.60 -0.26 -0.76 0.69

[3,] 0.50 0.50 1.00 -0.15 0.45 -0.41 0.52 -0.18 -0.58 -0.01

[4,] 0.11 0.19 -0.15 1.00 0.45 0.30 -0.13 -0.35 0.09 0.14

[5,] 0.00 0.43 0.45 0.45 1.00 -0.12 0.27 -0.53 -0.42 0.20

[6,] -0.16 0.13 -0.41 0.30 -0.12 1.00 0.06 -0.27 0.00 0.51

[7,] 0.07 0.60 0.52 -0.13 0.27 0.06 1.00 -0.57 -0.81 0.19

[8,] -0.04 -0.26 -0.18 -0.35 -0.53 -0.27 -0.57 1.00 0.37 -0.13

[9,] -0.04 -0.76 -0.58 0.09 -0.42 0.00 -0.81 0.37 1.00 -0.41

[10,] -0.43 0.69 -0.01 0.14 0.20 0.51 0.19 -0.13 -0.41 1.00

8.6.2

Margin of Error for a Single r

� First compute the margin of error in estimating a single r from n = 50

� This is the spacing between r and it’s lower 0.95 CL or the spacing between r and
its upper CL whichever is greatest

� CL based on Fisher’s z-transformation described earlier

� Compute this for 4 hypothetical true r: 0 0.25 0.5 0.75
r ← (0 : 3) / 4

n ← 50
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zcrit ← qnorm (0.975)

z ← 0.5 * log( (1 + r) / (1 - r))

lo ← z - zcrit/sqrt(n-3)

hi ← z + zcrit/sqrt(n-3)

rlo ← (exp(2*lo)-1)/(exp(2*lo)+1)

rhi ← (exp(2*hi)-1)/(exp(2*hi)+1)

w ← rbind(r=r, ’Margin of Error’=pmax(rhi - r, r - rlo))

prmatrix(round(w, 2), collab=rep(’’, 4))

r 0.00 0.25 0.50 0.75

Margin of Error 0.28 0.28 0.24 0.15

� If the true correlation is 0.5, the margin of error in estimating it is ±0.24 with
n = 50

8.6.3

Bootstrapping the Correlation Selection Process

� Can use the bootstrap to document the difficulty of the task

� Steps:

1. form a matrix with N rows and p columns where N is the number of observa-
tions and p is the number of variables being correlated with each other

2. draw a sample of size N from this matrix by sampling its rows

3. compute all the correlation coefficients as was done previously

4. re-run the same selection process as was done on the original dataset

5. repeat 1000 times

6. examine the distribution of the selections over the 1000 repeats

8.6.4

Bootstrapping Bias in Largest Observed r

� Start with something simpler than ranking all the rs in the matrix: estimate the
bias in the largest observed r

� Draw a sample with replacement from rows of the data matrix
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� For each of these bootstrap samples find which pair of variables has the highest r

� Track this variable pair and compute r in the original sample

� Compute the dropoff in r from the bootstrap sample to the original sample

� This simulates the process used to find the largest r

� Example: use data simulated above with 10 standard normal random variables &
known correlation matrix on 50 subjects

� Sample correlation matrix has 10×9
2 = 45 distinct coefficients

# F u n c t i o n t o r e t r i e v e t h e u p p e r t r i a n g l e o f a s y m m e t r i c m a t r i x

# i g n o r i n g t h e d i a g n o n a l t e r m s

up ← function(z) z[upper.tri(z)]

rorigu ← up(rorig)

max(rorigu) # . 6 8 5 = [ 2 , 1 0 ] e l e m e n t ; 0 . 6 0 4 i n p o p u l a t i o n

[1] 0.6854261

which.max(rorigu)

[1] 38

# i s t h e 3 8 t h e l e m e n t i n t h e u p p e r t r i a n g l e

# T a b u l a t e t h e d i f f e r e n c e b e t w e e n s a m p l e r e s t i m a t e s a n d t r u e v a l u e s

Ru ← up(R)

mean(abs(Ru - rorigu))

[1] 0.1149512

table(round(Ru - rorigu , 1))

-0.3 -0.2 -0.1 0 0.1 0.2

2 6 7 7 17 6

# R e p e a t t h e " f i n d i n g m a x r " p r o c e d u r e f o r 1 0 0 0 b o o t s t r a p s a m p l e s

# S a m p l e f r o m x 1 0 0 0 t i m e s w i t h r e p l a c e m e n t , e a c h t i m e c o m p u t i n g

# a n e w c o r r e l a t i o n m a t r i x

samepair ← dropsum ← 0

for(i in 1 : 1000) {

b ← sample (1 : 50, replace=TRUE)

xb ← x[b, ] # s a m p l e w i t h r e p l a c e m e n t f r o m r o w s

r ← rcorr(xb)$r

ru ← up(r)

wmax ← which.max(ru)

if(wmax == 38) samepair ← samepair + 1

# C o m p u t e c o r r e l a t i o n f o r t h e b o o t s t r a p b e s t p a i r i n t h e o r i g i n a l s a m p l e
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origr ← rorigu[wmax]

# C o m p u t e d r o p o f f i n b e s t r

dropoff ← ru[wmax] - origr

dropsum ← dropsum + dropoff

}

cat(’Number of bootstaps selecting the original most correlated pair:’,

samepair , ’out of 1000’, ’\n’)

Number of bootstaps selecting the original most correlated pair: 642 out of 1000

cat(’Mean dropoff for max r:’, round(dropsum / 1000, 3), ’\n’)

Mean dropoff for max r: 0.071

� For our dataset with n = 50 we expect that the maximum observed r out of 45 rs
is biased high by 0.071

– Could subtact 0.071 to debias the observed max r although this will worsen its
precision

8.6.5

Bootstrapping Ranks of All rs

� Do a more comprehensive assessment that quantifies the difficulty of the task in
ranking all the rs

� Quantity uncertainties in the ranks of the original correlation coefficients

� Apparent“winner”was the one receiving the highest ranking q among all rs

� What is the distribution of q over the 1000 bootstrap samples?

� Can easily compute a 0.95 bootstrap nonparametric percentile confidence interval
for the true unknown ranking of that feature combination and for ranking all the
examined feature correlations

� Bootstrap the correlation matrix and re-rank the coefficients

� For each pair of variables compute the 0.95 confidence interval for the rank of its
correlation from among the 45
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# F o r e a c h o b s e r v e d c o r r e l a t i o n c o m p u t e i t s r a n k a m o n g 4 5 d i s t i n c t p a i r s

orig.ranks ← rank(up(rorig))

# S a m p l e f r o m x 1 0 0 0 t i m e s w i t h r e p l a c e m e n t , e a c h t i m e c o m p u t i n g

# a n e w c o r r e l a t i o n m a t r i x

Rm ← matrix(NA, nrow =1000, ncol =45)

for(i in 1 : 1000) {

b ← sample (1 : 50, replace=TRUE)

xb ← x[b, ]

r ← rcorr(xb)$r

Rm[i, ] ← rank(up(r))

}

# O v e r b o o t s t r a p c o r r e l a t i o n s c o m p u t e q u a n t i l e s o f r a n k s

low ← apply(Rm, 2, quantile , probs=0.025)

high ← apply(Rm, 2, quantile , probs=0.975)

round(cbind(’Original Rank’=orig.ranks , Lower=low , Upper=high))

Original Rank Lower Upper

[1,] 22 12 34

[2,] 40 32 45

[3,] 41 30 45

[4,] 28 15 37

[5,] 31 20 38

[6,] 15 8 28

[7,] 24 11 34

[8,] 37 32 43

[9,] 38 32 43

[10,] 39 31 44

[11,] 14 8 27

[12,] 29 15 37

[13,] 9 3 15

[14,] 35 22 43

[15,] 18 10 26

[16,] 26 16 34

[17,] 44 38 45

[18,] 43 34 45

[19,] 16 9 27

[20,] 34 25 38

[21,] 25 14 34

[22,] 19 11 32

[23,] 12 7 21

[24,] 13 7 27

[25,] 10 4 20

[26,] 5 3 10

[27,] 11 5 22

[28,] 4 3 8

[29,] 20 10 33

[30,] 2 1 4

[31,] 3 2 11

[32,] 27 16 36

[33,] 7 4 13

[34,] 23 13 32

[35,] 1 1 2

[36,] 36 28 43

[37,] 6 3 15

[38,] 45 40 45

[39,] 21 12 31
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[40,] 30 17 37

[41,] 33 21 39

[42,] 42 34 44

[43,] 32 20 38

[44,] 17 11 28

[45,] 8 3 16

� Highest observed r (rank 45) has 0.95 CI [40, 45]

� Data are consistent with it being the 6th highest

� Smallest observed value (rank 1; most impressive negative correlation) has CI [1, 2]
for rank; data consistent with that pair of variables being the best or 2nd

� The r originally ranked 36th has a 0.95 CI of [28, 43] so the data are consistent
with it being in the top 3

8.6.6

Monte Carlo Simulation to Get A Rank Interval

� For comparison with the bootstrap, get the frequency distribution of ranks in re-
peated studies of the apparently highest r in our n = 50 study

� Repeated studies will also have n = 50 and will be generated from the population
correlation matrix

� Recall that original max r was the 38th element of the strung-out r matrix from
our sample
ranks ← integer (1000)

for(i in 1 : 1000) {

xs ← rmvnorm (50, sigma=R)

rsim ← up(rcorr(xs)$r)

ranks[i] ← rank(rsim)[38]

}

table(ranks) # f r e q s . o f r a n k s o f 3 8 t h e l e m e n t i n n e w s a m p l e s

ranks

34 35 36 37 38 39 40 41 42 43 44 45

2 1 6 8 10 18 25 38 58 88 152 594

quantile(ranks , c(0.025 , 0.975))
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2.5% 97.5%

38 45

� This interval is a bit wider than the bootstrap interval

� Note: both the bootstrap and the Monte Carlo simulated interval would be far
wider had the number of correlation coefficients estimated been much greater than
the sample size

� Example: consider 1000 possible associations with a single Y

� This time the potential predictors X will be independent in the population and they
will be conditioned on (held constant over simulations at the original X values)

� The true importance of the Xs is 1, 2, . . . , 10 for the first 10 and all remaining are
irrelevant in the population
set.seed (8)

n ← 50

p ← 1000

x ← matrix(rnorm(n * p), ncol=p)

Ey ← x[,1] + 2 * x[,2] + 3 * x[,3] + 4 * x[,4] + 5 * x[,5] + 6 * x[,6] +

7 * x[,7] + 8 * x[,8] + 9 * x[,9] + 10 * x[,10]

y ← Ey + rnorm(n) * 20

ro ← cor(x, y)

# F i r s t 1 0 c o r r e l a t i o n s a n d t a b u l a t e a l l o t h e r s

round(ro[1:10] , 2)

[1] 0.26 -0.16 0.05 0.29 -0.03 0.04 0.28 0.05 0.28 0.57

table(round(ro[-(1:10)], 1))

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

1 6 43 97 234 250 210 120 25 3 1

# F i n d w h i c h o f t h e 1 0 0 0 c o r r e l a t i o n a g a i n s t Y i s l a r g e s t

wmax ← which.max(ro)

wmax # c o r r e c t a c c o r d i n g t o p o p u l a t i o n

[1] 10

ro[wmax] # o r i g i n a l r a n k = 1 0 0 0

[1] 0.5698995
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# S i m u l a t e 1 0 0 0 r e p e a t s o f s a m p l e w i t h n e w y b u t k e e p i n g x t h e s a m e

# S e e h o w o r i g i n a l h i g h e s t c o r r e l a t i n g v a r i a b l e r a n k s a m o n g 1 0 0 0

# c o r r e l a t i o n s i n n e w s a m p l e s

ranks ← numeric (1000)

for(i in 1 : 1000) {

ys ← Ey + rnorm(n) * 20

rs ← cor(x, ys)

ranks[i] ← rank(rs)[wmax]

}

table(round(ranks , -1)) # r o u n d t o n e a r e s t 1 0

350 400 580 600 610 620 630 660 670 680 690 700 710 720 730 740

1 1 1 1 1 2 1 1 4 2 2 2 1 2 1

1

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910

1 1 2 4 6 2 6 11 3 6 6 9 13 8 15

15

920 930 940 950 960 970 980 990 1000

15 34 39 41 50 66 126 203 294

quantile(ranks , c(0.025 , 0.975))

2.5% 97.5%

770.85 1000.00

sum(ranks > 998)

[1] 139

� The apparent winning variable could fairly easily be the 771st largest instead of the
1000th ranked correlation

� The winning variable was in the top two in only 139 out of 1000 simulations

� See Chapter 20 for more ways to quantify limitations of high-dimensional data
analysis, including the p > N case



Chapter 9

Introduction to the R rms Package: The
Linear Model

Some of the purposes of the rms package are to A

� make everyday statistical modeling easier to do

� make modern statistical methods easy to incorporate into everyday work

� make it easy to use the bootstrap to validate models

� provide“model presentation graphics”

9-1



CHAPTER 9. INTRODUCTION TO THE R RMS PACKAGE: THE LINEAR MODEL 9-2

9.1

Formula Language and Fitting Function
B

� Statistical formula in R:
y ∼ x1 + x2 + x3

y is modeled as α + β1x1 + β2x2 + β3x3.

� y is the dependent variable/response/outcome, x’s are predictors (independent vari-
ables)

� The formula is the first argument to a fitting function (just as it is the first argument
to a trellis graphics function)

� rms (regression modeling strategies) package41 makes many aspects of regression
modeling and graphical display of model results easier to do

� rms does a lot of bookkeeping to remember details about the design matrix for the
model and to use these details in making automatic hypothesis tests, estimates,
and plots. The design matrix is the matrix of independent variables after coding
them numerically and adding nonlinear and product terms if needed.

� rms package fitting function for ordinary least squares regression (what is often
called the linear model or multiple linear regression): ols

� Example: C

f ← ols(y ∼ age + sys.bp , data=mydata)

� age and sys.bp are the two predictors (independent variables) assumed to have
linear and additive effects (do not interact or have synergism)

� mydata is an R data frame containing at least three columns for the model’s variables

� f (the fit object) is an R list object, containing coefficients, variances, and many
other quantities

� Below, the fit object will be f throughout. In practice, use any legal R name, e.g.
fit.full.model
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9.2

Operating on the Fit Object
D

� Regression coefficient estimates may be obtained by any of the methods listed
below
f$coefficients

f$coef # a b b r e v i a t i o n

coef(f) # u s e t h e c o e f e x t r a c t o r f u n c t i o n

coef(f)[1] # g e t i n t e r c e p t

f$coef [2] # g e t 2 n d c o e f f i c i e n t ( 1 s t s l o p e )

f$coef[’age’] # g e t c o e f f i c i e n t o f a g e

coef(f)[’age’] # d i t t o

� But often we use methods which do something more interesting with the model
fit.

print(f) : print coefficients, standard errors, t-test, other statistics; can also just
type f to print

fitted(f) : compute ŷ

predict(f, newdata) : get predicted values, for subjects described in data frame
newdataa

r <- resid(f) : compute the vector of n residuals (here, store it in r)

formula(f) : print the regression formula fitted

anova(f) : print ANOVA table for all total and partial effects

summary(f) : print estimates partial effects using meaningful changes in predictors

Predict(f) : compute predicted values varying a few predictors at a time (conve-
nient for plotting)

ggplot(p) : plot partial effects, with predictor ranging over the x-axis, where p is
the result of Predict

g <- Function(f) : create an R function that evaluates the analytic form of the
fitted function

nomogram(f) : draw a nomogram of the model

aYou can get confidence limits for predicted means or predicted individual responses using the conf.int and conf.type arguments to predict.
predict(f) without the newdata argument yields the same result as fitted(f).
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9.3

The rms datadist Function
E

To use Predict, summary, or nomogram in the rms package, you need to let rms first
compute summaries of the distributional characteristics of the predictors:
dd ← datadist(x1,x2,x3,...) # g e n e r i c f o r m

dd ← datadist(age , sys.bp , sex)

dd ← datadist(mydataframe) # f o r a w h o l e d a t a f r a m e

options(datadist=’dd’) # l e t r m s k n o w w h e r e t o f i n d

Note that the name dd can be any name you choose as long as you use the same name
in quotes to options that you specify (unquoted) to the left of <- datadist(...). It
is best to invoke datadist early in your program before fitting any models. That way
the datadist information is stored in the fit object so the model is self-contained. That
allows you to make plots in later sessions without worrying about datadist.
datadist must be re-run if you add a new predictor or recode an old one. You can
update it using for example
dd ← datadist(dd, cholesterol , height)

# A d d s o r r e p l a c e s c h o l e s t e r o l , h e i g h t s u m m a r y s t a t s i n d d
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9.4

Short Example
F

Consider the lead exposure dataset from B. Rosner Fundamentals of Biostatistics and
originally from Landrigan PJ et al, Lancet 1:708-715, March 29, 1975. The study was
of psychological and neurologic well-being of children who lived near a lead smelting
plant. The primary outcome measures are the Wechsler full-scale IQ score (iqf) and
the finger-wrist tapping score maxfwt. The dataset is available at hbiostat.org/data
and can be automatically downloaded and load()’d into R using the Hmisc package
getHdata function. For now we just analyze lead exposure levels in 1972 and 1973, age,
and maxfwtb.

Note: To easily run all the following commands, open http://fharrell.com/code/ G

bbr.zip and then open the file 8-rmsintro.r contained in the .zip file using RStudio.
Commands listed in previous sections were not actually executed so they are marked
with the R comment symbol (#) and can be ignored.
# F o r a n R m a r k d o w n v e r s i o n o f s i m i l a r a n a l y s e s s e e

# h t t p s :// g i t h u b . c o m / h a r r e l f e / r s c r i p t s / r a w / m a s t e r / l e a d - o l s . m d

require(rms) # a l s o l o a d s t h e H m i s c p a c k a g e

getHdata(lead)

# S u b s e t v a r i a b l e s j u s t s o c o n t e n t s ( ) a n d d e s c r i b e ( ) o u t p u t i s s h o r t

# O v e r r i d e u n i t s o f m e a s u r e m e n t t o m a k e t h e m l e g a l R e x p r e s s i o n s

lead ← upData(lead ,

keep=c(’ld72’, ’ld73’, ’age’, ’maxfwt ’),

labels=c(age=’Age’),

units=c(age=’years’, ld72=’mg/100*ml’, ld73=’mg/100*ml’))

Input object size: 53928 bytes; 39 variables 124 observations

Kept variables ld72 ,ld73 ,age ,maxfwt

New object size: 14096 bytes; 4 variables 124 observations

contents(lead)

Data frame:lead 124 observations and 4 variables Maximum # NAs:25

Labels Units Storage NAs

age Age years double 0

ld72 Blood Lead Levels , 1972 mg/100*ml integer 0

ld73 Blood Lead Levels , 1973 mg/100*ml integer 0

maxfwt Maximum mean finger -wrist tapping score integer 25

describe(lead) # H

bmaxfwt might be better analyzed as an ordinal variable but as will be seen by residual plots it is also reasonably considered to be continuous
and to satisfy ordinary regression assumptions.

http://hbiostat.org/audio/bbr/rrms-4.m3u
http://bit.ly/yt-bbr15
http://bit.ly/datamethods-bbr15
hbiostat.org/data
http://fharrell.com/code/bbr.zip
http://fharrell.com/code/bbr.zip
http://fharrell.com/code/bbr.zip
http://fharrell.com/code/bbr.zip
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lead

4 Variables 124 Observations

--------------------------------------------------------------------------------

age : Age [years]

n missing distinct Info Mean Gmd .05 .10

124 0 73 1 8.935 4.074 3.929 4.333

.25 .50 .75 .90 .95

6.167 8.375 12.021 14.000 15.000

lowest : 3.750000 3.833333 3.916667 4.000000 4.166667

highest: 14.250000 15.000000 15.250000 15.416667 15.916667

--------------------------------------------------------------------------------

ld72 : Blood Lead Levels , 1972 [mg/100*ml]

n missing distinct Info Mean Gmd .05 .10

124 0 47 0.999 36.16 17.23 18.00 21.00

.25 .50 .75 .90 .95

27.00 34.00 43.00 57.00 61.85

lowest : 1 2 10 14 18, highest: 62 64 66 68 99

--------------------------------------------------------------------------------

ld73 : Blood Lead Levels , 1973 [mg/100*ml]

n missing distinct Info Mean Gmd .05 .10

124 0 37 0.998 31.71 11.06 18.15 21.00

.25 .50 .75 .90 .95

24.00 30.50 37.00 47.00 50.85

lowest : 15 16 18 19 20, highest: 52 53 54 57 58

--------------------------------------------------------------------------------

maxfwt : Maximum mean finger -wrist tapping score

n missing distinct Info Mean Gmd .05 .10

99 25 40 0.998 51.96 13.8 33.2 38.0

.25 .50 .75 .90 .95

46.0 52.0 59.0 65.0 72.2

lowest : 13 14 23 26 34, highest: 74 76 79 83 84

--------------------------------------------------------------------------------

dd ← datadist(lead); options(datadist=’dd’)

dd # s h o w w h a t d a t a d i s t c o m p u t e d I

age ld72 ld73 maxfwt

Low:effect 6.166667 27.00 24.00 46.0

Adjust to 8.375000 34.00 30.50 52.0

High:effect 12.020833 43.00 37.00 59.0

Low:prediction 3.929167 18.00 18.15 33.2

High:prediction 15.000000 61.85 50.85 72.2

Low 3.750000 1.00 15.00 13.0

High 15.916667 99.00 58.00 84.0

# F i t a n o r d i n a r y l i n e a r r e g r e s s i o n m o d e l w i t h 3 p r e d i c t o r s a s s u m e d l i n e a r

f ← ols(maxfwt ∼ age + ld72 + ld73 , data=lead)

f # s a m e a s p r i n t ( f ) J

Frequencies of Missing Values Due to Each Variable

maxfwt age ld72 ld73
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25 0 0 0

Linear Regression Model

ols(formula = maxfwt ∼ age + ld72 + ld73 , data = lead)

Model Likelihood Discrimination

Ratio Test Indexes

Obs 99 LR chi2 62.25 R2 0.467

sigma9 .5221 d.f. 3 R2 adj 0.450

d.f. 95 Pr(> chi2) 0.0000 g 10.104

Residuals

Min 1Q Median 3Q Max

-33.9958 -4.9214 0.7596 5.1106 33.2590

Coef S.E. t Pr(>|t|)

Intercept 34.1059 4.8438 7.04 <0.0001

age 2.6078 0.3231 8.07 <0.0001

ld72 -0.0246 0.0782 -0.31 0.7538

ld73 -0.2390 0.1325 -1.80 0.0744

coef(f) # r e t r i e v e c o e f f i c i e n t s

Intercept age ld72 ld73

34.1058551 2.6078450 -0.0245978 -0.2389695

specs(f, long=TRUE) # s h o w h o w p a r a m e t e r s a r e a s s i g n e d t o p r e d i c t o r s , K

ols(formula = maxfwt ∼ age + ld72 + ld73 , data = lead)

Units Label Assumption Parameters d.f.

age years Age asis 1

ld72 mg/100*ml Blood Lead Levels , 1972 asis 1

ld73 mg/100*ml Blood Lead Levels , 1973 asis 1

age ld72 ld73

Low:effect 6.166667 27.00 24.00

Adjust to 8.375000 34.00 30.50

High:effect 12.020833 43.00 37.00

Low:prediction 3.929167 18.00 18.15

High:prediction 15.000000 61.85 50.85

Low 3.750000 1.00 15.00

High 15.916667 99.00 58.00

# a n d p r e d i c t o r d i s t r i b u t i o n s u m m a r i e s d r i v i n g p l o t s

g ← Function(f) # c r e a t e a n R f u n c t i o n t h a t r e p r e s e n t s t h e f i t t e d m o d e l L

# N o t e t h a t t h e d e f a u l t v a l u e s f o r g ’ s a r g u m e n t s a r e m e d i a n s

g

function (age = 8.375, ld72 = 34, ld73 = 30.5)

{

34.105855 + 2.607845 * age - 0.024597799 * ld72 - 0.23896951 *
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ld73

}

<environment: 0x55daa37b6f40 >

# E s t i m a t e m e a n m a x f w t a t a g e 10 , . 1 q u a n t i l e s o f l d 7 2 , l d 7 3 a n d . 9 q u a n t i l e o f

l d 7 3

# k e e p i n g l d 7 2 a t . 1 q u a n t i l e

g(age=10, ld72=21, ld73=c(21, 47)) # m o r e e x p o s u r e i n 1 9 7 3 d e c r e a s e d y b y 6

[1] 54.64939 48.43618

# G e t t h e s a m e e s t i m a t e s a n o t h e r w a y b u t a l s o g e t s t d . e r r o r s M

predict(f, data.frame(age=10, ld72=21, ld73=c(21, 47)), se.fit=TRUE)

$linear.predictors

1 2

54.64939 48.43618

$se.fit

1 2

1.391858 3.140361
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9.5

Operating on Residuals

Residuals may be summarized and plotted just like any raw data variable. N

� To plot residuals vs. each predictor, and to make a q-q plot to check normality of
residuals, use these examples:
r ← resid(f)

par(mfrow=c(2,2)) # 2 x 2 m a t r i x o f p l o t s

plot(fitted(f), r); abline(h=0) # y h a t v s . r

with(lead , plot(age , r)); abline(h=0)

with(lead , plot(ld73 , r)); abline(h=0)

qqnorm(r) # l i n e a r i t y i n d i c a t e s n o r m a l i t y

qqline(as.numeric(r))
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http://hbiostat.org/audio/bbr/rrms-5.m3u
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9.6

Plotting Partial Effects

O

� Predict and ggplot makes one plot for each predictor

� Predictor is on x-axis, ŷ on the y-axis

� Predictors not shown in plot are set to constants

– median for continuous predictors

– mode for categorical ones

� For categorical predictor, estimates are shown only at data values

� 0.95 pointwise confidence limits for Ê(y|x) are shown (add conf.int=FALSE to Pre-

dict() to suppress CLs)

� Example: P

ggplot(Predict(f))

http://hbiostat.org/audio/bbr/rrms-6.m3u
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� To take control of which predictors are plotted, or to specify customized options: Q

ggplot(Predict(f, age)) # p l o t a g e e f f e c t , u s i n g d e f a u l t r a n g e ,

# 1 0 t h s m a l l e s t t o 1 0 t h l a r g e s t a g e

30

40

50

60

70

6 9 12 15
Age, years

m
ax

fw
t

Adjusted to:ld72=34 ld73=30.5 

ggplot(Predict(f, age =3:15)) # p l o t a g e = 3 , 4 , ... , 1 5 R
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Adjusted to:ld72=34 ld73=30.5 

ggplot(Predict(f, age=seq(3,16, length =150))) # p l o t a g e = 3 -16 , 1 5 0 p o i n t s S
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Adjusted to:ld72=34 ld73=30.5 

� To get confidence limits for ŷ: T

ggplot(Predict(f, age , conf.type=’individual ’))
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Adjusted to:ld72=34 ld73=30.5 

� To show both types of 0.99 confidence limits on one plot: U

p1 ← Predict(f, age , conf.int =0.99 , conf.type=’individual ’)

p2 ← Predict(f, age , conf.int =0.99 , conf.type=’mean’)

p ← rbind(Individual=p1, Mean=p2)

ggplot(p)
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� Non-plotted variables are set to reference values (median and mode by default)

� To control the settings of non-plotted values use e.g. V

ggplot(Predict(f, ld73 , age=3))
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� To make separate lines for two ages: W

ggplot(Predict(f, ld73 , age=c(3,9))) # a d d , c o n f . i n t = F A L S E t o s u p p r e s s

c o n f . b a n d s
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Adjusted to:ld72=34 

� To plot a 3-d surface for two continuous predictors against ŷ; color coding for
predicted mean maxfwt X

bplot(Predict(f, ld72 , ld73))
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9.7

Nomograms: Overall Depiction of Fitted Mod-
els

Yplot(nomogram(f))

Points
0 10 20 30 40 50 60 70 80 90 100

Age
3 4 5 6 7 8 9 10 11 12 13 14 15 16

Blood Lead
Levels, 1972 100 0

Blood Lead
Levels, 1973 60 50 40 30 20

Total Points
0 10 20 30 40 50 60 70 80 90 110 130

Linear Predictor
35 40 45 50 55 60 65 70

See this for excellent examples showing how to read such nomograms.

9.7.1

Point Estimates for Partial Effects

Z

The summary function can compute point estimates and confidence intervals for effects
of individual predictors, holding other predictors to selected constants. The constants
you hold other predictors to will only matter when the other predictors interact with
the predictor whose effects are being displayed.

How predictors are changed depend on the type of predictor: A

� Categorical predictors: differences against the reference (most frequent) cell by

http://hbiostat.org/audio/bbr/rrms-7.m3u
http://stats.stackexchange.com/questions/155430/clarifications-regarding-reading-a-nomogram
http://hbiostat.org/audio/bbr/rrms-8.m3u
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default

� Continuous predictors: inter-quartile-range effects by default

The estimated effects depend on the type of model: B

� ols: differences in means

� logistic models: odds ratios and their logs

� Cox models: hazard ratios and their logs

� quantile regression: differences in quantiles

summary(f) # i n t e r - q u a r t i l e - r a n g e e f f e c t s C

Effects Response : maxfwt

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

age 6.1667 12.021 5.8542 15.26700 1.8914 11.5120 19.02200

ld72 27.0000 43.000 16.0000 -0.39356 1.2511 -2.8773 2.09010

ld73 24.0000 37.000 13.0000 -3.10660 1.7222 -6.5255 0.31234

summary(f, age =5) # a d j u s t a g e t o 5 w h e n e x a m i n i n g l d 7 2 , l d 7 3

Effects Response : maxfwt

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

age 6.1667 12.021 5.8542 15.26700 1.8914 11.5120 19.02200

ld72 27.0000 43.000 16.0000 -0.39356 1.2511 -2.8773 2.09010

ld73 24.0000 37.000 13.0000 -3.10660 1.7222 -6.5255 0.31234

# ( n o e f f e c t s i n c e n o i n t e r a c t i o n s i n m o d e l )

summary(f, ld73=c(20, 40)) # e f f e c t o f c h a n g i n g l d 7 3 f r o m 2 0 t o 4 0

Effects Response : maxfwt

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

age 6.1667 12.021 5.8542 15.26700 1.8914 11.5120 19.02200

ld72 27.0000 43.000 16.0000 -0.39356 1.2511 -2.8773 2.09010

ld73 20.0000 40.000 20.0000 -4.77940 2.6495 -10.0390 0.48052

When a predictor has a linear effect, its slope is the one-unit change in Y when the
predictor increases by one unit. So the following trick can be used to get a confidence
interval for a slope: use summary to get the confidence interval for the one-unit change:
summary(f, age =5:6) # s t a r t i n g a g e i r r e l e v a n t s i n c e a g e i s l i n e a r D
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Effects Response : maxfwt

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

age 5 6 1 2.60780 0.32308 1.9664 3.24920

ld72 27 43 16 -0.39356 1.25110 -2.8773 2.09010

ld73 24 37 13 -3.10660 1.72220 -6.5255 0.31234

There is a plot method for summary results. By default it shows 0.9, 0.95, and 0.99
confidence limits. E

plot(summary(f))

maxfwt
−6 0 4 8 14 20

age − 12.02083:6.166667

ld72 − 43:27

ld73 − 37:24
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9.8

Getting Predicted Values

F

� Using predict

predict(f, data.frame(age=3, ld72=21, ld73 =21))

1

36.39448

# m u s t s p e c i f y a l l v a r i a b l e s i n t h e m o d e l

predict(f, data.frame(age=c(3, 10), ld72=21, ld73=c(21, 47)))

1 2

36.39448 48.43618

# p r e d i c t i o n s f o r ( 3 , 2 1 , 2 1 ) a n d ( 1 0 , 2 1 , 4 7 )

newdat ← expand.grid(age=c(4, 8), ld72=c(21, 47), ld73=c(21, 47))

newdat

age ld72 ld73

1 4 21 21

2 8 21 21

3 4 47 21

4 8 47 21

5 4 21 47

6 8 21 47

7 4 47 47

8 8 47 47

predict(f, newdat) # 8 p r e d i c t i o n s

1 2 3 4 5 6 7 8

39.00232 49.43370 38.36278 48.79416 32.78911 43.22049 32.14957 42.58095

predict(f, newdat , conf.int =0.95) # a l s o g e t C L s f o r m e a n G

$linear.predictors

1 2 3 4 5 6 7 8

39.00232 49.43370 38.36278 48.79416 32.78911 43.22049 32.14957 42.58095

$lower

1 2 3 4 5 6 7 8

33.97441 46.23595 32.15468 43.94736 25.68920 36.94167 27.17060 38.86475

$upper

1 2 3 4 5 6 7 8

44.03023 52.63145 44.57088 53.64095 39.88902 49.49932 37.12854 46.29716

predict(f, newdat , conf.int =0.95 , conf.type=’individual ’) # C L s f o r i n d i v .

http://hbiostat.org/audio/bbr/rrms-9.m3u
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$linear.predictors

1 2 3 4 5 6 7 8

39.00232 49.43370 38.36278 48.79416 32.78911 43.22049 32.14957 42.58095

$lower

1 2 3 4 5 6 7 8

19.44127 30.26132 18.46566 29.27888 12.59596 23.30120 12.60105 23.31531

$upper

1 2 3 4 5 6 7 8

58.56337 68.60609 58.25989 68.30944 52.98227 63.13979 51.69810 61.84659

See also gendata.

� The brute-force way
# M o d e l i s b 1 + b 2 * a g e + b 3 * l d 7 2 + b 4 * l d 7 3

b ← coef(f)

# F o r 3 y e a r o l d w i t h b o t h l e a d e x p o s u r e s 2 1

b[1] + b[2]*3 + b[3]*21 + b[4]*21

Intercept

36.39448

� Using Function function H

g ← Function(f)

g(age=c(3, 8), ld72=21, ld73 =21) # 2 p r e d i c t i o n s

[1] 36.39448 49.43370

g(age=3) # 3 y e a r o l d a t m e d i a n l d 7 2 , l d 7 3

[1] 33.80449
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9.9

ANOVA

I

� Use anova(fitobject) to get all total effects and individual partial effects

� Use anova(f,age,sex) to get combined partial effects of age and sex, for example

� Store result of anova in an object in you want to print it various ways, or to plot
it:
an ← anova(f)

an # s a m e a s p r i n t ( a n )

Analysis of Variance Response: maxfwt

Factor d.f. Partial SS MS F P

age 1 5907.535742 5907.535742 65.15 <.0001

ld72 1 8.972994 8.972994 0.10 0.7538

ld73 1 295.044370 295.044370 3.25 0.0744

REGRESSION 3 7540.087710 2513.362570 27.72 <.0001

ERROR 95 8613.750674 90.671060

print(an, ’names’) # p r i n t n a m e s o f v a r i a b l e s b e i n g t e s t e d

Analysis of Variance Response: maxfwt

Factor d.f. Partial SS MS F P Tested

age 1 5907.535742 5907.535742 65.15 <.0001 age

ld72 1 8.972994 8.972994 0.10 0.7538 ld72

ld73 1 295.044370 295.044370 3.25 0.0744 ld73

REGRESSION 3 7540.087710 2513.362570 27.72 <.0001 age ,ld72 ,ld73

ERROR 95 8613.750674 90.671060

print(an, ’subscripts ’) # p r i n t s u b s c r i p t s i n c o e f ( f ) ( i g n o r i n g J

Analysis of Variance Response: maxfwt

Factor d.f. Partial SS MS F P Tested

age 1 5907.535742 5907.535742 65.15 <.0001 1

ld72 1 8.972994 8.972994 0.10 0.7538 2

ld73 1 295.044370 295.044370 3.25 0.0744 3

REGRESSION 3 7540.087710 2513.362570 27.72 <.0001 1-3

ERROR 95 8613.750674 90.671060

Subscripts correspond to:

[1] age ld72 ld73

# t h e i n t e r c e p t ) b e i n g t e s t e d

print(an, ’dots’) # a d o t i n e a c h p o s i t i o n b e i n g t e s t e d

http://hbiostat.org/audio/bbr/rrms-10.m3u
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Analysis of Variance Response: maxfwt

Factor d.f. Partial SS MS F P Tested

age 1 5907.535742 5907.535742 65.15 <.0001 .

ld72 1 8.972994 8.972994 0.10 0.7538 .

ld73 1 295.044370 295.044370 3.25 0.0744 .

REGRESSION 3 7540.087710 2513.362570 27.72 <.0001 ...

ERROR 95 8613.750674 90.671060

Subscripts correspond to:

[1] age ld72 ld73

anova(f, ld72 , ld73) # c o m b i n e e f f e c t s i n t o a 2 d . f . t e s t K

Analysis of Variance Response: maxfwt

Factor d.f. Partial SS MS F P

ld72 1 8.972994 8.972994 0.10 0.7538

ld73 1 295.044370 295.044370 3.25 0.0744

REGRESSION 2 747.283558 373.641779 4.12 0.0192

ERROR 95 8613.750674 90.671060



Chapter 10

Simple and Multiple Regression Models

Background

Regression models are used for

� hypothesis testing

� estimation

� prediction

� increasing power and precision for assessing the effect of one variable by adjust-
ing for other variables that partially explain the outcome variable Y (even in a
randomized experiment with perfect covariate balance)

� confounder adjustment—getting adjusted estimates of effects

� checking that existing summary scores (e.g., BMI) adequately summarize their
component variables

– fit a model with log height and log weight and see if ratio of coefficients is -2

� determining whether change, average, or most recent measurement should be em-
phasized

– fit a model containing body weight measured 1y ago and at time of treatment
initiation

10-1

http://hbiostat.org/audio/bbr/reg-1.m3u
http://bit.ly/yt-bbr13
http://bit.ly/datamethods-bbr13
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– if simple change score is an adequate summary of the two weights, the ratio of
their coefficients will be about -1

– if most recent weight is all-important, coefficient for weight 1y ago will be very
small

� developing new summary scores guided by predicting outcomes

Example

� Observational study of patients receiving treatments A and B

� Females are more likely to receive treatment B → need to adjust for sex

� Regression approach: fit a model with covariates (predictors) treatment and sex;
treatment effect is adjusted for sex

� Stratification approach: for males estimate the B-A difference and do likewise for
females
Average of the two differences is adjusted for sex

Now instead of sex being the relevant adjustment variable suppose it is age, and older
patients tend to get treatment B

� Regression approach: fit a model with treatment and age
Treatment effect attempts to estimate the B-A difference at any chosen (fixed;
conditioned on) age

� Stratification approach:

– divide age into quintiles

– within each quintile compute the B-A difference

– average these differences to get an almost age-adjusted treatment effect

– problem with residual heterogeneity of age within quintiles, especially at outer
quintiles which are wider

� Matching approach:
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– for each patient on A find a patient on B within 2y of same age

– if no match exists discard the A patient

– don’t use the same B patient again

– discard B patients who were not needed to match an A

– do a matched pairs analysis, e.g. paired t-test

– sample size is reduced →↓ power
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10.1

Stratification vs. Matching vs. Regression

reg
-alt

� Some ways to hold one variable x1 constant when estimating the effect of another
variable x2 (covariable adjustment):

– experimental manipulation of x1

– stratify the data on x1 and for each stratum analyze the relationship between
x2 and Y

– form matched sets of observations on the basis of x1 and use a statistical
method applicable to matched data

– use a regression model to estimate the joint effects x1 and x2 have on Y ;
the estimate of the x2 effect in the context of this model is essentially the x2
relationship on Y ′ where Y ′ is Y after the x1 effect is subtracted from it

� Stratification and matching are not effective when x1 is continuous as there are
many x’s to hold constant

� Matching may be useful before data acquisition is complete or when sample is too
small to allow for regression adjustment for > 1 variable

� Matching after the study is completed usually results in discarding a large number
of observations that would have been excellent matches

� Methods that discard information lose power and precision, and the observations
discarded are arbitrary, damaging the study’s reproducibility

� Most matching methods depend on the row order of observations, again putting
reproducibility into question

� There is no principled unique statistical approach to analysis of matched data

� All this points to many advantages of regression adjustment

Stratification and matching can be used to adjust for a small set of variables when

https://youtu.be/IiJ6pMs2BiA
http://vbiostatcourse.slack.com/messages/bbr/search/reg-alt
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assessing the association between a target variable and the outcome. Neither stratifica-
tion nor matching are satisfactory when there are many adjustment variables or any of
them are continuous. Crude stratification is often used in randomized trials to ensure
that randomization stays balanced within subsets of subjects (e.g., males/females, clin-
ical sites). Matching is an effective way to save resources before a study is done. For
example, with a rare outcome one might sample all the cases and only twice as many
controls as cases, matching controls to cases on age within a small tolerance such as
2 years. But once data are collected, matching is arbitrary, ineffective, and wasteful,
and there are no principled unique statistical methods for analyzing matched data. For
example if one wants to adjust for age via matching, consider these data:

Group Ages

Exposed 30 35 40 42
Unexposed 29 42 41 42

The matched sets may be constructed as follows:

Set Data

1 E30 U29
2 E40 U41
3 E42 U42a

U42a refers to the first 42 year old in the unexposed group. There is no match for E35.
U42b was not used even though she was perfect match for E42.

1. Matching failed to interpolate for age 35; entire analysis must be declared as con-
ditional on age not in the interval [36, 39]

2. n ↓ by discarding observations that are easy to match (when the observations they
are easily matched to were already matched)

3. Majority of matching algorithms are dependent on the row order of the dataset
being analyzed so reproducibility is in question

These problems combine to make post-sample-collection matching unsatisfactory from
a scientific standpointa.

Gelman has a nice chapter on matching.

aAny method that discards already available information should be thought of as unscientific.

http://www.stat.columbia.edu/~gelman/arm/chap10.pdf
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10.2

Purposes of Statistical Models
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Statisticians, like artists, have the bad habit of falling in love with their models. George E. P. Box

Most folk behave and thoughtlessly believe that the objective of analysis with
statistical tools is to find / identify features in the data—period.

They assume and have too much faith that (1) the data effectively reflect
nature and not noise, and (2) that statistical tools can ‘auto-magically’ divine
causal relations.

They do not acknowledge that the objective of analysis should be to find
interesting features inherent in nature (which to the extent that they indicate
causal effects should be reproducible); represent these well; and use these
features to make reliable decisions about future cases/situations.

Too often the p-value ‘satisfices’ for the intent of making reliable decisions
about future cases/situations.

I also think that hypothesis testing and even point estimates for individual ef-
fects are really ersatz forms of prediction: ways of identifying and singling out
a factor that allows people to make a prediction (and a decision) in a sim-
ple (simplistic) and expedient manner (again typically satisficing for cognitive
ease). Well formulated prediction modeling is to be preferred to achieve this
unacknowledged goal of making reliable decisions about future cases/situations
on these grounds.

