
BITCOIN MINING IN A SAT FRAMEWORK

Jonathan Heusser

@jonathanheusser

DISCLAIMER

JUST TO BE CLEAR..

This is research! Not saying ASICs suck

I am not a cryptographer, nor SAT solver guy

WTF

REALISED PHD RESEARCH CAN MINE
BITCOINS

Phd in static analysis + information theory

Quantifying information leakage in programs

Same techniques can be used for mining without brute force!

REVIEW

BLOCK HEADER

MINING CORE

GETBLOCKTEMPLATE

template = getblocktemplate()
while extranonce < MAX:
 block_header = create(template, extranonce)

 while nonce < MAX:
 if f(block_header) < target:
 return 'Found valid block'
 nonce++
 extranonce++

nonce and extranonce pointers into block_header

MINING CORE

MINERS FOCUS ON BRUTEFORCE

template = getblocktemplate()
while extranonce < MAX:
 block_header = create(template, extranonce)

 while nonce < MAX:
 if sha2(sha2(block_header)) < target: // f(x) < target
 return 'Found valid block'
 nonce++
 extranonce++

f is considered a blackbox, not part of algorithm

brute force, because no method or logic involved

no connection between f and nonce

PROPERTY

AVALANCHE EFFECT
Good hash: 1 bit flipped in input, a lot of bits touched in

output

Observing the output of a hash function tells you nothing

about input

Output uniformly distributed no matter what input distribution

If that was not the case: search possible by playing with

nonce

Make f run as fast as possible!

Pools, GPU, FPGA, ASIC

IN THIS TALK

Connect f and nonce!

Using tools from program verification: model checker and
SAT solver

IN THIS TALK

Connect f and nonce! No brute force

Using tools from program verification: model checker and
SAT solver

Build declarative specification for mining

Model specification using model checking

Solve for nonce using SAT solver

DECLARATIVE SPECIFICATION (VS IMPERATIVE

ALGO)

nonce = * // don't care the actual value! Any value fine with me.
hash = sha2(sha2(block_header))
assume(hash < target) // constraint

Specification for set of valid mining solutions

Here, f and nonce connected through assumption and global

constraint

How to encode and solve?

MODEL CHECKING

FORMAL VERIFICATION USING MODEL
CHECKING

Extremely successful in practice but not well known (Turing
Award)

CPU designs, avionics, medical apps only safe due to
verification

Given system, check exhaustively properties of that system

Provide counter example to violation of property

Example property: absence of dead locks, floating point
errors, etc

BOUNDED MODEL CHECKING

VERIFICATION OF PROGRAMS IS HARD
State explosion: trivial program has infeasible number of

states

Abstraction or restriction of power necessary

Bounded model checker is only a bug hunting tool. Bounding
loops

BOUNDED MODEL CHECKING

VERIFICATION OF PROGRAMS IS HARD
State explosion: trivial program has infeasible number of

states

Abstraction or restriction of power necessary

Bounded model checker is only a bug hunting tool. Bounding
loops

CBMC bounded model checker translates C to logic and
hunts for bugs

bug means specification violation

BOUNDED MODEL CHECKING

C TO PROPOSITIONAL LOGIC
Bitvector variables, unrolled loops, SSA form, ...

Semantics mostly preserved

Program is one global constraint

BOUNDED MODEL CHECKING

PROPERTY CHECKING

Passed to decision procedure. Only satisfiable IFF property

P violated

Counterexample: execution path to violation of P

SAT SOLVING

DECISION PROCEDURE:

SATISFIABILITY SOLVER

Decide whether logic formula has a solution (is satisfiable)

Very active and competitive research area

Solvers based on Davis–Putnam–Logemann–Loveland
(DPLL) algorithm

Extremely efficient: 100k's vars, millions of clauses

SAT SOLVING

CONJUNCTIVE NORMAL FORM (CNF)

Formula in CNF: 'ands of ors'

For each clause, at least one literal true

All clauses true in order to be SAT

SAT SOLVING

DPLL ALGORITHM
Depth-first search by picking literals

Propagate decision

Backtrack on conflict

Lots of variations and heuristics

SAT SOLVING

SAT AND CRYPTOGRAPHY
Many papers on using SAT solvers for attacking ciphers

Represent cipher as equations, solve using SAT

Special solvers with XOR, Gauss elimination, variable

activity support, ..

Cryptominisat (Mate Soos)

SAT-BASED MINING

ENCODE SPECIFICATION USING CBMC

Translate specification into C code

Annotate with CBMC specific assumptions and assertions

SAT-BASED MINING

ENCODE SPECIFICATION USING CBMC

nonce = nondet_int()
hash = sha2(sha2(block_header))
assume(hash[0] == 0 && hash[1] == 0 && ..) // assume(hash < target)
assert(hash > target) // property P

Nonce is a non-deterministic value

Known structure of valid hash: leading zeros are assumed

Assertion that valid nonce does not exist

SAT-BASED-MINING

SAT-BASED FRAMEWORK

void satcoin(unsigned int *block) {

 unsigned int *nonce = block+N;

 *nonce = nondet_int();

 // 'sha' is a standard SHA-256 implementation

 hash = sha(sha(block));

 // assume leading zeros

 assume(hash[0] == 0x00 && ...);

 // encode a state where byte M of hash is bigger than target

 int flag = 0;

 if(hash[M] > target[M])

 flag = 1;

 // assert there's no hash that is below target

Demo Time

COMPARISON

SAT VS BRUTEFORCE

Clearly, brute force much faster. Only direction is making f
faster though

Encode richer specification: leading zeros, tricks in SHA2,
set individual bits in nonce, ...

Specialised SHA2 encoding: Vegard Nossum, sha256-sat-
bitcoin

Take advantage of SAT solvers: learnt clauses, variable
activity, cryptominisat, portfolio solvers

COMPARISON

INCREASING DIFFICULTY

Increasing difficulty results in more leading 0 in hash

Conceptually restricts search space

Does this lead to more efficient SAT solving?

REFERENCES

SOME RELEVANT PAPERS

SAT Solving - An alternative to brute force bitcoin mining

SAT-based preimage attacks on SHA-1

The Unreasonable Fundamental Incertitudes Behind Bitcoin

Mining

Algebraic Fault Attack on the SHA-256 Compression

Function

THANK YOU

