
BIRT	Reporting	Guideline	

Introduction	
Reporting is an essential usage of the IBM CLM Solution for IoT. There are a couple of reporting
capabilities available to fulfill the reporting requirements. This guideline is about the built-in BIRT
solution, which allows running a report right in the context of the respective application. The usage of
BIRT is possible in Rational Team Concert (RTC) and Rational Quality Manager (RQM). Due to the
fact BIRT reporting is officially only supported for RTC this guideline just covers the report
development with RTC.

The reporting in BIRT is done using the Jazz Data Source which includes various views on either RTC
Live database tables or RTC Data Warehouse database tables. (see also Ref. 1).

Due to the fact the BIRT reporting is embedded into the RTC application it is important to take care
during the design and deployment process of new reports. Once a report has been deployed to an
RTC server and executed this report could potentially harm the server’s stability if the amount of data
fetched during the report execution increases dramatically. This could lead into a hanging RTC server
process which in most of the cases can only be fixed by restarting the RTC server instance. To take
care of the RTC application this guideline will provide some basic knowledge to prevent poor report
design and best practices for BIRT report designers.

Retrieve	Data	
In general, a report developer should consider to fetch only those columns from the database which
are required for a certain report because the data is processed in a Data Set which loads the entire
data into memory. Therefore, each column and each row fetched from the database consumes
memory on the application server.

In order to fetch data from the live or data warehouse database there exists three kinds of data sets:

• Advanced Data Set

• Simple Data Set

• Parameter Data Set.

This section is about the Advanced and the Simple Data Set. The Parameter Data Set is similar to the
Simple Data Set and isn't explicitly described in this guideline.

Parameter	vs	Filters	
Once a BIRT data source has been created and a data set to query a database table has been added
to the report this data set usually fetches all rows and the defined columns from this table. In a worst
case this could result in fetching all available rows and columns from a data warehouse database table
when the report is deployed and executed on the server.

Due to the fact the data warehouse is usually updated every night with the status or changes of the
RTC live data this could result in a huge amount of data, e.g.:

The data set is about to query the WORKITEMS_STATES table in the WORKITEMS_SNAPSHOT.
Let’s assume there are actually 1.000 work items in the RTC LIVE database and the RTC server is up
and running for 100 days. This will result in 100.000 database rows fetched with the defined data set
and this number increases day by day and additionally by every new work item.

To reduce the number of fetched database rows it's essential to use a data set's parameter option. A
parameter can be set for each query-able column in a database field and it behaves as a kind of
condition in an SQL where clause.

Filtering using a couple of very comfortable conditions is the other option to reduce the number of rows
shown as a result of a data set query. Anyway before the filter in a data set is applied it fetches all
rows from the database table. This means the entire data will be loaded into the applications memory
and filtered in the application's memory.

A BIRT report developer should prevent the usage of filters even at a glance they seem to be more
comfortable because of the available conditions. The parameter usage should be the first choice to
minimize the data to be fetched.

Advanced	Data	Set	
The Advanced Data Set is a more customizable data set to query the RTC database. It allows the
developer to create an SQL-Style parameter which includes SQL keywords like "IN, LIKE, AND, OR"
and it's also possible to use the available comparison operators " =, <>, >=, <=".

If the Simple Data Set based on equal and the logical AND does not fit the developer's filter criteria a
report developer should consider the Advanced Data Set to reduce the number of fetched rows from
the database.

Limit	the	Result	Set	Size	
To prevent a data set to fetch a huge amount of database rows it's possible to define the maximum
number of rows which could be fetched from the database table. If the total number of rows is not
known a report developer can limit the number of fetched rows by setting this parameter in a data set's
parameter section.

The maximum number of rows fetched by a data set can also be set by a JazzAdmin in the RTC
server's advanced properties.

Special	Value	Variables	
Some BIRT parameter types have special values which may be used. This means those parameters
accept special variables which will be expanded during runtime. The most common used variable is
the ‘{Current Project Area}’ which populates the project area name or item id parameter with the
respective value of the project area the report is actually executed. (see also Ref. 2)

Scripting	
One of BIRT's strongest capabilities is the possibility to use Java Script in a report. This allows report
developers to update and convert data and makes it possible to apply calculations on this data. The
Rhino Java Script Engine used by BIRT has also the capability to embed Java Classes like to the Java
Script code which gives a report developer a wide range of objects that can be used.