Drew Levy
@DrewLevy

March 2020

� Hypothesis testing

– Test for no association (correlation) of a predictor (independent variable) and
a response or dependent variable (unadjusted test) or test for no association of
predictor and response after adjusting for the effects of other predictors

� Estimation

– Estimate the shape and magnitude of the relationship between a single predictor
(independent) variable and a response (dependent) variable

– Estimate the effect on the response variable of changing a predictor from one
value to another

� Prediction

– Predicting response tendencies, e.g., long-term average response as a function

http://vbiostatcourse.slack.com/messages/bbr/search/reg-purpose
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of predictors

– Predicting responses of individual subjects
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10.3

Advantages of Modeling

reg
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e

Even when only testing H0 a model based approach has advantages:

� Permutation and rank tests not as useful for estimation

� Cannot readily be extended to cluster sampling or repeated measurements

� Models generalize tests

– 2-sample t-test, ANOVA →
multiple linear regression

– Wilcoxon, Kruskal-Wallis, Spearman →
proportional odds ordinal logistic model

– log-rank → Cox

� Models not only allow for multiplicity adjustment but for shrinkage of estimates

– Statisticians comfortable with P -value adjustment but fail to recognize that
the difference between the most different treatments is badly biased

Statistical estimation is usually model-based

� Relative effect of increasing cholesterol from 200 to 250 mg/dl on hazard of death,
holding other risk factors constant

� Adjustment depends on how other risk factors relate to outcome

� Usually interested in adjusted (partial) effects, not unadjusted (marginal or crude)
effects

http://vbiostatcourse.slack.com/messages/bbr/search/reg-advantage
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10.4

Nonparametric Regression
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� Estimate tendency (mean or median) of Y as a function of X

� Few assumptions

� Especially handy when there is a single X

� Plotted trend line may be the final result of the analysis

� Simplest smoother: moving average

X: 1 2 3 5 8
Y : 2.1 3.8 5.7 11.1 17.2

Ê(Y |X = 2) = 2.1 + 3.8 + 5.7
3

Ê(Y |X = 2 + 3 + 5
3 ) = 3.8 + 5.7 + 11.1

3
– overlap OK

– problem in estimating E(Y ) at outer X-values

– estimates very sensitive to bin width

� Moving linear regression far superior to moving avg. (moving flat line)

� Cleveland’s moving linear regression smoother loess (locally weighted least squares)
is the most popular smoother

� Example: differential diagnosis of acute bacterial meningitis vs. viral meningitis

require(Hmisc)

getHdata(abm) # L o a d s d a t a f r a m e A B M ( n o t e c a s e )

with(ABM , {

glratio ← gl / bloodgl

tpolys ← polys * whites / 100

plsmo(tpolys , glratio , xlab=’Total Polymorphs in CSF’,

ylab=’CSF/Blood Glucose Ratio’, # F i g . 10.1

http://vbiostatcourse.slack.com/messages/bbr/search/reg-nonpar
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xlim=quantile(tpolys , c(.05 ,.95), na.rm=TRUE),

ylim=quantile(glratio , c(.05 ,.95), na.rm=TRUE))

scat1d(tpolys); scat1d(glratio , side =4) })
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Figure 10.1: loess nonparametric smoother relating CSF:blood glucose ratio to total CSF polymorph count in patients with either
bacterial or viral meningitis. Rug plot on axes plots indicate raw data values.

with(ABM , {

plsmo(age , abm , ’supsmu ’, bass=7, # F i g . 10.2

xlab=’Age at Admission , Years’,

ylab=’Proportion Bacterial Meningitis ’)

scat1d(age) })
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Figure 10.2: “Super smoother”relating age to the probability of bacterial meningitis given a patient has bacterial or viral meningitis,
with a rug plot showing the age distribution.
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10.5

Simple Linear Regression
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10.5.1

Notation

A

� y : random variable representing response variable

� x : random variable representing independent variable (subject descriptor, predictor,
covariable)

– conditioned upon

– treating as constants, measured without error

� What does conditioning mean?

– holding constant

– subsetting on

– slicing scatterplot vertically

n ← 100

set.seed (13)

x ← round(rnorm(n, .5, .25), 1)

y ← x + rnorm(n, 0, .1)

r ← c(-.2 , 1.2)

plot(x, y, axes=FALSE , xlim=r, ylim=r, xlab=expression(x), ylab=expression(y

))

axis(1, at=r, labels=FALSE) # F i g . 10.3

axis(2, at=r, labels=FALSE)

abline(a=0,b=1)

histSpike(y, side=2, add=TRUE)

abline(v=.6, lty=2)

� E(y|x) : population expected value or long-run average of y conditioned on the
value of x
Example: population average blood pressure for a 30-year old

� α : y-intercept

http://hbiostat.org/audio/bbr/reg-2.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-simple
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Figure 10.3: Data from a sample of n = 100 points along with population linear regression line. The x variable is discrete. The
conditional distribution of y|x can be thought of as a vertical slice at x. The unconditional distribution of y is shown on the y-axis.
To envision the conditional normal distributions assumed for the underlying population, think of a bell-shaped curve coming out of
the page, with its base along one of the vertical lines of points. The equal variance assumption dictates that the series of Gaussian
curves for all the different xs have equal variances.

� β : slope of y on x (∆y
∆x)

Simple linear regression is used when B

� Only two variables are of interest

� One variable is a response and one a predictor

� No adjustment is needed for confounding or other between-subject variation

� The investigator is interested in assessing the strength of the relationship between
x and y in real data units, or in predicting y from x

� A linear relationship is assumed (why assume this? why not use nonparametric
regression?)

� Not when one only needs to test for association (use Spearman’s ρ rank correlation)
or estimate a correlation index
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10.5.2

Two Ways of Stating the Model

C

� E(y|x) = α + βx

� y = α + βx + e
e is a random error (residual) representing variation between subjects in y even if
x is constant, e.g. variation in blood pressure for patients of the same age

10.5.3

Assumptions, If Inference Needed
D

� Conditional on x, y is normal with mean α + βx and constant variance σ2, or:

� e is normal with mean 0 and constant variance σ2

� E(y|x) = E(α + βx + e) = α + βx + E(e),
E(e) = 0.

� Observations are independent

10.5.4

How Can α and β be Estimated?
E

� Need a criterion for what are good estimates

� One criterion is to choose values of the two parameters that minimize the sum of
squared errors in predicting individual subject responses

� Let a, b be guesses for α, β

� Sample of size n : (x1, y1), (x2, y2), . . . , (xn, yn)

� SSE = ∑n
i=1(yi − a− bxi)2

http://hbiostat.org/audio/bbr/reg-3.m3u
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� Values that minimize SSE are least squares estimates

� These are obtained from F

Lxx =
∑

(xi − x̄)2 Lxy = ∑(xi − x̄)(yi − ȳ)

β̂ = b = Lxy

Lxx
α̂ = a = ȳ − bx̄

� Note: A term from Lxy will be positive when x and y are concordant in terms of
both being above their means or both being below their means.

� Least squares estimates are optimal if

1. the residuals truly come from a normal distribution

2. the residuals all have the same variance

3. the model is correctly specified, i.e., linearity holds

� Demonstration:
require(Hmisc)

getRs(’demoLeastSquares.r ’) # w i l l l o a d c o d e i n t o R S t u d i o s c r i p t e d i t o r

# c l i c k t h e S o u r c e b u t t o n t o r u n a n d f o l l o w

# i n s t r u c t i o n s i n c o n s o l e w i n d o w

getRs(’demoLeastSquares.r ’, put=’source ’) # i f n o t u s i n g R S t u d i o

10.5.5

Inference about Parameters

G

� Estimated residual: d = y − ŷ

� d large if line was not the proper fit to the data or if there is large variability across
subjects for the same x

� Beware of that many authors combine both components when using the terms
goodness of fit and lack of fit

� Might be better to think of lack of fit as being due to a structural defect in the
model (e.g., nonlinearity)

https://youtu.be/4SPCQRCxuWI
http://hbiostat.org/audio/bbr/reg-4.m3u
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� SST = ∑n
i=1(yi − ȳ)2

SSR = ∑(ŷi − ȳ)2

SSE = ∑(yi − ŷi)2

SST = SSR + SSE
SSR = SST − SSE

� SS increases in proportion to n

� Mean squares: normalized for for d.f.: SS
d.f.(SS)

� MSR = SSR/p, p = no. of parameters besides intercept (here, 1)
MSE = SSE/(n− p− 1) (sample conditional variance of y)
MST = SST/(n− 1) (sample unconditional variance of y)

� Brief review of ordinary ANOVA (analysis of variance):

– Generalizes 2-sample t-test to > 2 groups

– SSR is SS between treatment means

– SSE is SS within treatments, summed over treatments

� ANOVA Table for Regression H

Source d.f. SS MS F

Regression p SSR MSR = SSR/p MSR/MSE

Error n− p− 1 SSE MSE = SSE/(n− p− 1)
Total n− 1 SST MST = SST/(n− 1)

� Statistical evidence for large values of β can be summarized by F = MSR
MSE

� Has F distribution with p and n− p− 1 d.f.

� Large values → |β| large

10.5.6

Estimating σ, S.E. of β̂; t-test
I

� s2
y·x = σ̂2 = MSE = V̂ ar(y|x) = V̂ ar(e)
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� ŝe(b) = sy·x/L
1
2
xx

� t = b/ŝe(b), n− p− 1 d.f.

� t2 ≡ F when p = 1

� tn−2 ≡
√

F1,n−2

� t identical to 2-sample t-test (x has two values)

� If x takes on only the values 0 and 1, b equals (ȳ when x = 1) minus (ȳ when
x = 0)

10.5.7

Interval Estimation

J

� 2-sided 1− α CI for β: b± tn−2,1−α/2ŝe(b)

� CI for predictions depend on what you want to predict even though ŷ estimates
both y b and E(y|x)

� Notation for these two goals: ŷ and Ê(y|x)

– Predicting y with ŷ : K

ŝ.e.(ŷ) = sy·x

√
1 + 1

n + (x−x̄)2

Lxx

Note: This s.e. → sy·x as n→∞

* As n→∞, ŝ.e.(ŷ)→ sy·x which is > 0

* Fits with thinking of a predicted individual value being the predicted mean
plus a randomly chosen residual (the former has SD going to zero as n→∞
and the latter has SD of sy·x)

* This is a valid predicted individual value but not the lowest mean squared
error prediction which would be just to predict at the middle (the mean)

– Predicting Ê(y|x) with ŷ: L

bWith a normal distribution, the least dangerous guess for an individual y is the estimated mean of y.

http://hbiostat.org/audio/bbr/reg-5.m3u
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ŝ.e.(Ê(y|x)) = sy·x

√
1
n + (x−x̄)2

Lxx
See footnotec

Note: This s.e. shrinks to 0 as n→∞

� 1− α 2-sided CI for either one:
ŷ ± tn−p−1,1−α/2ŝ.e.

� Wide CI (large ŝ.e.) due to:

– small n

– large σ2

– being far from the data center (x̄)

� Example usages:

– Is a child of age x smaller than predicted for her age?
Use s.e.(ŷ)

– What is the best estimate of the population mean blood pressure for patients
on treatment A?
Use s.e.(Ê(y|x))

� Example pointwise 0.95 confidence bands: M

x 1 3 5 6 7 9 11
y: 5 10 70 58 85 89 135
require(rms)

x1 ← c( 1, 3, 5, 6, 7, 9, 11)

y ← c( 5, 10, 70, 58, 85, 89, 135)

dd ← datadist(x1 , n.unique =5); options(datadist=’dd’)

f ← ols(y ∼ x1)

p1 ← Predict(f, x1=seq(1,11, length =100), conf.type=’mean’)

p2 ← Predict(f, x1=seq(1,11, length =100), conf.type=’individual ’)

p ← rbind(Mean=p1, Individual=p2)

ggplot(p, legend.position=’none’) + # F i g . 10.4

geom_point(aes(x1, y), data=data.frame(x1 , y, .set.=’’))

cn here is the grand total number of observations because we are borrowing information about neighboring x-points, i.e., using interpolation.

If we didn’t assume anything and just computed mean y at each separate x, the standard error would instead by estimated by sy·x
√

1
m
, where

m is the number of original observations with x exactly equal to the x for which we are obtaining the prediction. The latter s.e. is much larger
than the one from the linear model.
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Figure 10.4: Pointwise 0.95 confidence intervals for ŷ (wider bands) and Ê(y|x) (narrower bands).
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10.5.8

Assessing Goodness of Fit
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Assumptions:

N

1. Linearity

2. σ2 is constant, independent of x

3. Observations (e’s) are independent of each other

4. For proper statistical inference (CI, P -values), e is normal, or equivalently, y is
normal conditional on x

Verifying some of the assumptions: O

� In a scattergram the spread of y about the fitted line should be constant as x

increases, and y vs. x should appear linear

� Easier to see this with a plot of d̂ = y − ŷ vs. ŷ

� In this plot there are no systematic patterns (no trend in central tendency, no
change in spread of points with x)

� Trend in central tendency indicates failure of linearity

� qqnorm plot of d

# F i t a m o d e l w h e r e x a n d y s h o u l d h a v e b e e n l o g t r a n s f o r m e d

n ← 50

set.seed (2)

res ← rnorm(n, sd=.25)

x ← runif(n)

y ← exp(log(x) + res)

f ← ols(y ∼ x)

plot(fitted(f), resid(f)) # F i g . 10.5

rl ← function () abline(h=0, col=gray(0.8))

rl()

# F i t a l i n e a r m o d e l t h a t s h o u l d h a v e b e e n q u a d r a t i c

x ← runif(n, -1, 1)

y ← x ∧ 2 + res

f ← ols(y ∼ x)

plot(fitted(f), resid(f))

rl()

# F i t a c o r r e c t l y a s s u m e d l i n e a r m o d e l

http://hbiostat.org/audio/bbr/reg-6.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-simple-gof
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y ← x + res

f ← ols(y ∼ x)

plot(fitted(f), resid(f))

rl()

# Q - Q p l o t t o c h e c k n o r m a l i t y o f r e s i d u a l s

qqnorm(resid(f)); qqline(resid(f))
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Figure 10.5: Using residuals to check some of the assumptions of the simple linear regression model. Top left panel depicts non-
constant σ2, which might call for transforming y. Top right panel shows constant variance but the presence of a systemic trend
which indicates failure of the linearity assumption. Bottom left panel shows the ideal situation of white noise (no trend, constant
variance). Bottom right panel shows a q − q plot that demonstrates approximate normality of residuals, for a sample of size n = 50.
Horizontal reference lines are at zero, which is by definition the mean of all residuals.
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10.5.9

Summary: Useful Equations for Linear Regression

Simple linear regression: one predictor (p = 1):
Model: E(y|x) = α + βx
E(y) =expectation or long–term average of y | = conditional on
Alternate statement of model: y = α + βx + e, e normal with mean zero for all x,
var(e) = σ2 = var(y|x)

Assumptions: P

1. Linearity

2. σ2 is constant, independent of x

3. Observations (e’s) are independent of each other

4. For proper statistical inference (CI, P–values), e is normal, or equivalently y is
normal conditional on x

Verifying some of the assumptions: Q

1. In a scattergram the spread of y about the fitted line should be constant as x

increases

2. In a residual plot (d = y − ŷ vs. x) there are no systematic patterns (no trend in
central tendency, no change in spread of points with x)

Sample of size n : (x1, y1), (x2, y2), . . . , (xn, yn) R

Lxx =
∑

(xi − x̄)2 Lxy = ∑(xi − x̄)(yi − ȳ)

β̂ = b = Lxy

Lxx
α̂ = a = ȳ − bx̄

ŷ = a + bx = Ê(y|x) estimate of E(y|x) = estimate of y

SST =
∑

(yi − ȳ)2 MST = SST
n−1 = s2

y

SSR =
∑

(ŷi − ȳ)2 MSR = SSR
p

SSE =
∑

(yi − ŷi)2 MSE = SSE
n−p−1 = s2

y·x
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SST = SSR + SSE F = MSR
MSE = R2/p

(1−R2)/(n−p−1) ∼ Fp,n−p−1

R2 = SSR

SST
SSR
MSE ∼̇χ2

p

(p = 1) ŝ.e.(b) = sy·x√
Lxx

t = b
ŝ.e.(b) ∼ tn−p−1

1− α two–sided CI for β b± tn−p−1,1−α/2ŝ.e.(b)

(p = 1) ŝ.e.(ŷ) = sy·x

√√√√1 + 1
n

+ (x− x̄)2

Lxx

1− α two–sided CI for y ŷ ± tn−p−1,1−α/2ŝ.e.(ŷ)

(p = 1) ŝ.e.(Ê(y|x)) = sy·x

√√√√1
n

+ (x− x̄)2

Lxx

1− α two–sided CI for E(y|x) ŷ ± tn−p−1,1−α/2ŝ.e.(Ê(y|x))

Multiple linear regression: p predictors, p > 1:
Model: E(y|x) = α + β1x1 + β2x2 + . . . + βpxp + e
Interpretation of βj: effect on y of increasing xj by one unit, holding all other x’s
constant

Assumptions: same as for p = 1 plus no interaction between the x’s (x’s act additively;
effect of xj does not depend on the other x’s).

Verifying some of the assumptions: S

1. When p = 2, x1 is continuous, and x2 is binary, the pattern of y vs. x1, with points
identified by x2, is two straight, parallel lines

2. In a residual plot (d = y − ŷ vs. ŷ) there are no systematic patterns (no trend in
central tendency, no change in spread of points with ŷ). The same is true if one
plots d vs. any of the x’s.

3. Partial residual plots reveal the partial (adjusted) relationship between a chosen xj

and y, controlling for all other xi, i ̸= j, without assuming linearity for xj. In these
plots, the following quantities appear on the axes:

y axis: residuals from predicting y from all predictors except xj

x axis: residuals from predicting xj from all predictors except xj (y is ignored)
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When p > 1, least squares estimates are obtained using more complex formulas. But
just as in the case with p = 1, all of the coefficient estimates are weighted combinations
of the y’s,

∑
wiyi [when p = 1, the wi for estimating β are xi−x̄∑

(xi−x̄)2 ].

Hypothesis tests with p > 1: T

� Overall F test tests H0 : β1 = β2 = . . . βp = 0 vs. the althernative hypothesis that
at least one of the β’s ̸= 0.

� To test whether an individual βj = 0 the simplest approach is to compute the t
statistic, with n− p− 1 d.f.

� Subsets of the β’s can be tested against zero if one knows the standard errors of
all of the estimated coefficients and the correlations of each pair of estimates. The
formulas are daunting.

� To test whether a subset of the β’s are all zero, a good approach is to compare
the model containing all of the predictors associated with the β’s of interest with a
sub–model containing only the predictors not being tested (i.e., the predictors being
adjusted for). This tests whether the predictors of interest add response information
to the predictors being adjusted for. If the goal is to test H0 : β1 = β2 = . . . =
βq = 0 regardless of the values of βq+1, . . . , βp (i.e., adjusting for xq+1, . . . , xp),
fit the full model with p predictors, computing SSEfull or R2

full. Then fit the
sub–model omitting x1, . . . , xq to obtain SSEreduced or R2

reduced. Then compute
the partial F statistic

F = (SSEreduced − SSEfull)/q

SSEfull/(n− p− 1) =
(R2

full −R2
reduced)/q

(1−R2
full)/(n− p− 1) ∼ Fq,n−p−1

Note that SSEreduced − SSEfull = SSRfull − SSRreduced.

Notes about distributions: U

� If t ∼ tb, t∼̇ normal for large b and t2∼̇χ2
1, so [ b

ŝ.e.(b) ]
2∼̇χ2

1

� If F ∼ Fa,b, a× F ∼̇χ2
a for large b

� If F ∼ F1,b,
√

F ∼ tb
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� If t ∼ tb, t2 ∼ F1,b

� If z ∼ normal, z2 ∼ χ2
1

� y ∼ D means y is distributed as the distribution D

� y∼̇D means that y is approximately distributed as D for large n

� θ̂ means an estimate of θ



CHAPTER 10. SIMPLE AND MULTIPLE REGRESSION MODELS 10-25

10.6

Proper Transformations and Percentiling

reg
-p
ercen

tilin
g

V

� All parametric and semi-parametric regression models make assumptions about the
shape of the relationship between predictor X and response variable Y

� Many analysts assume linear relationships by default

� Regression splines (piecewise polynomials) are natural nonlinear generalizations

� In epidemiology and public health many practitioners analyze data using percentiling
(e.g., of BMI against a random sample of the population)

� This assumes that X affects Y though the population distribution of X (e.g., how
many persons have BMI similar to a subject) instead of through physics, physiology,
or anatomy

� Also allows definitions to change as the population accommodates

� Example: assume BMI is normal with mean 28 and SD 2 W

� Figure 10.6 upper left panel shows this distribution

� Upper right: percentile of BMI vs. raw BMI

� Lower left: supposed relationship between BMI and disease risk

� Lower right: resulting relationship between BMI percentile and risk

All parametric regression models make assumptions about the form of the relationship
between the predictors X and the response variable Y . The typical default assumption
is linearity in X vs. some transformation of Y (e.g., log odds, log hazard or in ordinary
regression the identify function). Regression splines are one of the best approaches for
allowing for smooth, flexible regression function shapes. Splines are described in detail
in the Regression Modeling Strategies book and course notes.

Some researchers and government agencies get the idea that continuous variables should
be modeled through percentiling. This is a rather bizarre way to attempt to account

http://hbiostat.org/audio/bbr/reg-7.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-percentiling
http://bit.ly/yt-bbr14
http://bit.ly/datamethods-bbr14
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for shifts in the distribution of the variable by age, race, sex, or geographic location.
Percentiling fails to recognize that the way that measurements affect subjects’ responses
is through physics, physiology, anatomy, and other means. Percentiling in effect states
that how a variable affects the outcome for a subject depends on how many other
subjects there are like her. When also percentiling variables (such as BMI) over time, the
measurement even changes its meaning over time. For example, updating percentiles
of BMI each year will keep the fraction of obese members in the population constant
even when obesity is truly on the rise.

Putting percentiles into a regression model assumes that the shape of the X − Y rela-
tionship is a very strange. As an example, suppose that BMI has a normal distribution
with mean 28 and standard deviation 2. The density function for BMI is shown in the
upper left panel of Figure 10.6, and the function giving the percentile of BMI as a
function of absolute BMI is in the upper right panel.
x ← seq(10, 55, length =200)

d ← dnorm(x, mean=28, sd=2)

plot(x, d, type=’l’, xlab=’BMI’, ylab=’Density ’) # F i g . 10.6

pctile ← 100*pnorm(x, mean=28, sd=2)

plot(x, pctile , type=’l’, xlab=’BMI’, ylab=’BMI Percentile ’)

risk ← .01 + pmax(x - 25, 0)*.01

plot(x, risk , type=’l’, xlab=’BMI’, ylab=’Risk’)

plot(pctile , risk , type=’l’, xlab=’BMI Percentile ’, ylab=’Risk’)

Suppose that the true relationship between BMI and the risk of a disease is given in
the lower left panel. Then the relationship between BMI percentile and risk must be
that shown in the lower right panel. To properly model that shape one must“undo”the
percentile function then fit the result with a linear spline. Percentiling creates unrealistic
fits and results in more effort being spent if one is to properly model the predictor. X

� Worse still is to group X into quintiles and use a linear model in the quintile
numbers

– assumes are bizarre shape of relationship between X and Y , even if not noticing
the discontinuities

� Figure 10.7 depicts quantile numbers vs. mean BMI within each quintile. Outer
quintiles:

– have extremely skewed BMI distributions

– are too heterogeneous to yield adequate BMI adjustment (residual confounding)
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Figure 10.6: Harm of percentiling BMI in a regression model
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� Easy to see that the transformation of BMI that yields quintile numbers is discon-
tinuous with variable step widths

In epidemiology a common practice is even more problematic. One often sees smoothly- Y

acting continuous variables such as BMI broken into discontinuous quintile groups, the
groups numbered from 1 to 5, and a linear regression of correlation fitted to the 1–5
variable (“test for trend”). This is not only hugely wasteful of information and power,
but results in significant heterogeneity (especially in the outer quintiles) and assumes a
discontinuous effect on outcome that has an exceedingly unusual shape when interpreted
on the original BMI scale.

Taking the BMI distribution in Figure 10.6 consider what this implies. We draw a ran-
dom sample of size 500 from the BMI distribution. Figure 10.7 shows the discontinuous
relationship between BMI and quintile interval. The location of the mean BMI within
BMI quintile is a circle on each horizontal line. One can see the asymmetry of the BMI
distribution in the outer quintiles, and that the meaning of inner quantiles is fundamen-
tally different than the meaning of the outer ones because of the narrow range of BMI
for inner quantile groups.
set.seed (1)

bmi ← rnorm (500, mean=28, sd=2)

require(Hmisc)

bmiq ← cut2(bmi , g=5)

table(bmiq)

bmiq

[22.0 ,26.5) [26.5 ,27.5) [27.5 ,28.6) [28.6 ,29.8) [29.8 ,35.6]

100 100 100 100 100

cuts ← cut2(bmi , g=5, onlycuts=TRUE)

cuts

[1] 21.98390 26.51345 27.48995 28.55872 29.76222 35.62055

bmim ← cut2(bmi , g=5, levels.mean=TRUE)

means ← as.numeric(levels(bmim))

plot(c(21, 36), c(1, 5), type=’n’, xlab=’BMI’, ylab=’Quintile #’) # F i g . 10.7

for(i in 1 : 5) {

lines(cuts[c(i, i+1)], c(i, i))

points(means[i], i)

}
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Figure 10.7: What are quintile numbers modeling?
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10.7

Multiple Linear Regression
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10.7.1

The Model and How Parameters are Estimated

Z

� p independent variables x1, x2, . . . , xp

� Examples: multiple risk factors, treatment plus patient descriptors when adjusting
for non-randomized treatment selection in an observational study; a set of controlled
or uncontrolled factors in an experimental study; indicators of multiple experimental
manipulations performed simultaneously

� Each variable has its own effect (slope) representing partial effects: effect of in-
creasing a variable by one unit, holding all others constant

� Initially assume that the different variables act in an additive fashion

� Assume the variables act linearly against y

� Model: y = α + β1x1 + β2x2 + . . . + βpxp + e A

� Or: E(y|x) = α + β1x1 + β2x2 + . . . + βpxp

� For two x-variables: y = α + β1x1 + β2x2

� Estimated equation: ŷ = a + b1x1 + b2x2

� Least squares criterion for fitting the model (estimating the parameters):
SSE = ∑n

i=1[y − (a + b1x1 + b2x2)]2

� Solve for a, b1, b2 to minimize SSE

� When p > 1, least squares estimates require complex formulas; still all of the
coefficient estimates are weighted combinations of the y’s,

∑
wiyi

d.
dWhen p = 1, the wi for estimating β are xi−x̄∑

(xi−x̄)2

http://vbiostatcourse.slack.com/messages/bbr/search/reg-mult
http://hbiostat.org/audio/bbr/reg-8.m3u
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10.7.2

Interpretation of Parameters

B

� Regression coefficients are (b) are commonly called partial regression coefficients:
effects of each variable holding all other variables in the model constant

� Examples of partial effects:

– model containing x1=age (years) and x2=sex (0=male 1=female)
Coefficient of age (β1) is the change in the mean of y for males when age
increases by 1 year. It is also the change in y per unit increase in age for
females. β2 is the female minus male mean difference in y for two subjects of
the same age.

– E(y|x1, x2) = α + β1x1 for males, α + β1x1 + β2 = (α + β2) + β1x1 for females
[the sex effect is a shift effect or change in y-intercept]

– model with age and systolic blood pressure measured when the study begins
Coefficient of blood pressure is the change in mean y when blood pressure
increases by 1mmHg for subjects of the same age

� What is meant by changing a variable? C

– We usually really mean a comparison of two subjects with different blood pres-
sures

– Or we can envision what would be the expected response had this subject’s
blood pressure been 1mmHg greater at the outsete

– We are not speaking of longitudinal changes in a single person’s blood pressure

– We can use subtraction to get the adjusted (partial) effect of a variable, e.g.,
E(y|x1 = a + 1, x2 = s)− E(y|x1 = a, x2 = s) =
α + β1(a + 1) + β2s− (α + β1a + β2s) = β1

� Example: ŷ = 37 + .01× weight + 0.5× cigarettes smoked per day D

– .01 is the estimate of average increase y across subjects when weight is increased
eThis setup is the basis for randomized controlled trials and randomized animal experiments. Drug effects may be estimated with between-

patient group differences under a statistical model.

http://hbiostat.org/audio/bbr/reg-9.m3u
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by 1lb. if cigarette smoking is unchanged

– 0.5 is the estimate of the average increase in y across subjects per additional
cigarette smoked per day if weight does not change

– 37 is the estimated mean of y for a subject of zero weight who does not smoke

� Comparing regression coefficients:

– Can’t compare directly because of different units of measurement. Coefficients
in units of y

x .

– Standardizing by standard deviations: not recommended. Standard deviations
are not magic summaries of scale and they give the wrong answer when an x

is categorical (e.g., sex).

10.7.3

Example: Estimation of Body Surface Area

DuBois & DuBois developed an equation in log height and log weight in 1916 that is
still usedf. We use the main data they usedg.
require(rms)

d ← read.csv(textConnection(

’weight ,height ,bsa

24.2 ,110.3 ,8473

64.0 ,164.3 ,16720

64.1 ,178.0 ,18375

74.1 ,179.2 ,19000

93.0 ,149.7 ,18592

45.2 ,171.8 ,14901

32.7 ,141.5 ,11869

6.27 ,73.2 ,3699

57.6 ,164.8 ,16451

63.0 ,184.2 ,17981 ’))

d ← upData(d, labels=c(weight=’Weight ’, height=’Height ’,

bsa=’Body Surface Area’),

units=c(weight=’kg’, height=’cm’, bsa=’cm∧2’), print=FALSE)

d

weight height bsa

1 24.20 110.3 8473

2 64.00 164.3 16720

3 64.10 178.0 18375

fDuBois D, DuBois EF: A formula to estimate the approximate surface area if height and weight be known. Arch Int Medicine 17(6):863-71,
1916.

gA Stata data file dubois.dta is available here.

http://hbiostat.org/audio/bbr/reg-9a.m3u
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/dubois.dta
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4 74.10 179.2 19000

5 93.00 149.7 18592

6 45.20 171.8 14901

7 32.70 141.5 11869

8 6.27 73.2 3699

9 57.60 164.8 16451

10 63.00 184.2 17981

# C r e a t e S t a t a f i l e

getRs(’r2stata.r ’, put=’source ’)

dubois ← d

r2stata(dubois)

# E x c l u d e s u b j e c t m e a s u r e d u s i n g a d h e s i v e p l a s t e r m e t h o d

d ← d[-7 , ]

Fit a multiple regression model in the logs of all 3 variables E

dd ← datadist(d); options(datadist=’dd’)

f ← ols(log10(bsa) ∼ log10(weight) + log10(height), data=d)

f

Linear Regression Model

ols(formula = log10(bsa) ~ log10(weight) + log10(height), data = d)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 9 LR χ2 66.23 R2 0.999
σ 0.0069 d.f. 2 R2

adj 0.999
d.f. 6 Pr(> χ2) 0.0000 g 0.226

Residuals
Min 1Q Median 3Q Max

−0.005031 −0.004851 −0.001908 0.002541 0.01198

β̂ S.E. t Pr(> |t|)
Intercept 1.9607 0.0808 24.26 <0.0001
weight 0.4198 0.0184 22.77 <0.0001
height 0.6812 0.0499 13.64 <0.0001

DuBois & DuBois derived the equation log(bsa) = 1.8564 + 0.426 log(weight) + 0.725
log(height)
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Plot predicted vs. observed
plot(fitted(f), log10(d$bsa), xlab=expression(hat(Y)),

ylab=expression(log [10]( BSA))); abline(a=0, b=1, col=gray(.85))
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Get 3 types of plots to show fitted model F

p ← Predict(f, weight=seq(5, 100, length =50),

height=seq(70, 190, length =50), fun=function(z) 10 ∧ z)

p1 ← bplot(p)

p2 ← bplot(p, lfun=contourplot , cuts =20)

arrGrob(p1 , p2, ncol =2)
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bplot(p, lfun=wireframe , zlab=’BSA’)
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Note: this plot would be a plane if all 3 variables were plotted on the scale fitted in the
regression (log10).

10.7.4

What are Degrees of Freedom

G

For a model : the total number of parameters not counting intercept(s)

For a hypothesis test : the number of parameters that are hypothesized to equal
specified constants. The constants specified are usually zeros (for null hypotheses)
but this is not always the case. Some tests involve combinations of multiple pa-
rameters but test this combination against a single constant; the d.f. in this case
is still one. Example: H0 : β3 = β4 is the same as H0 : β3 − β4 = 0 and is a 1 d.f.
test because it tests one parameter (β3 − β4) against a constant (0).

These are numerator d.f. in the sense of the F -test in multiple linear regression. The

http://hbiostat.org/audio/bbr/reg-10.m3u
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F -test also entails a second kind of d.f., the denominator or error d.f., n − p − 1,
where p is the number of parameters aside from the intercept. The error d.f. is the
denominator of the estimator for σ2 that is used to unbias the estimator, penalizing for
having estimated p + 1 parameters by minimizing the sum of squared errors used to
estimate σ2 itself. You can think of the error d.f. as the sample size penalized for the
number of parameters estimated, or as a measure of the information base used to fit
the model.

Other ways to express the d.f. for a hypothesis are: H

� The number of opportunities you give associations to be present (relationships with
Y to be non-flat)

� The number of restrictions you place on parameters to make the null hypothesis of
no association (flat relationships) hold

10.7.5

Hypothesis Testing

reg
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0Testing Total Association (Global Null Hypotheses)
I

� ANOVA table is same as before for general p

� Fp,n−p−1 tests H0 : β1 = β2 = . . . = βp = 0

� This is a test of total association, i.e., a test of whether any of the predictors is
associated with y

� To assess total association we accumulate partial effects of all variables in the model
even though we are testing if any of the partial effects is nonzero

� Ha : at least one of the β’s is non-zero. Note: This does not mean that all of the
x variables are associated with y.

� Weight and smoking example: H0 tests the null hypothesis that neither weight
nor smoking is associated with y. Ha is that at least one of the two variables is

http://vbiostatcourse.slack.com/messages/bbr/search/reg-mult-h0
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associated with y. The other may or may not have a non-zero β.

� Test of total association does not test whether cigarette smoking is related to y
holding weight constant.

� SSR can be called the model SS

Testing Partial Effects

reg
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J

� H0 : β1 = 0 is a test for the effect of x1 on y holding x2 and any other x’s constant

� Note that β2 is not part of the null or alternative hypothesis; we assume that we
have adjusted for whatever effect x2 has, if any

� One way to test β1 is to use a t-test: tn−p−1 = b1
ŝ.e.(b1)

� In multiple regression it is difficult to compute standard errors so we use a computer

� These standard errors, like the one-variable case, decrease when

– n ↑

– variance of the variable being tested ↑

– σ2 (residual y-variance) ↓

� Another way to get partial tests: the F test K

– Gives identical 2-tailed P -value to t test when one x being tested
t2 ≡ partial F

– Allows testing for > 1 variable

– Example: is either systolic or diastolic blood pressure (or both) associated with
the time until a stroke, holding weight constant

� To get a partial F define partial SS

http://hbiostat.org/audio/bbr/reg-11.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-mult-h0-partial
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� Partial SS is the change in SS when the variables being tested are dropped from
the model and the model is re-fitted

� A general principle in regression models: a set of variables can be tested for their L

combined partial effects by removing that set of variables from the model and
measuring the harm (↑ SSE) done to the model

� Let full refer to computed values from the full model including all variables;
reduced denotes a reduced model containing only the adjustment variables and
not the variables being tested

� Dropping variables ↑ SSE, ↓ SSR unless the dropped variables had exactly zero
slope estimates in the full model (which never happens)

� SSEreduced − SSEfull = SSRfull − SSRreduced

Numerator of F test can use either SSE or SSR

� Form of partial F -test: change in SS when dropping the variables of interest divided
by change in d.f., then divided by MSE;
MSE is chosen as that which best estimates σ2, namely the MSE from the full
model

� Full model has p slopes; suppose we want to test q of the slopes M

Fq,n−p−1 = (SSEreduced − SSEfull)/q

MSE

= (SSRfull − SSRreduced)/q

MSE

10.7.6

Assessing Goodness of Fit
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Assumptions:

N
� Linearity of each predictor against y holding others constant

� σ2 is constant, independent of x

http://hbiostat.org/audio/bbr/reg-12.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-mult-gof
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� Observations (e’s) are independent of each other

� For proper statistical inference (CI, P -values), e is normal, or equivalently, y is
normal conditional on x

� x’s act additively; effect of xj does not depend on the other x’s (But note that
the x’s may be correlated with each other without affecting what we are doing.)

Verifying some of the assumptions: O

1. When p = 2, x1 is continuous, and x2 is binary, the pattern of y vs. x1, with points
identified by x2, is two straight, parallel lines. β2 is the slope of y vs. x2 holding x1
constant, which is just the difference in means for x2 = 1 vs. x2 = 0 as ∆x2 = 1
in this simple case.
# G e n e r a t e 2 5 o b s e r v a t i o n s f o r e a c h g r o u p , w i t h t r u e b e t a 1 = .2 , t r u e b e t a 2 = 3

d ← expand.grid(x1=1:25, x2=c(0, 1))

set.seed (3)

d$y ← with(d, .2*x1 + 3*x2 + rnorm(50, sd=.5))

with(d, plot(x1, y, xlab=expression(x[1]), ylab=expression(y)))

abline(a=0, b=.2) # F i g . 10.8

abline(a=3, b=.2)

text(13, 1.3, expression(y==alpha + beta [1]*x[1]), srt=24, cex=1.3

)

text(13, 7.1, expression(y==alpha + beta [1]*x[1] + beta [2]), srt=24, cex=1.3

)

2. In a residual plot (d = y − ŷ vs. ŷ) there are no systematic patterns (no trend in
central tendency, no change in spread of points with ŷ). The same is true if one
plots d vs. any of the x’s (these are more stringent assessments). If x2 is binary
box plots of d stratified by x2 are effective.

3. Partial residual plots reveal the partial (adjusted) relationship between a chosen xj

and y, controlling for all other xi, i ̸= j, without assuming linearity for xj. In these
plots, the following quantities appear on the axes:

y axis: residuals from predicting y from all predictors except xj

x axis: residuals from predicting xj from all predictors except xj (y is ignored)

Partial residual plots ask how does what we can’t predict about y without knowing
xj depend on what we can’t predict about xj from the other x’s.
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Figure 10.8: Data satisfying all the assumptions of simple multiple linear regression in two predictors. Note equal spread of points
around the population regression lines for the x2 = 1 and x2 = 0 groups (upper and lower lines, respectively) and the equal spread
across x1. The x2 = 1 group has a new intercept, α + β2, as the x2 effect is β2. On the y axis you can clearly see the difference
between the two true population regression lines is β2 = 3.
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10.8

Multiple Regression with a Binary Predictor

reg
-xb

in
ary

10.8.1

Indicator Variable for Two-Level Categorical Predic-
tors

P

� Categories of predictor: A, B (for example)

� First category = reference cell, gets a zero

� Second category gets a 1.0

� Formal definition of indicator (dummy) variable: x = [category = B]
[w] = 1 if w is true, 0 otherwise

� α + βx = α + β[category = B] =
α for category A subjects
α + β for category B subjects
β = mean difference (B − A)

10.8.2

Two-Sample t-test vs. Simple Linear Regression
Q

� They are equivalent in every sense:

– P -value

– Estimates and C.L.s after rephrasing the model

– Assumptions (equal variance assumption of two groups in t-test is the same as
constant variance of y|x for every x)

� a = ȲA

b = ȲB − ȲA

http://vbiostatcourse.slack.com/messages/bbr/search/reg-xbinary
http://hbiostat.org/audio/bbr/reg-13.m3u
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� ŝ.e.(b) = ŝ.e.(ȲB − ȲA)

10.8.3

Analysis of Covariance

reg
-an

co
va

R

� Multiple regression can extend the t-test

– More than 2 groups (multiple indicator variables can do multiple-group ANOVA)

– Allow for categorical or continuous adjustment variables (covariates, covari-
ables)

� Example: lead exposure and neuro-psychological function (Rosner)

� Model: MAXFWT = α + β1age + β2sex + e

� Rosner coded sex = 1, 2 for male, female
Does not affect interpretation of β2 but makes interpretation of α more tricky
(mean MAXFWT when age = 0 and sex = 0 which is impossible by this coding.

� Better coding would have been sex = 0, 1 for male, female

– α = mean MAXFWT for a zero year-old male

– β1 = increase in mean MAXFWT per 1-year increase in age

– β2 = mean MAXFWT for females minus mean MAXFWT for males, hold-
ing age constant

� Suppose that we define an (arbitrary) exposure variable to mean that the lead dose S

≥ 40mg/100ml in either 1972 or 1973

� Model: MAXFWT = α + β1exposure + β2age + β3sex + e
exposure = TRUE (1) for exposed, FALSE (0) for unexposed

� β1 = mean MAXFWT for exposed minus mean for unexposed, holding age and
sex constant

http://hbiostat.org/audio/bbr/reg-14.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-ancova
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10.9

The Correlation Coefficient Revisited

reg
-corr

Pearson product-moment linear correlation coefficient:

Tr = Lxy√
LxxLyy

= sxy

sxsy

= b

√√√√Lxx

Lyy

U

� r is unitless

� r estimates the population correlation coefficient ρ (not to be confused with Spear-
man ρ rank correlation coefficient)

� −1 ≤ r ≤ 1

� r = −1 : perfect negative correlation

� r = 1 : perfect positive correlation

� r = 0 : no correlation (no association)

� t− test for r is identical to t-test for b

� r2 is the proportion of variation in y explained by conditioning on x

� (n− 2) r2

1−r2 = F1,n−2 = MSR
MSE

� For multiple regression in general we use R2 to denote the fraction of variation in V

y explained jointly by all the x’s (variation in y explained by the whole model)

� R2 = SSR
SST = 1− SSE

SST = 1 minus fraction of unexplained variation

� R2 is called the coefficient of determination

http://hbiostat.org/audio/bbr/reg-15.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-corr
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� R2 is between 0 and 1

– 0 when ŷi = ȳ for all i; SSE = SST

– 1 when ŷi = yi for all i; SSE=0

� R2 ≡ r2 in the one-predictor case
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10.10

Using Regression for ANOVA

A
B
D
1
8
.1

reg
-an

o
va

10.10.1

Indicator Variables

Lead Exposure Group (Rosner lead dataset):
W

control : normal in both 1972 and 1973

currently exposed : elevated serum lead level in 1973, normal in 1972

previously exposed : elevated lead in 1972, normal in 1973

NOTE: This is not a very satisfactory way to analyze the two years’ worth of lead
exposure data, as we do not expect a discontinuous relationship between lead levels
and neurological function. A continuous analysis was done in Chapter 9. X

� Requires two indicator (dummy) variables (and 2 d.f.) to perfectly describe 3
categories

� x1 = [currently exposed]

� x2 = [previously exposed]

� Reference cell is control

� lead dataset group variable is set up this way already

� Model:
Y

E(y|exposure) = α + β1x1 + β2x2

= α, controls

= α + β1, currently exposed

= α + β2, previously exposed

http://vbiostatcourse.slack.com/messages/bbr/search/reg-anova
http://hbiostat.org/audio/bbr/reg-16.m3u
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Z

α : mean maxfwt for controls

β1 : mean maxfwt for currently exposed minus mean for controls

β2 : mean maxfwt for previously exposed minus mean for controls

β2 − β1 : mean for previously exposed minus mean for currently exposed

getHdata(lead)

dd ← datadist(lead); options(datadist=’dd’)

f ← ols(maxfwt ∼ group , data=lead)

f

Linear Regression Model

ols(formula = maxfwt ~ group, data = lead)

Frequencies of Missing Values Due to Each Variable

maxfwt group

25 0

Model Likelihood Discrimination
Ratio Test Indexes

Obs 99 LR χ2 10.33 R2 0.099
σ 12.3127 d.f. 2 R2

adj 0.080
d.f. 96 Pr(> χ2) 0.0057 g 3.706

Residuals
Min 1Q Median 3Q Max
−41.44 −5.75 1.554e− 15 7.531 31.5

β̂ S.E. t Pr(> |t|)
Intercept 54.4375 1.5391 35.37 <0.0001
group=blood lead ≥ 40mg/100ml in 1973 -10.4375 3.2168 -3.24 0.0016
group=blood lead ≥ 40 in 1972, < 40 in 1973 -2.9375 3.4415 -0.85 0.3955



CHAPTER 10. SIMPLE AND MULTIPLE REGRESSION MODELS 10-47

ggplot(Predict(f))

●

●

●

blood lead < 40mg/100ml in 1972&1973

blood lead >= 40mg/100ml in 1973

blood lead >= 40 in 1972, < 40 in 1973

35 40 45 50 55 60
maxfwt

gr
ou

p

options(prType=’plain ’)

summary(f)

Effects Response : maxfwt

Factor

group - blood lead >= 40mg/100ml in 1973: blood lead < 40mg/100ml in 1972&1973

group - blood lead >= 40 in 1972, < 40 in 1973: blood lead < 40mg/100ml in 1972&1973

Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

1 2 NA -10.4380 3.2168 -16.8230 -4.0522

1 3 NA -2.9375 3.4415 -9.7688 3.8938

options(prType=’latex ’)

A

� In general requires k − 1 dummies to describe k categories

� For testing or prediction, choice of reference cell is irrelevant

� Does matter for interpreting individual coefficients

� Modern statistical programs automatically generate indicator variables from cate-
gorical or character predictorsh

� In R never generate indicator variables yourself; just provide a factor or character

predictor.

hIn R indicators are generated automatically any time a factor or category variable is in the model.
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10.10.2

Obtaining ANOVA with Multiple Regression

B

� Estimate α, βj using standard least squares

� F -test for overall regression is exactly F for ANOVA

� In ANOVA, SSR is call sum of squares between treatments

� SSE is called sum of squares within treatments

� Don’t need to learn formulas specifically for ANOVA

10.10.3

One-Way Analysis of Covariance
C

� Just add other variables (covariates) to the model

� Example: predictors age and treatment
age is the covariate (adjustment variable)

� Global F test tests the global null hypothesis that neither age nor treatment is
associated with response

� To test the adjusted treatment effect, use the partial F test for treatment based
on the partial SS for treatment adjusted for age

� If treatment has only two categories, the partial t-test is an easier way to get the
age-adjusted treatment test
fa ← ols(maxfwt ∼ age + group , data=lead)

fa

Linear Regression Model

ols(formula = maxfwt ~ age + group, data = lead)

Frequencies of Missing Values Due to Each Variable

http://hbiostat.org/audio/bbr/reg-17.m3u
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maxfwt age group

25 0 0

Model Likelihood Discrimination
Ratio Test Indexes

Obs 99 LR χ2 62.98 R2 0.471
σ 9.4872 d.f. 3 R2

adj 0.454
d.f. 95 Pr(> χ2) 0.0000 g 10.145

Residuals
Min 1Q Median 3Q Max
−33.5 −5.125 0.9098 5.371 33

β̂ S.E. t Pr(> |t|)
Intercept 27.2810 3.5303 7.73 <0.0001
age 2.6211 0.3209 8.17 <0.0001
group=blood lead ≥ 40mg/100ml in 1973 -7.5148 2.5043 -3.00 0.0034
group=blood lead ≥ 40 in 1972, < 40 in 1973 -1.7464 2.6557 -0.66 0.5124

ggplot(Predict(fa, age , group))

20

40

60

80

6 9 12 15
Age in years

m
ax

fw
t

group

blood lead < 40mg/100ml in 1972&1973

blood lead >= 40mg/100ml in 1973

blood lead >= 40 in 1972, < 40 in 1973

options(prType=’plain’)

summary(fa)
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Effects Response : maxfwt

Factor

age

group - blood lead >= 40mg/100ml in 1973: blood lead < 40mg/100ml in 1972&1973

group - blood lead >= 40 in 1972, < 40 in 1973: blood lead < 40mg/100ml in 1972&1973

Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

6.1667 12.021 5.8542 15.3440 1.8789 11.6140 19.0740

1.0000 2.000 NA -7.5148 2.5043 -12.4860 -2.5431

1.0000 3.000 NA -1.7464 2.6557 -7.0187 3.5259

options(prType=’latex’)

anova(fa)

Analysis of Variance for maxfwt

d.f. Partial SS MS F P

age 1 6003.1719 6003.17189 66.70 <0.0001
group 2 810.4561 405.22806 4.50 0.0135
REGRESSION 3 7603.2603 2534.42009 28.16 <0.0001
ERROR 95 8550.5781 90.00609

anova(f) # r e d u c e d m o d e l ( w i t h o u t a g e )

Analysis of Variance for maxfwt

d.f. Partial SS MS F P

group 2 1600.088 800.0442 5.28 0.0067
REGRESSION 2 1600.088 800.0442 5.28 0.0067
ERROR 96 14553.750 151.6016

Subtract SSR or SSE from these two models to get the treatment effect with 2 d.f.

10.10.4

Continuous Analysis of Lead Exposure

See 9.4.

10.10.5

Two-Way ANOVA

D

� Two categorical variables as predictors

http://bit.ly/yt-bbr15
http://bit.ly/datamethods-bbr15
http://hbiostat.org/audio/bbr/reg-18.m3u
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� Each variable is expanded into indicator variables

� One of the predictor variables may not be time or episode within subject; two-way
ANOVA is often misused for analyzing repeated measurements within subject

� Example: 3 diet groups (NOR, SV, LV) and 2 sex groups

� E(y|diet, sex) = α + β1[SV ] + β2[LV ] + β3[male]

� Assumes effects of diet and sex are additive (separable) and not synergistic

� β1 = SV −NOR mean difference holding sex constant
β2 = LV - NOR mean difference holding sex constant
β3 = male - female effect holding diet constant

� Test of diet effect controlling for sex effect:
H0 : β1 = β2 = 0
Ha : β1 ̸= 0 or β2 ̸= 0

� This is a 2 d.f. partial F -test, best obtained by taking difference in SS between
this full model and a model that excludes all diet terms.

� Test for significant difference in mean y for males vs. females, controlling for diet:
H0 : β3 = 0

� For a model that has m categorical predictors (only), none of which interact, with
numbers of categories given by k1, k2, . . . , km, the total numerator regression d.f.
is
∑m

i=1(ki − 1)

10.10.6

Two-way ANOVA and Interaction

reg
-iaExample: sex (F,M) and treatment (A,B)

Reference cells: F, A

Model:

http://vbiostatcourse.slack.com/messages/bbr/search/reg-ia
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E(y|sex, treatment) = α + β1[sex = M ]
+ β2[treatment = B] + β3[sex = M ∩ treatment = B]

Note that [sex = M ∩ treatment = B] = [sex = M ]× [treatment = B]. E

α : mean y for female on treatment A (all variables at reference values)

β1 : mean y for males minus mean for females, both on treatment A = sex effect
holding treatment constant at A

β2 : mean for female subjects on treatment B minus mean for females on treatment
A = treatment effect holding sex constant at female

β3 : B−A treatment difference for males minus B−A treatment difference for females
Same as M −F difference for treatment B minus M −F difference for treatment
A

In this setting think of interaction as a“double difference”. To understand the parame-
ters: F

Group E(y|Group)
F A α

M A α + β1
F B α + β2
M B α + β1 + β2 + β3

Thus MB −MA− [FB − FA] = β2 + β3 − β2 = β3.

Heterogeneity of Treatment Effect

reg
-h
te

Consider a Cox proportional hazards model for time until first major cardiovascular
event. The application is targeted pharmacogenomics in acute coronary syndrome (the
CURE study78). G

� Subgroup analysis is virtually worthless for learning about differential treatment
effects

http://hbiostat.org/audio/bbr/reg-19.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-hte
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� Instead a proper assessment of interaction must be used, with liberal adjustment
for main effects

� An interaction effect is a double difference; for logistic and Cox models it is the
ratio of ratios

� Interactions are harder to assess than main effects (wider confidence intervals, lower
power)

� Carriers for loss-of-function CYP2C19 alleles: reduced conversion of clopidogrel to H

active metabolite

� Suggested that clop. less effective in reducing CV death, MI, stroke

� 12,562 (clop. HR 0.8); 5059 genotyped (clop. HR 0.7)

Carrier Non-Carrier

HR 0.69 (0.49, 0.98) 0.72 (0.59, 0.87)

Ratio 0.96 (0.64, 1.43)

of HRs (P = 0.8)
I

� In the publication the needed ratio of hazard ratios was nowhere to be found

� C.L. for ratio of hazard ratios shows that CYP2C19 variants may plausibly be
associated with a huge benefit or huge harm

� Point estimate is in the wrong direction

� Epidemiologic evidence points to a dominant effect of smoking in this setting

– Significant interaction between smoking status and clop. effect

– Lack of evidence that clop. is effective in non-smokers

– Gurbel, Nolin, Tantry, JAMA 2012:307:2495
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10.10.7

Interaction Between Categorical and Continuous Vari-
ables

reg
-ia-cc

This is how one allows the slope of a predictor to vary by categories of another variable.
Example: separate slope for males and females:

E(y|x) = α + β1age + β2[sex = m]
+ β3age× [sex = m]

E(y|age, sex = f) = α + β1age

E(y|age, sex = m) = α + β1age + β2 + β3age

= (α + β2) + (β1 + β3)age

J

α : mean y for zero year-old female

β1 : slope of age for females

β2 : mean y for males minus mean y for females, for zero year-olds

β3 : increment in slope in going from females to males

# G e n e r a t e 2 5 o b s e r v a t i o n s f o r e a c h g r o u p , w i t h t r u e b e t a 1 = .05 , t r u e b e t a 2 = 3

d ← expand.grid(x1=1:25, x2=c(0, 1))

set.seed (3)

d$y ← with(d, 0.2*x1 + 3*x2 + 0.3*x1*x2 + rnorm (50, sd=.5))

with(d, plot(x1, y, xlab=expression(x[1]), ylab=expression(y)))

abline(a=0, b=.2) # F i g . 10.9

abline(a=3, b=.5)

text(13, 1, expression(y== alpha + beta [1]*x[1]), srt=16, cex=1.3)

text(13, 12, expression(y== alpha + beta [2] + (beta [1] + beta [3])*x[1]),

srt=33, cex=1.3)

http://hbiostat.org/audio/bbr/reg-20.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-ia-cc
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Figure 10.9: Data exhibiting linearity in age but with interaction of age and sex. The x2 = 1 group has a new intercept, α + β2 and
its own slope β1 + β3.
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10.11

Internal vs. External Model Validation

reg
-val

b
lo
g

External validation or validation on a holdout sample, when the predictive
method was developed using feature selection, model selection, or machine
learning, produces a non-unique example validation of a non-unique example
model.

FE Harrell, 2015

K

� Many researchers assume that“external”validation of model predictions is the only
way to have confidence in predictions

� External validation may take years and may be low precision (wide confidence
intervals for accuracy estimates)

� Splitting one data sequence to create a holdout sample is internal validation, not
external, and resampling procedures using all available data are almost always better

� External validation by splitting in time or place loses opportunity for modeling
secular and geographic trends, and often results in failure to validate when in fact
there are interesting group differences or time trends that could have easily been
modeled

� One should use all data available at analysis time L

� External validation is left for newly collected data not available at publication time

� Rigorous internal validation should be done first

– “optimism”bootstrap generally has lowest mean squared error of accuracy esti-
mates

– boostrap estimates the likely future performance of model developed on whole
dataset

– all analytical steps using Y must be repeated for each of approx. 300-400
bootstrap repetitions

– when empirical feature selection is part of the process, the bootstrap reveals
the true volatility in the list of selected predictors

http://hbiostat.org/audio/bbr/reg-21.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/reg-val
http://fharrell.com/post/split-val
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� Many data splitting or external validations are unreliable (example: volatility of M

splitting 17,000 ICU patients with high mortality, resulting in multiple splits giving
different models and different performance in holdout samples)

There are subtleties in what holdout sample validation actually means, depending on
how he predictive model is fitted: N

� When the model’s form is fully pre-specified, the external validation validates that
model and its estimated coefficients

� When the model is derived using feature selection or machine learning methods,
the holdout sample validation is not“honest” in a certain sense:

– data are incapable of informing the researcher what the “right” predictors and
the“right”model are

– the process doesn’t recognize that the model being validated is nothing more
than an“example”model

� Resampling for rigorous internal validation validates the process used to derive the O

“final”model

– as a byproduct estimates the likely future performance of that model

– while reporting volatility instead of hiding it

Model validation is a very important and complex topic that is covered in detail in
the two books mentioned below. One of the most difficult to understand elements
of validation is what is, and when to use, external validation. Some researchers have
published predictive tools with no validation at all while other researchers falsely believe
that“external”validation is the only valid approach to having confidence in predictions.
Frank Harrell (author of Regression Modeling Strategies) and Ewout Steyerberg (author
of Clinical Prediction Models) have written the text below in an attempt to illuminate
several issues.

There is much controversy about the need for, definition of, and timing of external validation. A
prognostic model should be valid outside the specifics of the sample where the model is developed.
Ideally, a model is shown to predict accurately across a wide range of settings (Justice et al, Ann Int
Med 1999). Evidence of such external validity requires evaluation by different research groups and
may take several years. Researchers frequently make the mistake of labeling data splitting from a single
sequence of patients as external validation when in fact this is a particularly low-precision form of internal
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validation better done using resampling (see below). On the other hand, external validation carried out
by splitting in time (temporal validation) or by place, is better replaced by considering interactions in
the full dataset. For example, if a model developed on Canadians is found to be poorly calibrated for
Germans, it is far better to develop an international model with country as one of the predictors. This
implies that a researcher with access to data is always better off to analyze and publish a model developed
on the full set. That leaves external validation using (1) newly collected data, not available at the time
of development; and (2) other investigators, at other sites, having access to other data. (2) has been
promoted by Justice as the strongest form of external validation. This phase is only relevant once internal
validity has been shown for the developed model. But again, if such data were available at analysis time,
those data are too valuable not to use in model development.

Even in the small subset of studies comprising truly external validations, it is a common misconception
that the validation statistics are precise. Many if not most external validations are unreliable due to
instability in the estimate of predictive accuracy. This instability comes from two sources: the size of the
validation sample, and the constitution of the validation sample. The former is easy to envision, while
the latter is more subtle. In one example, Frank Harrell analyzed 17,000 ICU patients with 1

3 of patients
dying, splitting the dataset into two halves - a training sample and a validation sample. He found that
the validation c-index (ROC area) changed substantially when the 17,000 patients were re-allocated at
random into a new training and test sample and the entire process repeated. Thus it can take quite a
large external sample to yield reliable estimates and to ”beat”strong internal validation using resampling.
Thus we feel there is great utility in using strong internal validation.

At the time of model development, researchers should focus on showing internal validity of the model they

propose, i.e. validity of the model for the setting that they consider. Estimates of model performance

are usually optimistic. The optimism can efficiently be quantified by a resampling procedure called the

bootstrap, and the optimism can be subtracted out to obtain an unbiased estimate of future performance

of the model on the same types of patients. The bootstrap, which enjoys a strong reputation in data

analysis, entails drawing patients from the development sample with replacement. It allows one to

estimate the likely future performance of a predictive model without waiting for new data to perform a

external validation study. It is important that the bootstrap model validation be done rigorously. This

means that all analytical steps that use the outcome variable are repeated in each bootstrap sample.

In this way, the proper price is paid for any statistical assessments to determine the final model, such

as choosing variables and estimating regression coefficients. When the resampling allows models and

coefficients to disagree with themselves over hundreds of resamples, the proper price is paid for ”data

dredging”, so that clinical utility (useful predictive discrimination) is not claimed for what is in fact

overfitting (fitting ”noise”). The bootstrap makes optimal use of the available data: it uses all data to

develop the model and all data to internally validate the model, detecting any overfitting. One can call

properly penalized bootstrapping rigorous or strong internal validation.

To properly design or interpret a predictive model validation it is important to take into
account how the predictions were formed. There are two overall classes of predictive
approaches: P
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� formulating a pre-specified statistical model based on understanding of the literature
and subject matter and using the data to fit the parameters of the model but not
to select the form of the model or the features to use as predictors

� using the data to screen candidate predictive features or to choose the form the pre-
dictions take. Examples of this class include univariable feature screening, stepwise
regression, and machine learning algorithms.

External holdout sample validation may seem to be appropriate for the second class but
actually it is not “honest” in the following sense. The data are incapable of informing
the researcher of what are the“right”predictors. This is even more true when candidate
predictors are correlated, creating competition among predictors and arbitrary selections
from these co-linear candidates. A predictive rule derived from the second class of
approaches is merely an example of a predictive model. The only way for an analyst
to understand this point is to use resampling (bootstrap or cross-validation) whereby
predictive models (or machine learning structures) are repeatedly derived from scratch
and the volatility (and difficulty of the task) are exposed.

So what goes in in the training and validation processes depends on the class of pre-
dictive methods used: Q

� When the model is pre-specified except for the regression coefficients that need to
be estimated, rigorous resampling validation validates the fit of the model and so
does holdout sample validation.

� When the model structure was not pre-specified but model/feature selection was
done, resampling validation validates the process used to derive the “final”model
and as a by-product estimates the likely future performance of this model while
documenting to the researcher that there is usually great instability in the form of
this model. It is imperative that the analyst repeat all feature selection or model
selection steps afresh for each resample and displays the variation of features /
models selected across the resamples. For the bootstrap this usually involves 300
or more resamples, and for cross-validation 50 or more repeats of 10-fold cross-
validation. The“final”model should be described as an example of an entire array
of models, and the likely future performance of this example model is estimated
from the resampling procedure just described. Resampling alerts the analyst to
arbitrariness and reduces the tendency to cherry pick good validations when split-
sample or external validation is used.
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Thus in the case just described where a statistical model is not fully pre-specified, pre-
tending to“freeze”the“final”result and validating it on a holdout sample is problematic.
The resulting validation, far from being a validation of “the”model is just an example
validation of an example model. On the other hand, rigorous validation using resampling
validates the process used to derive the final predictive instrument, while still providing
a good estimate of the likely future predictive accuracy of that instrument.

10.11.1

Summary: Choosing Internal vs. External Validation

Recall that strong internal validation uses the bootstrap in a way that repeats all mod-
eling steps (feature/variable selection, transformation selection, parameter estimation,
etc.) that utilized the outcome variable Y .

Use strong internal validation if R

� the model is not pre-specified. If any feature selection utilizing Y was done, the set
of features selected will be unstable, so an external validation would just validate
an“example model.” On the other hand, a strong internal validation validates the
model development process and fully documents the volatility of feature selection.

� the data come from multiple locations or times and you want to understand time
trends in Y , or geographic differences

� the size of the potential external validation sample and the size of the training
sample are not both very large

Use external validation if S

� measurement platforms vary (e.g., genotyping or blood analysis equipment) and
you want to validate the generalizability of a model developed on your platform

� both the training data and the test datasets are very large (e.g., the training data
contains more than 15 events per candidate predictor and the test data has at
least 200-400 events)

� the dataset to be used for the external validation was not available when the model
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was developed and internally validated

� you don’t trust the model developers to honestly perform a strong internal validation

10.11.2

Other Resources
T

� Prediction Research Manual by Cecile Janssens and Forike Martens

� Steyerberg paper on the waste by data splitting99.

http://www.cecilejanssens.org/wp-content/uploads/2018/01/PredictionManual2.0.pdf


Chapter 11

Multiple Groups

11.1

Examples

� Compare baseline characteristics (e.g. age, height, BMI) or study response variable
among subjects enrolled in one of three (or more) nonrandomized clinical trial arms

� Determine if pulmonary function, as measured by the forced expiratory volume
in one second, differs in non-smokers, passive smokers, light smokers, and heavy
smokers

� Evaluate differences in artery dilation among wild type, knockout, and knock-
out+treated mice

– Could add second factor: Normoxic (normal oxygen) or hypoxic (insufficient
oxygen) environmental conditions (a two-way ANOVA)

� In general, studies with a continuous outcome and categorical predictors

11-1
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11.2

The k-Sample Problem

� When k = 2 we compare two means or medians, etc.

� When k > 2 we could do all possible pairwise 2-sample tests but this can be
misleading and may ↑ type I error

� Advantageous to get a single statistic testing H0: all groups have the same distri-
bution (or at least the same central tendency)
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11.3

Parametric ANOVA

11.3.1

Model

� Notation

– k groups (samples) each from a normal distribution

– Population means µ1, µ2, . . . , µk

– ni observations from the ith group

– yij is the jth observation from ith group

� Model specification

– yij = µ + αi + eij

– µ is a constant

– αi is a constant specific to group i

– eij is the error term, which is assumed to follow a Normal distribution with
mean 0 and variance σ2

– This model is overparameterized; that is, it is not possible to estimate µ and
each αi (a total of k + 1) terms using only k means

� Restriction 1: Σαi = 0

– µ is the mean of all groups taken together, the grand or overall mean

– each αi represents the deviation of the mean of the ith group from the overall
mean

– ϵij is the deviation of individual data points from µ + αi
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� Restriction 2: α1 = 0

– µ is the mean of group 1

– each αi represents the deviation of the mean of the ith group from the group
1 mean

– ϵij is the deviation of individual data points from µ + αi

� Other restrictions possible, and will vary by software package

11.3.2

Hypothesis test

� Hypothesis test

– H0 : µ1 = µ2 = . . . = µk

– H1 : at least two of the population means differ

� Not placing more importance on any particular pair or combination although large
samples get more weight in the analysis

� Assume that each of the k populations has the same σ

� If k = 2 ANOVA yields identical P -value as 2-tailed 2-sample t-test

� ANOVA uses an F statistic and is always 2-tailed

� F ratio is proportional to the sum of squared differences between each sample
mean and the grand mean over samples, divided by the sum of squared differences
between all raw values and the mean of the sample from which the raw value came

� This is the SSB/SSW (sum of squares between / sum of squares within)

� SSB is identical to regression sum of squares
SSW is identical to sum of squared errors in regression

� F = MSB/MSW where
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– MSB = mean square between = SSB/(k − 1), k − 1 =“between group d.f.”

– MSW = mean square within = SSW/(n− k), n− k =“within group d.f.”

– Evidence for different µs ↑ when differences in sample means (ignoring direction)
are large in comparison to between-patient variation

11.3.3

Motivating Example

� Example from Biostatistics: A methodology for the Health Sciences by Fisher and
Van Belle

� Research question (Zelazo et al., 1972,Science)

– Outcome: Age at which child first walks (months)

– Experiment involved the reinforcement of the walking and placing reflexes in
newborns

– Newborn children randomly assigned to one of four treatment groups

* Active exercise: Walking and placing stimulation 4 times a day for 8 weeks

* Passive exercise: An equal amount of gross motor stimulation

* No exercise: Tested along with first two groups at weekly intervals

* Control group: Infants only observed at 8 weeks (control for effect of re-
peated examinations)

� Distribution of ages (months) at which infants first walked alone. Data from Zelazo
et al., 1972
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Active Group Passive Group No Exercise 8-week Control

9.00 11.00 11.50 13.25
9.50 10.00 12.00 11.50
9.75 10.00 9.00 12.00
10.00 11.75 11.50 13.50
13.00 10.50 13.25 11.50
9.50 15.00 13.00 12.35

Mean 10.125 11.375 11.708 12.350
Variance 2.0938 3.5938 2.3104 0.7400
Sum of Yi 60.75 68.25 70.25 74.10

w ← rbind(

data.frame(trt=’Active ’, months=c(9,9.5 ,9.75 ,10,13,9.5)),

data.frame(trt=’Passive ’, months=c(11,10,10,11.75 ,10.5 ,15)),

data.frame(trt=’No Exercise ’, months=c(11.5 ,12,9,11.5 ,13.25 ,13)),

data.frame(trt=’8-Week Control ’, months=c(13.25 ,11.5 ,12,13.5 ,11.5 ,12.35))

)

aggregate(months ∼ trt , w, function(x) c(Mean=mean(x), Variance=var(x)))

trt months.Mean months.Variance

1 Active 10.125000 2.093750

2 Passive 11.375000 3.593750

3 No Exercise 11.708333 2.310417

4 8-Week Control 12.350000 0.740000

require(ggplot2)

require(data.table)

w ← data.table(w)

stats ← w[, j=list(months = mean(months), var=var(months)), by = trt]

ggplot(w, aes(x=trt , y=months)) + # F i g . 11.1

geom_dotplot(binaxis=’y’, stackdir=’center ’, position=’dodge’) +

geom_errorbar(aes(ymin=..y.. , ymax=..y..), width=.7 , size=1.3,

data=stats) +

xlab(’’) + ylab(’Months Until First Walking ’) + coord_flip ()

� Note that there are equal samples size in each group (ni = 6 for each i) in the
example. In general, this is not necessary for ANOVA, but it simplifies the calcula-
tions.

� Thought process for ANOVA

– Assume that age at first walk is Normally distributed with some variance σ2

– The variance, σ2, is unknown. There are two ways of estimating σ2
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Figure 11.1: Age in months when infants first began walking by treatment group with mean lines

– Let the means in the four groups be µ1, µ2, µ3, and µ4

– Method 1

* Assuming the variance are equal, calculated a pooled (or average) estimate
of the variance using the four groups

* s2
p = 1

4(2.0938 + 3.5938 + 2.3104 + 0.7400) = 2.184

– Method 2

* Assuming the four treatments do not differ (H0 : µ1 = µ2 = µ3 = µ4 = µ),
the sample means follow a Normal distribution with variance σ2/6.

* We can then estimated σ2/6 by the variance of the sample means (s2
y)

* s2
y = variance of 10.125, 11.375, 11.708, 12.350

* s2
y = 0.87349, so 6s2

y = 5.247 is our second estimate of σ2

– s2
p is an estimate of the within group variability

– s2
y is an estimate of the among (or between) group variability

– If H0 is not true, method 2 will overestimate the variance

– The hypothesis test is based on F = 6s2
y/s2

p and rejects H0 if F is too large

� Degrees of Freedom

– The F statistic has both a numerator and denominator degrees of freedom
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– For the numerator, d.f. = k − 1

* There are k parameters (α1, α2, . . . , αk)

* And one restriction (Σαk = 0, or α1 = 0, or another)

– For the denominator, d.f. = N − k

* There are N total observations

* And we estimate k sample means

– In the age at first walking example, there are 3 (numerator) and 20 (denomi-
nator) degrees of freedom

require(rms)

f ← ols(months ∼ trt , data=w)

anova(f)

Analysis of Variance Response: months

Factor d.f. Partial SS MS F P

trt 3 15.74031 5.246771 2.4 0.0979

REGRESSION 3 15.74031 5.246771 2.4 0.0979

ERROR 20 43.68958 2.184479

11.3.4

Connection to Linear Regression

� Can do ANOVA using multiple regression, using an intercept and k − 1 “dummy”
variables indicating group membership, so memorizing formulas specific to ANOVA
is not needed

� Why is between group d.f.=k − 1?

– can pick any one group as reference group, e.g., group 1

– H0 is identical to H0 : µ2 − µ1 = µ3 − µ1 = . . . = µk − µ1 = 0

– if k − 1 differences in means are all zero, all means must be equal

– since any unique k − 1 differences define our goal, there is k − 1 d.f. between
groups for H0
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11.4

Why All These Distributions?

� Normal distribution is handy for approximating the distribution of z ratios (mean
minus hypothesized value / standard error of mean) when n is large or σ is known

� If z is normal, z2 has a χ2
1 distribution

� If add k z2 values the result has a χ2
k distribution; useful

– in larger than 2× 2 contingency tables

– in testing goodness of fit of a histogram against a theoretical distribution

– when testing more than one regression coefficient in regression models not
having a σ to estimate

� t distribution: when σ is estimated from the data; exact P -values if data from
normal population
Distribution indexed by d.f.: tdf ; useful for

– testing one mean against a constant

– comparing 2 means

– testing one regression coefficient in multiple linear regression

� t2
df has an F distribution

� F statistic can test

– > 1 regression coefficient

– > 2 groups

– whether ratio of 2 variances=1.0 (this includes MSB/MSW)

� To do this F needs two different d.f.

– numerator d.f.: how many unique differences being tested (like χ2
k)



CHAPTER 11. MULTIPLE GROUPS 11-10

– denominator d.f.

* total sample size minus the number of means or regression coefficients and
intercepts estimated from the data

* is the denominator of the estimate of σ2

* also called the error or residual d.f.

� t2
df = F1,df

� ANOVA results in Fk−1,df ; d.f.=N − k where N = combined total sample size; cf.
2-sample t-test: d.f.=n1 + n2 − 2

� Example:
F = MSB/MSW = 58 ∼ F4,1044

The cumulative probability of getting an F statistic ≤ 58 with the above d.f. is
1.0000. We want Prob(F ≥ 58), so we get P = 1 − 1 = 0 to several digits of
accuracy but report P < 0.0001.

pf(58, 4, 1044)

[1] 1

1 - pf(58, 4, 1044)

[1] 0
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11.5

Software and Data Layout

� Every general-purpose statistical package does ANOVA

� Small datasets are often entered using Excel

� Statistical packages expect a grouping variable, e.g., a column of treatment names
or numbers; a column of response values for all treatments combines is also present

� If you enter different groups’ responses in different spreadsheets or different columns
within a spreadsheet, it is harder to analyze the data with a stat package
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11.6

Comparing Specific Groups

� F test is for finding any differences but it does not reveal which groups are different

� Often it suffices to quote F and P , then to provide sample means (and their
confidence intervals)

� Can obtain CLs for any specific difference using previously discussed 2-sample t-
test, but this can result in inconsistent results due solely to sampling variability in
estimating the standard error of the difference in means using only the two groups
to estimate the common σ

� If assume that there is a common σ, estimate it using all the data
to get a pooled s2

� 1− α CL for µi − µj is then

ȳi − ȳj ± tn−k,1−α/2 × s

√√√√ 1
ni

+ 1
nj

,

where n is the grand total sample size and there are respectively ni and nj obser-
vations in samples i and j

� Can test a specific H0 : µi = µj using similar calculations; Note that the d.f. for t
comes from the grand sample size n, which ↑ power and ↓ width of CLs slightly

� Many people use more stringent α for individual tests when testing more than one
of them (Section 11.10)

– This is not as necessary when the overall F -test is significant
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11.7

Non-Parametric ANOVA: Kruskal-Wallis Test

� k-sample extension to the 2-sample Wilcoxon–Mann–Whitney rank-sum test

� Is very efficient when compared to parametric ANOVA even if data are from normal
distributions

� Has same benefits as Wilcoxon (not harmed by outliers, etc.)

� Almost testing for equality of population medians

� In general, tests whether observations in one group tend to be larger than obser-
vations in another group (when consider randomly chosen pairs of subjects)

� Test statistic obtained by replacing all responses by their ranks across all subjects
(ignoring group) and then doing an ANOVA on the ranks

� Compute F (many authors use a χ2 approximation but F gives more accurate
P -values)

� Look up against the F distribution with k − 1 and n− k d.f.

� Very accurate P -values except with very small samples

� Example:
F statistic from ranks in Table 12.16: F3,20 = 7.0289

� Using the cumulative distribution calculator from the web page, the prob. of getting
an F less impressive than this under H0 is 0.9979
P is 1− 0.9979 = 0.0021

� Compare with Rosner’s χ2
3 = 11.804 from which P = 0.008 by survstat or one

minus the CDF

� Evidence that not all of the 4 samples are from the same distribution

– loosely speaking, evidence for differences in medians
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– better: some rabbits have larger anti-inflammatory effects when placed on dif-
ferent treatments in general

� Comparison of Kruskal-Wallis and Parametric ANOVA for age at first walk example

– A few extreme values in age a first walk may violate parametric F -test assump-
tions

– Run rank ANOVA: Kruskal-Wallis test three different ways:

* Parametric ANOVA on the ranks of y

* Spearman’s ρ2 generalized to multiple columns of x

* An R function dedicated to Kruskal-Wallis

anova(ols(rank(months) ∼ trt , data=w))

Analysis of Variance Response: rank(months)

Factor d.f. Partial SS MS F P

trt 3 359.3333 119.77778 3.07 0.0515

REGRESSION 3 359.3333 119.77778 3.07 0.0515

ERROR 20 781.1667 39.05833

spearman2(months ∼ trt , data=w)

Spearman rho∧2 Response variable:months

rho2 F df1 df2 P Adjusted rho2 n

trt 0.315 3.07 3 20 0.0515 0.212 24

kruskal.test(months ∼ trt , data=w)

Kruskal -Wallis rank sum test

data: months by trt

Kruskal -Wallis chi -squared = 7.2465 , df = 3, p-value = 0.06444

Note that the classical Kruskal-Wallis test uses the χ2 approximation while the other
two used an F distribution, which is as or more accurate than using χ2.
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11.8

Two-Way ANOVA

� Ideal for a factorial design or observational study with 2 categorical grouping vari-
ables

� Example: 3 treatments are given to subjects and the researcher thinks that females
and males will have different responses in general
Six means: Ȳi,j, i = treatment, j = sex group

� Can test

– whether there are treatment differences after accounting for sex effects

– whether there are sex differences after accounting for treatment effects

– whether the treatment effect is difference for females and males, if allow treat-
ment × sex interaction to be in the model

� Suppose there are 2 treatments (A, B) and the 4 means are ȲAf , ȲBf , ȲAm, ȲBm,
where f, m index the sex groups

� The various effects are estimated by

– treatment effect: (ȲAf−ȲBf )+(ȲAm−ȲBm)
2

– sex effect: (ȲAf−ȲAm)+(ȲBf−ȲBm)
2

– treatment × sex interaction: (ȲAf − ȲBf) − (ȲAm − ȲBm) = (ȲAf − ȲAm) −
(ȲBf − ȲBm)

� Interactions are“double differences”

� Assessing whether treatment effect is same for m vs. f is the same as assessing
whether the sex effect is the same for A vs. B

� Note: 2-way ANOVA is not appropriate when one of the categorical variables
represents conditions applied to the same subjects, e.g. serially collected data
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within patient with time being one of the variables;
2-way ANOVA assumes that all observations come from different subjects
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11.9

Analysis of Covariance

� Generalizes two-way ANOVA

� Allows adjustment for continuous variables when comparing groups

� Can ↑ power and precision by reducing unexplained patient to patient variability
(σ2

� When Y is also measured at baseline, adjusting for the baseline version of Y can
result in a major reduction in variance

� Fewer assumptions if adjust for baseline version of Y using ANCOVA instead of
analyzing (Y− baseline Y )

� Two-way ANOVA is a special case of ANCOVA where a categorical variable is the
only adjustment variable (it is represented in the model by dummy variables)

See Chapter 13 for much more information about ANCOVA in RCTs.
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11.10

Multiple Comparisons

� When hypotheses are prespecified and are few in number, don’t need to correct
P -values or α level in CLs for multiple comparisons

� Multiple comparison adjustments are needed with H0 is effectively in the form

– Is one of the 5 treatments effective when compared against control?

– Of the 4 etiologies of disease in our patients, is the treatment effective in at
least one of them?

– Is the treatment effective in either diabetics, older patients, males, . . . , etc.?

– Diabetics had the greatest treatment effect empirically; the usual P -value for
testing for treatment differences in diabetics was 0.03

� Recall that the probability that at least one event out of events E1, E2, . . . , Em

occurs is the sum of the probabilities if the events are mutually exclusive

� In general, the probability of at least one event is ≤ the sum of the probabilities of
the individual events occurring

� Let the event be “reject H0 when it is true”, i.e., making a type I error or false
positive conclusion

� If test 5 hypotheses (e.g., 5 subgroup treatment effects) at the 0.05 level, the upper
limit on the chance of finding one significant difference if there are no differences
at all is 5× 0.05 = 0.25

� This is called the Bonferroni inequality

� If we test each H0 at the α
5 level the chance of at least one false positive is no

greater than α

� The chance of at least one false positive is the experimentwise error probability
whereas the chance that a specific test is positive by chance alone is the compar-
isonwise error probability
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� Instead of doing each test at the α
m level we can get a conservative adjusted P -value

by multiplying an individual P -value by ma

� Whenever m× P > 1.0 report P = 1.0

� There are many specialized and slightly less conservative multiple comparison ad-
justment procedures. Some more complex procedures are actually more conserva-
tive than Bonferroni.

� Statisticians generally have a poor understanding about the need to not only adjust
P -values but to adjust point estimates also, when many estimates are made and
only the impressive ones (by P ) are discussed. In that case point estimates are
badly biased away from the null value. For example, the BARI study analyzed
around 20 subgroups and only found a difference in survival between PTCA and
CABG in diabetics. The hazard ratio for CABG:PTCA estimated from this group
is far too extreme.

aMake sure that m is the total number of hypotheses tested with the data, whether formally or informally.
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Statistical Inference Review

� Emphasize confidence limits, which can be computed from adjusted or unadjusted
analyses, with or without taking into account multiple comparisons

� P -values can accompany CLs if formal hypothesis testing needed

� When possible construct P -values to be consistent with how CLs are computed

12-1
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12.1

Types of Analyses

� Except for one-sample tests, all tests can be thought of as testing for an association
between at least one variable with at least one other variable

� Testing for group differences is the same as testing for association between group
and response

� Testing for association between two continuous variables can be done using cor-
relation (especially for unadjusted analysis) or regression methods; in simple cases
the two are equivalent

� Testing for association between group and outcome, when there are more than
2 groups which are not in some solid ordera means comparing a summary of the
response between k groups, sometimes in a pairwise fashion

aThe dose of a drug or the severity of pain are examples of ordered variables.
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12.2

Covariable-Unadjusted Analyses

Appropriate when

� Only interested in assessing the relationship between a single X and the response,
or

� Treatments are randomized and there are no strong prognostic factors that are
measureable

� Study is observational and variables capturing confounding are unavailable (place
strong caveats in the paper)

See 13.

12.2.1

Analyzing Paired Responses

Type of Response Recommended Test Most Frequent Test

binary McNemar McNemar
continuous Wilcoxon signed-rank paired t-test
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12.2.2

Comparing Two Groups

Type of Response Recommended Test Most Frequent Test

binary 2× 2χ2 χ2, Fisher’s exact test
ordinal Wilcoxon 2-sample Wilcoxon 2-sample
continuous Wilcoxon 2-sample 2-sample t-test
time to eventa Cox modelb log-rankc

aThe response variable may be right-censored, which happens if the subject ceased being followed before having the event. The value of the
response variable, for example, for a subject followed 2 years without having the event is 2+.

bIf the treatment is expected to have more early effect with the effect lessening over time, an accelerated failure time model such as the
lognormal model is recommended.

cThe log-rank is a special case of the Cox model. The Cox model provides slightly more accurate P -values than the χ2 statistic from the
log-rank test.

12.2.3

Comparing > 2 Groups

Type of Response Recommended Test Most Frequent Test

binary r × 2χ2 χ2, Fisher’s exact test
ordinal Kruskal-Wallis Kruskal-Wallis
continuous Kruskal-Wallis ANOVA
time to event Cox model log-rank

12.2.4

Correlating Two Continuous Variables

Recommended: Spearman ρ
Most frequently seen: Pearson r
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12.3

Covariable-Adjusted Analyses

� To adjust for imbalances in prognostic factors in an observational study or for strong
patient heterogeneity in a randomized study

� Analysis of covariance is preferred over stratification, especially if continuous ad-
justment variables are present or there are many adjustment variables

– Continuous response: multiple linear regression with appropriate transformation
of Y

– Binary response: binary logistic regression model

– Ordinal response: proportional odds ordinal logistic regression model

– Time to event response, possibly right-censored:

* chronic disease: Cox proportional hazards model

* acute disease: accelerated failure time model
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Analysis of Covariance in Randomized
Studies

Introduction A

� Fundamental clinical question: if I were to give this patient treatment B instead
of treatment A would I expect the clinical outcome to be better?

� A gold-standard design is a 6-period 2-treatment randomized crossover study; the
patient actually receives both treatments and her responses can be compared

� Studies of identical twins come somewhat close to that

� Short of these designs, the best we can do is to ask this fundamental question:
If two patients differ at baseline (with respect to available measurements, and on
the average with respect to unmeasured covariates) only with regard to assigned
treatment, how do their expected outcomes differ?

� Covariate adjustment does that

� Analysis of covariance is classical terminology from linear models but we often use
the term also for nonlinear models

� Covariate adjustment means to condition on important facts known about the
patients before treatment is given

� We treat baseline values as known constants and do not model their distributions

13-1
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� Doing a comparison of outcomes that is equalized on baseline characteristics ac-
counts for outcome heterogeneity within treatment groups

� Accounting for easily accountable (baseline measurements) outcome heterogeneity
either

– maximizes power and precision (in linear models, by reducing residual variance),
or

– gets the model“right”which prevents power loss caused by unexplained outcome
heterogeneity (in nonlinear models, by making the model much more correct
than assuming identical outcome tendencies for all subjects in a treatment
group)

The model to use depends on the nature of the outcome variable Y, and different
models have different effect measures: B

� Continuous Y: we often use difference in means; 2-sample t-test assumes all obser-
vations in a treatment group have the same mean

– analyzing heterogeneous Y as if homogeneous (using t-test instead of ANCOVA)
lowers power and precision by expanding σ2, but does not bias the difference
in means

� Binary Y: classic 2 × 2 table assumes every person on treatment T has the same
probability of outcome

– risk difference is only a useful measure in this homogeneous case

– without covariate adjustment, odds ratios only apply to the homogenous case;
in heterogeneous case the unadjusted odds ratio may apply to no one (see
fharrell.com/post/marg)

� Time to event: Cox proportional hazards model and its special case the logrank
test

– without covariate adjustment assumes homogeneity within treatment group

– unadjusted hazard ratio does not estimate a useful quantity if there is hetero-
geneity

https://www.fharrell.com/post/marg
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– non-proportional hazards is more likely without covariate adjustment than with
it

* without adjustment the failure time distribution is really a mixture of multiple
distributions

Hierarchy of Causal Inference for Treatment Efficacy

Let Pi denote patient i and the treatments be denoted by A and B. Thus P B
2 represents

patient 2 on treatment B. P 1 represents the average outcome over a sample of patients
from which patient 1 was selected.