Memory	Consumption		
A developer should always be aware that a Java Script or Java object requires memory of the RTC
server. Therefore, it is mandatory to reduce the number of fetched rows as well as the number of
fetched columns by row to the minimum of required data.

To show the memory consumption a bit more in detail refer to the following example:

var	object	=	
	{	
						'boolean'	:	true,	
						'number'		:	1,	
						'string'		:	'a',	
						'array'			:	[1,	2,	3]	
	};	

This simple Java Script object consumes approximately 78 Bytes.

Let's assume this example represents a row fetched from the RTC server.
If 100 of those rows are fetched 780 Bytes are used, 100.000 rows consume 78.000.000 Byte which is
approximately 78 Megabytes. (see also Ref 3)

The above row from the RTC LIVE_WORKITEM_CNT table consumes approximately 390 bytes.

Loops	
A report developer should take care of loops used in the Java Script code. Whenever possible the
developer should implement a kind of exit criteria to prevent endless loops.

Nested	Tables	
In some cases, it is not possible to use the given parameter capabilities of an Advanced or Simple
Data Set, e.g., fetching specific historical information for certain work items in the data warehouse.
This can be mastered by using the nested table concept.

Within this concept there is a result table embedded into a kind of criteria table which contains the filter
criteria for each row in the result table.

Let’s assume you would like to fetch the trend data for a couple of work items. Then you simply have
to create an outer table containing the work item ids and map the work item id to an inner table
containing the trend data. The work item id will be the filter criteria and shows only information for the
mapped work items.

The above shown screenshot shows an example of a nested table. The outer table is bound to the
LIVE_WORKITEM_CNT table and simply fetches the work item ids which match a certain criterion.
This work item id is mapped to an inner table bound to WORKITEM_STATES which shows the work
item states by day.

Dashboard	
Dashboards in the IBM C/ALM solution give users a brief overview on a project’s health and the
activities. Reports can also be embedded to such a Dashboard and enhances the user experiences
with trend or status overviews in a small widget.

BIRT	Dashboard	Widgets	
The space on a dashboard is limited. Therefore, a report developer should ensure that the shown
widget does not consume the entire tab of a dashboard. A dashboard widget should also be
expandable so that a user can enlarge the widget based on its demand.

Shown	Data	
A report developer should always think about the data which is shown in a widget. If a report even
though it’s developed based on the above listed hints with regards to memory usage reduction,
consumes a big amount of server memory the widget shouldn’t be implemented. This is with regards
to the possibility that there can be more than one of the same widget on a dashboard tab with different
configurations. Each instance of a widget consumes its own memory range which means the more
widgets of the same type are used the more memory will be consumed.

Additional	Best	Practices	

Charting	
Charts can be rendered in four different formats: PNG, JPG, BMP and SVG. The default selected
when inserting a chart is SVG. In order to use SVG the web browser which shows the report needs a
special plug-in. As a common format PNG proved itself in practice. Therefore it’s recommended to use
this format for each chart added to a report.

Report	Layout	
Within BIRT it’s possible to create hidden elements which can be used for e.g. calculations on fetched
data. It’s most common to use such a hidden dynamic text to fetch data from the RTC database which
will later be used for a scripted data set. Obsolete elements can increase the memory consumption
even though they don’t have any usability. Therefore, ensure to remove all not needed elements from
the report design.

References		
1. BIRT Reporting on Jazz.net (https://jazz.net/wiki/bin/view/Main/ReportsMain)

2. BIRT Report Parameter Handling (https://jazz.net/wiki/bin/view/Main/ReportsParameters)

3. Memory Usage of Java Script Object (http://code.stephenmorley.org/javascript/finding-the-
memory-usage-of-objects/)

4. Create Custom Reports with BIRT (http://www.ibm.com/developerworks/rational/library/create-
custom-reports-birt-rtc/)

5. Jazz.net Forum (https://jazz.net/forum/tags/birt/)

Author : Matthias Buettgen, IT Specialist,IBM Watson IoT