Design Patients Compared
6-period crossover P A

1 vs P B
1 (directly measure HTE)

2-period crossover P A
1 vs P B

1
RCT in idential twins P A

1 vs P B
1

∥ group RCT P
A
1 vs P

B
2 , P1 = P2 on avg

Observational, good artificial control P
A
1 vs P

B
2 , P1 = P2 hopefully on avg

Observational, poor artificial control P
A
1 vs P

B
2 , P1 ̸= P2 on avg

Real-world physician practice P A
1 vs P B

2
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13.1

Covariable Adjustment in Linear Models

an
co
va-lin

ear

If you fail to adjust for pre-specified covariates, the statistical model’s residuals
get larger. Not good for power, but incorporates the uncertainties needed for
any possible random baseline imbalances.

F Harrell 2019

C
� Model: E(Y |X) = Xβ + ϵ

� Continuous response variable Y , normal residuals

� Statistical testing for baseline differences is scientifically incorrect (Altman & Doré
1990, Begg 1990, Senn 1994, Austin et al. 2010); as Bland and Altman stated9,

statistical tests draw inferences about populations, and the population model here
would involve a repeat of the randomization to the whole population hence bal-
ance would be perfect. Therefore the null hypothesis of no difference in baseline
distributions between treatment groups is automatically true.

� If we are worried about baseline imbalance we need to search patient records for
counter– balancing factors

� → imbalance is not the reason to adjust for covariables

� Adjust to gain efficiency by subtracting explained variation

� Relative efficiency of unadjusted treatment comparison is 1− ρ2

� Unadjusted analyses yields unbiased treatment effect estimate

See datamethods.org/t/should-we-ignore-covariate-imbalance-and-stop-

presenting-a-stratified-table-one-for-randomized-trials for a detailed
discussion, including reasons not to even stratify by treatment in“Table 1.”

http://hbiostat.org/audio/bbr/anc-1.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/ancova-linear
https://datamethods.org/t/should-we-ignore-covariate-imbalance-and-stop-presenting-a-stratified-table-one-for-randomized-trials
datamethods.org/t/should-we-ignore-covariate-imbalance-and-stop-presenting-a-stratified-table-one-for-randomized-trials
https://datamethods.org/t/should-we-ignore-covariate-imbalance-and-stop-presenting-a-stratified-table-one-for-randomized-trials
datamethods.org/t/should-we-ignore-covariate-imbalance-and-stop-presenting-a-stratified-table-one-for-randomized-trials
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13.2

Covariable Adjustment in Nonlinear Models

an
co
va-n
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13.2.1

Hidden Assumptions in 2× 2 Tables
D

� Traditional presentation of 2–treatment clinical trial with a binary response: 2× 2
table

� Parameters: P1, P2 for treatments 1, 2

� Test of goodness of fit: H0: all patients in one treatment group have same proba-
bility of positive response (Pj constant)

� → H0: no risk factors exist

� Need to account for patient heterogeneity

�
63 has a method for estimating the bias in unadjusted the log odds ratio and also
has excellent background information

13.2.2

Models for Binary Response
E

� Model for probability of event must be nonlinear in predictors unless risk range is
tiny

� Useful summary of relative treatment effect is the odds ratio (OR)

� Use of binary logistic model for covariable adjustment will result in an increase in
the S.E. of the treatment effect (log odds ratio) (Robinson & Jewell,84)

� But even with perfect balance, adjusted OR ̸= unadjusted OR

� Adjusted OR will be greater than unadjusted OR

http://hbiostat.org/audio/bbr/anc-2.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/ancova-nonlin
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Example from GUSTO–I

F

� Steyerberg, Bossuyt, Lee100

� Endpoint: 30–day mortality (0.07 overall)

� 10,348 patients given accelerated t–PA

� 20,162 patients given streptokinase (SK)

� Means and Percentages

Characteristics of 30,000 GUSTO Patients

Baseline Characteristic t–PA SK
Age 61.0 60.9
Female 25.3 25.3
Weight 79.6 79.4
Height 171.1 171.0
Hypertension 38.2 38.1
Diabetes 14.5 15.1
Never smoked 29.8 29.6
High cholesterol 34.6 34.3
Previous MI 16.9 16.5
Hypotension 8.0 8.3
Tachycardia 32.5 32.7
Anterior MI 38.9 38.9
Killip class I 85.0 85.4
ST elevation 37.3 37.8

Unadjusted / Adj. Logistic Estimates
G

� With and without adjusting for 17 baseline characteristics

Unadjusted and Adjusted GUSTO Analyses

Type of Analysis Log OR S.E. χ2

Unadjusted -0.159 0.049 10.8
Adjusted -0.198 0.053 14.0

� Percent reduction in odds of death: 15% vs. 18%

http://hbiostat.org/audio/bbr/anc-3.m3u
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� -0.159 (15%) is a biased estimatea

� Increase in S.E. more than offset by increase in treatment effect

� Adjusted comparison based on 19% fewer patients would have given same power
as unadjusted test
load(’gustomin.rda ’)

with(gustomin ,

plot(density(p.sk), xlim=c(0, .4), xlab=’Baseline Expected Risk’,

ylab=’Probability Density ’, main=’’) ) # F i g . 13.1
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Figure 13.1: Distribution of baseline risk in GUSTO-I. Kernel density estimate of risk distribution for SK treatment. Average risk is
0.07. See also50.

� Robinson & Jewell: “It is always more efficient to adjust for predictive covariates H

when logistic models are used, and thus in this regard the behavior of logistic
regression is the same as that of classic linear regression.”

aSome disagree that the word bias is the appropropriate word. This could be called attenuation of the parameter estimate due to an ill-fitting
model.
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Simple Logistic Example – Gail 1986

Male
Treatment A Treatment B

Y = 1 500 100

Y = 0 500 900

1000 1000
Odds Ratio: 9

Female
Treatment A Treatment B

Y = 1 900 500

Y = 0 100 500

1000 1000
Odds Ratio: 9

Pooled
Treatment A Treatment B

Y = 1 1400 600

Y = 0 600 1400

2000 2000
Odds Ratio: 5.44

From seeing this example one can argue that odds ratios, like hazard ratios, were
never really designed to be computed on a set of subjects having heterogeneity in their
expected outcomes. See fharrell.com/post/marg for more.

13.2.3

Nonlinear Models, General

I

� Gail, Wieand, Piantadosi30 showed that for unadjusted treatment estimates to be
unbiased, regression must be linear or exponential

� Gail31 showed that for logistic, Cox, and paired survival models unadjusted treat-
ment effects are asymptotically biased low in absolute value

� Gail also studied normal, exponential, additive risk, Poisson

https://www.fharrell.com/post/marg
http://hbiostat.org/audio/bbr/anc-4.m3u
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Part of the problem with Poisson, proportional hazard and logistic regression
approaches is that they use a single parameter, the linear predictor, with no
equivalent of the variance parameter in the Normal case. This means that lack
of fit impacts on the estimate of the predictor.

Senn [91], p. 3747
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13.3

Cox / Log–Rank Test for Time to Event

an
co
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� Lagakos & Schoenfeld 1984 showed that type I probability is preserved if don’t
adjust

� If hazards are proportional conditional on covariables, they are not proportional if
omit covariables

� Morgan 1986 derived asymptotic relative efficiencies (ARE) of unadjusted log–rank
test if a binary covariable is omitted

� If prevalence of covariable X is 0.5:

Efficiency of Unadjusted Log–Rank Test

X = 1 : X = 0 Hazard Ratio ARE

1.0 1.00
1.5 0.95
2.0 0.88
3.0 0.72

K

� Ford, Norrie, Ahmadi29: Treatment effect does not have the same interpretation
under unadjusted and adjusted models

� No reason for the two hazard ratios to have the same value

� Akazawa, Nakamura, Palesch2: Power of unadjusted and stratified log–rank test

Power With and Without Adjustment

Number Range of Power
of Strata Log Hazards Unadj. Adjusted

1 0 .78 –

2 0–0.5 .77 .78
0–1 .67 .78
0–2 .36 .77

4 0–3 .35 .77

8 0–3.5 .33 .77

http://vbiostatcourse.slack.com/messages/bbr/search/ancova-efficiency
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13.3.1

Sample Size Calculation Issues
L

� Schoenfeld89 implies that covariable adjustment can only ↑ sample size in random-
ized trials

� Need to recognize ill–definition of unadjusted hazard ratios
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13.4

Why are Adjusted Estimates Right?
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� Hauck, Anderson, Marcus43, who have an excellent review of covariable adjustment
in nonlinear models, state:

“For use in a clinician–patient context, there is only a single person, that patient, of interest.

The subject-specific measure then best reflects the risks or benefits for that patient. Gail

has noted this previously [ENAR Presidential Invited Address, April 1990], arguing that one

goal of a clinical trial ought to be to predict the direction and size of a treatment benefit

for a patient with specific covariate values. In contrast, population–averaged estimates of

treatment effect compare outcomes in groups of patients. The groups being compared are

determined by whatever covariates are included in the model. The treatment effect is then

a comparison of average outcomes, where the averaging is over all omitted covariates.”

http://hbiostat.org/audio/bbr/anc-5.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/ancova-meaning
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13.5

How Many Covariables to Use?

an
co
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N

� Try to adjust for the bulk of the variation in outcome43,105

� Neuhaus73:“to improve the efficiency of estimated covariate effects of interest, an-
alysts of randomized clinical trial data should adjust for covariates that are strongly
associated with the outcome”

� Raab et al.83 have more guidance for choosing covariables and provide a formula
for linear model that shows how the value of adding a covariable depends on the
sample size

http://vbiostatcourse.slack.com/messages/bbr/search/ancova-plan
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13.6

Differential and Absolute Treatment Effects

13.6.1

Modeling Differential Treatment Effect

b
lo
g

an
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va-h

te

Differential treatment effect is often called heterogeneity of treatment effect or HTE.
As opposed to the natural expansion of absolute treatment effect with underlying sub-
ject risk, differential treatment effect is usually based on analyses of relative effects,
especially when the outcome is binary.

The most common approach to analyzing differential treatment effect involves searching
for such effects rather than estimating the differential effect. This is, tragically, most
often done through subgroup analysis.

Problems With Subgroup Analysis
O

� Subgroup analysis is widely practiced and widely derided in RCTs (as well as in
observational studies)

� Construction of a subgroup from underlying factors that are continuous in nature
(e.g., “older” = age ≥ 65) assumes that the treatment effect is like falling off a
cliff, i.e., all-or-nothing. Discontinuous treatment effects, like discontinuous main
effects, have not been found and validated but have always been shown to have
been an artificial construct driven by opinion and not data.

� Given a subgroup a simple label such as “class IV heart failure” may seem to be
meaningful but subgrouping carries along other subject characteristics that are cor-
related with the subgrouping variable. So the subgroup’s treatment effect estimate
has a more complex interpretation than what is thought.

� Researchers who don’t understand that “absence of evidence is not evidence for
absence” interpret a significant effect in one subgroup but not in another as the
treatment being effective in the first but ineffective in the second. The second

http://hbiostat.org/audio/bbr/anc-6.m3u
http://fharrell.com/post/rct-mimic
http://vbiostatcourse.slack.com/messages/bbr/search/ancova-hte
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P -value may be large because of increased variability in the second subgroup or
because of a smaller effective sample size in that group.

� Testing the treatment effect in a subgroup does not carry along with it the covariate
adjustment needed and assumes there is no residual HTE within the subgroup.

� When treatment interacts with factors not used in forming the subgroup, or when
the subgrouping variable interacts with an ignored patient characteristic, the sub-
group treatment effect may be grossly misleading. As an example, in GUSTO-I
there was a strong interaction between Killip class and age. Unadjusted analysis of
treatment effect within older subjects was partially an analysis of Killip class. And
the treatment effect was not“significant”in older patients, leading many readers to
conclude t–PA should not be given to them. In fact there was no evidence that age
interacted with treatment, and the absolute risk reduction due to t–PA increased
with age.

Specifying Interactions

P

� Assessing differential treatment effect best done with formal interaction tests rather
than subgroup analysis

� Pre–specify sensible effect modifiers

– interactions between treatment and extent of disease

– “learned” interventions: interaction between treatment and duration of use by
physician

� Interactions with center are not necessarily sensible

� Need to use penalized estimation (e.g., interaction effects as random effects) to
get sufficient precision of differential treatment effects, if # interaction d.f. > 4
for example88,115 Q

http://hbiostat.org/audio/bbr/anc-7.m3u
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Figure 13.2: A display of an interaction between treatment, extent of disease, and calendar year of start of
treatment13

Strategy for Analyzing Differential Treatment Effect

The broad strategy that is recommended is based on the following: R

� Anything resembling subgroup analysis should be avoided

� Anything that assumes that the treatment effect has a discontinuity in a continuous
variable should be avoided. Differential effects should be smooth dose-response
effects.

� Anything that results in a finding that has a simpler alternate explanation should
be avoided

– Specify models so that an apparent interaction is not just a stand-in for an
omitted main effect

Particulars of the strategy are: S

http://hbiostat.org/audio/bbr/anc-8.m3u
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� Formulate a subject-matter driven covariate model, including all covariates under-
stood to have strong effects on the outcome. Ensure that these covariates are
adjusted for in every HTE analysis context.

� Main effects need to be flexibly modeled (e.g., using regression splines) so as to not
assume linearity. False linearity assumptions can inflate apparent interaction effects
because the interaction may be co-linear with omitted nonlinear main effects.

� If the sample size allows, also model interaction effects as smooth nonlinear func-
tions. As with main effects, it is not uncommon for interaction effects to be
nonlinear, e.g., the effect of treatment is small for age < 70 then starts to expand
rapidly after age 70b. As a compromise, force interactions to be linear even if main
effects are not, if the effective sample size does not permit estimating parameters
for nonlinear differential effects.

� Consider effect modifiers that are somewhat uncorrelated with each other. Add
the main effects corresponding to each potential effect modifier into the model
described in the previous point. For example if the primary analysis uses a model
containing age, sex, and severity of disease and one is interested in assessing HTE by
race and by geographical region, add both race and region to the main effects that
are adjusted for in all later models. This will result in proper covariate adjustment
and will handle the case where an apparent interaction is partially explained by an
omitted main effect that is co-linear with one of the interacting factors.

� Carry out a joint (chunk) likelihood ratio or F -test for all potential interaction T

effects combined. This test has a perfect multiplicity adjustment and will not be
“brought down”by the potential interactions being co-linear with each other. The
P -value from this joint test with multiple degrees of freedom will place the tests
described in the next step in context. But note that with many d.f. the test may
lack power.

� Consider each potential interaction one-at-a-time by adding that interaction term
to the comprehensive main effects model. In the example given above, main effects
simultaneously adjusted for would include treatment, age, sex, severity of disease,
race, and region. Then treatment × race is added to the model and tested. Then
the race interaction term (but not its main effect) is removed from the model and
is replaced by region interactions.

bThis does not imply that age should be modeled as a categorical variable to estimate the interaction; that would result in unexplained HTE
in the age ≥ 70 interval.
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Concerning the last step, we must really recognize that there are two purposes for the
analysis of differential treatment effect: U

1. Understanding which subject characteristics are associated with alterations in effi-
cacy

2. Predicting the efficacy for an individual subject

For the latter purpose, one might include all potential treatment interactions in the
statistical model, whether interactions for multiple baseline variables are co-linear or
not. Such co-linearities do not hurt predictions or confidence intervals for predictions.
For the former purpose, interactions can make one effect modifier compete with another,
and neither modifier will be significant when adjusted for the other. As an example,
suppose that the model had main effects for treatment, age, sex, and systolic and
diastolic blood pressure (SBP, DBP) and we entertained effect modification due to one
or both of SBP, DBP. Because of the correlation between SBP and DBP, the main
effects for these variables are co-linear and their statistical significance is weakened
because they estimate, for example, the effect of increasing SBP holding DBP constant
(which is difficult to do). Likewise, treatment× SBP and treatment× DBP interactions
are co-linear with each other, making statistical tests for interaction have low power.
We may find that neither SBP nor DBP interaction is “significant” after adjusting for
the other, but that the combined chunk test for SBP or DBP interaction is highly
significant. Someone who does not perform the chunk test may falsely conclude that
SBP does not modify the treatment effect. This problem is more acute when more
than two factors are allowed to interact with treatment.

Note that including interaction terms in the model makes all treatment effect estimates
conditional on specific covariate values, effectively lowering the sample size for each
treatment effect estimate. When there is no HTE, the overall treatment main effect
without having interaction terms in the model is by far the highest precision estimate.
There is a bias-variance tradeoff when considering HTE. Adding interaction terms lowers
bias but greatly increases variance.

Another way to state the HTE estimation strategy is as follows. V

1. Pick a model for which it is mathematically possible that there be no interactions
(no restrictions on model parameters)

2. Develop a model with ample flexibly-modeled main effects and clinically pre-specified
interactions. Use a Bayesian skeptical prior or penalized maximum likelihood esti-
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mate to shrink the interaction terms if the effective sample size does not support
the pre-specified number of interaction parameters. Be sure to model interaction
effects as continuous if they come from variables of an underlying continuous na-
ture.

3. Display and explain relative effects (e.g., odds ratios) as a function of interacting
factors and link that to what is known about the mechanism of treatment effect.

4. Put all this in a context (like Figure 13.4) that shows absolute treatment benefit
(e.g., risk scale) as a function of background risk and of interacting factors.

5. State clearly that background risk comes from all non-treatment factors and is a
risk-difference accelerator that would increase risk differences for any risk factor,
not just treatment. Possibly provide a risk calculator to estimate background risk
to plug into the x-axis.

Consider simulated two-treatment clinical trial data to illustrate the “always adjust
for all main effects but consider interactions one at a time” approach to analyzing
and displaying evidence for differential treatment effec. After that we will illustrate
a simultaneous interaction analysis. Simulate time-to-event data from an exponential
distribution, and fit Cox proportional hazards models to estimate the interaction between
age and treatment and between sex and treatment. The true age effect is simulated
as linear in the log hazard and the treatment effect on the log relative hazard scale is
proportional to how far above 60 years is a patient’s age, with no treatment benefit
before age 60. This is a non-simple interaction that could be exactly modeled with a
linear spline function, but assume that the analyst does not know the true form of the
interaction so she allows for a more general smooth form using a restricted cubic spline
function. The data are simulated so that there is no sex interaction.
require(rms)

options(prType=’latex ’) # f o r c p h p r i n t , a n o v a

set.seed (1)

n ← 3000 # t o t a l o f 3 0 0 0 s u b j e c t s

age ← rnorm(n, 60, 12)

label(age) ← ’Age’

sex ← factor(sample(c(’Male’, ’Female ’), n, rep=TRUE))

treat ← factor(sample(c(’A’, ’B’), n, rep=TRUE))

cens ← 15 * runif(n) # c e n s o r i n g t i m e

h ← 0.02 * exp(0.04 * (age - 60) + 0.4 * (sex == ’Female ’) -

0.04 * (treat == ’B’) * pmax(age - 60, 0))

dt ← -log(runif(n)) / h

label(dt) ← ’Time Until Death or Censoring ’

e ← ifelse(dt ≤ cens , 1, 0)

dt ← pmin(dt, cens)

units(dt) ← ’Year’
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dd ← datadist(age , sex , treat); options(datadist=’dd’)

S ← Surv(dt, e)

f ← cph(S ∼ sex + rcs(age , 4) * treat)

f

Cox Proportional Hazards Model

cph(formula = S ~ sex + rcs(age, 4) * treat)

Model Tests Discrimination
Indexes

Obs 3000 LR χ2 130.78 R2 0.047
Events 470 d.f. 8 Dxy 0.261
Center 2.3448 Pr(> χ2) 0.0000 g 0.566

Score χ2 156.15 gr 1.761
Pr(> χ2) 0.0000

β̂ S.E. Wald Z Pr(> |Z|)
sex=Male -0.3628 0.0936 -3.88 0.0001
age 0.0423 0.0283 1.50 0.1349
age’ 0.0132 0.0655 0.20 0.8404
age” -0.0456 0.2499 -0.18 0.8553
treat=B 1.6377 1.6902 0.97 0.3326
age × treat=B -0.0335 0.0357 -0.94 0.3479
age’ × treat=B 0.0643 0.0892 0.72 0.4709
age”× treat=B -0.4048 0.3606 -1.12 0.2616

anova(f)

Wald Statistics for S
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χ2 d.f. P

sex 15.03 1 0.0001
age (Factor+Higher Order Factors) 102.95 6 <0.0001
All Interactions 19.92 3 0.0002
Nonlinear (Factor+Higher Order Factors) 6.04 4 0.1961

treat (Factor+Higher Order Factors) 27.80 4 <0.0001
All Interactions 19.92 3 0.0002

age × treat (Factor+Higher Order Factors) 19.92 3 0.0002
Nonlinear 4.11 2 0.1284
Nonlinear Interaction : f(A,B) vs. AB 4.11 2 0.1284

TOTAL NONLINEAR 6.04 4 0.1961
TOTAL NONLINEAR + INTERACTION 20.80 5 0.0009
TOTAL 138.91 8 <0.0001

The model fitted above allows for a general age × treatment interaction. Let’s explore
this interaction by plotting the age effect separately by treatment group, then plotting
the treatment B:A hazard ratio as a function of age.
ggplot(Predict(f, age , treat), rdata=data.frame(age , treat))

ages ← seq(30, 87, length =200)

k ← contrast(f, list(treat=’B’, age=ages), list(treat=’A’, age=ages))

k ← as.data.frame(k[Cs(sex ,age ,Contrast ,Lower ,Upper)])

ggplot(k, aes(x=age , y=exp(Contrast))) +

scale_y_log10(minor_breaks=seq(.2, .9, by=.1)) +

geom_ribbon(aes(ymin=exp(Lower), ymax=exp(Upper)), fill=’gray80 ’) +

geom_line () +

ylab(’B:A Hazard Ratio’) + xlab(’Age’)
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Re-fit the model allowing for a sex interaction (but not an age interaction) and display
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the results.
g ← cph(S ∼ sex * treat + rcs(age , 4))

g

Cox Proportional Hazards Model

cph(formula = S ~ sex * treat + rcs(age, 4))

Model Tests Discrimination
Indexes

Obs 3000 LR χ2 108.40 R2 0.039
Events 470 d.f. 6 Dxy 0.249
Center 1.2565 Pr(> χ2) 0.0000 g 0.566

Score χ2 110.68 gr 1.761
Pr(> χ2) 0.0000

β̂ S.E. Wald Z Pr(> |Z|)
sex=Male -0.3494 0.1234 -2.83 0.0046
treat=B -0.2748 0.1222 -2.25 0.0246
age 0.0228 0.0173 1.31 0.1890
age’ 0.0452 0.0435 1.04 0.2981
age” -0.2088 0.1739 -1.20 0.2301
sex=Male × treat=B -0.0526 0.1894 -0.28 0.7813

anova(g)

Wald Statistics for S

χ2 d.f. P

sex (Factor+Higher Order Factors) 15.87 2 0.0004
All Interactions 0.08 1 0.7813

treat (Factor+Higher Order Factors) 10.18 2 0.0062
All Interactions 0.08 1 0.7813

age 78.81 3 <0.0001
Nonlinear 1.85 2 0.3966

sex × treat (Factor+Higher Order Factors) 0.08 1 0.7813
TOTAL NONLINEAR + INTERACTION 1.92 3 0.5888
TOTAL 104.05 6 <0.0001
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ggplot(Predict(g, sex , treat))

k ← contrast(g, list(treat=’B’, sex=levels(sex)), list(treat=’A’, sex=levels(

sex)))

k ← as.data.frame(k[Cs(sex ,age ,Contrast ,Lower ,Upper)])

ggplot(k, aes(y=exp(Contrast), x=sex)) + geom_point () +

scale_y_log10(breaks=c(.5, .6, .7, .8, .9 , 1, 1.1)) +

geom_linerange(aes(ymin=exp(Lower), ymax=exp(Upper))) +

xlab(’Sex’) + ylab(’B:A Hazard Ratio’) + coord_flip ()
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The above analysis signified a treatment effect for both sex groups (both confidence
limits exclude a hazard ratio of 1.0), whereas this should only be the case when age
exceeds 60. No sex × treatment interaction was indicated. Re-do the previous analysis
adjusting for an age × treatment interaction while estimating the sex × treatment in-
teraction. For this purpose we must specify an age value when estimating the treatment
effects by sex. Here we set age to 50 years. Were age and sex correlated, the joint
analysis would have been harder to interpret.
h ← cph(S ∼ treat * (rcs(age , 4) + sex))

anova(h)

Wald Statistics for S



CHAPTER 13. ANALYSIS OF COVARIANCE IN RANDOMIZED STUDIES 13-24

χ2 d.f. P

treat (Factor+Higher Order Factors) 27.85 5 <0.0001
All Interactions 19.98 4 0.0005

age (Factor+Higher Order Factors) 103.01 6 <0.0001
All Interactions 19.91 3 0.0002
Nonlinear (Factor+Higher Order Factors) 6.05 4 0.1956

sex (Factor+Higher Order Factors) 15.08 2 0.0005
All Interactions 0.06 1 0.8096

treat × age (Factor+Higher Order Factors) 19.91 3 0.0002
Nonlinear 4.10 2 0.1286
Nonlinear Interaction : f(A,B) vs. AB 4.10 2 0.1286

treat × sex (Factor+Higher Order Factors) 0.06 1 0.8096
TOTAL NONLINEAR 6.05 4 0.1956
TOTAL INTERACTION 19.98 4 0.0005
TOTAL NONLINEAR + INTERACTION 20.86 6 0.0019
TOTAL 138.58 9 <0.0001

ggplot(Predict(h, sex , treat , age =50))

k ← contrast(h, list(treat=’B’, sex=levels(sex), age =50),

list(treat=’A’, sex=levels(sex), age =50))

k ← as.data.frame(k[Cs(sex ,age ,Contrast ,Lower ,Upper)])

ggplot(k, aes(y=exp(Contrast), x=sex)) + geom_point () +

scale_y_log10(breaks=c(.5, .6, .7, .8, .9 , 1, 1.1)) +

geom_linerange(aes(ymin=exp(Lower), ymax=exp(Upper))) +

xlab(’Sex’) + ylab(’B:A Hazard Ratio’) + coord_flip ()
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This is a more accurate representation of the true underlying model, and is easy to
interpret because (1) age and sex are uncorrelated in the simulation model used, and
(2) only two interactions were considered.



CHAPTER 13. ANALYSIS OF COVARIANCE IN RANDOMIZED STUDIES 13-25

Absolute vs. Relative Treatment Effects Revisited
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Statistical models are typically chosen so as to maximize the likelihood of the model
fitting the data and processes that generated them. Even though one may be interested
in absolute effects, models must usually be based on relative effects so that quantities
such as estimated risk are in the legal [0, 1] range. It is not unreasonable to think of a
relative effects model such as the logistic model as providing supporting evidence that
an interacting effect causes a change in the treatment effect, whereas the necessary
expansion of treatment effect for higher risk subjects, as detailed in the next section,
is merely a mathematical necessity for how probabilities work. One could perhaps say
that any factor that confers increased risk for a subject (up to the point of diminishing
returns; see below) might cause an increase in the treatment effect, but this is a
general phenomenon that is spread throughout all risk factors independently of how
they may directly affect the treatment effect. Because of this, additive risk models are
not recommended for modeling outcomes or estimating differential treatment effects
on an absolute scale. This logic leads to the following recommended strategy: W

1. Base all inference and predicted risk estimation on a model most likely to fit the
data (e.g., logistic risk model; Cox model). Choose the model so that it is possible
that there may be no interactions, i.e., a model that does not place a restriction
on regression coefficients.

2. Pre-specify sensible possible interactions as described earlier

3. Use estimates from this model to estimate relative differential treatment effects,
which should be smooth functions of continuous baseline variables

4. Use the same model to estimate absolute risk differences (as in the next section)
as a function both of interacting factors and of baseline variables in the model that
do not interact with treatment (but will still expand the absolute treatment effect)

5. Even better: since expansion of risk differences is a general function of overall risk
and not of individual risk factors only display effects of individual risk factors that
interact with treatment (interacting on the scale that would have allowed them not
to interact—the relative scale such as log odds) and show the general risk difference
expansion as in Figures 13.3 (think of the“risk factor”as treatment) and 13.6

http://hbiostat.org/audio/bbr/anc-9.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/ancova-absolute
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To translate the results of clinical trials into practice may require a lot of work
involving modelling and further background information. ‘Additive at the point
of analysis but relevant at the point of application’ should be the motto.

Stephen Senn in http://

errorstatistics.com/

2013/04/19/stephen-

senn-when-relevance-

is-irrelevant

13.6.2

Estimating Absolute Treatment Effects
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� Absolute efficacy measures:

– Risk difference (δ)

– number needed to treat (reciprocal of risk difference)

– Years of life saved

– Quality–adjusted life years saved

� Binary response, no interactions with treatment, risk for control patient P :
δ = P − P

P+(1−P )/OR

� δ is dominated by P

plot(0, 0, type="n", xlab="Risk for Subject Without Risk Factor",

ylab="Increase in Risk",

xlim=c(0,1), ylim=c(0,.6)) # F i g u r e 13.3 Y

i ← 0

or ← c(1.1 ,1.25 ,1.5 ,1.75 ,2,3,4,5,10)

for(h in or) {

i ← i + 1

p ← seq(.0001 , .9999 , length =200)

logit ← log(p/(1 - p)) # s a m e a s q l o g i s ( p )

logit ← logit + log(h) # m o d i f y b y o d d s r a t i o

p2 ← 1/(1 + exp(-logit)) # s a m e a s p l o g i s ( l o g i t )

d ← p2 - p

lines(p, d, lty=i)

maxd ← max(d)

smax ← p[d==maxd]

text(smax , maxd + .02 , format(h), cex=.6)

}

If the outcome is such that Y = 1 implies a good outcome, Figure 13.3 would be useful
for estimating the absolute risk increase for a “good” treatment by selecting the one
curve according to the odds ratio the treatment achieved in a multivariable risk model.
This assumes that the treatment does not interact with any patient characteristic(s).

http://errorstatistics.com/2013/04/19/stephen-senn-when-relevance-is-irrelevant
http://errorstatistics.com/2013/04/19/stephen-senn-when-relevance-is-irrelevant
http://errorstatistics.com/2013/04/19/stephen-senn-when-relevance-is-irrelevant
http://errorstatistics.com/2013/04/19/stephen-senn-when-relevance-is-irrelevant
http://errorstatistics.com/2013/04/19/stephen-senn-when-relevance-is-irrelevant
http://hbiostat.org/audio/bbr/anc-10.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/ancova-absolute
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Figure 13.3: Absolute risk increase as a function of risk for control subject. Numbers on curves are treatment:control odds ratios.

van Klaveren et al.107 described the importance of correctly modeling interactions when
estimating absolute treatment benefit.

Now consider the case where Y = 1 is a bad outcome and Y = 0 is a good outcome,
and there is differential relative treatment effect according to a truly binary patient
characteristic X = 0, 1. Suppose that treatment represents a new agent and the control
group is patients on standard therapy. Suppose that the new treatment multiplies the
odds of a bad outcome by 0.8 when X = 0 and by 0.6 when X = 1, and that the
background risk that Y = 1 for patients on standard therapy ranges from 0.01 to 0.99.
The background risk could come from one or more continuous variables or mixtures
of continuous and categorical patient characteristics. The “main effect” of X must
also be specified. We assume that X = 0 goes into the background risk and X = 1
increases the odds that Y = 1 by a factor of 1.4 for patients on standard therapy. All
of this specifies a full probability model that can be evaluated to show the absolute risk
reduction by the new treatment as a function of background risk and X.
require(Hmisc)

d ← expand.grid(X=0:1, brisk=seq(0.01 , 0.99 , length =150))

d ← upData(d,

risk.standard = plogis(qlogis(brisk) + log(1.4) * X),

risk.new = plogis(qlogis(brisk) + log(1.4) * X +

log(0.8) * (X == 0) +

log(0.6) * (X == 1)),

http://hbiostat.org/audio/bbr/anc-11.m3u
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risk.diff = risk.standard - risk.new ,

X = factor(X) )

Input object size: 19040 bytes; 2 variables 300 observations

Added variable risk.standard

Added variable risk.new

Added variable risk.diff

Modified variable X

New object size: 27152 bytes; 5 variables 300 observations

ggplot(d, aes(x=risk.standard , y=risk.diff , color=X)) +

geom_line () +

xlab(’Risk Under Standard Treatment ’) +

ylab(’Absolute Risk Reduction With New Treatment ’) # Z
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Figure 13.4: Absolute risk reduction by a new treatment as a function of background risk and an interacting factor

It is important to note that the magnification of absolute risk reduction by increasing
background risk should not be labeled (or analyzed) by any one contributing risk factor.
This is a generalized effect that comes solely from the restriction of probabilities to the
[0, 1] range.

Absolute Treatment Effects for GUSTO–I

A

� No evidence for interactions with treatment

http://hbiostat.org/audio/bbr/anc-12.m3u


CHAPTER 13. ANALYSIS OF COVARIANCE IN RANDOMIZED STUDIES 13-29

� Misleading subgroup analysis showed that elderly patients not benefit from t–PA;
result of strong age × Killip class interaction

� Wide variation in absolute benefit of t–PA B

delta ← with(gustomin , p.sk - p.tpa)

plot(density(delta), xlab=’Mortality Difference ’,

ylab=’Probability Density ’, main=’’) # F i g . 13.5

m ← mean(delta)

u ← par("usr")

arrows(m, u[3], m, 0, length=.1, lwd=2)

text(m, 2, ’Mean’, srt=45, adj=0)

med ← median(delta)

arrows(med , u[3], med , 0, length=.1 , lwd=2)

text(med , 2, ’Median ’, srt=45, adj =0)
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Figure 13.5: Distribution of absolute risk reduction with t–PA vs. SK

� Overall mortality difference of 0.011 dominated by high–risk patients

load(’gusto.rda ’)

require(rms)

dd ← datadist(gusto); options(datadist=’dd’)

f ← lrm(day30 ∼ tx + age * Killip + pmin(sysbp , 120) +

lsp(pulse , 50) + pmi + miloc , data=gusto)

cat(’{\\ smaller ’)

f
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Logistic Regression Model

lrm(formula = day30 ~ tx + age * Killip + pmin(sysbp, 120) +

lsp(pulse, 50) + pmi + miloc, data = gusto)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 40830 LR χ2 4173.41 R2 0.245 C 0.821
0 37979 d.f. 15 g 1.490 Dxy 0.642
1 2851 Pr(> χ2) <0.0001 gr 4.437 γ 0.642

max |∂ log L
∂β
| 5×10−6 gp 0.083 τa 0.083

Brier 0.055

β̂ S.E. Wald Z Pr(> |Z|)
Intercept -3.9541 0.7135 -5.54 <0.0001
tx=SK 0.0738 0.0512 1.44 0.1499
tx=tPA -0.1338 0.0608 -2.20 0.0276
age 0.0867 0.0026 33.67 <0.0001
Killip=II 2.1146 0.3610 5.86 <0.0001
Killip=III 3.7596 0.7310 5.14 <0.0001
Killip=IV 4.0790 0.8259 4.94 <0.0001
sysbp -0.0386 0.0017 -23.10 <0.0001
pulse -0.0221 0.0141 -1.57 0.1168
pulse’ 0.0416 0.0143 2.90 0.0037
pmi=yes 0.4664 0.0485 9.62 <0.0001
miloc=Other 0.3048 0.1163 2.62 0.0087
miloc=Anterior 0.5370 0.0443 12.12 <0.0001
age × Killip=II -0.0216 0.0051 -4.22 <0.0001
age × Killip=III -0.0363 0.0103 -3.51 0.0004
age × Killip=IV -0.0323 0.0124 -2.61 0.0090

anova(f)

Wald Statistics for day30
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χ2 d.f. P
tx 15.46 2 0.0004
age (Factor+Higher Order Factors) 1390.07 4 <0.0001
All Interactions 31.13 3 <0.0001

Killip (Factor+Higher Order Factors) 427.94 6 <0.0001
All Interactions 31.13 3 <0.0001

sysbp 533.64 1 <0.0001
pulse 325.19 2 <0.0001
Nonlinear 8.43 1 0.0037

pmi 92.55 1 <0.0001
miloc 146.92 2 <0.0001
age × Killip (Factor+Higher Order Factors) 31.13 3 <0.0001
TOTAL NONLINEAR + INTERACTION 39.17 4 <0.0001
TOTAL 3167.41 15 <0.0001

cat(’}’) # C

cof ← coef(f) # v e c t o r o f r e g r e s s i o n c o e f f i c i e n t s

# F o r cof , X* b e t a w i t h o u t t r e a t m e n t c o e f f i c i e n t s e s t i m a t e s l o g i t

# f o r S K + t - P A c o m b i n a t i o n t h e r a p y ( r e f e r e n c e c e l l ) . T h e c o e f f i c i e n t f o r

# S K e s t i m a t e s t h e d i f f e r e n c e i n l o g i t s f r o m c o m b o t o S K . T h e c o e f f i c i e n t

# f o r t P A e s t i m a t e s t h e d i f f e r e n c e i n t P A f r o m c o m b o . T h e m o r t a l i t y

# d i f f e r e n c e o f i n t e r e s t i s m o r t a l i t y w i t h S K m i n u s m o r t a l i t y w i t h t P A .

mort.sk ← function(x) plogis(x + cof[’tx=SK’])

mort.diff ← function(x)

ifelse(x < 0, mort.sk(x) - plogis(x + cof[’tx=tPA’]), NA)

# o n l y d e f i n e w h e n l o g i t < 0 s i n c e U - s h a p e d

n ← nomogram(f, fun=list(mort.sk , mort.diff),

funlabel=c("30-Day Mortality\nFor SK Treatment",

"Mortality Reduction by t-PA"),

fun.at=list(c(.001 ,.005 ,.01 ,.05 ,.1,.2,.5,.7,.9),

c(.001 ,.005 ,.01 ,.02 ,.03 ,.04 ,.05)),

pulse=seq(0,260,by=10), omit=’tx’, lp=FALSE)

plot(n, varname.label.sep=’ ’, xfrac=.27 , lmgp=.2, cex.axis=.6)

Absolute Benefit on Survival Prob.

D

� Cox PH model

� Modeling can uncover time course of treatment effect

� X1 = treatment, A = X2, . . . , Xp adjustment variables

� Survival difference is
S(t|X1 = 1, A)− S(t|X1 = 0, A)
= S(t|X1 = 0, A)HR − S(t|X1 = 0, A)

http://hbiostat.org/audio/bbr/anc-13.m3u
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Figure 13.6: Nomogram to predict SK - t–PA mortality difference, based on the difference between two binary logistic models.
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plot(0, 0, type="n", xlab="Survival for Control Subject",

ylab="Improvement in Survival",

xlim=c(0,1), ylim=c(0,.7)) # F i g . 13.7 E

i ← 0

hr ← seq(.1, .9, by=.1)

for(h in hr) {

i ← i + 1

p ← seq(.0001 , .9999 , length =200)

p2 ← p ∧ h

d ← p2 - p

lines(p, d, lty=i)

maxd ← max(d)

smax ← p[d==maxd]

text(smax ,maxd+.02 , format(h), cex=.6)

}
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Figure 13.7: Relationship between baseline risk, relative treatment effect (hazard ratio — numbers above curves) and absolute
treatment effect.

� See also53.
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13.7

Cost–Effectiveness Ratios

an
co
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F

� Effectiveness E (denominator of C–E ratio) is always absolute

� Absolute treatment effectiveness varies greatly with patient characteristics

� → C–E ratio varies greatly

� A C–E ratio based on average E and average C may not apply to any existing
patient!

� Need a model to estimate E

� C may also depend on patient characteristics
cost.life ← 2400 / delta / 1e6

plot(density(cost.life), xlab=’Cost Per Life Saved , $M’, main=’’,

ylab=’Probability Density ’, xlim=c(0, 6)) # F i g . 13.8 G

m ← 2400 / mean(delta) / 1e6

u ← par("usr")

arrows(m, u[3], m, 0, length=.1, lwd=2)

text(m,.01 ,’Cost using\n average\n reduction ’,srt=45,adj=0)

http://hbiostat.org/audio/bbr/anc-14.m3u
http://vbiostatcourse.slack.com/messages/bbr/search/ancova-ceratio
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Figure 13.8: Distribution of cost per life saved in GUSTO–I
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13.8

Treatment Contrasts for Multi–Site Random-
ized Trials

an
co
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H

� Primary model: covariables, treatment, site main effects

� Planned secondary model to assess consistency of treatment effects over sites (add
site × treatment interactions)

� Advantages for considering sites as random effects (or use penalized MLE to shrink
site effects, especially for small sites). See7 for a random effects Cox model and a
demonstration that treatment effects may be inconsistent when non–zero site main
effects are ignored in the Cox model. See also115.

� Types of tests / contrasts when interactions are included 90: I

– Type I: not adjusted for center

– Type II: average treatment effect, weighted by size of sites
R rms package command:
sites ← levels(site)

contrast(fit , list(treat=’b’, site=sites),

list(treat=’a’, site=sites),

type=’average ’, weights=table(site))

– Type III: average treatment effect, unweighted

contrast(fit , list(treat=’b’, site=sites),

list(treat=’a’, site=sites), type=’average ’)

Low precision; studies are not powered for Type III tests.

� Another interesting test: combined effects of treatment and site × treatment in-
teraction; tests whether treatment was effective at any site.

http://vbiostatcourse.slack.com/messages/bbr/search/ancova-sites
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13.9

Statistical Plan for Randomized Trials

an
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� FDA draft guidance: hbiostat.org/bib - advocates for many forms of covariate
adjustment

� When a relevant dataset is available before the trial begins, develop the model from
the dataset and use the predicted value as a single adjustment covariable in the
trial (Knaus et al.54)

� Otherwise: CPMP Working Party: Finalize choice of model, transformations, in-
teractions before merging treatment assignment into analysis dataset.
Edwards26: Pre–specify family of models that will be used, along with the strategy
for selecting the particular model.
Masked model derivation does not bias treatment effect.

� CPMP guidance21

– “Stratification may be used to ensure balance of treatments across covariates; it may
also be used for administrative reasons. The factors that are the basis of stratification
should normally be included as covariates in the primary model.

– Variables known a priori to be strongly, or at least moderately, associated with the
primary outcome and/or variables for which there is a strong clinical rationale for such
an association should also be considered as covariates in the primary analysis. The
variables selected on this basis should be pre-specified in the protocol or the statistical
analysis plan.

– Baseline imbalance observed post hoc should not be considered an appropriate reason
for including a variable as a covariate in the primary analysis.

– Variables measured after randomization and so potentially affected by the treatment
should not normally be included as covariates in the primary analysis.

– If a baseline value of a continuous outcome measure is available, then this should
usually be included as a covariate. This applies whether the primary outcome variable
is defined as the ’raw outcome’ or as the ’change from baseline’.

– Only a few covariates should be included in a primary analysis. Although larger data
sets may support more covariates than smaller ones, justification for including each of
the covariates should be provided. (???)

– In the absence of prior knowledge, a simple functional form (usually either linearity or
dichotomising a continuous scale) should be assumed for the relationship between a

http://vbiostatcourse.slack.com/messages/bbr/search/ancova-plan
hbiostat.org/bib


CHAPTER 13. ANALYSIS OF COVARIANCE IN RANDOMIZED STUDIES 13-38

continuous covariate and the outcome variable. (???)

– The validity of the model assumptions must be checked when assessing the results.
This is particularly important for generalized linear or non-linear models where mis-
specification could lead to incorrect estimates of the treatment effect. Even under
ordinary linear models, some attention should be paid to the possible influence of
extreme outlying values.

– Whenever adjusted analyses are presented, results of the treatment effect in subgroups
formed by the covariates (appropriately categorised, if relevant) should be presented
to enable an assessment of the validity of the model assumptions. (???)

– Sensitivity analyses should be pre-planned and presented to investigate the robustness
of the primary results. Discrepancies should be discussed and explained. In the presence
of important differences that cannot be logically explained-for example, between the
results of adjusted and unadjusted analyses-the interpretation of the trial could be
seriously affected.

– The primary model should not include treatment by covariate interactions. If substan-
tial interactions are expected a priori, the trial should be designed to allow separate
estimates of the treatment effects in specific subgroups.

– Exploratory analyses may be carried out to improve the understanding of covariates not
included in the primary analysis, and to help the sponsor with the ongoing development
of the drug.

– A primary analysis, unambiguously pre-specified in the protocol or statistical analysis
plan, correctly carried out and interpreted, should support the conclusions which are
drawn from the trial. Since there may be a number of alternative valid analyses, results
based on pre-specified analyses will carry most credibility.”

In confirmatory trials, a model is pre-specified, and it is necessary to pretend
that it is true. In most other statistical applications, the choice of model is
data–driven, but it is necessary to pretend that it is not.

Edwards [26]

See also Siqueira and Taylor97.

� Choose predictors based on expert opinion K

� Impute missing values rather than discarding observations

� Keep all pre–specified predictors in model, regardless of P–value

� Use shrinkage (penalized maximum likelihood estimation) to avoid over–adjustment

� Some guidance for handling missing baseline data in RCTs is in White & Thomp-
son111
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13.9.1

Sites vs. Covariables

an
co
va-sites

L

� Site effects (main or interaction) are almost always trivial in comparison with
patient-specific covariable effects

� It is not sensible to include site in the model when important covariables are omitted

� The most logical and usually the most strong interaction with treatment is not site
but is the severity of disease being treated

13.9.2

Covariable Adjustment vs. Allocation Based on Co-
variates

M

an
co
va-p

lan

The decision to fit prognostic factors has a far more dramatic effect on the
precision of our inferences than the choice of an allocation based on covariates
or randomization approach and one of my chief objections to the allocation
based on covariates approach is that trialists have tended to use the fact that
they have balanced as an excuse for not fitting. This is a grave mistake.

Senn [91], p. 3748; see also
Senn, Anisimov, and Fedorov

[94]

My view . . . was that the form of analysis envisaged (that is to say, which
factors and covariates should be fitted) justified the allocation and not vice
versa.

Senn [91], p. 3747

http://vbiostatcourse.slack.com/messages/bbr/search/ancova-sites
http://vbiostatcourse.slack.com/messages/bbr/search/ancova-plan
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13.10

Summary

The point of view is sometimes defended that analyses that ignore covariates
are superior because they are simpler. I do not accept this. A value of π = 3 is
a simple one and accurate to one significant figure . . . However very few would
seriously maintain that if should generally be adopted by engineers.

Senn [91], p. 3741 N

� As opposed to simple treatment group comparisons, modeling can

– Improve precision (linear, log–linear models)

– Get the“right” treatment effect (nonlinear models)

– Improve power (almost all models)

– Uncover outcome patterns, shapes of effects

– Test/estimate differential treatment benefit

– Determine whether some patients are too sick or too well to benefit

– Estimate absolute clinical benefit as a function of severity of illness

– Estimate meaningful cost–effectiveness ratios

– Help design the next clinical trial (optimize risk distribution for maximum power)

� Modeling strategy must be well thought–out O

– Not“data mining”

– Not done to optimize the treatment P–value
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13.11

Notes

From a posting by Harrell to the Medstats google group on 19Jan09: I think it is most important
to decide what it is you want to estimate, and then formulate a model that will accomplish that. Unlike ordinary linear models,
which provide unbiased treatment effects if balanced covariates are mistakenly omitted from the model in an RCT, most models
(such as the Cox PH model) result in biased treatment effects even when there is perfect balance in covariates, if the covariates
have nonzero effects on the outcome. This is another way of talking about residual outcome heterogeneity.

If you want to estimate the effect of variable X on survival time, averaging over males and females in some strange undocumented
way, you can get the population averaged effect of X without including sex in the model. Recognize however this is like comparing
some of the males with some of the females when estimating the X effect. This is seldom of interest. More likely we want to know
the effect of X for males, the effect for females, and if there is no interaction we pool the two to more precisely estimate the effect
of X conditional on sex.

Another way to view this is that the PH assumption is more likely to hold when you condition on covariates than when you don’t.

No matter what happens though, if PH holds for one case, it cannot hold for the other, e.g., if PH holds after conditioning, it cannot

hold when just looking at the marginal effect of X.

See the excellent Tweetorial by Darren Dahly here and this supplement to it by Ben
Andrew.

This article by Stephen Senn is also very helpful.

https://twitter.com/statsepi/status/1115902270888128514?s=20
https://twitter.com/BenYAndrew/status/1117777383606706177
http://www.appliedclinicaltrialsonline.com/well-adjusted-statistician-analysis-covariance-explained


Chapter 14

Transformations, Measuring Change, and
Regression to the Mean

14.1

Transformations

� Need to transform continuous variables properly for parametric statistical methods
to work well

� Normality assumption often does not hold and the central limit theorem is irrelevant
for non-huge datasets

– Skewed distribution

– Different standard deviation in different groups

� Transforming data can be a simple method to overcome these problems

� Non-parametric methods (Wilcoxon signed rank, Wilcoxon rank sum) another good
option

� Transformations are also needed when you combine variables

– subtraction as with change scores

– addition (e.g. don’t add ratios that are not proportions)

14-1

http://hbiostat.org/audio/bbr/change-1.mp3
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14.2

Logarithmic Transformation

� Replace individual value by its logarithm

– u = log(x)

� In statistics, always use the natural logarithm (base e; ln(x))

� Algebra reminders

– log(ab) = log(a) + log(b)

– log
(

a
b

)
= log(a)− log(b)

– Inverse of the log function is exp(u) = x, where exp(u) = eu and e is a
constant (e = 2.718282...)

14.2.1

Example Dataset

� From Essential Medical Statistics, 13.2 (pre data only)

� Response: Urinary β-thromboglobulin (β-TG) excretion in 24 subjects

� 24 total subjects: 12 diabetic, 12 normal

d ← rbind(

data.frame(status=’normal ’,

btg=c(4.1, 6.3, 7.8, 8.5, 8.9, 10.4, 11.5, 12.0, 13.8,

17.6, 24.3 , 37.2)),

data.frame(status=’diabetic ’,

btg=c(11.5, 12.1, 16.1, 17.8, 24.0 , 28.8, 33.9, 40.7,

51.3, 56.2 , 61.7, 69.2)))

require(ggplot2)

require(data.table)

d ← data.table(d)

meds ← d[, j=list(btg = median(btg)), by = status]

p1 ←
ggplot(d, aes(x=status , y=btg)) + # F i g . 14.1

geom_dotplot(binaxis=’y’, stackdir=’center ’, position=’dodge’) +

http://hbiostat.org/audio/bbr/change-2.mp3
http://hbiostat.org/audio/bbr/change-3.mp3
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geom_errorbar(aes(ymin=..y.. , ymax=..y..), width=.25 , size=1.3, data=meds) +

xlab(’’) + ylab(expression(paste(beta-TG , ’ (ng/day/100 ml creatinine)’))) +

coord_flip ()

p2 ← ggplot(d, aes(x=status , y=btg)) +

scale_y_log10(breaks=c(4,5,10,15,20,30,40,60,80)) +

geom_dotplot(binaxis=’y’, stackdir=’center ’, position=’dodge’) +

xlab(’’) + ylab(expression(paste(beta-TG , ’ (ng/day/100 ml creatinine)’))) +

coord_flip ()

arrGrob(p1 , p2, ncol =2)

diabetic

normal

0 20 40 60
β − TG (ng/day/100 ml creatinine)

diabetic

normal

4 5 10 15 20 30 40 60 80
β − TG (ng/day/100 ml creatinine)

Figure 14.1: β-TG levels by diabetic status with a median line. The left plot is on the original (non-transformed) scale and includes
median lines. The right plot displays the data on a log scale.

� Original scale

– Normal: x1 = 13.53, s1 = 9.194, n1 = 12

– Diabetic: x2 = 35.28, s2 = 20.27, n2 = 12

� Logarithm scale

– Normal: x∗1 = 2.433, s∗1 = 0.595, n1 = 12

– Diabetic: x∗2 = 3.391, s∗2 = 0.637, n2 = 12

� t-test on log-transformed data

– spool =
√

11×.5952+11×.6372

22 = 0.616

– t = 2.433−3.391
0.616
√

1/12+1/12)
= −3.81, df = 22, p = 0.001

� Confidence Intervals (0.95 CI)

http://hbiostat.org/audio/bbr/change-4.mp3
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– Note that t.975,22 = 2.074

– For Normal subjects, a CI for the mean log β-TG is

0.95 CI = 2.433− 2.074× 0.595√
12

to 2.433 + 2.0740.595√
12

= 2.08 to 2.79

– Can transform back to original scale by using the antilog function e(u) to
estimate medians

Geometric mean = e2.433 = 11.39
0.95 CI = e2.08 to e2.79

= 7.98 to 16.27

t.test(btg ∼ status , data=d)

Welch Two Sample t-test

data: btg by status

t = 3.3838 , df = 15.343 , p-value = 0.003982

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

8.07309 35.41024

sample estimates:

mean in group diabetic mean in group normal

35.27500 13.53333

t.test(log(btg) ∼ status , data=d)

Welch Two Sample t-test

data: log(btg) by status

t = 3.8041 , df = 21.9, p-value = 0.0009776

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.4352589 1.4792986

sample estimates:

mean in group diabetic mean in group normal

3.390628 2.433349

� Could also use a non-parametric test (Wilcoxon rank sum)
wilcox.test(btg ∼ status , data=d)

Wilcoxon rank sum test with continuity correction
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data: btg by status

W = 125.5, p-value = 0.002209

alternative hypothesis: true location shift is not equal to 0

wilcox.test(log(btg) ∼ status , data=d)

Wilcoxon rank sum test with continuity correction

data: log(btg) by status

W = 125.5, p-value = 0.002209

alternative hypothesis: true location shift is not equal to 0

� Note that non-parametric test is the same for the log-transformed outcomes

14.2.2

Limitations of log transformations

� Can only be used on positive numbers

– Sometimes use u = log(x + 1)

� Is very arbitrary to the choice of the origin

� Not always useful or the best transformation

� Sometimes use a dimensionality argument, e.g., take cube root of volume measure-
ments or per unit of volume counts like blood counts

� Cube and square roots are fine with zeros

http://hbiostat.org/audio/bbr/change-5.mp3
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14.3

Analysis of Paired Observations

� Frequently one makes multiple observations on same experimental unit

� Can’t analyze as if independent

� When two observations made on each unit (e.g., pre–post), it is common to sum-
marize each pair using a measure of effect → analyze effects as if (unpaired) raw
data

� Most common: simple difference, ratio, percent change

� Can’t take effect measure for granted

� Subjects having large initial values may have largest differences

� Subjects having very small initial values may have largest post/pre ratios

http://hbiostat.org/audio/bbr/change-6.mp3
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14.4

What’s Wrong with Change in General?

14.4.1

Change from Baseline in Randomized Studies

Many authors and pharmaceutical clinical trialists make the mistake of analyzing change
from baseline instead of making the raw follow-up measurements the primary outcomes,
covariate-adjusted for baseline. The purpose of a parallel-group randomized clinical trial
is to compare the parallel groups, not to compare a patient with herself at baseline.
The central question is for two patients with the same pre measurement value of x, one
given treatment A and the other treatment B, will the patients tend to have different
post-treatment values? This is exactly what analysis of covariance assesses. Within-
patient change is affected strongly by regression to the mean and measurement error.
When the baseline value is one of the patient inclusion/exclusion criteria, the only
meaningful change score requires one to have a second baseline measurement post
patient qualification to cancel out much of the regression to the mean effect. It is the
second baseline that would be subtracted from the follow-up measurement.

The savvy researcher knows that analysis of covariance is required to“rescue”a change
score analysis. This effectively cancels out the change score and gives the right answer
even if the slope of post on pre is not 1.0. But this works only in the linear model
case, and it can be confusing to have the pre variable on both the left and right
hand sides of the statistical model. And if Y is ordinal but not interval-scaled, the
difference in two ordinal variables is no longer even ordinal. Think of how meaningless
difference from baseline in ordinal pain categories are. A major problem in the use of
change score summaries, even when a correct analysis of covariance has been done,
is that many papers and drug product labels still quote change scores out of context.
Patient-reported outcome scales with floor or ceiling effects are particularly problematic.
Analysis of change loses the opportunity to do a robust, powerful analysis using a
covariate-adjusted ordinal response model such as the proportional odds or proportional
hazards model. Such ordinal response models do not require one to be correct in how
to transform Y .

Not only is it very problematic to analyze change scores in parallel group designs;
it is problematic to even compute them. To compute change scores requires many

http://hbiostat.org/audio/bbr/change-7.mp3
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assumptions to hold, e.g.:

1. the variable is not used as an inclusion/exclusion criterion for the study, otherwise
regression to the mean will be strong

2. if the variable is used to select patients for the study, a second post-enrollment
baseline is measured and this baseline is the one used for all subsequent analysis

3. the post value must be linearly related to the pre value

4. the variable must be perfectly transformed so that subtraction ”works” and the
result is not baseline-dependent

5. the variable must not have floor and ceiling effects

6. the variable must have a smooth distribution

7. the slope of the pre value vs. the follow-up measurement must be close to 1.0 when
both variables are properly transformed (using the same transformation on both)

Details about problems with analyzing change may be found here, and references may
be found here.

Regarding 3. above, if pre is not linearly related to post, there is no transformation that
can make a change score work. Two unpublished examples illustrate this problem. In a
large degression study using longitudinal measurements of the Hamilton-D depression
scale, there was a strong nonlinear relationship between baseline Hamilton D and the
final measurement. The form of the relationship was a flattening of the effect for larger
Ham D, indicating there are patients with severe depression at baseline who can achieve
much larger reductions in depression than an average change score would represent (and
likewise, patients with mild to moderate depression at baseline would have a reduction
in depression symptoms that is far less than the average change indicates). Doing
an ordinal ANCOVA adjusting for a smooth nonlinear effect of baseline using a spline
function would have been a much better analysis than the change from baseline analysis
done by study leaders. In the second example, a similar result was found for a quality
of life measure, KCCQ. Again, a flattening relationship for large KCCQ indicated that
subtracting from baseline provided a nearly meaningless average change score.

Regarding 7. above, often the baseline is not as relevant as thought and the slope
will be less than 1. When the treatment can cure every patient, the slope will be zero.
When the baseline variable is irrelevant, ANCOVA will estimate a slope of approximately
zero and will effectively ignore the baseline. Change will baseline will make the change

http://hbiostat.org/audio/bbr/change-8.mp3
https://hbiostat.org/bbr/md/change.html
https://hbiostat.org/bib/change.html
http://hbiostat.org/audio/bbr/change-9.mp3
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score more noisy than just analyzing the final raw measurement. In general, when the
relationship between pre and post is linear, the correlation between the two must exceed
0.5 for the change score to have lower variance than the raw measurement.

Bland and Altman9 have an excellent article about how misleading change from baseline
is for clinical trials. This blog article has several examples of problematic change score
analyses in the clinical trials literature.

The following R code exemplifies how to do a powerful, robust analysis without comput-
ing change from baseline. This analysis addresses the fundamental treatment question
posed at the top of this section. This example uses a semiparametric ANCOVA that
utilizes only the ranks of Y and that provides the same test statistic no matter how Y
is transformed. It uses the proportional odds model, with no binning of Y , using the
rms package orm functiona. This is a generalization of the Wilcoxon test—it would be
almost identical to the Wilcoxon test had the baseline effect been exactly flat. Note
that the proportional odds assumption is more likely to be satisfied than the normal
residual, equal variance assumption of the ordinary linear model.
require(rms)

# F i t a s m o o t h f l e x i b l e r e l a t i o n s h i p w i t h b a s e l i n e v a l u e y 0

# ( r e s t r i c t e d c u b i c s p l i n e f u n c t i o n w i t h 4 d e f a u l t k n o t s )

f ← orm(y ∼ rcs(y0, 4) + treatment)

f

anova(f)

# E s t i m a t e m e a n y a s a f u n c t i o n o f y 0 a n d t r e a t m e n t

M ← Mean(f) # c r e a t e s R f u n c t i o n t o c o m p u t e t h e m e a n

plot(Predict(f, treatment , fun=M)) # y 0 s e t t o m e d i a n s i n c e n o t v a r i e d

# T o a l l o w t r e a t m e n t t o i n t e r a c t w i t h b a s e l i n e v a l u e i n a g e n e r a l w a y :

f ← orm(y ∼ rcs(y0, 4) * treatment)

plot(Predict(f, y0, treatment)) # p l o t y 0 o n x - a x i s , 2 c u r v e s f o r 2 t r e a t m e n t s

# T h e a b o v e p l o t t e d t h e l i n e a r p r e d i c t o r ( l o g o d d s ) ; c a n a l s o p l o t m e a n

Kristoffer Magnusson has an excellent paper Change over time is not “treatment re-
sponse”

Stephen Senn92 Chapter 7 has a very useful graphical summary of the large-sample
variances (inefficiency) of change scores vs. ANCOVA vs. ignoring baseline completely,
as a function of the (assumed linear) correlation between baseline and outcome.

aorm can easily handle thousands of intercepts (thousands of distinct Y values).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3286439
http://www.fharrell.com/post/errmed#change
http://hbiostat.org/audio/bbr/change-10.mp3
http://rpsychologist.com/treatment-response-subgroup
http://rpsychologist.com/treatment-response-subgroup
http://hbiostat.org/audio/bbr/change-11.mp3
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14.4.2

Special Problems Caused By Non-Monotonic Rela-
tionship With Ultimate Outcome

Besides the strong assumptions made about how variables are transformed before a
difference is calculated, there are many types of variables for which change can never be
interpreted without reference to the starting point, because the relationship between the
variable in question and an ultimate outcome is not even monotonic. A good example is
the improper definitions of acute kidney injury (AKI) that have been accepted without
question. Many of the definitions are based on change in serum creatinine (SCr).
Problems with the definitions include

1. The non-monotonic relationship between SCr and mortality demonstrates that it is
not healthy to have very low SCr. This implies that increases in SCr for very low
starting SCr may not be harmful as assumed in definitions of AKI.
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2. Given an earlier SCr measurement and a current SCr, the earlier measurement is not
very important in predicting mortality once one adjusts for the last measurement.
Hence a change in SCr is not very predictive and the current SCr is all-important.

As an example consider the estimated relationship between baseline SCr and mortality
in critically ill ICU patients.
require(rms)

load(’∼/Analyses/SUPPORT/combined.sav ’)
combined ← subset(combined ,

select=c(id, death , d.time , hospdead , dzgroup , age , raceh , sex))

load(’∼/Analyses/SUPPORT/combphys.sav ’)
combphys ← subset(combphys , !is.na(crea1+crea3),

select=c(id,crea1 ,crea3 ,crea7 ,crea14 ,crea25 ,alb3 ,

meanbp3 ,pafi3 ,wblc3))

w ← merge(combined , combphys , by=’id’)

u ← ’mg/dl’

w ← upData(w, labels=c(crea1=’Serum Creatinine , Day 1’,

crea3=’Serum Creatinine Day 3’,

crea14=’Serum Creatinine Day 14’),

units=c(crea1=u, crea3=u, crea7=u, crea14=u, crea25=u))

Input object size: 1739440 bytes; 17 variables 10279 observations

New object size: 1740560 bytes; 17 variables 10279 observations

w ← subset(w, crea1 < 2)

dd ← datadist(w); options(datadist=’dd’)

h ← lrm(hospdead ∼ rcs(crea1 , 5) + rcs(crea3 , 5), data=w)

anova(h) #

Wald Statistics Response: hospdead

Factor Chi -Square d.f. P

crea1 19.52 4 0.0006

Nonlinear 15.60 3 0.0014

crea3 108.11 4 <.0001

Nonlinear 49.98 3 <.0001

TOTAL NONLINEAR 132.06 6 <.0001

TOTAL 217.11 8 <.0001

h ← lrm(hospdead ∼ sex * rcs(crea3 , 5), data=w)

p ← Predict(h, crea3 , sex , fun=plogis)

ggplot(p, ylab=’Risk of Hospital Death’) # F i g . 14.2

We see that the relationship is very non-monotonic so that it is impossible for change
in SCr to be relevant by itself unless the study excludes all patients with SCr < 1.05.
To put this in perspective, in the NHANES study of asymptomatic subjects, a very
significant proportion of subjects have SCr < 1.

http://hbiostat.org/audio/bbr/change-12.mp3
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Figure 14.2: Estimated risk of hospital death as a function of day 3 serum creatinine and sex for 7772 critically ill ICU patients
having day 1 serum creatinine < 2 and surviving to the start of day 3 in the ICU
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14.5

What’s Wrong with Percent Change?

� Definition

% change = first value− second value

second value
× 100

� The first value is often called the new value and the second value is called the old
value, but this does not fit all situations

� Example

– Treatment A: 0.05 proportion having stroke

– Treatment B: 0.09 proportion having stroke

� The point of reference (which term is used in the denominator?) will impact the
answer

– Treatment A reduced proportion of stroke by 44%

– Treatment B increased proportion by 80%

� Two increases of 50% result in a total increase of 125%, not 100%

– Math details: If x is your original amount, two increases of 50% is x∗ 1.5∗ 1.5.
Then, % change = (1.5 ∗ 1.5 ∗ x− x)/x = x ∗ (1.5 ∗ 1.5− 1)/x = 1.25, or a
125% increase

� Percent change (or ratio) not a symmetric measure

– A 50% increase followed by a 50% decrease results in an overall decrease (not
no change)

* Example: 2 to 3 to 1.5

– A 50% decrease followed by a 50% increase results in an overall decrease (not
no change)

* Example: 2 to 1 to 1.5

http://hbiostat.org/audio/bbr/change-13.mp3
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� Unless percents represent proportions times 100, it is not appropriate to compute
descriptive statistics (especially the mean) on percents.

– For example, the correct summary of a 100% increase and a 50% decrease, if
they both started at the same point, would be 0% (not 25%).

� Simple difference or log ratio are symmetric
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14.6

Objective Method for Choosing Effect Mea-
sure

� Goal: Measure of effect should be as independent of baseline value as possibleb

� Plot difference in pre and post values vs. the pre values. If this shows no trend, the
simple differences are adequate summaries of the effects, i.e., they are independent
of initial measurements.

� If a systematic pattern is observed, consider repeating the previous step after taking
logs of both the pre and post values. If this removes any systematic relationship
between the baseline and the difference in logs, summarize the data using logs, i.e.,
take the effect measure as the log ratio.

� Other transformations may also need to be examined

bBecause of regression to the mean, it may be impossible to make the measure of change truly independent of the initial value. A high
initial value may be that way because of measurement error. The high value will cause the change to be less than it would have been had the
initial value been measured without error. Plotting differences against averages rather than against initialvalues will help reduce the effect of
regression to the mean.

http://hbiostat.org/audio/bbr/change-14.mp3
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14.7

Example Analysis: Paired Observations

14.7.1

Dataset description

� Dataset is an extension of the diabetes dataset used earlier in this chapter

� Response: Urinary β-thromboglobulin (β-TG) excretion in 24 subjects

� 24 total subjects: 12 diabetic, 12 normal

� Add a“post”measurement (previous data considered the“pre”measurement)

14.7.2

Example Analysis

# N o w a d d s i m u l a t e d s o m e p o s t d a t a t o t h e a n a l y s i s o f b e t a T G d a t a

# A s s u m e t h a t t h e i n t e r v e n t i o n e f f e c t ( p r e - > p o s t e f f e c t ) i s

# m u l t i p l i c a t i v e ( x 1/ 4 ) a n d t h a t t h e r e i s a m u l t i p l i c a t i v e e r r o r

# i n t h e p o s t m e a s u r e m e n t s

set.seed (13)

d$pre ← d$btg

d$post ← exp(log(d$pre) + log(.25) + rnorm(24, 0, .5))

# M a k e p l o t s o n t h e o r i g i n a l a n d l o g s c a l e s

p1 ← ggplot(d, aes(x=pre , y=post - pre , color=status)) +

geom_point () + geom_smooth () + theme(legend.position=’bottom ’)

# U s e p r o b l e m a t i c a s y m m e t r i c % c h a n g e

p2 ← ggplot(d, aes(x=pre , y=100*(post - pre)/pre ,

color=status)) + geom_point () + geom_smooth () +

xlab(’pre’) + theme(legend.position=’none’) +

ylim(-125 , 0)

p3 ← ggplot(d, aes(x=pre , y=log(post / pre),

color=status)) + geom_point () + geom_smooth () +

xlab(’pre’) + theme(legend.position=’none’) + ylim(-2.5 , 0)

arrGrob(p1 , p2, p3, ncol =2) # F i g . 14.3

with(d, {

print(t.test(post - pre))

print(t.test (100*(post - pre) / pre)) # i m p r o p e r

print(t.test(log(post / pre)))

print(wilcox.test(post - pre))

print(wilcox.test (100*(post - pre) / pre)) # i m p r o p e r

print(wilcox.test(log(post / pre)))

http://hbiostat.org/audio/bbr/change-15.mp3
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} )

One Sample t-test

data: post - pre

t = -5.9366, df = 23, p-value = 4.723e-06

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-22.68768 -10.96215

sample estimates:

mean of x

-16.82492

One Sample t-test

data: 100 * (post - pre)/pre

t = -23.864, df = 23, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-75.19217 -63.19607

sample estimates:

mean of x

-69.19412

One Sample t-test

data: log(post/pre)

t = -13.147, df = 23, p-value = 3.5e-12

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-1.483541 -1.080148

sample estimates:

mean of x

-1.281845

Wilcoxon signed rank exact test

data: post - pre

V = 0, p-value = 1.192e-07

alternative hypothesis: true location is not equal to 0

Wilcoxon signed rank exact test

data: 100 * (post - pre)/pre

V = 0, p-value = 1.192e-07

alternative hypothesis: true location is not equal to 0

Wilcoxon signed rank exact test

data: log(post/pre)

V = 0, p-value = 1.192e-07
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alternative hypothesis: true location is not equal to 0
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Figure 14.3: Difference vs. baseline plots for three transformations

Note: In general, the three Wilcoxon signed-rank statistics will not agree on each other.
They depend on the symmetry of the difference measure.
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14.8

Regression to the Mean

� One of the most important of all phenomena regarding data and estimation

� Occurs when subjects are selected because of their values

� Examples:

1. Intersections with frequent traffic accidents will have fewer accidents in the next
observation period if no changes are made to the intersection

2. The surgeon with the highest operative mortality will have a significant decrease
in mortality in the following year

3. Subjects screened for high cholesterol to qualify for a clinical trial will have
lower cholesterol once they are enrolled

� Observations from a randomly chosen subject are unbiased for that subject

� But subjects selected because they are running high or low are selected partially
because their measurements are atypical for themselves (i.e., selected because of
measurement error)

� Future measurements will “regress to the mean” because measurement errors are
random

� For a classic misattribution of regression to the mean to a treatment effect see
thisc.

Classic paper on shrinkage: Efron & Morris27

� Shrinkage is a way of discounting observed variation that accounts for regression
to the mean

� In their example you can see that the variation in batting averages for the first 45
at bats is unrealistically large

cIn their original study, the social workers enrolled patients having 10 or more hospital admissions in the previous year and showed that after
their counseling, the number of admissions in the next year was less than 10. The same effect might have been observed had the social workers
given the patients horoscopes or weather forecasts. This was reported in an abstract for the AHA meeting that has since been taken down from
circ.ahajournals.org.

https://youtu.be/yWoKLDy8IQA
http://hbiostat.org/audio/bbr/change-16.mp3
https://www.advisory.com/Daily-Briefing/2013/09/30/How-a-hospital-used-social-workers-to-cut-readmissions
circ.ahajournals.org
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� Shrunken estimates (middle) have too little variation but this discounting made the
estimates closer to the truth (final batting averages at the end of the season)

� You can see the regression to the mean for the apparently very hot and very cold
hitters

nam ← c(’Roberto Clemente ’,’Frank Robinson ’,’Frank Howard ’,’Jay Johnstone ’,

’Ken Berry’,’Jim Spencer ’,’Don Kessinger ’,’Luis Alvarado ’,

’Ron Santo’,’Ron Swoboda ’,’Del Unser’,’Billy Williams ’,

’George Scott’,’Rico Petrocelli ’,’Ellie Rodriguez ’,

’Bert Campaneris ’,’Thurman Munson ’,’Max Alvis’)

initial ← c(18,17,16,15,14,14,13,12,11,11,10,10,10,10,10,9,8,7)/45

season ← c(345 ,297 ,275 ,220 ,272 ,270 ,265 ,210 ,270 ,230 ,265 ,258 ,306 ,265 ,225 ,

283 ,320 ,200)/1000

initial.shrunk ← c(294 ,288 ,280 ,276 ,275 ,275 ,270 ,265 ,262 ,263 ,258 ,256 ,

257 ,256 ,257 ,252 ,245 ,240)/1000

plot(0,0,xlim=c(0,1),ylim=c(.15 ,.40),type=’n’,axes=F,xlab=’’,ylab=’’)

n ← 18

x1 ← .5

x2 ← .75

x3 ← 1

points(rep(x1,n), initial)

points(rep(x2,n), initial.shrunk)

points(rep(x3,n), season)

for(i in 1:n) lines(c(x1,x2 ,x3),c(initial[i],initial.shrunk[i],season[i]),

col=i, lwd=2.5)

axis (2)

par(xpd=NA)

text(c(x1,x2+.01 , x2+.25),rep(.12 ,3),c(’First 45 ABs’,’Shrunken\nEstimates ’,

’Rest of\nSeason ’))

for(a in unique(initial)) {

s ← initial ==a

w ← if(sum(s) < 4) paste(nam[s],collapse=’, ’) else {

j ← (1:n)[s]

paste(nam[j[1]],’, ’,nam[j[2]],’, ’,nam[j[3]],’\n’,

nam[j[4]],’, ’,nam[j[5]],sep=’’)

}

text(x1-.02 , a, w, adj=1, cex=.9)

}
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Figure 14.4: Initial batting averages as estimates of final batting averages for players, along with shrunken estimates that account
for regression to the mean



Chapter 15

Serial Data

15.1

Introduction

A

Serial data, also called longitudinal data, repeated measures, or panel data, present a
special challenge in that the response variable is multivariate, and that the responses
measured at different times (or other conditions such as doses) but on the same subject
are correlated with each other. One expects correlations between two measurements
measured closer together will exceed correlations for two distant measurements on the
same subject. Analyzing the repeated measurements just as though they were indepen-
dent measurements falsely inflates the sample size and results in a failure to preserve
type I error and confidence interval coverage. For example, having three measurements
on 10 subjects results in 30 measurements, but depending on the correlations among
the three measurements within subject, the effective sample size might be 16, for exam-
ple. In other words, the statistical information for collecting 3 measurements on each
of 10 subjects might provide the same statistical information and power as having one
measurement on each of 16 subjects. The statistical information would however be less
than that from 30 subjects measured once, if the intra-subject correlation exceeds zero.

The most common problems in analyzing serial data are B

1. treating repeated measurements per subject as if they were from separate subjects

2. using two-way ANOVA as if different measurement times corresponded to different
groups of subjects

3. using repeated measures ANOVA which assumes that the correlation between any

15-1

http://hbiostat.org/audio/bbr/serial-1.mp3
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two points within subject is the same regardless of how far apart the measures were
timed

4. analyzing more than 3 time points as if time is a categorical rather than a continuous
variable

� multiplicity problem

� analyses at different times may be inconsistent since times are not connected

� loss of power by not jointly analyzing the serial data
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15.2

Analysis Options
C

There are several overall approaches to the analysis of serial measurements. Some
of the older approaches such as multiple t-tests and repeated measures ANOVA are
now considered obsolete because of the availability of better methods that are more
flexible and robusta. Separate t-tests at each time point do not make good use of
available information, use an inefficient estimate of σ2, do not interpolate time points,
and have multiple comparison problems. Since a multiplicity adjustment for multiple
correlated t-tests is not model-based, the resulting confidence intervals and P -values
are conservative. To preserve type I error, one always must sacrifice type II error, but
in this case the sacrifice is too severe. In addition, investigators are frequently confused
by the t-test being “significant” at one time point and not at another, and make the
unwarranted claim that the treatment is effective only at the first time. Besides not
recognizing the absence of evidence is not evidence for absence problem, the investigator
can be mislead by increased variability in response at the second time point driving the
t ratio towards zero. This variability may not even be real but may reflect instability in
estimating σ separately at each time point.

Especially when there are more than three unique measurement times, it is advisable to
model time as a continuous variable. When estimation of the time-response profile is
of central importance, that may be all that’s needed. When comparing time-response
profiles (e.g., comparing two treatments) one needs to carefully consider the character-
istics of the profiles that should be tested, i.e., where the type I and II errors should be
directed, for example D

� difference in slope

� difference in area under the curve

� difference in mean response at the last planned measurement time

� difference in mean curves at any time, i.e., whether the curves have different heights
or shapes anywhere

The first 3 are 1 d.f. tests, and the last is a 2 d.f. test if linearity is assumed, and > 2
aRepeated measures ANOVA makes stringent assumptions and requires complex adjustments for within-subject correlation.
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d.f. if fitting a polynomial or spline function.

15.2.1

Joint Multivariate Models
E

This is the formal fully-specified statistical model approach whereby a likelihood function
is formed and maximized. This handles highly imbalanced data, e.g., one subject having
one measurement and another having 100. It is also the most robust approach to non-
random subject dropouts. These two advantages come from the fact that full likelihood
models “know”exactly how observations from the same subject are connected to each
other.

Examples of full likelihood-based models include generalized least squares, mixed ef-
fects models, and Bayesian hierarchical models. Generalized least squares only handles
continuous Y and assumes multivariate normality. It does not allow different subjects
to have different slopes. But it is easy to specify and interpret, to have its assumptions
checked, and it runs faster. Mixed effects models can handle multiple hierarchical levels
(e.g., state/hospital/patient) and random slopes whereby subjects can have different
trajectories. Mixed effects models can be generalized to binary and other endpoints
but lose their full likelihood status somewhat when these extensions are used, unless a
Bayesian approach is used. F

� Mixed effects model have random effects (random intercepts and possibly also
random slopes or random shapes) for subjects

� These allow estimation of the trajectory for an individual subject

� When the interest is instead on group-level effects (e.g., average difference between
treatments, over subjects), GLS squares models may be more appropriate

� The generalization of GLS to non-normally distributed Y is marginalized models
(marginalized over subject-level effects)

Generalized least squares, formerly called growth curve models, is the oldest approach
and has excellent performance when Y is conditionally normally distributed.
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15.2.2

GEE
G

Generalized estimating equations is usually based on a working independence model
whereby ordinary univariate regressions are fitted on a combined dataset as if all obser-
vations are uncorrelated, and then an after-the-fit correction for intra-cluster correlation
is done using the cluster sandwich covariance estimator or the cluster bootstrap. GEE is
very non-robust to non-random subject dropout; it assumes missing response values are
missing completely at random. It may also require large sample sizes for P -values and
confidence intervals to be accurate. An advantage of GEE is that it extends easily to
every type of response variable, including binary, ordinal, polytomous, and time-to-event
responses.

15.2.3

Summary Measures

H

A simple and frequently effective approach is to summarize the serial measures from each
subject using one or two measures, then to analyze these measures using traditional
statistical methods that capitalize on the summary measures being independent for
different subjects. This has been called I

1. Two-stage derived variable analysis24

2. Response feature analysis25

3. Longitudinal analysis through summary measures64

An excellent overview may be found in Matthews et al. [64], Dupont [25] (Chapter 11), and
Senn, Stevens, and Chaturvedi [95].

Frequently chosen summary measures include the area under the time-response curve,
slope, intercept, and consideration of multiple features simultaneously, e.g., intercept,
coefficient of time, coefficient of time squared when fitting each subject’s data with a
quadratic equation. This allows detailed analyses of curve shapes.

http://hbiostat.org/audio/bbr/serial-2.mp3
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15.3

Case Study

15.3.1

Data and Summary Measures

J

Consider the isoproterenol dose-response analysis of Dupont [25] of the original data
from Langb. Twenty two normotensive men were studied, 9 of them black and 13
white. Blood flow was measured before the drug was given, and at escalating doses of
isoproterenol. Most subjects had 7 measurements, and these are not independent.
require(Hmisc)

require(data.table) # e l e g a n t h a n d l i n g o f a g g r e g a t i o n

require(ggplot2)

d ← csv.get(’https://hbiostat.org/data/repo/11 .2.Long.Isoproterenol.csv ’)

d ← upData(d, keep=c(’id’, ’dose’, ’race’, ’fbf’),

race =factor(race , 1:2, c(’white’, ’black’)),

labels=c(fbf=’Forearm Blood Flow’),

units=c(fbf=’ml/min/dl’))

Input object size: 13168 bytes; 8 variables 154 observations

Modified variable race

Kept variables id,dose ,race ,fbf

New object size: 6496 bytes; 4 variables 154 observations

d ← data.table(d)

setkey(d, id, race)

# F i t s u b j e c t - b y - s u b j e c t s p l i n e f i t s a n d e i t h e r r e t u r n t h e c o e f f i c i e n t s ,

# t h e e s t i m a t e d a r e a u n d e r t h e c u r v e f r o m [ 0 , 4 0 0 ] , o r e v a l u a t e e a c h

# s u b j e c t ’ s f i t t e d c u r v e o v e r a r e g u l a r g r i d o f 1 5 0 d o s e s

# A r e a u n d e r c u r v e i s d i v i d e d b y 4 0 0 t o g e t a m e a n f u n c t i o n

require(rms)

options(prType=’latex ’)

g ← function(x, y, what=c(’curve’, ’coef’, ’area’)) {

what ← match.arg(what) # ’ c u r v e ’ i s d e f a u l t

knots ← c(20, 60, 150)

f ← ols(y ∼ rcs(x, knots))

xs ← seq(0, 400, length =150)

switch(what ,

coef = {k ← coef(f)

list(b0 = k[1], b1=k[2], b2=k[3])},

curve= {x ← seq(0, 400, length =150)

list(dose=xs, fbf=predict(f, data.frame(x=xs)))},

area = {antiDeriv = rcsplineFunction(knots , coef(f),

bCC Lang et al. NEJM 333:155-60, 1995

http://hbiostat.org/audio/bbr/serial-3.mp3
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type=’integral ’)

list(dose = 400, fbf=y[x == 400],

area = antiDeriv (400) / 400,

tarea = areat(x, y) / 400)} )

}

# F u n c t i o n t o u s e t r a p e z o i d a l r u l e t o c o m p u t e a r e a u n d e r t h e c u r v e

areat ← function(x, y) {

i ← ! is.na(x + y)

x ← x[i]; y ← y[i]

i ← order(x)

x ← x[i]; y ← y[i]

if(! any(x == 400)) NA else

sum(diff(x) * (y[-1] + y[-length(y)]))/2

}

w ← d[, j=g(dose , fbf), by = list(id, race)] # u s e s d a t a . t a b l e p a c k a g e

a ← d[, j=g(dose , fbf , what=’area’), by = list(id, race)]

ggplot(d, aes(x=dose , y=fbf , color=factor(id))) + # F i g . 15.1 K

geom_line () + geom_line(data=w, alpha=0.25) +

geom_text(aes(label = round(area ,1)), data=a, size=2.5,

position=position_dodge(width =50)) +

xlab(’Dose’) + ylab(label(d$fbf , units=TRUE , plot=TRUE)) +

facet_grid(∼ race) +

guides(color=FALSE)
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Figure 15.1: Spaghetti plots for isoproterenol data showing raw data stratified by race. Next to each curve is the area under the curve
divided by 400 to estimate the mean response function. The area is computed analytically from a restricted cubic spline function
fitted separately to each subject’s dose-response curve. Shadowing the raw data are faint lines depicting spline fits for each subject

ggplot(a, aes(x=tarea , y=area , color=race)) + geom_point () +

geom_abline(col=gray(.8)) +

xlab(’Area by Trapezoidal Rule / 400’) +
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ylab(’Area by Spline Fit / 400’) # F i g . 15.2 L
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Figure 15.2: AUC by curve fitting and by trapezoidal rule

When a subject’s dose (or time) span includes the minimum and maximum values over
all subjects, one can use the trapezoidal rule to estimate the area under the response
curve empirically. When interior points are missing, linear interpolation is used. The
spline fits use nonlinear interpolation, which is slightly better, as is the spline function’s
assumption of continuity in the slope. Figure 15.2 compares the area under the curve
(divided by 400 to estimate the mean response) estimated using the the two methods.
Agreement is excellent. In this example, the principle advantage of the spline approach
is that slope and shape parameters are estimated in the process, and these parameters
may be tested separately for association with group (here, race). For example, one
may test whether slopes differ across groups, and whether the means, curvatures, or
inflection points differ. One could also compare AUC from a sub-interval of X.
ggplot(a, aes(x=race , y=area)) + # F i g . 15.3 M

geom_boxplot(alpha=.5, width=.25) + geom_point () + coord_flip () +

ylab(expression(paste(’Mean Forearm Blood Flow , ’, scriptstyle(ml/min/dl))))
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Figure 15.3: Mean blood flow computed from the areas under the spline curves, stratified by race, along with box plots
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15.3.2

Nonparametric Test of Race Differences in AUC

N

A minimal-assumption approach to testing for differences in isoproterenol dose-response
between races is to apply the Wilcoxon test to the normalized AUCs (mean response
functions).
wilcox.test(area ∼ race , data=a, conf.int=TRUE)

Wilcoxon rank sum exact test

data: area by race

W = 112, p-value = 7.639e-05

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

5.670113 16.348121

sample estimates:

difference in location

11.25836

There is strong evidence that the mean response is greater for whites.

15.3.3

Nonparametric Test of General Curve Differences
O

O’Brien [76] proposed a method for using logistic regression to turn the Hotelling T 2

test on its side. The Hotelling test is the multivariate analog of the two-sample t-test,
and can be used to test simultaneously such things as whether a treatment modifies
either systolic or diastolic blood pressure. O’Brien’s idea was to test whether systolic
or diastolic blood pressure (or both) can predict which treatment was given. Here we
use the idea to test for race differences in the shape of the dose-response curves. We
do this by predicting race from a 3-predictor model—one containing the intercept, the
next the coefficient of the linear dose effect and the third the coefficient of the nonlinear
restricted cubic spline term (differences in cubes). These coefficients were estimated
using ordinary least squares in separately predicting each subject’s relationship between
dose and forearm blood flow.
h ← d[, j=g(dose , fbf , what=’coef’), by = list(id, race)]

h

id race b0 b1 b2

1: 1 white -0.1264763 0.32310327 -0.34253352

http://hbiostat.org/audio/bbr/serial-4.mp3
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2: 2 white 2.1147707 0.22798336 -0.21959542

3: 3 white 2.3378721 0.06927717 -0.03625384

4: 4 white 1.4822502 0.19837740 -0.20727584

5: 5 white 2.5366751 0.15399740 -0.14756999

6: 6 white 3.2117187 0.19910942 -0.18650561

7: 7 white 1.4264366 0.05261565 -0.03871545

8: 8 white 3.0999999 0.21833887 -0.19813457

9: 9 white 5.1507764 0.45026617 -0.48013920

10: 10 white 4.4778127 0.23853904 -0.23289815

11: 11 white 1.9052885 0.13548226 -0.13917910

12: 12 white 2.1828176 0.07558431 -0.05524955

13: 13 white 2.9318982 0.12776900 -0.10679867

14: 14 black 2.3336099 0.02679742 -0.02856275

15: 15 black 1.8356227 0.07652884 -0.07972036

16: 16 black 2.5342537 0.02290717 -0.02585081

17: 17 black 2.0254606 0.06002835 -0.06261969

18: 18 black 3.3279080 0.07620477 -0.08062536

19: 19 black 1.9308650 0.03844018 -0.04060065

20: 20 black 1.7263259 0.12358392 -0.13595538

21: 21 black 1.3215502 0.03528716 -0.03480467

22: 22 black 2.0828281 0.03143768 0.02251155

id race b0 b1 b2

f ← lrm(race ∼ b0 + b1 + b2, data=h, x=TRUE , y=TRUE)

f

Logistic Regression Model

lrm(formula = race ~ b0 + b1 + b2, data = h, x = TRUE, y = TRUE)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 22 LR χ2 19.73 R2 0.798 C 0.957
white 13 d.f. 3 g 6.783 Dxy 0.915
black 9 Pr(> χ2) 0.0002 gr 882.952 γ 0.915

max |∂ log L
∂β | 8×10−7 gp 0.471 τa 0.463

Brier 0.080

β̂ S.E. Wald Z Pr(> |Z|)
Intercept 3.6618 4.1003 0.89 0.3718
b0 1.3875 2.5266 0.55 0.5829
b1 -165.3481 92.7864 -1.78 0.0747
b2 -101.1667 63.1549 -1.60 0.1092

The likelihood ratio χ2
3 = 19.73 has P = 0.0002 indicating strong evidence that the P
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races have different averages, slopes, or shapes of the dose-response curves. The c-
index of 0.957 indicates nearly perfect ability to separate the races on the basis of three
curve characteristics (although the sample size is small). We can use the bootstrap to
get an overfitting-corrected index.
set.seed (2)

v ← validate(f, B=1000)

Divergence or singularity in 271 samples
latex(v)

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.9145 0.9589 0.8423 0.1166 0.7980 729
R2 0.7985 0.9096 0.6617 0.2479 0.5506 729
Intercept 0.0000 0.0000 0.1150 −0.1150 0.1150 729
Slope 1.0000 1.0000 0.4259 0.5741 0.4259 729
Emax 0.0000 0.0000 0.2056 0.2056 0.2056 729
D 0.8513 1.0728 0.6434 0.4294 0.4219 729
U −0.0909 −0.0909 2.6080 −2.6989 2.6080 729
Q 0.9422 1.1637 −1.9646 3.1283 −2.1861 729
B 0.0803 0.0310 0.0773 −0.0463 0.1266 729
g 6.7833 23.8206 4.4145 19.4061 −12.6228 729
gp 0.4712 0.4629 0.4255 0.0373 0.4339 729

The overfitting-corrected c-index is c = Dxy+1
2 = 0.9.

15.3.4

Model-Based Analysis: Generalized Least Squares

Q

Generalized least squares (GLS) is the first generalization of ordinary least squares
(multiple linear regression). It is described in detail in Regression Modeling Strategies
Chapter 7 where a comprehensive case study is presented. The assumptions of GLS are

R

� All the usual assumptions about the right-hand-side of the model related to trans-
formations of X and interactions

� Residuals have a normal distribution

� Residuals have constant variance vs. Ŷ or any X (but the G in GLS also refers to
allowing variances to change across X)

http://hbiostat.org/audio/bbr/serial-5.mp3


CHAPTER 15. SERIAL DATA 15-12

� The multivariate responses have a multivariate normal distribution conditional on
X

� The correlation structure of the conditional multivariate distribution is correctly
specified

With fully specified serial data models such as GLS, the fixed effects of time or dose are
modeled just as any other predictor, with the only difference being that it is the norm
to interact the time or dose effect with treatment or whatever X effect is of interest.
This allows testing hypotheses such as S

� Does the treatment effect change over time? (time × treatment interaction)

� Is there a time at which there is a treatment effect? (time × treatment interaction
+ treatment main effect combined into a chunk test)

� Does the treatment have an effect at time t? (difference of treatments fixing time
at t, not assuming difference is constant across different t)

In the majority of longitudinal clinical trials, the last hypothesis is the most important, T

taking t as the end of treatment point. This is because one is often interested in where
patients ended up, not just whether the treatment provided temporary relief.

Now consider the isoproterenol dataset and fit a GLS model allowing for the same
nonlinear spline effect of dose as was used above, and allowing the shapes of curves to
be arbitrarily different by race. We impose a continuous time AR1 correlation structure
on within-subject responses. This is the most commonly used correlation structure;
it assumes that the correlation between two points is exponentially declining as the
difference between two times or doses increases. We fit the GLS model and examine
the equal variance assumption.
require(nlme)

dd ← datadist(d); options(datadist=’dd’)

a ← Gls(fbf ∼ race * rcs(dose , c(20 ,60 ,150)), data=d,

correlation=corCAR1(form = ∼ dose | id))

plot(fitted(a), resid(a)) # F i g . 15.4 U

The variance of the residuals is clearly increasing with increasing dose. Try log trans-
forming both fbf and dose. The log transformation requires a very arbitrary adjustment
to dose to handle zeros.
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Figure 15.4: Residual plot for generalized least squares fit on untransformed fbf

a ← Gls(log(fbf) ∼ race * rcs(log(dose + 1), log(c(20 ,60 ,150) +1)), data=d,

correlation=corCAR1(form = ∼ dose | id))

anova(a)

Wald Statistics for log(fbf)

χ2 d.f. P

race (Factor+Higher Order Factors) 99.54 3 <0.0001
All Interactions 19.30 2 <0.0001

dose (Factor+Higher Order Factors) 312.10 4 <0.0001
All Interactions 19.30 2 <0.0001
Nonlinear (Factor+Higher Order Factors) 2.01 2 0.3667

race × dose (Factor+Higher Order Factors) 19.30 2 <0.0001
Nonlinear 0.07 1 0.7969
Nonlinear Interaction : f(A,B) vs. AB 0.07 1 0.7969

TOTAL NONLINEAR 2.01 2 0.3667
TOTAL NONLINEAR + INTERACTION 21.16 3 <0.0001
TOTAL 391.48 5 <0.0001

There is little evidence for a nonlinear dose effect on the log scale, implying that the
underlying model is exponential on the original X and Y scales. This is consistent with
Dupont [25]. Re-fit the model as linear in the logs. Before taking this as the final model,
also fit the same model but using a correlation pattern based on time rather than dose.
Assume equal time spacing during dose escalation. V

http://hbiostat.org/audio/bbr/serial-6.mp3


CHAPTER 15. SERIAL DATA 15-14

a ← Gls(log(fbf) ∼ race * log(dose + 1), data=d,

correlation=corCAR1(form = ∼ dose | id))

d$time ← match(d$dose , c(0, 10, 20, 60, 150, 300, 400)) - 1

b ← Gls(log(fbf) ∼ race * log(dose + 1), data=d,

correlation=corCAR1(form = ∼ time | id))

AIC(a);AIC(b)

[1] 231.3731

[1] 161.3765

Lower AIC is better, so it is clear that time-based correlation structure is far superior
to dose-based. We will used the second model for the remainder of the analysis. But
first we check some of the model assumptions.
b

Generalized Least Squares Fit by REML

Gls(model = log(fbf) ~ race * log(dose + 1), data = d, correlation = corCAR1(form = ~time |

id))

Obs 150 Log-restricted-likelihood -74.69
Clusters 22 Model d.f. 3
g 0.755 σ 0.5023

d.f. 146

β̂ S.E. t Pr(> |t|)
Intercept 0.9851 0.1376 7.16 <0.0001
race=black -0.2182 0.2151 -1.01 0.3120
dose 0.3251 0.0286 11.38 <0.0001
race=black × dose -0.1421 0.0446 -3.19 0.0018

Correlation Structure: Continuous AR(1)

Formula: ~time | id

Parameter estimate(s):

Phi

0.6886846

anova(b)
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Wald Statistics for log(fbf)

χ2 d.f. P

race (Factor+Higher Order Factors) 32.45 2 <0.0001
All Interactions 10.16 1 0.0014

dose (Factor+Higher Order Factors) 158.11 2 <0.0001
All Interactions 10.16 1 0.0014

race × dose (Factor+Higher Order Factors) 10.16 1 0.0014
TOTAL 180.17 3 <0.0001

w ← data.frame(residual=resid(b), fitted=fitted(b))

p1 ← ggplot(w, aes(x=fitted , y=residual)) + geom_point ()

p2 ← ggplot(w, aes(sample=residual)) + stat_qq ()

gridExtra :: grid.arrange(p1, p2, ncol =2) # F i g u r e 15.5 W
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Figure 15.5: Checking assumptions of the GLS model that is linear after logging dose and blood flow. The graph on the right is a
QQ-plot to check normality of the residuals from the model, where linearity implies normality.

The test for dose × race interaction in the above ANOVA summary of Wald statistics X

shows strong evidence for difference in curve characteristics across races. This test
agrees in magnitude with the less parametric approach using the logistic model above.
But the logistic model also tests for an overall shift in distributions due to race, and
the more efficient test for the combined race main effect and dose interaction effect
from GLS is more significant with a Wald χ2

2 = 32.45c. The estimate of the correlation
cThe χ2 for race with the dose-based correlation structure was a whopping 100 indicating that lack of fit of the correlation structure can

have a significant effect on the rest of the GLS model.
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between two log blood flows measured on the same subject one time unit apart is 0.69.

The equal variance and normality assumptions appear to be well met as judged by
Figure 15.5.

Now estimate the dose-response curves by race, with pointwise confidence intervals
and simultaneous intervals that allow one to make statements about the entire curvesd.
Anti-log the predicted values to get predictions on the original blood flow scale. Anti-
logging predictions from a model that assumes a normal distribution on the logged
values results in estimates of the median response.
dos ← seq(0, 400, length =150)

p ← Predict(b, dose=dos , race , fun=exp)

s ← Predict(b, dose=dos , race , fun=exp , conf.type=’simultaneous ’)

ps ← rbind(Pointwise=p, Simultaneous=s)

ggplot(ps, ylab=expression(paste(’Median Forearm Blood Flow , ’,

scriptstyle(ml/min/dl)))) # F i g . 15.6 Y
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Figure 15.6: Pointwise and simultaneous confidence bands for median dose-response curves by race

Finally we estimate the white:black fold change (ratio of medians) as a function of dose
with simultaneous confidence bands.
k ← contrast(b, list(dose=dos , race=’white’),

list(dose=dos , race=’black ’), conf.type=’simultaneous ’)

k ← as.data.frame(k[c(’dose’, ’Contrast ’, ’Lower’, ’Upper’)])

ggplot(k, aes(x=dose , y=exp(Contrast))) + geom_line () +

dSince the model is linear in log dose there are two parameters involving dose—the dose main effect and the race × dose interaction effect.
The simultaneous inference adjustment only needs to reflect simultaneity in two dimensions.

http://hbiostat.org/audio/bbr/serial-7.mp3
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geom_ribbon(aes(ymin=exp(Lower), ymax=exp(Upper)), alpha=0.2, linetype=0,

show_guide=FALSE) +

geom_hline(yintercept =1, col=’red’, size=.2) +

ylab(’White:Black Ratio of Median FBF’) # F i g . 15.7 Z
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Figure 15.7: White:black fold change for median response as a function of dose, with simultaneous confidence band

By comparing the simultaneous confidence binds to the red horizontal line, one can
draw the inference that the dose-response for blacks is everywhere different than that
for whites when the dose exceeds zero.



Chapter 16

Analysis of Observer Variability and
Measurement Agreement

16.1

Intra- and Inter-observer Disagreement

Before using a measurement instrument or diagnostic technique routinely, a researcher
may wish to quantify the extent to which two determinations of the measurement, made
by two different observers or measurement devices, disagree (inter-observer variability).
She may also wish to quantify the repeatability of one observer in making the measure-
ment at different times (intra-observer variability). To make these assessments, she has
each observer make the measurement for each of a number of experimental units (e.g.,
subjects).

The measurements being analyzed may be continuous, ordinal, or binary (yes/no).
Ordinal measurements must be coded such that distances between values reflects the
relative importance of disagreement. For example, if a measurement has the values 1, 2,
3 for poor, fair, good, it is assumed that“good”is as different from“fair”as“fair”is from
“poor”. if this is not the case, a different coding should be used, such as coding 0 for
“poor” if poor should be twice as far from“fair”as“fair” is from“good”. Measurements
that are yes/no or positive/negative should be coded as 1 or 0. The reason for this will
be seen below.

There are many statistical methods for quantifying inter- and intra-observer variability.
Correlation coefficients are frequently reported, but a perfect correlation can result

FE Harrell, 1987

16-1
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even when the measurements disagree by a factor of 10. Variance components analysis
and intra-class correlation are often used, but these make many assumptions, do not
handle missing data very well, and are difficult to interpret. Some analysts, in assessing
inter-observer agreement when each observer makes several determinations, compute
differences between the average determinations for each observer. This method clearly
yields a biased measurement of inter-observer agreement because it cancels the intra-
observer variability.

A general and descriptive method for assessing observer variability will now be pre-
sented. The methods uses a general type of statistic called the U statistic, invented by
Hoeffding46a. For definiteness, an analysis for 3 observers and 2 readings per observer
will be shown. When designing such a study, the researcher should remember that the
number of experximental units is usually the critical factor in determining the precision
of estimates. There is not much to gain from having each observer make more than
a few readings or from having 30 observers in the study (although if few observers are
used, these are assumed to be“typical”observers).

The intra-observer disagreement for a single subject or unit is defined as the average
of the intra-observer absolute measurement differences. In other words, intra-observer
disagreement is the average absolute difference between any two measurements from the
same observer. The inter-observer disagreement for one unit is defined as the average
absolute difference between any two readings from different observers. Disagreement
measures are computed separately for each unit and combined over units (by taking the
mean or median for example) to get an overall summary measure. Units having more
readings get more weight. When a reading is missing, that reading does not enter into
any calculation and the denominator used in finding the mean disagreement is reduced
by one.

Suppose that for one patient, observers A, B, and C make the following determinations
on two separate occasions, all on the same patient:

A B C
5,7 8,5 6,7

For that patient, the mean intra-observer difference is (|5− 7|+ |8− 5|+ |6− 7|)/3 =
2+3+1

3 = 2. The mean inter-observer difference is (|5 − 8| + |5 − 5| + |5 − 6| + |5 −
7|+ |7− 8|+ |7− 5|+ |7− 6|+ |7− 7|+ |8− 6|+ |8− 7|+ |5− 6|+ |5− 7|)/12 =
(3 + 0 + 1 + 2 + 1 + 2 + 1 + 0 + 2 + 1 + 1 + 2)/12 = 16

12 = 1.33. If the first reading
for observer A were unobtainable, the mean intra-observer difference for that patient

aThe Wilcoxon test and the c-index are other examples of U statistics.
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would be (|8− 5|+ |6− 7|)/2 = 3+1
2 = 2 and the mean inter-observer difference would

be (|7 − 8| + |7 − 5| + |7 − 6| + |7 − 7| + |8 − 6| + |8 − 7| + |5 − 6| + |5 − 7|)/8 =
(1 + 2 + 1 + 0 + 2 + 1 + 1 + 2)/8 = 10

8 = 1.25.

The computations are carried out in like manner for each patient and summarized as
follows:

Patient Intra-observer Inter-observer
Difference Difference

1 2.00 1.33
2 1.00 3.50
3 1.50 2.66
. . .
. . .
n . .

Overall Average (or median) 1.77 2.23
Q1 0.30 0.38
Q3 2.15 2.84

Here is an example using R to compute mean inter- and intra-observer absolute dif-
ferences for 4 subjects each assessed twice by each of 3 observers. The first subject
consists of data above. The calculations are first done for the first subject alone, to
check against computations above.
d ← expand.grid(rep=1:2, observer=c(’A’,’B’,’C’), subject =1:4)

d$y ← c(5,7, 8,5, 6,7,

7,6, 8,6, 9,7,

7,5, 4,6, 10,11,

7,6, 5,6, 9,8)

d

rep observer subject y

1 1 A 1 5

2 2 A 1 7

3 1 B 1 8

4 2 B 1 5

5 1 C 1 6

6 2 C 1 7

7 1 A 2 7

8 2 A 2 6

9 1 B 2 8

10 2 B 2 6

11 1 C 2 9

12 2 C 2 7

13 1 A 3 7

14 2 A 3 5

15 1 B 3 4
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16 2 B 3 6

17 1 C 3 10

18 2 C 3 11

19 1 A 4 7

20 2 A 4 6

21 1 B 4 5

22 2 B 4 6

23 1 C 4 9

24 2 C 4 8

# F u n c t i o n t o c o m p u t e m e a n a b s o l u t e d i s c r e p a n c i e s

mad ← function(y, obs , subj) {

nintra ← ninter ← sumintra ← suminter ← 0

n ← length(y)

for(i in 1 : (n - 1)) {

for(j in (i + 1) : n) {

if(subj[i] == subj[j]) {

dif ← abs(y[i] - y[j])

if(! is.na(dif)) {

if(obs[i] == obs[j]) {

nintra ← nintra + 1

sumintra ← sumintra + dif

}

else {

ninter ← ninter + 1

suminter ← suminter + dif

}

}

}

}

}

c(nintra=nintra , intra=sumintra / nintra ,

ninter=ninter , inter=suminter / ninter)

}

# C o m p u t e s t a t i s t i c s f o r f i r s t s u b j e c t

with(subset(d, subject == 1), mad(y, observer , subject))

nintra intra ninter inter

3.000000 2.000000 12.000000 1.333333

# C o m p u t e f o r a l l s u b j e c t s

with(d, mad(y, observer , subject))

nintra intra ninter inter

12.000000 1.583333 48.000000 2.125000

Zhouwen Liu in the Vanderbilt Department of Biostatistics has developed much more
general purpose software for this in R. Its web pages are http://biostat.app.vumc.
org/AnalysisOfObserverVariability and https://github.com/harrelfe/rscripts.
The following example loads the source code and runs the above example. The R func-
tions implement bootstrap nonparametric percentile confidence limits for mean absolute
discrepency measures.

http://biostat.app.vumc.org/AnalysisOfObserverVariability
http://biostat.app.vumc.org/AnalysisOfObserverVariability
https://github.com/harrelfe/rscripts
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require(Hmisc)

getRs(’observerVariability.r ’, put=’source ’)

YOU ARE RUNNING A DEMO VERSION 3_2

with(d, {

intra ← intraVar(subject , observer , y)

print(intra)

summary(intra)

set.seed (2)

b=bootStrap(intra , by = ’subject ’, times =1000)

# G e t 0 . 9 5 C L f o r m e a n a b s o l u t e i n t r a - o b s e r v e r d i f f e r e n c e

print(quantile(b, c(0.025 , 0.975)))

inter ← interVar(subject , observer , y)

print(inter)

summary(inter)

b ← bootStrap(inter , by = ’subject ’, times =1000)

# G e t 0 . 9 5 C L f o r m e a n a b s o l u t e i n t e r - o b s e r v e r d i f f e r e n c e

print(quantile(b, c(0.025 , 0.975)))

})

Intra -Variability

Measures by Subjects and Raters

subject rater variability N

1 1 A 2 1

2 1 B 3 1

3 1 C 1 1

4 2 A 1 1

5 2 B 2 1

6 2 C 2 1

7 3 A 2 1

8 3 B 2 1

9 3 C 1 1

10 4 A 1 1

11 4 B 1 1

12 4 C 1 1

Measures by Subjects

subject variability N

1 1 2.000000 3

2 2 1.666667 3

3 3 1.666667 3

4 4 1.000000 3

Measures by Raters

subject variability N

1 A 1.50 4

2 B 2.00 4

3 C 1.25 4

Intra -variability summary:

Measures by Subjects and Raters

Variability mean: 1.583333

Variability median: 1.5

Variability range: 1 3
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Variability quantile:

0%: 1 25%: 1 50%: 1.5 75%: 2 100%: 3

Measures by Subjects

Variability mean: 1.583333

Variability median: 1.666667

Variability range: 1 2

Variability quantile:

0%: 1 25%: 1.5 50%: 1.666667 75%: 1.75 100%: 2

Measures by Raters

Variability mean: 1.583333

Variability median: 1.5

Variability range: 1.25 2

Variability quantile:

0%: 1.25 25%: 1.375 50%: 1.5 75%: 1.75 100%: 2

2.5% 97.5%

1.166667 1.916667

Input object size: 3192 bytes; 9 variables 12 observations

Renamed variable rater to rater1

Renamed variable disagreement to variability

Dropped variables diff ,std ,auxA1 ,auxA2

New object size: 1592 bytes; 5 variables 12 observations

Inter -Variability

Measures for All Pairs of Raters

subject rater1 rater2 variability N

1 1 1 2 1.5 4

5 2 1 2 1.0 4

9 3 1 2 1.5 4

13 4 1 2 1.0 4

17 1 1 3 1.0 4

21 2 1 3 1.5 4

25 3 1 3 4.5 4

29 4 1 3 2.0 4

33 1 2 3 1.5 4

37 2 2 3 1.5 4

41 3 2 3 5.5 4

45 4 2 3 3.0 4

Measures by Rater Pairs

rater1 rater2 variability N

1 1 2 1.250 16

2 1 3 2.250 16

3 2 3 2.875 16

Measures by Subjects

subject variability N

1 1 1.333333 12

2 2 1.333333 12

3 3 3.833333 12

4 4 2.000000 12

Inter -variability summary:

Measures for All Pairs of Raters

Variability mean: 2.125

Variability median: 1.5

Variability range: 1 5.5
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Variability quantile:

0%: 1 25%: 1.375 50%: 1.5 75%: 2.25 100%: 5.5

Measures by Rater Pairs only

Variability mean: 2.125

Variability median: 2.25

Variability range: 1.25 2.875

Variability quantile:

0%: 1.25 25%: 1.75 50%: 2.25 75%: 2.5625 100%: 2.875

Measures by Subjects

Variability mean: 2.125

Variability median: 1.666667

Variability range: 1.333333 3.833333

Variability quantile:

0%: 1.333333 25%: 1.333333 50%: 1.666667 75%: 2.458333 100%: 3.833333

2.5% 97.5%

1.333333 3.208333

# T o l o a d a d e m o f i l e i n t o a n R S t u d i o s c r i p t e d i t o r w i n d o w , t y p e

# g e t R s ( ’ o b s e r v e r V a r i a b i l i t y _ e x a m p l e . r ’ )

From the above output, the 0.95 CL for the mean absolute intra-observer difference is
[1.17, 1.92] and is [1.33, 3.21] for the inter-observer difference. The bootstrap confi-
dence intervals use the cluster bootstrap to account for correlations of multiple readings
from the same subject.

When the measurement of interest is a yes/no determination such as presence or absence
of a disease these difference statistics are generalizations of the fraction of units in which
there is exact agreement in the yes/no determination, when the absolute differences
are summarized by averaging. To see this, consider the following data with only one
observer:

Patient Determinations D1, D2 Agreement? |D1 −D2|
1 Y Y 1 1 Y 0
2 Y N 1 0 N 1
3 N Y 0 1 N 1
4 N N 0 0 Y 0
5 N N 0 0 Y 0
6 Y N 1 0 N 1

The average |D1 − D2| is 3
6 = 0.5 which is equal to the proportion of cases in which

the two readings disagree.

An advantage of this method of summarizing observer differences is that the investigator
can judge what is an acceptable difference and he can relate this directly to the summary
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disagreement statistic.
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16.2

Comparison of Measurements with a Stan-
dard

When the true measurement is known for each unit (or the true diagnosis is known for
each patient), similar calculations can he used to quantify the extent of errors in the
measurements. For each unit, the average (over observers) difference from the true
value is computed and these differences are summarized over the units. For example,
if for unit #1 observer A measures 5 and 7, observer 8 measured 8 and 5, and the true
value is 6, the average absolute error is (|5 − 6| + |7 − 6| + |8 − 6| + |5 − 6|)/4 =
1+1+2+1

4 = 5
4 = 1.25
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16.3

Special Case: Assessing Agreement In Two
Binary Variables

16.3.1

Measuring Agreement Between Two Observers

Suppose that each of n patients undergoes two diagnostic tests that can yield only the
values positive and negative. The data can be summarized in the following frequency
table.

Test 2
+ -

Test 1 + a b g
- c d h

e f n

An estimate of the probability that the two tests agree is pA = a+d
n . An approximate 0.95

confidence interval for the true probability is derived from pA ± 1.96
√

pA(1− pA)/n b

If the disease being tested is very rare or very common, the two tests will agree with
high probability by chance alone. The κ statistic is one way to measure agreement that
is corrected for chance agreement.

κ = pA − pC

1− pC
(16.1)

where pC is the expected agreement proportion if the two observers are completely
independent. The statistic can be simplified to

κ = 2(ad− bc)
gf + eh

. (16.2)

It the two tests are in perfect agreement, κ = 1. If the two agree at the level expected
by chance, κ = 0. If the level of agreement is less than one would obtain by chance
alone, κ < 0.

A formal test of significance of the difference in the probabilities of for the two tests
bA more accurate confidence interval can be obtained using Wilson’s method as provided by the R Hmisc package binconf function.
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is obtained using McNemar’s test. The null hypothesis is that the probability of + for
test 1 is equal to the probability of + for test 2, or equivalently that the probability of
observing a +− is the same as that of observing −+. The normal deviate test statistic
is given by

z = b− c√
b + c

. (16.3)

16.3.2

Measuring Agreement Between One Observer and a
Standard

Suppose that each of n patients is studied with a diagnostic test and that the true
diagnosis is determined, resulting in the following frequency table:

Diagnosis
+ -

Test + a b g
- c d h

e f n

The following measures are frequently used to describe the agreement between the test
and the true diagnosis. Here T + denotes a positive test, D− denotes no disease, etc.

Quantity Probability Being Estimated Formula

Correct diagnosis probability Prob(T = D) a+d
n

Sensitivity Prob(T +|D+) a
e

Specificity Prob(T−|D−) d
f

Accuracy of a positive test Prob(D+|T+) a
g

Accuracy of a negative test Prob(D−|T−) d
h

The first and last two measures are usually preferred. Note that when the disease
is very rare or very common, the correct diagnosis probability will be high by chance
alone. Since the sensitivity and specificity are calculated conditional on the diagnosis,
the prevalence of disease does not directly affect these measures. But sensitivity and
specificity will vary with every patient characteristic related to the actual ignored severity
of disease.

When estimating any of these quantities, Wilson confidence intervals are useful adjunct
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statistics. A less accurate 0.95 confidence interval is obtained from p ± 1.96
√

p(1−p)
n

where p is the proportion and m is its denominator.
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16.4

Problems

1. Three technicians, using different machines, make 3 readings each. For the data
that follow, calculate estimates of inter- and intra-technician discrepancy.

Technician
1 2 3

Reading Reading Reading

1 2 3 1 2 3 1 2 3

18 17 14 16 15 16 12 15 12
20 21 20 14 12 13
26 20 23 18 20 22 24
19 17 16 21 23
28 24 32 29 29 25

2. Forty-one patients each receive two tests yielding the frequency table shown below.
Calculate a measure of agreement (or disagreement) along with an associated 0.95
confidence interval. Also calculate a chance-corrected measure of agreement. Test
the null hypothesis that the the tests have the same probability of being positive
and the same probability of being negative. In other words, test the hypothesis
that the chance of observing +− is the same as observing −+.

Test 2
+ -

Test 1 + 29 8
- 0 4
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Chapter 17

Modeling for Observational Treatment
Comparisons

The randomized clinical trial is the gold standard for developing evidence about treat-
ment effects, but on rare occasion an RCT is not feasible, or one needs to make clinical
decisions while waiting years for an RCT to complete. Observational treatment com-
parisons can sometimes help, though many published ones provide information that is
worse than having no information at all due to missing confounder variables or poor
statistical practice.

17-1

http://bit.ly/datamethods-bbr18
http://hbiostat.org/audio/bbr/ps-1.mp3
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17.1

Challenges

� Attempt to estimate the effect of a treatment A using data on patients who happen
to get the treatment or a comparator B

� Confounding by indication

– indications exist for prescribing A; not a random process

– those getting A (or B) may have failed an earlier treatment

– they may be less sick, or more sick

– what makes them sicker may not be measured

� Many researchers have attempted to use data collected for other purposes to com-
pare A and B

– they rationalize adequacy of the data after seeing what is available

– they do not design the study prospectively, guided by unbiased experts who
understand the therapeutic decisions

� If the data are adequate for the task, goal is to adjust for all potential confounders
as measured in those data

� Easy to lose sight of parallel goal: adjust for outcome heterogeneity

http://hbiostat.org/audio/bbr/ps-2.mp3


CHAPTER 17. MODELING FOR OBSERVATIONAL TREATMENT COMPARISONS 17-3

17.2

Propensity Score

� In observational studies comparing treatments, need to adjust for nonrandom treat-
ment selection

� Number of confounding variables can be quite large

� May be too large to adjust for them using multiple regression, due to overfitting
(may have more potential confounders than outcome events)

� Assume that all factors related to treatment selection that are prognostic are col-
lected

� Use them in a flexible regression model to predict treatment actually received (e.g.,
logistic model allowing nonlinear effects)

� Propensity score (PS) = estimated probability of getting treatment B vs. treat-
ment A

� Use of the PS allows one to aggressively adjust for measured potential confounders

� Doing an adjusted analysis where the adjustment variable is the PS simultaneously
adjusts for all the variables in the score insofar as confounding is concerned (but
not with regard to outcome heterogeneity)

� If after adjusting for the score there were a residual imbalance for one of the
variables, that would imply that the variable was not correctly modeled in the PS

� E.g.: after holding PS constant there are more subjects above age 70 in treatment
B; means that age> 70 is still predictive of treatment received after adjusting for
PS, or age> 70 was not modeled correctly.

� An additive (in the logit) model where all continuous baseline variables are splined
will result in adequate adjustment in the majority of cases—certainly better than
categorization. Lack of fit will then come only from omitted interaction effects.
E.g.: if older males are much more likely to receive treatment B than treatment

http://hbiostat.org/audio/bbr/ps-3.mp3
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A than what would be expected from the effects of age and sex alone, adjustment
for the additive propensity would not adequately balance for age and sex.

A nice discussion of problems with propensity scores is at stats.stackexchange.com/questions/481110.

https://stats.stackexchange.com/questions/481110


CHAPTER 17. MODELING FOR OBSERVATIONAL TREATMENT COMPARISONS 17-5

17.3

Misunderstandings About Propensity Scores

� PS can be used as a building block to causal inference but PS is not a causal
inference tool per se

� PS is a confounding focuser

� It is a data reduction tool that may reduce the number of parameters in the outcome
model

� PS analysis is not a simulated randomized trial

– randomized trials depend only on chance for treatment assignment

– RCTs do not depend on measuring all relevant variables

� Adjusting for PS is adequate for adjusting for measured confounding if the PS
model fits observed treatment selection patterns well

� But adjusting only for PS is inadequate

– to get proper conditioning so that the treatment effect can generalize to a
population with a different covariate mix, one must condition on important
prognostic factors

– non-collapsibility of hazard and odds ratios is not addressed by PS adjustment

� PS is not necessary if the effective sample size (e.g. number of outcome events)
> e.g. 5p where p is the number of measured covariates

� Stratifying for PS does not remove all the measured confounding

� Adjusting only for PS can hide interactions with treatment

� When judging covariate balance (as after PS matching) it is not sufficient to
examine the mean covariate value in the treatment groups

http://hbiostat.org/audio/bbr/ps-4.mp3
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17.4

Assessing Treatment Effect

� Eliminate patients in intervals of PS where there is no overlap between A and B,
or include an interaction between treatment and a baseline characteristica

� Many researchers stratify the PS into quintiles, get treatment differences within
the quintiles, and average these to get adjustment treatment effects

� Often results in imbalances in outer quintiles due to skewed distributions of PS
there

� Can do a matched pairs analysis but depends on matching tolerance and many
patients will be discarded when their case has already been matched

� Inverse probability weighting by PS is a high variance/low power approach, like
matching

� Usually better to adjust for PS in a regression model

� Model: Y = treat + log PS
1−PS + nonlinear functions of log PS

1−PS + important prog-
nostic variables

� Prognostic variables need to be in outcome (Y ) model even though they are also
in the PS, to account for subject outcome heterogeneity (susceptibility bias)

� If outcome is binary and can afford to ignore prognostic variables, use nonparametric
regression to relate PS to outcome separately in actual treatment A vs. B groups

� Plotting these two curves with PS on x-axis and looking at vertical distances be-
tween curves is an excellent way to adjust for PS continuously without assuming a
model

aTo quote Gelman and Hill Section 10.332,“Ultimately, one good solution may be a multilevel model that includes treatment interactions so
that inferences explicitly recognize the decreased precision that can be obtained outside the region of overlap.” For example, if one included
an interaction between age and treatment and there were no patients greater than 70 years old receiving treatment B, the B:A difference for
age greater than 70 would have an extremely wide confidence interval as it depends on extrapolation. So the estimates that are based on
extrapolation are not misleading; they are just not informative.

http://hbiostat.org/audio/bbr/ps-5.mp3
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17.4.1

Problems with Propensity Score Matching

� The choice of the matching algorithm is not principle-based so is mainly arbi-
trary. Most matching algorithms are dependent on the order of observations in the
dataset. Arbitrariness of matching algorithms creates a type of non-reproducibility.

� Non-matched observations are discarded, resulting in a loss of precision and power.

� Matching not only discards hard-to-match observations (thus helping the analyst
correctly concentrate on the propensity overlap region) but also discards many
“good”matches in the overlap region.

� Matching does not do effective interpolation on the interior of the overlap region.

� The choice of the main analysis when matching is used is not well worked out in
the statistics literature. Most analysts just ignore the matching during the outcome
analysis.

� Even with matching one must use covariate adjustment for strong prognostic factors
to get the right treatment effects, due to non-collapsibility of odds and hazards
ratios.

� Matching hides interactions with treatment and covariates.

Most users of propensity score matching do not even entertain the notion that the
treatment effect may interact with propensity to treat, must less entertain the thought
of individual patient characteristics interacting with treatment.

http://hbiostat.org/audio/bbr/ps-6.mp3
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17.5

Recommended Statistical Analysis Plan

1. Be very liberal in selecting a large list of potential confounder variables that are
measured pre-treatment. But respect causal pathways and avoid collider and other
biases.

2. If the number of potential confounders is not large in comparison with the effective
sample size, use direct covariate adjustment instead of propensity score adjustment.
For example, if the outcome is binary and you have more than 5 events per covariate,
full covariate adjustment probably works OK.

3. Model the probability of receiving treatment using a flexible statistical model that
makes minimal assumptions (e.g., rich additive model that assumes smooth pre-
dictor effects). If there are more than two treatments, you will need as many
propensity scores as there are treatments, less one, and all of the logic propensity
scores will need to be adjusted for in what follows.

4. Examine the distribution of estimated propensity score separately for the treatment
groups.

5. If there is a non-overlap region of the two distributions, and you don’t want to
use a more conservative interaction analysis (see below), exclude those subjects
from the analysis. Recursive partitioning can be used to predict membership in the
non-overlap region from baseline characteristics so that the research findings with
regard to applicability/generalizability can be better understood.

6. Overlap must be judged on absolute sample sizes, not proportions.

7. Use covariate adjustment for propensity score for subjects in the overlap region.
Expand logit propensity using a restricted cubic spline so as to not assume linearity
in the logit in relating propensity to outcome. Also include pre-specified important
prognostic factors in the model to account for the majority of outcome heterogene-
ity. It is not a problem that these prognostic variables are also in the propensity
score.

8. As a secondary analysis use a chunk test to assess whether there is an interaction
with logit propensity to treat and actual treatment. For example, one may find
that physicians are correctly judging that one subset of patients should usually be
treated a certain way.

http://hbiostat.org/audio/bbr/ps-7.mp3
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9. Instead of removing subjects outside the overlap region, you could allow propensity
or individual predictors to interact with treatment. Treatment effect estimates in
the presence of interactions are self-penalizing for not having sufficient overlap.
Suppose for example that age were the only adjustment covariate and a propensity
score was not needed. Suppose that for those with age less than 70 there were
sufficiently many subjects from either treatment for every interval of age but that
when age exceeded 70 there were only 5 subjects on treatment B. Including an
age × treatment interaction in the model and obtaining the estimated outcome
difference for treatment A vs. treatment B as a function of age will have a confidence
band with minimum width at the mean age, and above age 70 the confidence band
will be very wide. This is to be expected and is an honest way to report what
we know about the treatment effect adjusted for age. If there were no age ×
treatment interaction, omitting the interaction term would yield a proper model
with a relatively narrow confidence interval, and if the shape of the age relationship
were correctly specified the treatment effect estimate would be valid. So one can
say that not having comparable subjects on both treatments for some intervals
of covariates means that either (1) inference should be restricted to the overlap
region, or (2) the inference is based on model assumptions.

10. See fharrell.com/post/ia for details about interaction, confidence interval width,
and relationship to generalizability.

Using a full regression analysis allows interactions to be explored, as briefly described
above. Suppose that one uses a restricted cubic spline in the logit propensity to adjust
for confounding, and all these spline terms are multiplied by the indicator variable for
getting a certain treatment. One can make a plot with predicted outcome on the
y-axis and PS on the x-axis, with one curve per treatment. This allows inspection
of parallelism (which can easily be formally tested with the chunk test) and whether
there is a very high or very low PS region where treatment effects are different from
the average effect. For example, if physicians have a very high probability of always
selecting a certain treatment for patients that actually get the most benefit from the
treatment, this will be apparent from the plot.

http://hbiostat.org/audio/bbr/ps-8.mp3
https://fharrell.com/post/ia


CHAPTER 17. MODELING FOR OBSERVATIONAL TREATMENT COMPARISONS 17-10

17.6

Reasons for Failure of Propensity Analysis

Propensity analysis may not sufficiently adjust for confounding in non-randomized stud-
ies when

� prognostic factors that are confounders are not measured and are not highly corre-
lated with factors that are measured

� the propensity modeling was too parsimonious (e.g., if the researchers excluded
baseline variables just because they were insignificant)

� the propensity model assumed linearity of effects when some were really nonlin-
ear (this would cause an imbalance in something other than the mean to not be
handled)

� the propensity model should have had important interaction terms that were not
included (e.g., if there is only an age imbalance in males)

� the researchers attempted to extrapolate beyond ranges of overlap in propensity
scores in the two groups (this happens with covariate adjustment sometimes, but
can happen with quantile stratification if outer quantiles are very imbalanced)

http://hbiostat.org/audio/bbr/ps-9.mp3
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17.7

Sensitivity Analysis

� For n patients in the analysis, generate n random values of a hypothetical unmea-
sured confounder U

� Constrain U so that the effect of U on the response Y is given by an adjusted odds
ratio of ORY and so that U ’s distribution is unbalanced in group A vs. B to the
tune of an odds ratio of ORtreat.

� Solve for how large ORY and ORtreat must be before the adjusted treatment effect
reverses sign or changes in statistical significance

� The larger are ORY and ORtreat the less plausible it is that such an unmeasured
confounder exists

See the R rms package sensuc function.

http://hbiostat.org/audio/bbr/ps-10.mp3
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17.8

Reasons To Not Use Propensity Analysis

Chen et al.16 demonstrated advantages of using a unified regression model to adjust
for “too many” predictors by using penalized maximum likelihood estimation, where
the exposure variable coefficients are not penalized but all the adjustment variable
coefficients have a quadratic (ridge) penalty.

http://hbiostat.org/audio/bbr/ps-11.mp3
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17.9

Further Reading

Gelman has a nice chapter on causal inference and matching from Gelman and Hill32.

Gary King as expressed a number of reservations about PS matching; see
gking.harvard.edu/files/gking/files/psnot.pdf.

http://www.stat.columbia.edu/~gelman/arm/chap10.pdf
https://gking.harvard.edu/files/gking/files/psnot.pdf


Chapter 18

Information Loss

. . . wherever nature draws unclear boundaries, humans are happy to curate
Alice Dreger, Galileo’s
Middle Finger

This material is from“Information Allergy”by FE Harrell, presented as the Vanderbilt Discovery Lecture 2007-09-13 and presented as invited
talks at Erasmus University, Rotterdam, The Netherlands, University of Glasgow (Mitchell Lecture), Ohio State University, Medical College of
Wisconsin, Moffitt Cancer Center, U. Pennsylvania, Washington U., NIEHS, Duke, Harvard, NYU, Michigan, Abbott Labs, Becton Dickinson,
NIAID, Albert Einstein, Mayo Clinic, U. Washington, MBSW, U. Miami, Novartis. Material is added from“How to Do Bad Biomarker Research”
by FE Harrell, presented at the NIH NIDDK Conference Towards Building Better Biomarkers; Statistical Methodology, 2014-12-02.

18-1
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18.1

Information & Decision Making

What is information?

� Messages used as the basis for decision-making

� Result of processing, manipulating and organizing data in a way that adds to the
receiver’s knowledge

� Meaning, knowledge, instruction, communication, representation, and mental stim-
ulusa

Information resolves uncertainty.

Some types of information may be quantified in bits. A binary variable is represented
by 0/1 in base 2, and it has 1 bit of information. This is the minimum amount of infor-
mation other than no information. Systolic blood pressure measured accurately to the
nearest 4mmHg has 6 binary digits—bits—of information (log2

256
4 = 6). Dichotomiz-

ing blood pressure reduces its information content to 1 bit, resulting in enormous loss
of precision and power.

Value of information: Judged by the variety of outcomes to which it leads.

Optimum decision making requires the maximum and most current information the
decision maker is capable of handling

Some important decisions in biomedical and epidemiologic research and clinical practice:

� Pathways, mechanisms of action

� Best way to use gene and protein expressions to diagnose or treat

� Which biomarkers are most predictive and how should they be summarized?

� What is the best way to diagnose a disease or form a prognosis?
apbs.org/weta, wikipedia.org/wiki/Information
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� Is a risk factor causative or merely a reflection of confounding?

� How should patient outcomes be measured?

� Is a drug effective for an outcome?

� Who should get a drug?

18.1.1

Information Allergy

Failing to obtain key information needed to make a sound decision

� Not collecting important baseline data on subjects

Ignoring Available Information

� Touting the value of a new biomarker that provides less information than basic
clinical data

� Ignoring confounders (alternate explanations)

� Ignoring subject heterogeneity

� Categorizing continuous variables or subject responses

� Categorizing predictions as“right”or“wrong”

� Letting fear of probabilities and costs/utilities lead an author to make decisions for
individual patients
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18.2

Ignoring Readily Measured Variables

Prognostic markers in acute myocardial infarction

c-index: concordance probability ≡ receiver operating characteristic curve or ROC area
Measure of ability to discriminate death within 30d

Markers c-index

CK–MB 0.63
Troponin T 0.69
Troponin T > 0.1 0.64
CK–MB + Troponin T 0.69
CK–MB + Troponin T + ECG 0.73
Age + sex 0.80
All 0.83

Ohman et al. [77]

Though not discussed in the paper, age and sex easily trump troponin T. One can
also see from the c-indexes that the common dichotomizatin of troponin results in an
immediate loss of information.

Inadequate adjustment for confounders: Greenland [37]

� Case-control study of diet, food constituents, breast cancer

� 140 cases, 222 controls

� 35 food constituent intakes and 5 confounders

� Food intakes are correlated

� Traditional stepwise analysis not adjusting simultaneously for all foods consumed
→ 11 foods had P < 0.05

� Full model with all 35 foods competing → 2 had P < 0.05
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� Rigorous simultaneous analysis (hierarchical random slopes model) penalizing esti-
mates for the number of associations examined→ no foods associated with breast
cancer

Ignoring subject variability in randomized experiments

� Randomization tends to balance measured and unmeasured subject characteristics
across treatment groups

� Subjects vary widely within a treatment group

� Subject heterogeneity usually ignored

� False belief that balance from randomization makes this irrelevant

� Alternative: analysis of covariance

� If any of the baseline variables are predictive of the outcome, there is a gain in
power for every type of outcome (binary, time-to-event, continuous, ordinal)

� Example for a binary outcome in Section 13.2.2
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18.3

Categorization: Partial Use of Information

Patient: What was my systolic BP this time?

MD: It was > 120

Patient: How is my diabetes doing?

MD: Your HbA1c was > 6.5

Patient: What about the prostate screen?

MD: If you have average prostate cancer, the chance that PSA > 5 in this report is
0.6

Problem: Improper conditioning (X > c instead of X = x)→ information loss;
reversing time flow
Sensitivity: P (observed X > c given unobserved Y = y)

18.3.1

Categorizing Continuous Predictors

� Many physicians attempt to find cutpoints in continuous predictor variables

� Mathematically such cutpoints cannot exist unless relationship with outcome is
discontinuous

� Even if the cutpoint existed, it must vary with other patient characteristics, as
optimal decisions are based on risk

� A simple 2-predictor example related to diagnosis of pneumonia will suffice

� It is never appropriate to dichotomize an input variable other than time. Di-
chotomization, if it must be done, should only be done on Ŷ . In other words,
dichotomization is done as late as possible in decision making. When more than
one continuous predictor variable is relevant to outcomes, the example below shows
that it is mathematically incorrect to do a one-time dichotomization of a predictor.

https://youtu.be/-GEgR71KtwI
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As an analogy, suppose that one is using body mass index (BMI) by itself to make
a decision. One would never categorize height and categorize weight to make the
decision based on BMI. One could categorize BMI, if no other outcome predictors
existed for the problem.

require(rms)

getHdata(ari)

r ← ari[ari$age ≥ 42, Cs(age , rr, pneu , coh , s2)]

abn.xray ← r$s2==0

r$coh ← factor(r$coh , 0:1, c(’no cough’,’cough’))

f ← lrm(abn.xray ∼ rcs(rr ,4)*coh , data=r)

anova(f)

Wald Statistics Response: abn.xray

Factor Chi -Square d.f. P

rr (Factor+Higher Order Factors) 37.45 6 <.0001

All Interactions 0.35 3 0.9507

Nonlinear (Factor+Higher Order Factors) 3.27 4 0.5144

coh (Factor+Higher Order Factors) 28.91 4 <.0001

All Interactions 0.35 3 0.9507

rr * coh (Factor+Higher Order Factors) 0.35 3 0.9507

Nonlinear 0.31 2 0.8549

Nonlinear Interaction : f(A,B) vs. AB 0.31 2 0.8549

TOTAL NONLINEAR 3.27 4 0.5144

TOTAL NONLINEAR + INTERACTION 3.37 5 0.6431

TOTAL 66.06 7 <.0001

dd ← datadist(r); options(datadist=’dd’)

p ← Predict(f, rr, coh , fun=plogis , conf.int=FALSE)

ggplot(p, rdata=r, # F i g . 18.1

ylab=’Probability of Pneumonia ’,

xlab=’Adjusted Respiratory Rate/min.’,

ylim=c(0,.7), legend.label=’’)
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Figure 18.1: Estimated risk of pneumonia with respect to two predictors in WHO ARI study from Harrell et al. [42]. Tick marks show
data density of respiratory rate stratified by cough. Any cutpoint for the rate must depend on cough to be consistent with optimum
decision making, which must be risk-based.
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18.3.2

What Kinds of True Thresholds Exist?

Natura non facit saltus
(Nature does not make jumps) Gottfried Wilhelm Leibniz

Can Occur in Biology Cannot Occur Unless X=time

Not Handled by Dichotomization Assumed in Much of Biomarker Research

Marker

O
ut

co
m

e

Marker

O
ut

co
m

e

Figure 18.2: Two kinds of thresholds. The pattern on the left represents a discontinuity in the first derivative (slope) of the function
relating a marker to outcome. On the right there is a lowest-order discontinuity.

What Do Cutpoints Really Assume?
Cutpoints assume discontinuous relationships of the type in the right plot of Figure 18.2,
and they assume that the true cutpoint is known. Beyond the molecular level, such
patterns do not exist unless X =time and the discontinuity is caused by an event.
Cutpoints assume homogeneity of outcome on either side of the cutpoint.

18.3.3

Cutpoints are Disasters

� Prognostic relevance of S-phase fraction in breast cancer: 19 different cutpoints
used in literature

� Cathepsin-D content and disease-free survival in node-negative breast cancer: 12
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studies, 12 cutpoints

� ASCO guidelines: neither cathepsin-D nor S-phrase fraction recommended as prog-
nostic markers Holländer, Sauerbrei, and Schumacher [47]

Cutpoints may be found that result in both increasing and decreasing relationships with
any dataset with zero correlation

Range of Delay Mean Score Range of Delay Mean Score

0-11 210 0-3.8 220
11-20 215 3.8-8 219
21-30 217 8-113 217
31-40 218 113-170 215
41- 220 170- 210

Wainer [110]; See“Dichotomania”Senn [93] and Royston, Altman, and Sauerbrei [85]

Wainer [110]

In fact, virtually all published cutpoints are analysis artifacts caused by finding
a threshold that minimizes P -values when comparing outcomes of subjects below with
those above the“threshold”. Two-sample statistical tests suffer the least loss of power
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when cutting at the median because this balances the sample sizes. That this method
has nothing to do with biology can be readily seen by adding observations on either
tail of the marker, resulting in a shift of the median toward that tail even though the
relationship between the continuous marker and the outcome remains unchanged.

In “positive” studies: threshold 132–800 ng/L, correlation with study median r = 0.86
(Giannoni et al. [33])

Lack of Meaning of Effects Based on Cutpoints

� Researchers often use cutpoints to estimate the high:low effects of risk factors (e.g.,
BMI vs. asthma)

� Results in inaccurate predictions, residual confounding, impossible to interpret
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� high:low represents unknown mixtures of highs and lows

� Effects (e.g., odds ratios) will vary with population

� If the true effect is monotonic, adding subjects in the low range or high range or
both will increase odds ratios (and all other effect measures) arbitrarily

Royston, Altman, and Sauerbrei [85],Naggara et al. [72],Giannoni et al. [33]

Does a physician ask the nurse“Is this patient’s bilirubin > 45”or does she ask“What
is this patient’s bilirubin level?”. Imagine how a decision support system would trigger
vastly different decisions just because bilirubin was 46 instead of 44.

As an example of how a hazard ratio for a dichotomized continuous predictor is an
arbitrary function of the entire distribution of the predictor within the two categories,
consider a Cox model analysis of simulated age where the true effect of age is linear.
First compute the ≥ 50 :< 50 hazard ratio in all subjects, then in just the subjects
having age < 60, then in those with age < 55. Then repeat including all older subjects
but excluding subjects with age≤ 40. Finally, compute the hazard ratio when only those
age 40 to 60 are included. Simulated times to events have an exponential distribution,
and proportional hazards holds.
set.seed (1)

n ← 1000

age ← rnorm(n, mean=50, sd=12)

describe(age)

age
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n missing distinct Info Mean Gmd .05 .10

1000 0 1000 1 49.86 14.01 29.28 33.93

.25 .50 .75 .90 .95

41.63 49.58 58.26 65.89 70.93

lowest : 13.90342 14.03661 14.72272 15.33295 18.84666

highest: 79.97194 81.79000 82.10889 86.66891 95.72332

cens ← 15 * runif(n)

h ← 0.02 * exp(0.04 * (age - 50))

dt ← -log(runif(n))/h

e ← ifelse(dt ≤ cens ,1,0)

dt ← pmin(dt, cens)

S ← Surv(dt, e)

coef(cph(S ∼ age)) # c l o s e t o t r u e v a l u e o f 0 . 0 4 u s e d i n s i m u l a t i o n

age

0.04027519

exp(coef(cph(S ∼ age ≥ 50))) # ≥ 5 0 : < 5 0 h a z a r d r a t i o e s t i m a t e

age

2.148554

exp(coef(cph(S ∼ age ≥ 50, subset=age < 60)))

age

1.645141

exp(coef(cph(S ∼ age ≥ 50, subset=age < 55)))

age

1.461928

exp(coef(cph(S ∼ age ≥ 50, subset=age > 40)))

age

1.760201

exp(coef(cph(S ∼ age ≥ 50, subset=age > 40 & age < 60)))

age

1.354001

See this for excellent graphical examples of the harm of categorizing predictors, espe-
cially when using quantile groups.

18.3.4

Categorizing Outcomes

� Arbitrary, low power, can be difficult to interpret

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-21
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� Example: “The treatment is called successful if either the patient has gone down
from a baseline diastolic blood pressure of ≥ 95 mmHg to ≤ 90 mmHg or has
achieved a 10% reduction in blood pressure from baseline.”

� Senn derived the response probabililty function for this discontinuous concocted
endpoint

Senn [93] after Goetghebeur [1998]

Is a mean difference of 5.4mmHg more difficult to interpret than A:17% vs. B:22% hit
clinical target?

“Responder” analysis in clinical trials results in huge information loss and arbitrariness.
Some issue:

� Responder analyses use cutpoints on continuous or ordinal variables and cite earlier
data supporting their choice of cutpoints. No example has been produced where
the earlier data actually support the cutpoint.

� Many responder analyses are based on change scores when they should be based
solely on the follow-up outcome variable, adjusted for baseline as a covariate.

� The cutpoints are always arbitrary.

� There is a huge power loss (see Section 18.3.4).
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� The responder probability is often a function of variables that one does not want
it to be a function of (see graph above).

Fedorov, Mannino, and Zhang [28] is one of the best papers quantifying the information and
power loss from categorizing continuous outcomes. One of their examples is that a
clinical trial of 100 subjects with continuous Y is statistically equivalent to a trial of
158 dichotomized observations, assuming that the dichotomization is at the optimum
point (the population median). They show that it is very easy for dichotomization of
Y to raise the needed sample size by a factor of 5.

Fedorov, Mannino, and Zhang [28]

18.3.5

Classification vs. Probabilistic Thinking

Number needed to treat. The only way, we are told, that physicians can
understand probabilities: odds being a difficult concept only comprehensible
to statisticians, bookies, punters and readers of the sports pages of popular
newspapers.

Senn [92]

https://youtu.be/1yYrDVN_AYc
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� Many studies attempt to classify patients as diseased/normal

� Given a reliable estimate of the probability of disease and the consequences of +/-
one can make an optimal decision

� Consequences are known at the point of care, not by the authors; categorization
only at point of care

� Continuous probabilities are self-contained, with their own“error rates”

� Middle probs. allow for“gray zone”, deferred decision

Patient Prob[disease] Decision Prob[error]

1 0.03 normal 0.03
2 0.40 normal 0.40
3 0.75 disease 0.25

Note that much of diagnostic research seems to be aimed at making optimum decisions
for groups of patients. The optimum decision for a group (if such a concept even has
meaning) is not optimum for individuals in the group.
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18.3.6

Components of Optimal Decisions

Decision

Age

Sex

Smoking
history

Family
history

Physical
exam

Vital
signs

Blood
analysis

Specialized
test

results
Patient
utilitiesPatient

preferences

Costs Resource
availability

Statistical models reduce the dimensionality of the problem but not to unity

Decision

Statistical
model

prediction
Patient
utilities

Patient
preferences

Costs

Resource
availability
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18.4

Problems with Classification of Predictions

� Feature selection / predictive model building requires choice of a scoring rule, e.g.
correlation coefficient or proportion of correct classifications

� Prop. classified correctly is a discontinuous improper scoring rule

– Maximized by bogus model (example below)

� Minimum information

– low statistical power

– high standard errors of regression coefficients

– arbitrary to choice of cutoff on predicted risk

– forces binary decision, does not yield a“gray zone”→ more data needed

� Takes analyst to be provider of utility function and not the treating physician

� Sensitivity and specificity are also improper scoring rules

See bit.ly/risk-thresholds: Three Myths About Risk Thresholds for Prediction Models
by Wynants et al.

18.4.1

Example: Damage Caused by Improper Scoring Rule

� Predicting probability of an event, e.g., Prob[disease]

� N = 400, 0.57 of subjects have disease

� Classify as diseased if prob. > 0.5

https://youtu.be/FDTwEZ3KcyA
https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1425-3


CHAPTER 18. INFORMATION LOSS 18-19

Model c χ2 Proportion
Index Correct

age .592 10.5 .622
sex .589 12.4 .588
age+sex .639 22.8 .600
constant .500 0.0 .573

Adjusted Odds Ratios:
age (IQR 58y:42y) 1.6 (0.95CL 1.2-2.0)
sex (f:m) 0.5 (0.95CL 0.3-0.7)

Test of sex effect adjusted for age (22.8− 10.5):
P = 0.0005

Example where an improper accuracy score resulted in incorrect
original analyses and incorrect re-analysis

Michiels, Koscielny, and Hill [65] used an improper accuracy score (proportion classified“cor-
rectly”) and claimed there was really no signal in all the published gene microarray
studies they could analyze. This is true from the standpoint of repeating the origi-
nal analyses (which also used improper accuracy scores) using multiple splits of the
data, exposing the fallacy of using single data-splitting for validation. Aliferis et al. [3]

used a semi-proper accuracy score (c-index) and they repeated 10-fold cross-validation
100 times instead of using highly volatile data splitting. They showed that the gene
microarrays did indeed have predictive signals.b

Michiels, Koscielny, and Hill [65] Aliferis et al. [3]

% classified correctly c-index
Single split-sample validation Multiple repeats of 10-fold CV
Wrong tests Correct tests
(censoring, failure times)

5 of 7 published microarray 6 of 7 have signals
studies had no signal

bAliferis et al. [3] also used correct statistical models for time-to-event data that properly accounted for variable follow-up/censoring.
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18.5

Value of Continuous Markers

� Avoid arbitrary cutpoints

� Better risk spectrum

� Provides gray zone

� Increases power/precision

18.5.1

Prognosis in Prostate Cancer

load(’∼/doc/Talks/infoAllergy/kattan.rda ’)
attach(kattan)

t ← t.stg

gs ← bx.glsn

psa ← preop.psa

t12 ← t.stg %in% Cs(T1C ,T2A ,T2B ,T2C)

s ← score.binary(t12 & gs ≤ 6 & psa<10 ,

t12 & gs ≤ 6 & psa ≥ 10 & psa < 20,

t12 & gs==7 & psa < 20,

(t12 & gs ≤ 6 & psa ≥ 20) |

(t12 & gs ≥ 8 & psa<20),

t12 & gs ≥ 7 & psa ≥ 20,

t.stg ==’T3’)

levels(s) ← c(’none’,’I’, ’IIA’, ’IIB’, ’IIIA’, ’IIIB’, ’IIIC’)

u ← is.na(psa + gs) | is.na(t.stg)

s[s==’none’] ← NA

s ← s[drop=TRUE]

s3 ← s

levels(s3) ← c(’I’,’II’,’II’,’III’,’III’,’III’)

table(s3)

s3

I II III

1108 607 271

units(time.event) ← ’month’

dd ← datadist(data.frame(psa , gs)); options(datadist=’dd’)

S ← Surv(time.event , event==’YES’)

label(psa) ← ’PSA’; label(gs) ← ’Gleason Score’

f ← cph(S ∼ rcs(sqrt(psa), 4), surv=TRUE , x=TRUE , y=TRUE)

p ← Predict(f, psa , time=24, fun=function(x) 1 - x)

h ← cph(S ∼ s3, surv=TRUE)
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z ← 1 - survest(h, times =24)$surv

ggplot(p, rdata=data.frame(psa), ylab=’2-year Disease Recurrence Risk’) +

geom_hline(yintercept=unique(z), col=’red’, size=0.2) # F i g . 18.3
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Figure 18.3: Relationship between post-op PSA level and 2-year recurrence risk. Horizontal lines represent the only prognoses
provided by the new staging system. Data are courtesy of M Kattan from JNCI 98:715; 2006. Modification of AJCC staging by
Roach et al. 2006.

Now examine the entire spectrum of estimated prognoses from variables models and
from discontinuous staging systems.
f ← cph(S ∼ rcs(sqrt(psa) ,4) + pol(gs ,2), surv=TRUE)

g ← function(form , lab) {

f ← cph(form , surv=TRUE , subset=!u)

cat(lab ,’\n’); print(coef(f))

s ← f$stats

cat(’N:’, s[’Obs’],’\tL.R.:’, round(s[’Model L.R.’],1),

’\td.f.:’,s[’d.f.’],’\n\n’)

prob24 ← 1 - survest(f, times =24)$surv

prn(sum(!is.na(prob24)))

p2 <← c(p2, prob24 [2]) # s a v e e s t . p r o g n o s i s f o r o n e s u b j e c t

p1936 <← c(p1936 , prob24 [1936])

C ← rcorr.cens (1-prob24 , S[!u,])[’C Index ’]

data.frame(model=lab , chisq=s[’Model L.R.’], d.f.=s[’d.f.’],

C=C, prognosis=prob24)

}

p2 ← p1936 ← NULL

w ← g(S ∼ t.stg , ’Old Stage’)

Old Stage

t.stg=T2A t.stg=T2B t.stg=T2C t.stg=T3

0.2791987 1.2377218 1.0626197 1.7681393

N: 1978 L.R.: 70.5 d.f.: 4
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sum(!is.na(prob24 ))

[1] 1978

w ← rbind(w, g(S ∼ s3, ’New Stage’))

New Stage

s3=II s3=III

1.225296 1.990355

N: 1978 L.R.: 135.8 d.f.: 2

sum(!is.na(prob24 ))

[1] 1978

w ← rbind(w, g(S ∼ s, ’New Stage , 6 Levels ’))

New Stage , 6 Levels

s=IIA s=IIB s=IIIA s=IIIB s=IIIC

1.181824 1.248864 1.829265 2.410810 1.954420

N: 1978 L.R.: 140.3 d.f.: 5

sum(!is.na(prob24 ))

[1] 1978

w ← rbind(w, g(S ∼ pol(gs ,2), ’Gleason ’))

Gleason

gs gs∧2

-0.42563792 0.07857747

N: 1978 L.R.: 90.3 d.f.: 2

sum(!is.na(prob24 ))

[1] 1978

w ← rbind(w, g(S ∼ rcs(sqrt(psa) ,4), ’PSA’))

PSA

psa psa ’ psa ’’

-0.09621478 4.07465107 -14.86458188

N: 1978 L.R.: 95.3 d.f.: 3

sum(!is.na(prob24 ))

[1] 1978

w ← rbind(w, g(S ∼ rcs(sqrt(psa) ,4) + pol(gs ,2), ’PSA+Gleason ’))
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PSA+Gleason

psa psa ’ psa ’’ gs gs∧2

-0.11703664 3.37768454 -12.04890937 -0.20429572 0.05458832

N: 1978 L.R.: 160.2 d.f.: 5

sum(!is.na(prob24 ))

[1] 1978

w ← rbind(w, g(S ∼ rcs(sqrt(psa) ,4) + pol(gs ,2) + t.stg ,

’PSA+Gleason+Old Stage’))

PSA+Gleason+Old Stage

psa psa ’ psa ’’ gs gs∧2 t.stg=T2A

0.12361025 2.26959366 -8.62949512 -0.01467426 0.03511191 0.27334309

t.stg=T2B t.stg=T2C t.stg=T3

0.93943683 0.69083735 1.07508642

N: 1978 L.R.: 187 d.f.: 9

sum(!is.na(prob24 ))

[1] 1978

w$z ← paste(w$model , ’\n’,

’X2-d.f.=’,round(w$chisq-w$d.f.),

’ C=’, sprintf("%.2f", w$C), sep=’’)

w$z ← with(w, factor(z, unique(z)))

require(lattice)

stripplot(z ∼ prognosis , data=w, lwd=1.5, # F i g . 18.4

panel=function(x, y, ...) {

llines(p2, 1:7, col=gray(.6))

# # l l i n e s ( p 1 9 3 6 , 1 : 7 , c o l = g r a y ( . 8 ) , l w d = 2 )

# # p a n e l . s t r i p p l o t ( x , y , ... , j i t t e r . d a t a = T R U E , c e x = . 5 )

for(iy in unique(unclass(y))) {

s ← unclass(y)==iy

histSpike(x[s], y=rep(iy,sum(s)), add=TRUE , grid=TRUE)

}

panel.abline(v=0, col=gray(.7))

},

xlab=’Predicted 2-year\nDisease Recurrence Probability ’)
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Predicted 2−year
Disease Recurrence Probability

Old Stage
X2−d.f.=67  C=0.67

New Stage
X2−d.f.=134  C=0.73

New Stage, 6 Levels
X2−d.f.=135  C=0.73

Gleason
X2−d.f.=88  C=0.68

PSA
X2−d.f.=92  C=0.70

PSA+Gleason
X2−d.f.=155  C=0.75

PSA+Gleason+Old Stage
X2−d.f.=178  C=0.77

0.0 0.2 0.4 0.6 0.8

Figure 18.4: Prognostic spectrum from various models with model χ2 - d.f., and generalized c-index. The mostly vertical segmented
line connects different prognostic estimates for the same man.
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18.6

Harm from Ignoring Information

18.6.1

Case Study: Cardiac Anti-arrhythmic Drugs

� Premature ventricular contractions were observed in patients surviving acute my-
ocardial infarction

� Frequent PVCs ↑ incidence of sudden death

Moore [68], p. 46

Arrhythmia Suppression Hypothesis

Any prophylactic program against sudden death must involve the use of anti-
arrhythmic drugs to subdue ventricular premature complexes.

Bernard Lown
Widely accepted by 1978



CHAPTER 18. INFORMATION LOSS 18-26

Moore [68], p. 49;69

Are PVCs independent risk factors for sudden cardiac death?

Researchers developed a 4-variable model for prognosis after acute MI

� left ventricular ejection fraction (EF) < 0.4

� PVCs > 10/hr

� Lung rales

� Heart failure class II,III,IV
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Multicenter Postinfarction Research Group [69]

Dichotomania Caused Severe Problems

� EF alone provides same prognostic spectrum as the researchers’ model

� Did not adjust for EF!; PVCs ↑ when EF< 0.2

� Arrhythmias prognostic in isolation, not after adjustment for continuous EF and
anatomic variables

� Arrhythmias predicted by local contraction abnorm., then global function (EF)
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Multicenter Postinfarction Research Group [69]; Califf et al. [14]

18.6.2

CAST: Cardiac Arrhythmia Suppression Trial

� Randomized placebo, moricizine, and Class IC anti-arrhythmic drugs flecainide and
encainide

� Cardiologists: unethical to randomize to placebo

� Placebo group included after vigorous argument

� Tests design as one-tailed; did not entertain possibility of harm

� Data and Safety Monitoring Board recommended early termination of flecainide
and encainide arms

� Deaths 56
730 drug, 22

725 placebo, RR 2.5
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Investigators [49]

Conclusions: Class I Anti-Arrhythmics

Estimate of excess deaths from Class I anti-arrhythmic drugs: 24,000–69,000
Estimate of excess deaths from Vioxx: 27,000–55,000

Arrhythmia suppression hypothesis refuted; PVCs merely indicators of underlying, per-
manent damage

Moore [68], pp. 289,49; D Graham, FDA
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18.7

Case Study in Faulty Dichotomization of a
Clinical Outcome: Statistical and Ethical Con-
cerns in Clinical Trials for Crohn’s Disease

18.7.1

Background

Many clinical trials are underway for studying treatments for Crohn’s disease. The
primary endpoint for these studies is a discontinuous, information–losing transformation
of the Crohn’s Disease Activity Index (CDAI)8, which was developed in 1976 by using an
exploratory stepwise regression method to predict four levels of clinicians’ impressions
of patients’ current statusc. The first level (“very well”) was assumed to indicate the
patient was in remission. The model was overfitted and was not validated. The model’s
coefficients were scaled and rounded, resulting in the following scoring system (see
http://www.ibdjohn.com/cdai).

cOrdinary least squares regression was used for the ordinal response variable. The levels of the response were assumed to be equally spaced
in severity on a numerical scale of 1, 3, 5, 7 with no justification.

http://www.ibdjohn.com/cdai
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The original authors plotted the predicted scores against the four clinical categories as
shown below.
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The authors arbitrarily assigned a cutoff of 150, below which indicates “remission.”d It
can be seen that “remission” includes a good number of patients actually classified as
“fair to good” or “poor.” A cutoff only exists when there is a break in the distribution
of scores. As an example, data were simulated from a population in which every
patient having a score below 100 had a probability of response of 0.2 and every patient
having a score above 100 had a probability of response of 0.8. Histograms showing the
distributions of non-responders (just above the x-axis) and responders (at the top of
the graph) appear in the figure below. A flexibly fitted logistic regression model relating

dHowever, the authors intended for CDAI to be used on a continuum: “. . . a numerical index was needed, the numerical value of which would
be proportional to degree of illness . . . it could be used as the principal measure of response to the therapy under trial . . . the CDAI appears to
meet those needs. . . . The data presented . . . is an accurate numerical expression of the physician’s over-all assessment of degree of illness in
a large group of patients . . . we believe that it should be useful to all physicians who treat Crohn’s disease as a method of assessing patient
progress.”.



CHAPTER 18. INFORMATION LOSS 18-33

observed scores to actual response status is shown, along with 0.95 confidence intervals
for the fit.
require(rms)

set.seed (4)

n ← 900

X ← rnorm(n, 100, 20)

dd ← datadist(X); options(datadist=’dd’)

p ← ifelse(X < 100, .2, .8)

y ← ifelse(runif(n) ≤ p, 1, 0)

f ← lrm(y ∼ rcs(X, c(90 ,95 ,100 ,105 ,110)))

hs ← function(yval , side)

histSpikeg(yhat ∼ X, data=subset(data.frame(X, y), y == yval),

side = side , ylim = c(0, 1),

frac = function(f) .03 * f / max(f))

ggplot(Predict(f, fun=plogis), ylab=’Probability of Response ’) +

hs(0, 1) + hs(1, 3) + geom_vline(xintercept =100, col=gray(.7))
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One can see that the fitted curves justify the use of a cut-point of 100. However, the
original scores from the development of CDAI do not justify the existence of a cutoff.
The fitted logistic model used to relate“very well”to the other three categories is shown
below.
# P o i n t s f r o m p u b l i s h e d g r a p h w e r e d e f i n e d i n c o d e n o t p r i n t e d

g ← trunc(d$x)

g ← factor(g, 0:3, c(’very well’, ’fair to good’, ’poor’, ’very poor’))

remiss ← 1 * (g == ’very well’)

CDAI ← d$y

label(CDAI) ← "Crohn ’s Disease Activity Index"
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label(remiss) ← ’Remission ’

dd ← datadist(CDAI ,remiss); options(datadist=’dd’)

f ← lrm(remiss ∼ rcs(CDAI ,4))

ggplot(Predict(f, fun=plogis), ylab=’Probability of Remission ’)
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It is readily seen that no cutoff exists, and one would have to be below CDAI of 100
for the probability of remission to fall below even 0.5. The probability does not exceed
0.9 until the score falls below 25. Thus there is no clinical justification for the 150
cut-point.

18.7.2

Loss of Information from Using Cut-points

The statistical analysis plan in the Crohn’s disease protocols specify that efficacy will
be judged by comparing two proportions after classifying patients’ CDAIs as above or
below the cutoff of 150. Even if one could justify a certain cutoff from the data, the
use of the cutoff is usually not warranted. This is because of the huge loss of statistical
efficiency, precision, and power from dichotomizing continuous variables as discussed in
more detail in Section 18.3.4. If one were forced to dichotomize a continuous response
Y , the cut-point that loses the least efficiency is the population median of Y combining
treatment groups. That implies a statistical efficiency of 2

π or 0.637 when compared
to the efficient two-sample t-test if the data are normally distributede. In other words,
the optimum cut-point would require studying 158 patients after dichotomizing the

eNote that the efficiency of the Wilcoxon test compared to the t-test is 3
π

and the efficiency of the sign test compared to the t-test is 2
π
.

Had analysis of covariance been used instead of a simple two-group comparison, the baseline level of CDAI could have been adjusted for as a
covariate. This would have increased the power of the continuous scale approach to even higher levels.
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response variable to get the same power as analyzing the continuous response variable
in 100 patients.

18.7.3

Ethical Concerns and Summary

The CDAI was based on a sloppily-fit regression model predicting a subjective clinical
impression. Then a cutoff of 150 was used to classify patients as in remission or not.
The choice of this cutoff is in opposition to the data used to support it. The data
show that one must have CDAI below 100 to have a chance of remission of only 0.5.
Hence the use of CDAI< 150 as a clinical endpoint was based on a faulty premise
that apparently has never been investigated in the Crohn’s disease research community.
CDAI can easily be analyzed as a continuous variable, preserving all of the power of
the statistical test for efficacy (e.g., two-sample t-test). The results of the t-test can
readily be translated to estimate any clinical “success probability” of interest, using
efficient maximum likelihood estimatorsf

There are substantial ethical questions that ought to be addressed when statistical
power is wasted:

1. Patients are not consenting to be put at risk for a trial that doesn’t yield valid
results.

2. A rigorous scientific approach is necessary in order to allow enrollment of individuals
as subjects in research.

3. Investigators are obligated to reduce the number of subjects exposed to harm and
the amount of harm to which each subject is exposed.

It is not known whether investigators are receiving per-patient payments for studies in
which sample size is inflated by dichotomizing CDAI.

fGiven x̄ and s as estimates of µ and σ, the estimate of the probability that CDAI < 150 is simply Φ( 150−x̄
s

), where Φ is the cumulative
distribution function of the standard normal distribution. For example, if the observed mean were 150, we would estimate the probability of
remission to be 0.5.
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18.8

Information May Sometimes Be Costly

When the Missionaries arrived, the Africans had the Land and the Missionaries
had the Bible. They taught how to pray with our eyes closed. When we opened
them, they had the land and we had the Bible.

Jomo Kenyatta, founding
father of Kenya; also at-
tributed to Desmond Tutu

Information itself has a liberal bias.
The Colbert Report
2006-11-28
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Information Allergy

Frank E Harrell Jr
Department of Biostatistics

Vanderbilt University
Office of Biostatistics

FDA CDER

Information allergy is defined as (1) refusing to obtain key information needed to make a sound decision, or (2) ignoring
important available information. The latter problem is epidemic in biomedical and epidemiologic research and in clinical
practice. Examples include

� ignoring some of the information in confounding variables that would explain away the effect of characteristics such
as dietary habits

� ignoring probabilities and“gray zones”in genomics and proteomics research, making arbitrary classifications of patients
in such a way that leads to poor validation of gene and protein patterns

� failure to grasp probabilitistic diagnosis and patient-specific costs of incorrect decisions, thus making arbitrary diag-
noses and placing the analyst in the role of the bedside decision maker

� classifying patient risk factors and biomarkers into arbitrary“high/low”groups, ignoring the full spectrum of values

� touting the prognostic value of a new biomarker, ignoring basic clinical information that may be even more predictive

� using weak and somewhat arbitrary clinical staging systems resulting from a fear of continuous measurements

� ignoring patient spectrum in estimating the benefit of a treatment

Examples of such problems will be discussed, concluding with an examination of how information–losing cardiac arrhythmia
research may have contributed to the deaths of thousands of patients.



Chapter 19

Diagnosis

Medical diagnostic research, as usually practiced, is prone to bias and even more im-
portantly to yielding information that is not useful to patients or physicians and some-
times overstates the value of diagnostic tests. Important sources of these problems are
conditioning on the wrong statistical information, reversing the flow of time, and cat-
egorization of inherently continuous test outputs and disease severity. It will be shown
that sensitivity and specificity are not properties of tests in the usual sense of the word,
and that they were never natural choices for describing test performance. This implies
that ROC curves are unhelpful (although areas under them are sometimes useful). So
is categorical thinking.

This chapter outlines the many advantages of diagnostic risk modeling, showing how
pre– and post-test diagnostic models give rise to clinically useful displays of pre-test
vs. post-test probabilities that themselves quantify diagnostic utility in a way that is
useful to patients, physicians, and diagnostic device makers. And unlike sensitivity and
specificity, post-test probabilities are immune to certain biases, including workup bias.

Case-control studies use a design where sampling is done on final disease status and
patient exposures are “along for the ride.” In other words, one conditions on the out-
come and considers the distribution of exposures using outcome-dependent sampling.
Sensitivity and specificity are useful for proof-of-concept case-control studies because
sensitivity and specificity also condition on the final diagnosis. The use of sensitivity
and specificity in prospective cohort studies is the mathematical equivalent of making
three left turns in order to turn right. Like the complex adjustments needed for P -values
when doing sequential trials, sensitivity and specificity require complex adjustments for
workup bias just because of their backward consideration of time and information. In

Most of this material is from“Direct Measures of Diagnostic Utility Based on Diagnostic Risk Models“ by FE Harrell presented at the FDA
Public Workshop on Study Methodology for Diagnostics in the Postmarket Setting, 2011-05-12.

19-1

https://www.youtube.com/watch?v=uULhuuSjBww
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a cohort study one can use a vanilla regression model to estimate the probability of a
final diagnostic outcome given patient characteristics and diagnostic test results.
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19.1

Problems with Traditional Indexes of Diag-
nostic Utility

sensitivity = Prob[T +|D+]
specificity = Prob[T−|D−]

Prob[D+|T +] = sens×prev
sens×prev+(1−spec)×(1−prev)

Problems:

� Diagnosis forced to be binary

� Test force to be binary

� Sensitivity and specificity are in backwards time order

� Confuse decision making for groups vs. individuals

� Inadequate utilization of pre-test information

� Dichotomization of continuous variables in general

Example: BI-RADS Score in Mammography

Does Category 4 Make Any Sense?
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Diagnosis Number of Criteriaa

0 Incomplete

Your mammogram or ultrasound didn’t
give the radiologist enough information
to make a clear diagnosis; follow-up
imaging is necessary

1 Negative
There is nothing to comment on; rou-
tine screening recommended

2 Benign
A definite benign finding; routine
screening recommended

3 Probably Benign
Findings that have a high probability of
being benign (> 98%); six-month short
interval follow-up

4
Suspicious Abnormal-
ity

Not characteristic of breast cancer, but
reasonable probability of being malig-
nant (3 to 94%); biopsy should be con-
sidered

5
Highly Suspicious of
Malignancy

Lesion that has a high probability of be-
ing malignant (≥ 95%); take appropri-
ate action

6
Known Biopsy Proven
Malignancy

Lesions known to be malignant that are
being imaged prior to definitive treat-
ment; assure that treatment is com-
pleted

How to Reduce False Positives and Negatives?

� Do away with“positive”and“negative”

� Provide risk estimates

� Defer decision to decision maker

� Risks have self-contained error rates

� Risk of 0.2 → Prob[error]=.2 if don’t treat

� Risk of 0.8 → Prob[error]=.2 if treat

See http://thehealthcareblog.com/blog/2015/12/01/rethinking-about-diagnostic-
tests-there-is-nothing-positive-or-negative-about-a-test-result for a
nice article on the subject.

http://thehealthcareblog.com/blog/2015/12/01/rethinking-about-diagnostic-tests-there-is-nothing-positive-or-negative-about-a-test-result
http://thehealthcareblog.com/blog/2015/12/01/rethinking-about-diagnostic-tests-there-is-nothing-positive-or-negative-about-a-test-result
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Binary Diagnosis is Problematic Anyway

The act of diagnosis requires that patients be placed in a binary category of
either having or not having a certain disease. Accordingly, the diseases of par-
ticular concern for industrialized countries—such as type 2 diabetes, obesity,
or depression—require that a somewhat arbitrary cut-point be chosen on a
continuous scale of measurement (for example, a fasting glucose level > 6.9
mmol/L [> 125 mg/dL] for type 2 diabetes). These cut-points do not ade-
quately reflect disease biology, may inappropriately treat patients on either side
of the cut-point as 2 homogeneous risk groups, fail to incorporate other risk
factors, and are invariable to patient preference.

Vickers, Basch, and Kattan

[109]

Newman and Kohn74 have a strong section about the problems with considering diag-
nosis to be binary.

Back to Sensitivity and Specificity

� Backwards time order

� Irrelevant to both physician and patient

� Improper discontinuous scoring rulesb

� Are not test characteristics

– Are characteristics of the test and patients

� Not constant; vary with patient characteristics

– Sensitivity ↑ with any covariate related to disease severity if diagnosis is di-
chotomized

� Require adjustment for workup bias

– Diagnostic risk models do not; only suffer from under-representation

� Good for proof of concept of a diagnostic method in a case–control study; not
useful for utility

bThey are optimized by not correctly estimating risk of disease.
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Hlatky et al. [45];67; Moons and Harrell [66]; Gneiting and Raftery [35]

Sensitivity of Exercise ECG for Diagnosing CAD

Age (years) Sensitivity
< 40 0.56
40–49 0.65
50–59 0.74
≥ 60 0.84

Sex
male 0.72
female 0.57

# Diseased CAs
1 0.48
2 0.68
3 0.85

Hlatky et al. [45]. See also Janssens 2005

https://journals.sagepub.com/doi/10.1177/0272989X05275154
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19.2

Problems with ROC Curves and Cutoffs

. . . statistics such as the AUC are not especially relevant to someone who must make a decision about
a particular xc. . . . ROC curves lack or obscure several quantities that are necessary for evaluating the
operational effectiveness of diagnostic tests. . . . ROC curves were first used to check how radio receivers
(like radar receivers) operated over a range of frequencies. . . . This is not how most ROC curves are used
now, particularly in medicine. The receiver of a diagnostic measurement . . . wants to make a decision
based on some xc, and is not especially interested in how well he would have done had he used some
different cutoff. Briggs and Zaretzki [12]

In the discussion to this paper, David Hand states“when integrating to yield the overall AUC measure, it is

necessary to decide what weight to give each value in the integration. The AUC implicitly does this using a

weighting derived empirically from the data. This is nonsensical. The relative importance of misclassifying

a case as a non-case, compared to the reverse, cannot come from the data itself. It must come externally,

from considerations of the severity one attaches to the different kinds of misclassifications.”
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19.3

Optimum Individual Decision Making and For-
ward Risk

� Minimize expected loss/cost/disutility

� Uses

– utility function (e.g., inverse of cost of missing a diagnosis, cost of over-
treatment if disease is absent)

– probability of disease

d = decision, o = outcome
Utility for outcome o = U(o)
Expected utility of decision d = U(d) = ∫

p(o|d)U(o)do

dopt = d maximizing U(d)

The steps for determining the optimum decision are:

1. Predict the outcome o for every decision d

2. Assign a utility U(o) to every outcome o

3. Find the decision d that maximizes the expected utility

See

� https:bit.ly/datamethods-dm

� http://en.wikipedia.org/wiki/Optimal_decision

� http://www.statsathome.com/2017/10/12/bayesian-decision-theory-made-

ridiculously-simple

� Govers et al.36

� https://stats.stackexchange.com/questions/368949

https:bit.ly/datamethods-dm
http://en.wikipedia.org/wiki/Optimal_decision
http://www.statsathome.com/2017/10/12/bayesian-decision-theory-made-ridiculously-simple
http://www.statsathome.com/2017/10/12/bayesian-decision-theory-made-ridiculously-simple
https://stats.stackexchange.com/questions/368949
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See this NY Times article about decision theory.

https://www.nytimes.com/2018/09/01/opinion/sunday/how-make-big-decision.html
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19.4

Diagnostic Risk Modeling

Assuming (Atypical) Binary Disease Status

Y 1:diseased, 0:normal
X vector of subject characteristics (e.g., demographics, risk factors, symptoms)

T vector of test (biomarker, . . . ) outputs
α intercept
β vector of coefficients of X
γ vector of coefficients of T

pre(X) = Prob[Y = 1|X] = 1
1+exp[−(α∗+β∗X)]

post(X, T ) = Prob[Y = 1|X, T ] = 1
1+exp[−(α+βX+γT )]

Note: Proportional odds model extends to ordinal disease severity Y .

19.4.1

Example Diagnostic Models
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Figure 19.1: A nomogram for estimating the likelihood of significant coronary artery disease (CAD) in
women. ECG = electrocardiographic; MI = myocardial infarction.82 Reprinted from American Journal of
Medicine, Vol. 75, D.B. Pryor et al., “Estimating the likelihood of significant coronary artery disease,”p.
778, Copyright 1983, with permission from Excerpta Medica, Inc.
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Age Month Probability
ABM vs AVM

Glucose
Ratio

Total
PMN

Reading
Line

A

A

Reading
Line

B

B

22

25

30

35

40

45

50

55

60

65

70

75

80

22y

20

15

10

5

2y

18m

12m

0m

6m

12m

1 Aug

1 Jul

1 Jun

1 May

1 Apr

1 Mar

1 Feb

1 Aug

1 Sep

1 Oct

1 Nov

1 Dec

1 Jan

1 Feb

0.01

0.05
0.10

0.20
0.30

0.40
0.50

0.60
0.70

0.80
0.90

0.95

0.99

≥ .60

.55

.50

.45

.40

.35

.30

.25

.20

.15

.10

.05

    0

   10

   50

  100

  200

  300

  400
  500

 1000

 1500

 2000

 2500

 3000

 4000

 5000

 6000

 7000

 8000

 9000

10000

11000

Figure 19.2: Nomogram for estimating probability of bacterial (ABM) versus viral (AVM) meningitis. Step 1, place ruler on reading
lines for patient’s age and month of presentation and mark intersection with line A; step 2, place ruler on values for glucose ratio
and total polymorphonuclear leukocyte (PMN) count in cerebrospinal fluid and mark intersection with line B; step 3, use ruler to
join marks on lines A and B, then read off the probability of ABM versus AVM. From Spanos, Harrell, and Durack [98]
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Figure 19.3: Proportional odds ordinal logistic model for ordinal diagnostic classes from Brazer et al. [11]
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19.5

Assessing Diagnostic Yield

19.5.1

Absolute Yield

Pencina et al. [80]: Absolute incremental information in a new set of markers
Consider change in predicted risk when add new variables

Average increase in risk of disease when disease present
+
Average decrease in risk of disease when disease absent

Formal Test of Added Absolute and Relative Information

Likelihood ratio χ2 test of partial association of new markers, adjusted for old markers

19.5.2

Assessing Relative Diagnostic Yield

� Variation in relative log odds of disease = T γ̂, holding X constant

� Summarize with Gini’s mean difference or inter-quartile range, then anti-log

� E.g.: the typical modification of pre-test odds of disease is by a factor of 3.4

Gini’s mean difference = mean absolute difference between any pair of values

See Figure 13.3 for a graphical depiction of the relationship between odds ratio and
absolute risk difference.
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19.6

Assessing Absolute Diagnostic Yield: Cohort
Study

� Patient i = 1, 2, 3, . . . , n

� In-sample sufficient statistics: pre(X1), . . . , pre(Xn), post(X1, T1), . . . , post(Xn, Tn)

Figure 19.4: Pre vs. post-test probability. This may be ummarized with quantile regression to estimate 0.1 and 0.9 quantiles of post
as a function of pre. From Hlatky et al. [44]

Assessments assume that risk estimates are well calibrated, using, for example a high-
resolution continuous calibration curve.
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Out-of-sample assessment: compute pre(X) and post(X, T ) for any X and T of interest

Summary measures

� quantile regression (55) curves as a function of pre

� overall mean |post – pre|

� quantiles of post – pre

� du50: distribution of post when pre = 0.5
diagnostic utility at maximum pre-test uncertainty

– Choose X so that pre = 0.5

– Examine distribution of post at this pre

– Summarize with quantiles, Gini’s mean difference on prob. scale

– Special case where test is binary (atypical): compute post for T + and for T−
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19.7

Assessing Diagnostic Yield: Case-Control &
Other Oversampling Designs

� Intercept α is meaningless

� Choose X and solve for α so that pre = 0.5

� Proceed as above to estimate du50
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19.8

Example: Diagnosis of Coronary Artery Dis-
ease (CAD): Test = Total Cholesterol

require(rms)

getHdata(acath)

acath ← subset(acath , !is.na(choleste))

dd ← datadist(acath); options(datadist=’dd’)

f ← lrm(sigdz ∼ rcs(age ,5)*sex , data=acath)

pre ← predict(f, type=’fitted ’)

g ← lrm(sigdz ∼ rcs(age ,4)*sex + rcs(choleste ,4) + rcs(age ,4) %ia%

rcs(choleste ,4), data=acath)

ageg ← c(40, 70)

psig ← Predict(g, choleste , age=ageg)

s ← lrm(tvdlm ∼ rcs(age ,4)*sex + rcs(choleste ,4) + rcs(age ,4) %ia%

rcs(choleste ,4), data=acath)

psev ← Predict(s, choleste , age=ageg)

ggplot(rbind(’Significant CAD’=psig , ’3 Vessel or Left Main CAD’=psev),

adj.subtitle=FALSE)
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Figure 19.5: Relative effect of total cholesterol for age 40 and 70; Data from Duke Cardiovascular Disease Databank, n = 2258
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post ← predict(g, type=’fitted ’)

plot(pre , post , xlab=’Pre-Test Probability (age + sex)’,

ylab=’Post-Test Probability (age + sex + cholesterol)’, pch =46)

abline(a=0, b=1, col=gray(.8))

lo ← Rq(post ∼ rcs(pre , 7), tau=0.1) # 0 . 1 q u a n t i l e

hi ← Rq(post ∼ rcs(pre , 7), tau=0.9) # 0 . 9 q u a n t i l e

at ← seq(0, 1, length =200)

lines(at, Predict(lo, pre=at)$yhat , col=’red’, lwd=1.5)

lines(at, Predict(hi, pre=at)$yhat , col=’red’, lwd=1.5)

abline(v=.5, col=’red’)
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Figure 19.6: Diagnostic Utility of Cholesterol for Diagnosing Significant CAD. Curves are 0.1 and 0.9 quantiles from quantile
regression using restricted cubic splines
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19.9

Summary

Diagnostic utility needs to be estimated using measures of relevance to individual decision makers.

Improper accuracy scoring rules lead to suboptimal decisions. Traditional risk modeling is a powerful tool

in this setting. Cohort studies are ideal but useful measures can be obtained even with oversampling.

Avoid categorization of any continuous or ordinal variables.



Chapter 20

Challenges of Analyzing High-Dimensional
Data

Biomarker Uncertainty Principle:
A molecular signature can be either parsimonious or predictive, but not both.

FE Harrell, 2009

We have more data than ever, more good data than ever, a lower proportion of
data that are good, a lack of strategic thinking about what data are needed to
answer questions of interest, sub-optimal analysis of data, and an occasional
tendency to do research that should not be done.

FE Harrell, 2015

20-1
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20.1

Background

High-dimensional data are of at least three major types:

� Data collected on hundreds of thousands or millions of subjects with a diverse array
of variables

� Time series of biologic signals collected every few milliseconds

� Extremely large data arrays where almost all the variables are of one type (the main
topic here)

The last data class includes such areas as

� functional imaging

� gene microarray

� SNPs for genome-wide association studies

� RNA seq

� exome sequencing

� mass spectrometry

The research yield of analysis of such data has been disappointing to date, for many
reasons such as:

� Biology is complex

� Use of non-reproducible research methodology

� Use of unproven statistical methods
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� Multiple comparison problems and double dippinga

� Failure to demonstrate value of information over and above the information provided
by routine clinical variables, blood chemistry, and other standard medical tests

� Inadequate sample size for the complexity of the analytic task

� Overstatement of results due to searching for “winning” markers without under-
standing bias, regression to the mean (Section 14.8), and overfitting

Regarding double dipping/multiplicity a beautiful example is the dead salmon fMRI
study by Bennett et al. in which the standard method of analyzing fMRI data by
voxels was shown to find brain activation regions even in the dead brain (see http:

//prefrontal.org/files/posters/Bennett-Salmon-2009.pdf).
aDouble dipping refers to using the same data to test a hypothesis that was formulated from a confession from the tortured dataset.

http://prefrontal.org/files/posters/Bennett-Salmon-2009.pdf
http://prefrontal.org/files/posters/Bennett-Salmon-2009.pdf
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Wired, 2009-09-18.

Unfortunately, a large number of papers in genomics and imaging research have pre-
tended that feature selection has no randomness, and have validated predictions in
the same dataset used to find the signals, without informing the bootstrap or cross-
validation procedure about the data mining used to derive the model so that the resam-
pling procedure could repeat all feature selection steps afresh for each resample6. Only
by re-running all data analysis steps that utilized Y for each resample can an unbiased
estimate of future model performance be obtained.
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20.2

Global Analytic Approaches

Let X1, X2, . . . , Xp denote an array of candidate features (gene expressions, SNPs, brain
activation, etc.) and Y the response, diagnosis, or patient outcome being predicted.

20.2.1

One-at-a-Time Feature Screening

OaaT feature screening involves choosing a measure of association such as Pearson’s
χ2 statisticb, computing all p association measures against Y , and choosing those X

features whose association measure exceeds a threshold. This is by far the most popular
approach to feature discovery (and often to prediction, unfortunately) in genomics and
functional imaging. It is demonstrably the worst approach in terms of the reliability
of the“winning”and“losing” feature selection and because it results in poor predictive
ability. The problems are due to multiple comparison problems, bias, typically high false
negative rates, and to the fact that most features“travel in packs”, i.e., act in networks
rather than individually. As if OaaT could not get any worse, many practitioners create
“risk scores”by simply adding together individual regression coefficients computed from
individual “winning’ X features without regard to the correlation structure of the Xs.
This gives far too much weight to the selected Xs that are co-linear with each other.

There is a false belief that preventing a high false discovery rate solves the problems
of OaaT. Most researchers fail to consider, among other things, the high false negative
rate caused by their design and sample size.

OaaT results in highly overestimated effect sizes for winners, due to double dipping.

Multiplicity Corrections

In the belief that false positive discoveries are less desirable than missed discoveries, re-
searchers employ multiplicity corrections to P -values arising from testing a large number
of associations with Y . The most conservative approach uses the addition or Bonfer-

bOddly, many practitioners of OaaT choose the more conservative and much slower to compute Fisher’s exact test.
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roni inequality to control the family-wise error risk which is the probability of getting
any false positive association when the global null hypothesis that there are no true
associations with Y holds. This can be carried out by testing the p associations against
α
p where α = 0.05 for example. A less conservative approach uses the false discov-
ery rate (FDR), better labeled the false discovery risk or false discovery probability.
Here one controls the fraction of false positive associations. For example one sets the
critical value for association statistics to a less severe threshold than dictated by Bon-
ferroni’s inequality, by allowing 1

10
th
of the claimed associations (those with the smallest

P -values) to be false positives.

It is an irony that the attempt to control for multiplicity has led not only to missed
discoveries and abandonment of whole research areas but has resulted in increased bias
in the“discovered”features’ effect estimates. When using stepwise regression, the bias in
regression coeffients comes not from multiplicity problems arising when experimentwise
α = 0.05 is used throughout but from using an α cutoff < 1

2 for selecting variables. By
selecting variables on the basis of small P -values, many of the selected variables were
selected because their effects were overestimated, then regression to the mean sets in.

20.2.2

Forward Stepwise Variable Selection

Forward stepwise variable selection that does an initial screening of all the features,
adds the most significant one, then attempts to add the next most significant feature,
after adjusting for the first one, and so on. This approach is unreliable. It is only
better than OaaT in two ways: (1) a feature that did not meet the threshold for the
association with Y without adjusting for other features may become stronger after the
selection of other features at earlier steps, and (2) the resulting risk score accounts for
co-linearities of selected features. On the downside, co-linearities make feature selection
almost randomly choose features from correlated sets of Xs, and tiny changes in the
dataset will result in different selected features.

20.2.3

Ranking and Selection

Feature discovery is really a ranking and selection problem. But ranking and selection
methods are almost never used. An example bootstrap analysis on simulated data is
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presented later. This involves sampling with replacement from the combined (X, Y )
dataset and recomputing for each bootstrap repetition the p association measures for
the p candidate Xs. The p association measures are ranked. The ranking of each
feature across bootstrap resamples is tracked, and a 0.95 confidence interval for the
rank is derived by computing the 0.025 and 0.975 quantiles of the estimated ranks.

This approach puts OaaT in an honest context that fully admits the true difficulty of
the task, including the high cost of the false negative rate (low power). Suppose that
features are ranked so that a low ranking means weak estimated association and a high
ranking means strong association. If one were to consider features to have“passed the
screen” if their lower 0.95 confidence limit for their rank exceeds a threshold, and only
dismisses features from further consideration if the upper confidence limit for their rank
falls below a threshold, there would correctly be a large middle ground where features
are not declared either winners or losers, and the researcher would be able to only make
conclusions that are supported by the data. Readers of the class Absence of Evidence
paper4 will recognize that this ranking approach solves the problem.

An example of bootstrap confidence intervals where multivariable modeling was used
rather than OaaT association measures is in the course notes for Regression Modeling
Strategies, Section 5.4. An example where the bootstrap is used in the context of OaaT
is below.

20.2.4

Joint modeling of All Features Simultaneously using
Shrinkage

This approach uses multivariable regression models along with penalized maximum
likelihood estimation, random effects / hierarchical modeling, or skeptical Bayesian
prior distributions for adjusted effects of all p X features simultaneously. Feature effects
(e.g., log odds ratios) are discounted so as to prevent overfitting/over-interpretation
and to allow these effects to be trusted out of context. The result is a high-dimensional
regression model that is likely to provide well-calibrated absolute risk estimates and
near-optimum predictive ability. Some of the penalization methods used are

1. lasso: a penalty on the absolute value of regression coefficient that highly favors
zero as an estimate. This results in a large number of estimated coefficients being
exactly zero, i.e., results in feature selection. The resulting parsimony may be
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illusory: bootstrap repetition may expose the list of“selected”features to be highly
unstable.

2. ridge regression (penalty function that is quadratic in the regression coefficients):
does not result in a parsimoneous model but is likely to have the highest predictive
value

3. elastic net: a combination of lasso and quadratic penalty that has some parsimony
but has better predictive ability than the lasso. The difficulty is simultaneously
choosing two penalty parameters (one for absolute value of βs, one for their sum
of squares).

20.2.5

Random Forest

This is an approach that solves some of the incredible instability and low predictive
power of individual regression trees. The basic idea of random forest is that one fits
a regression tree using recursive partitioning (CART) on multiple random samples of
candidate features. Multiple trees are combined. The result is no longer a tree; it is
an uninterpretable black box. But in a way it automatically incorporates shrinkage and
is often competitive with other methods in predictive ability.

There is evidence that minimal-assumption methods such as random forests are “data
hungry”, requiring as many as 200 events per candidate variable for their apparent
predictive discrimination to not decline when evaluated in a new sample106.

20.2.6

Data Reduction Followed by Traditional Regression
Modeling

This approach uses techniques such as principle component analysis (PCA) whereby a
large number of candidate Xs are reduced to a few summary scores. PCA is based
on additively combining features so as to maximize the variation of the whole set of
features that is explained by the summary score. A small number of PCA scores are then
put into an ordinary regression model (e.g., binary logistic model) to predict Y . The
result is sometimes satisfactory though no easier to interpret than shrinkage methods.
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20.2.7

Model Approximation

Also called pre-conditioning, this method is general-purpose and promising79,96,5. One
takes a well-performing black box (e.g., random forest or full penalized regression with
p features) that generates predicted responses Ŷ and incorporates the right amount of
shrinkage to make the predictions well-calibrated. Then try to find a smaller set of Xs
that can represent Ŷ with high accuracy (e.g., R2 ≥ 0.9). Forward stepwise variable
selection may be used for this purposec. This sub-model is an approximation to the
“gold-standard” full black box. The ability to find a well-performing approximation is a
test of whether the predictive signal is parsimoneous. If one requires 500 Xs to achieve
an R2 ≥ 0.9 in predicting the gold-standard predictions Ŷ , then it is not possible to be
parsimoneous and predictive.

A major advantage of model approximation is that if the original complex model was
well calibrated by using appropriate shrinkage, the smaller approximate model inherits
that shrinkage.

20.2.8

Incorporating Biology into High-Dimensional Regres-
sion Models

This approach is likely to result in the most trustworthy discoveries as well as the
best predictive accuracy, if existing biological knowledge is adequate for specification
of model structure. This is a structured shrinkage method where pathway (e.g., gene
pathway) information is inserted directly in the model. One may encode multiple paths
into a simultaneous regression model such that genes are“connected”to other genes in
the same pathway. This allows an entire path to be emphasized or de-emphasized.

cHere one is developing a mechanistic prediction where the true R2 is 1.0.
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20.3

Simulated Examples

Monte Carlo simulation, when done in a realistic fashion, has the great advantage that
one knows the truth, i.e., the true model and values of model parameters from which
the artificial population was simulated. Then any derived model or estimates can be
compared to the known truth. Also with simulation, one can easily change the sample
size being simulated so that the effect of sample size can be studied and an adequate
sample size that leads to reliable results can be computed. One can also easily change
the dimensionality of the features.

20.3.1

Simulation To Understand Needed Sample Sizes

One of the most common association measures used in genomic studies is the odds
ratio. As shown in Section 6.8 and Figure 6.1 , the odds ratio (OR) is very difficult to
estimate when the outcome is rare or when a binary predictive feature has a prevalence
far from 1

2 . That is for the case when only a single pre-specified is estimated. When
screening multiple features for interesting associations, one is effectively estimating a
large number of ORs, and in order to make correct decisions about which features are
promising and which aren’t, one must be able to control the margins of error of the
entire set of OR estimates.

In the following simulation consider varying sample size n and number of candidate
features p. We simulate p binary features with known true ORs against the diagnosis or
outcome Y . The true unknown ORs are assumed to have a normal(µ = 0, σ = 0.25)
distribution. We want to judge the ability to jointly estimate p associations and to rank
order features by observed associations. The analysis that is simulated does not examine
multiple Xs simultaneously, so we save time by simulating just the total numbers of
zeros and ones for each X, given Y .
# F o r a v e c t o r o f n b i n a r y o u t c o m e s y , s i m u l a t e s p b i n a r y f e a t u r e s

# x t h a t h a v e a p - v e c t o r o f f i x e d p r e v a l e n c e s | y = 0 o f p r e v a n d a r e c o n n e c t e d

# t o y b y a p - v e c t o r o f t r u e p o p u l a t i o n o d d s r a t i o s o r s .

# E s t i m a t e s t h e p o d d s r a t i o s a g a i n s t t h e s i m u l a t e d o u t c o m e s a n d

# r e t u r n s a d a t a f r a m e s u m m a r i z i n g t h e i n f o r m a t i o n

#

# N o t e : t h e o d d s r a t i o f o r x p r e d i c t i n g y i s t h e s a m e a s t h e o d d s r a t i o

# f o r y p r e d i c t i n g x . y i s s i m u l a t e d f i r s t s o t h a t a l l f e a t u r e s w i l l
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# b e a n a l y z e d a g a i n s t t h e s a m e o u t c o m e s

sim ← function(y, prev , or) {

n ← length(y)

p ← length(prev)

if(p != length(or)) stop(’prev and or must have the same length ’)

# p r e v = P r ( x = 1 | y = 0 ) ; l e t t h e o d d s f o r t h i s b e o p r e v = p r e v / ( 1 - p r e v )

# o r = o d d s ( x = 1 | y = 1 ) / o p r e v

# P r ( x = 1 | y = 1 ) = o p r e v / ( ( 1 / o r ) + o p r e v )

oprev ← prev / (1 - prev)

p1 ← oprev / ((1 / or) + oprev)

n0 ← sum(y == 0)

n1 ← sum(y == 1)

# F o r n 0 o b s e r v a t i o n s s a m p l e x s o t h a t P r ( x = 0 | y = 0 ) = p r e v

nxy0 ← rbinom(p, size=n0, prob=prev)

nxy1 ← rbinom(p, size=n1, prob=p1)

# C o m p u t e p s a m p l e o d d s r a t i o s

sor ← (n0 - nxy0) * nxy1 / (nxy0 * (n1 - nxy1))

g ← function(x) ifelse(x ≥ 1, x, 1 / x)

r1 ← rank(sor)[which.max(or) ] / p

r2 ← rank(or) [which.max(sor)] / p

data.frame(prev , or , nx=nxy0 / n0, obsprev0 =(nxy0 + nxy1) / n,

obsprev=nxy1 / (nxy0 + nxy1), obsor=sor , n=n,

N =paste(’n’, n, sep=’:’),

Features=paste(’Features ’, p, sep=’:’),

mmoe =quantile(g(sor / or), 0.90 , na.rm=TRUE),

obsranktrue=r1, truerankobs=r2,

rho=cor(sor , or, method=’spearman ’, use=’pair’))

}

U ← NULL

set.seed (1)

for(n in c(50, 100, 250, 500, 1000, 2000)) {

for(p in c(10, 50, 500, 1000, 2000)) {

for(yprev in c(.1 , .3)) {

y ← rbinom(n, 1, yprev)

prev ← runif(p, .05 , .5)

or ← exp(rnorm(p, 0, .25))

u ← cbind(sim(y, prev , or),

Yprev=paste(’Prevalence of Outcome ’, yprev , sep=’:’))

U ← rbind(U, u)

}

}

}

In the plots below red lines show the line of identity.
require(ggplot2)

pl ← function(yprev) {

br ← c(.01 , .1, .5, 1, 2.5 , 5, 25, 100)

ggplot(subset(U, Yprev=yprev),

aes(x=or, y=obsor)) + geom_point () + facet_grid(Features ∼ N) +

ggtitle(paste(’Prevalence of Outcome ’, yprev , sep=’:’)) +
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xlab(’True ORs’) + ylab(’Estimated ORs’) +

scale_x_log10(breaks=br) + scale_y_log10(breaks=br) +

theme(axis.text.x = element_text(size = rel(0.8), angle=-45 ,

hjust=0, vjust =1)) +

geom_abline(col=’red’)

}

pl(0.1)
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CHAPTER 20. CHALLENGES OF ANALYZING HIGH-DIMENSIONAL DATA 20-13
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Prevalence of Outcome:0.3

The last two figures use a log scale for the y-axis (estimated odds ratios), so the errors
in estimating the odds ratios are quite severe. For a sample size of n = 50 one cannot
even estimate a single pre-specified odds ratio. To be able to accurately assess 10 ORs
(10 candidate features) requires about n = 1000. To assess 2000 features, a sample
size of n = 2000 seems adequate only for the very smallest and very largest true ORs.

The plot below summarizes the previous plots by computing the 0.9 quantile of the
multiplicative margin of error (fold change) over the whole set of estimated odds ratios,
ignoring direction.
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Horizontal red lines depict a multiplicative margin of error (MMOE) of 1.5 which may
be considered the minimally acceptable error in estimating odds ratios. This was largely
achieved with n = 1000 for a low-incidence Y , and n = 500 for a moderate-incidence
Y .

Another way to summarize the results is to compute the Spearman rank correlation
between estimated and true underlying odds ratios over the entire set of estimates.
ggplot(U, aes(x=n, y=rho)) + geom_point () +

facet_grid(Features ∼ Yprev) +

ylab(expression(paste(’Spearman ’, rho , ’ Rank Correlation Between ’,

OR, ’ and ’, hat(OR), ’ Across Features ’)))
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One may desire a correlation with the truth of say 0.8 and can solve for the needed
sample size.

20.3.2

Bootstrap Analysis for One Simulated Dataset

Suppose that one wanted to test p candidate features and select the most“significant”
one for a validation study. How likely is the apparently“best”one to be truly the best?
What is a confidence interval for the rank of this “winner”? How much bias in the
OR does the selection process create? The bootstrap can be used to answer all of
these questions without needing to assume anything about true population parameter
values. The bootstrap can take into account many sources of uncertainty. We use
the bootstrap to estimate the bias in the apparent highest and apparent lowest odds
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ratios—the two “winners”. The sample size of the simulated data is 600 subjects and
there are 300 candidate features.

The bootstrap is based on sampling with replacement from the rows of the entire data
matrix (X, Y ). In order to sample from the rows we need to generate raw data, not
just numbers of“successes”and“failures”as in the last simulation.
# F u n c t i o n t o s i m u l a t e t h e r a w d a t a

# p r e v i s t h e v e c t o r o f p r e v a l e n c e s o f x w h e n y = 0 a s b e f o r e

# y p r e v i s t h e o v e r a l l p r e v a l e n c e o f y

# n i s t h e s a m p l e s i z e

# o r i s t h e v e c t o r o f t r u e o d d s r a t i o s

sim ← function(n, yprev , prev , or) {

y ← rbinom(n, 1, yprev)

p ← length(prev)

if(p != length(or)) stop(’prev and or must have the same length ’)

# p r e v = P r ( x = 1 | y = 0 ) ; l e t t h e o d d s f o r t h i s b e o p r e v = p r e v / ( 1 - p r e v )

# o r = o d d s ( x = 1 | y = 1 ) / o p r e v

# P r ( x = 1 | y = 1 ) = o p r e v / ( ( 1 / o r ) + o p r e v )

oprev ← prev / (1 - prev)

p1 ← oprev / ((1 / or) + oprev)

x ← matrix(NA, nrow=n, ncol=p)

for(j in 1 : p)

x[, j] ← ifelse(y == 1, rbinom(n, 1, prob = p1[j] ),

rbinom(n, 1, prob = prev[j]))

list(x=x, y=y)

}

# F u n c t i o n t o c o m p u t e t h e s a m p l e o d d s r a t i o s g i v e n x m a t r i x a n d y v e c t o r

ors ← function(x, y) {

p ← ncol(x)

or ← numeric(p)

for(j in 1 : p) {

f ← table(x[, j], y)

or[j] ← f[2, 2] * f[1, 1] / (f[1, 2] * f[2, 1])

}

or

}

# G e n e r a t e s a m p l e o f s i z e 6 0 0 w i t h 3 0 0 f e a t u r e s

# L o g o d d s r a t i o s h a v e a n o r m a l d i s t r i b u t i o n w i t h m e a n 0 S D 0 . 3

# x h a v e a r a n d o m p r e v a l e n c e u n i f o r m [ 0 .05 , 0 . 5 ]

# y h a s p r e v a l e n c e 0 . 3

set.seed (188)

n ← 600; p ← 300

prev ← runif(p, .05 , .5)

or ← exp(rnorm(p, 0, .3))

z ← sim(n, 0.3, prev , or)

# C o m p u t e e s t i m a t e d O R s

x ← z$x; y ← z$y

sor ← ors(x, y)

# S h o w h o w e s t i m a t e s r e l a t e d t o t r u e O R s
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ggplot(data.frame(or , sor), aes(x=or, y=sor)) + geom_point () +

xlab(’True OR’) + ylab(’Estimated OR’)

# P r i n t t h e l a r g e s t e s t i m a t e d O R a n d i t s c o l u m n n u m b e r ,

# a n d c o r r e s p o n d i n g t r u e OR , a n d s i m i l a r l y f o r t h e s m a l l e s t .

largest ← max(sor)

imax ← which.max(sor)

true.imax ← or[imax]

mmoe.imax ← largest / true.imax

smallest ← min(sor)

imin ← which.min(sor)

true.imin ← or[imin]

mmoe.imin ← smallest / true.imin

cat(’\nLargest observed OR\n’)

Largest observed OR

cat(’OR:’, round(largest , 2), ’ Feature #’, imax , ’ True OR:’,

round(true.imax , 2), ’ MMOE:’, round(mmoe.imax , 2), ’\n’)

OR: 2.94 Feature # 90 True OR: 1.71 MMOE: 1.72

cat(’Rank of winning feature among true ORs:’, sum(or ≤ or[imax]), ’\n\n’)

Rank of winning feature among true ORs: 285

cat(’Smallest observed OR\n’)

Smallest observed OR

cat(’OR:’, round(smallest , 2), ’ Feature #’, imin , ’ True OR:’,

round(true.imin , 2), ’ MMOE:’, round(mmoe.imin , 2), ’\n’)

OR: 0.21 Feature # 99 True OR: 0.71 MMOE: 0.3
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Next use the bootstrap to get an estimate of the MMOE for the observed largest OR,
and a 0.95 confidence interval for the true unknown rank of the largest observed OR
from among all the features. 1000 bootstrap resamples are drawn. In estimating the
MMOE we are estimating bias in the largest log odds ratio when a new“largest”OR is
found in each bootstrap resample. That estimated OR is compared to the OR evaluated
in the whole sample for the same column number. This is also done for the “smallest”
OR.
set.seed (11)

B ← 1000

ranksS ← ranksL ← mmoeS ← mmoeL ← numeric(B)

for(k in 1 : B) {

# D r a w a s a m p l e o f s i z e n w i t h r e p l a c e m e n t

i ← sample (1 : n, n, replace=TRUE)

# C o m p u t e s a m p l e O R s o n t h e n e w s a m p l e

bor ← ors(x[i, ], y[i])

blargest ← max(bor)

bmax ← which.max(bor)

ranksL[k] ← sum(bor ≤ largest)

mmoeL[k] ← blargest / sor[bmax]

bsmallest ← min(bor)

bmin ← which.min(bor)

ranksS[k] ← sum(bor ≤ smallest)

mmoeS[k] ← bsmallest / sor[bmin]

}

The bootstrap geometric mean MMOE for the smallest odds ratio was zero due to
small frequencies in some Xs. The median bootstrap MMOE was used to bias-correct
the observed smallest OR, while the geometric mean was used for the largest.
pr ← function(which , ranks , mmoe , mmoe.true , estor , or.true) {

gm ← exp(mean(log(mmoe)))

cat(which , ’OR\n’)

cat(’CL for rank:’, quantile(ranks , c(0.025 , 0.975)),

’ Median MMOE:’, round(median(mmoe), 2),

’ Geometric mean MMOE:’, round(gm, 2),

’\nTrue MMOE:’, round(mmoe.true , 2), ’\n’)

bmmoe ← if(which == ’Largest ’) gm else median(mmoe)

cat(’Bootstrap bias-corrected ’, tolower(which), ’OR:’,

round(estor / bmmoe , 2),

’ Original OR:’, round(estor , 2),

’ True OR:’, round(or.true , 2),

’\n\n’)

}

pr(’Largest ’, ranksL , mmoeL , mmoe.imax , largest , true.imax)

Largest OR

CL for rank: 294 299 Median MMOE: 1.45 Geometric mean MMOE: 1.52

True MMOE: 1.72

Bootstrap bias -corrected largest OR: 1.94 Original OR: 2.94 True OR: 1.71

pr(’Smallest ’, ranksS , mmoeS , mmoe.imin , smallest , true.imin)
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Smallest OR

CL for rank: 0 5 Median MMOE: 0.32 Geometric mean MMOE: 0

True MMOE: 0.3

Bootstrap bias -corrected smallest OR: 0.67 Original OR: 0.21 True OR: 0.71

The bootstrap bias-corrected ORs took the observed extreme ORs and multiplied them
by their respective bootstrap geometric mean or median MMOEs. The bias-corrected
estimates are closer to the true ORs.

The data are consistent with the observed smallest OR truly being in the bottom 5 and
the observed largest OR truly being in the top 7.

Here is some example wording that could be used in a statistical analysis plan: We
did not evaluate the probability that non-selected genes are truly unimportant but will
accompany the planned gene screening results with a bootstrap analysis to compute
0.95 confidence intervals for the rank of each gene, using a non-directional measure
of association when ranking. The “winning” genes will have high ranks in competing
with each other (by definition) but if the lower confidence limits include mid- to low-
level ranks the uncertainty of these winners will be noted. Conversely, if the upper
confidence intervals of ranks of “losers” extend well into the ranks of “winners”, the
uncertainty associated with our ability to rule out “losers” for further investigation will
be noted.
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Reproducible Research

Disconfirmation bias: giving expected results a relatively free pass but rigorously
checking non-intuitive results

Nuzzo [75]

An excellent article on how to do reproducible research is70 for which the pdf file is
openly available. The link to an excellent video by Garrett Grolemund is on the right.

this article by Gelman discussed the role that statistical “significance” plays in non-
reproducible research.

21-1

http://bit.ly/datamethods-bbr20
https://resources.rstudio.com/rstudio-conf-2019/r-markdown-the-bigger-picture
https://journals.sagepub.com/doi/full/10.1177/0146167217729162
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21.1

Non-reproducible Research

� Misunderstanding statistics

� “Investigator”moving the target

� Lack of a blinded analytic plan

� Tweaking instrumentation / removing“outliers”

� Floating definitions of response variables

� Pre-statistician“normalization”of data and background subtraction

� Poorly studied high-dimensional feature selection

� Programming errors

� Lack of documentation

� Failing to script multiple-step procedures

– using spreadsheets and other interactive approaches for data manipulation

� Copying and pasting results into manuscripts

� Insufficient detail in scientific articles

� No audit trail

http://hbiostat.org/audio/bbr/rr-1.mp3


CHAPTER 21. REPRODUCIBLE RESEARCH 21-3

21.2

General Importance of Sound Methodology

21.2.1

Translation of Research Evidence from Animals to Hu-
mans

� Screened articles having preventive or therapeutic intervention in in vivo animal
model, > 500 citations (Hackam and Redelmeier [39])

� 76“positive” studies identified

� Median 14 years for potential translation

� 37 judged to have good methodological quality (flat over time)

� 28 of 76 replicated in human randomized trials; 34 remain untested

� ↑ 10% methodology score ↑ odds of replication × 1.28 (0.95 CL 0.97–1.69)

� Dose-response demonstrations: ↑ odds × 3.3 (1.1–10.1)

Note: The article misinterpreted P -values

21.2.2

Other Problems

� Rhine and ESP:“the student’s extra-sensory perception ability has gone through a
marked decline”

� Floating definitions of X or Y : association between physical symmetry and mating
behavior; acupuncture

� Selective reporting and publication bias

http://hbiostat.org/audio/bbr/rr-2.mp3
http://hbiostat.org/audio/bbr/rr-3.mp3
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� Journals seek confirming rather than conflicting data

� Damage caused by hypothesis tests and cutoffs

� Ioannidis: 1
3 of articles in Nature never get cited, let alone replicated

� Biologic and lab variability

� Unquestioning acceptance of research by the“famous”

– Weak coupling ratio exhibited by decaying neutrons fell by 10 SDs from 1969–
2001

21.2.3

What’s Gone Wrong with Omics & Biomarkers?

� Gene expression-based prognostic signatures in lung cancer: Ready for clinical use?
(Subramanian and Simon [102])

� NSCLC gene expression studies 2002–2009, n ≥ 50

� 16 studies found

� Scored on appropriateness of protocol, stat validation, medical utility

� Average quality score: 3.1 of 7 points

� No study showed prediction improvement over known risk factors; many failed to
validate

� Most studies did not even consider factors in guidelines

– Completeness of resection only considered in 7

– Similar for tumor size

– Some only adjusted for age and sex

http://hbiostat.org/audio/bbr/rr-4.mp3
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21.2.4

Failure of Replication in Preclinical Cancer Research

� Scientists at Amgen tried to confirm published findings related to a line of research,
before launching development

� Identified 53 ‘landmark’ studies

� Scientific findings confirmed in only 6 studies

� Non-reproduced articles cited far more frequently than reproduced articles

Begley CG, Ellis LM: Raise standards for preclinical cancer research.
Nature 483:531-533; 2012

Natural History of New Fields

Each new field has a rapid exponential growth of its literature over 5–8 years
(“new field phase”), followed by an“established field”phase when growth rates
are more modest, and then an“over-maturity”phase, where the rates of growth
are similar to the growth of the scientific literature at large or even smaller.
There is a parallel in the spread of an infectious epidemic that emerges rapidly
and gets established when a large number of scientists (and articles) are infected
with these concepts. Then momentum decreases, although many scientists
remain infected and continue to work on this field. New omics infections
continuously arise in the scientific community.

Ionnidis [51]

http://hbiostat.org/audio/bbr/rr-5.mp3
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http://hbiostat.org/audio/bbr/rr-6.mp3
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21.3

System Forces
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Sc ien t i f i c  Advance
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21.4

Strong Inference

Cognitive biases are hitting the accelerator of science: the process spotting
potentially important scientific relationships. Countering those biases comes
down to strengthening the ‘brake’: the ability to slow down, be sceptical of
findings and eliminate false positives and dead ends.

Nuzzo [75]

Platt [81]

� Devise alternative hypotheses

� Devise an experiment with alternative possible outcomes each of which will exclude
a hypothesis

� Carry out the experiment

� Repeat

� Regular, explicit use of alternative hypotheses & sharp exclusions → rapid & pow-
erful progress

� “Our conclusions . . . might be invalid if . . . (i) . . . (ii) . . . (iii) . . .We shall describe
experiments which eliminate these alternatives.”81

http://hbiostat.org/audio/bbr/rr-7.mp3
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21.5

Pre-Specified Analytic Plans

I have enormous flexibility in how I analyze my data and what I choose to
report. This creates a conflict of interest. The only way to avoid this is for
me to tie my hands in advance. Precommitment to my analysis and reporting
plan mitigates the influence of these cognitive biases.

Brian Nosek, Center for
Open Science75

� Long the norm in multi-center RCTs

� Needs to be so in all fields of research using data to draw inferences86

� Front-load planning with investigator

– too many temptations later once see results (e.g., P = 0.0501)

� SAP is signed, dated, filed

� Pre-specification of reasons for exceptions, with exceptions documented (when,
why, what)

� Becoming a policy in VU Biostatistics

http://hbiostat.org/audio/bbr/rr-8.mp3


CHAPTER 21. REPRODUCIBLE RESEARCH 21-10

21.6

Summary

Methodologic experts have much to offer:

� Biostatisticians and clinical epidemiologists play important roles in

– assessing the needed information content for a given problem complexity

– minimizing bias

– maximizing reproducibility

� For more information see:

– ctspedia.org

– reproducibleresearch.net

– groups.google.com/group/reproducible-research

http://hbiostat.org/audio/bbr/rr-9.mp3
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21.7

Software

21.7.1

Goals of Reproducible Analysis/Reporting

� Be able to reproduce your own results

� Allow others to reproduce your results
Time turns each one of us into another person, and by making effort to com-
municate with strangers, we help ourselves to communicate with our future
selves.

Schwab and Claerbout

� Reproduce an entire report, manuscript, dissertation, book with a single system
command when changes occur in:

– operating system, stat software, graphics engines, source data, derived vari-
ables, analysis, interpretation

� Save time

� Provide the ultimate documentation of work done for a paper

See http://hbiostat.org/rr

21.7.2

History of Literate Programming

� Donald Knuth found his own programming to be sub-optimal

� Reasons for programming attack not documented in code; code hard to read

� Invented literate programming in 1984

– mix code with documentation in same file

– “pretty printing”customized to each, using TEX

http://hbiostat.org/audio/bbr/rr-10.mp3
http://hbiostat.org/rr
http://hbiostat.org/audio/bbr/rr-11.mp3
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– not covered here: a new way of programming

� Knuth invented the noweb system for combining two types of information in one file

– weaving to separate non-program code

– tangling to separate program code

See http://www.ctan.org/tex-archive/help/LitProg-FAQ

� Leslie Lamport made TEX easier to use with a comprehensive macro package LATEX
in 1986

� Allows the writer to concern herself with structures of ideas, not typesetting

� LATEX is easily modifiable by users: new macros, variables, if-then structures, exe-
cuting system commands (Perl, etc.), drawing commands, etc.

� S system: Chambers, Becker, Wilks of Bell Labs, 1976

� R created by Ihaka and Gentleman in 1993, grew partly as a response to non-
availability of S-Plus on Linux and Mac

� Friedrich Leisch developed Sweave in 2002

� Yihui Xie developed knitr in 2011

21.7.3

knitr Approach

� knitr is an R package on CRAN

� Uses noweb and an sweave style in LATEX; see yihui.name/knitr,114, http://
yihui.github.com/knitr

� knitr also works with Markdown and other languages

� knitr is tightly integrated into RStudio

http://www.ctan.org/tex-archive/help/LitProg-FAQ
http://hbiostat.org/audio/bbr/rr-12.mp3
yihui.name/knitr
http://yihui.github.com/knitr
http://yihui.github.com/knitr
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A Bad Alternative to knitr

� Insertions are a major component

– R printout after code chunk producing the output; plain tables

– single pdf or postscript graphic after chunk, generates LATEX includegraphics

command

– direct insertion of LATEX code produced by R functions

– computed values inserted outside of code chunks

� Major advantages over Microsoft Word: composition time, batch mode, easily
maintained scripts, beauty

� knitr produces self-documenting reports with nice graphics, to be given to clients

– showing code demonstrates you are not doing“pushbutton” research

21.7.4

knitr Features

� R code set off by lines containing only <<>>=

http://hbiostat.org/audio/bbr/rr-13.mp3
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� LATEX text starts with a line containing only @

� knitr senses when a chunk produces a graphic (even without print() and automat-
ically includes the graphic in LATEX

� All other lines sent to LATEX verbatim, R code and output sent to LATEX by default
but this can easily be overridden

� Can specify that a chunk produces markup that is directly typeset; this is how
complex LATEX tables generated by R

� Can include calculated variables directly in sentences, e.g.
And the final answer is 3. will produce“And the final answer is 3.”

� Easy to customize chunk options and add advanced features such as automatically
creating a LATEX figure environment if a caption is given in the chunk header

� Setup for advanced features, including code pretty-printing, shown at https://
biostat.app.vumr.org/KnitrHowto

� Simplified interface to tikz graphics

� Simplified implementation of caching

� More automatic pretty–printing; support for LATEX listings package built–in

See http://hbiostat.org/rr/index.html#template

Summary

Much of research that uses data analysis is not reproducible. This can be for a variety of reasons, the most major one being

poor design and poor science. Other causes include tweaking of instrumentation, the use of poorly studied high-dimensional

feature selection algorithms, programming errors, lack of adequate documentation of what was done, too much copy and

paste of results into manuscripts, and the use of spreadsheets and other interactive data manipulation and analysis tools

that do not provide a usable audit trail of how results were obtained. Even when a research journal allows the authors the

“luxury”of having space to describe their methods, such text can never be specific enough for readers to exactly reproduce

what was done. All too often, the authors themselves are not able to reproduce their own results. Being able to reproduce

https://biostat.app.vumr.org/KnitrHowto
https://biostat.app.vumr.org/KnitrHowto
http://hbiostat.org/rr/index.html#template
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an entire report or manuscript by issuing a single operating system command when any element of the data change, the

statistical computing system is updated, graphics engines are improved, or the approach to analysis is improved, is also a

major time saver.

It has been said that the analysis code provides the ultimate documentation of the“what, when, and how”for data analyses.

Eminent computer scientist Donald Knuth invented literate programming in 1984 to provide programmers with the ability

to mix code with documentation in the same file, with“pretty printing”customized to each. Lamport’s LATEX, an offshoot

of Knuth’s TEX typesetting system, became a prime tool for printing beautiful program documentation and manuals. When

Friedrich Leisch developed Sweave in 2002, Knuth’s literate programming model exploded onto the statistical computing

scene with a highly functional and easy to use coding standard using R and LATEX and for which the Emacs text editor

has special dual editing modes using ESS. This approach has now been extended to other computing systems and to word

processors. Using R with LATEX to construct reproducible statistical reports remains the most flexible approach and yields

the most beautiful reports, while using only free software. One of the advantages of this platform is that there are many

high-level R functions for producing LATEX markup code directly, and the output of these functions are easily directly to

the LATEX output stream created by knitr.
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21.8

Further Reading

An excellent book is Stodden, Leisch, and Peng [101]. See also

� https://github.com/SISBID/Module3: course by Baggerly and Broman

� reproducibleresearch.net

� cran.r-project.org/web/views/ReproducibleResearch.html

� www.nature.com/nature/focus/reproducibility

� hbiostat.org/rr

� groups.google.com/forum/#!forum/reproducible-research

� resources.rstudio.com/rstudio-conf-2019/r-markdown-the-bigger-picture

https://github.com/SISBID/Module3
reproducibleresearch.net
cran.r-project.org/web/views/ReproducibleResearch.html
www.nature.com/nature/focus/reproducibility
hbiostat.org/rr
groups.google.com/forum/#!forum/reproducible-research
resources.rstudio.com/rstudio-conf-2019/r-markdown-the-bigger-picture
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