Being lucky in the category of commutative ring spectra
j/w Lindenstrauss and Richter

Bjørn lan Dundas

Nordic topology conference, November 28, $2014{ }^{1}$
${ }^{1}$ "When in doubt, p is odd"

Prologue: homology and commutativity

- M - abelian group
- X - space

The homology $H_{*}(X ; M)$ is represented by

$$
X \otimes M=" \bigoplus_{x \in X} M "
$$

Example:

Setup
Old calculations

$$
S^{n} \otimes M=K(M, n) .
$$

Commutativity of M is vital for functoriality. From a cellular structure of X one can build $X \otimes M$ by means of $S^{d} \otimes M^{\prime}$ s.

Prologue: homology and commutativity

Cartan/Serre: let $C^{n}=H_{*}\left(S^{n} \otimes \mathbf{Z} ; \mathbf{F}_{p}\right)$. Then

$$
C^{n}=\operatorname{Tor}_{*}^{C^{n-1}}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right) .
$$

We really understand the space $S^{1} \otimes \mathbf{Z} \simeq S^{1}$, and $C^{1}=E(z),|z|=1$, giving a full calculation ${ }^{2}$.
${ }^{2}$ Similarly for $H_{*}\left(S^{n} \otimes \mathbf{F}_{p} ; \mathbf{F}_{p}\right)$: we understand $S^{1} \otimes \mathbf{F}_{p}$ and
$H_{*}\left(S^{1} \otimes \mathbf{F}_{p} ; \mathbf{F}_{p}\right)=E(u) \otimes P(t),|u|=1,|t|=2$. $H_{*}\left(S^{1} \otimes \mathbf{F}_{p} ; \mathbf{F}_{p}\right)=E(u) \otimes P(t),|u|=1,|t|=2$

Setup

- A - commutative ring spectrum
- X - space
"Higher topological Hochschild homology" is represented by the commutative ring spectrum

$$
X \otimes A=" \bigwedge_{x \in X} A " .^{3}
$$

Examples:

[^0]
Setup

- A - commutative ring spectrum
- X - space
"Higher topological Hochschild homology" is represented by the commutative ring spectrum

$$
X \otimes A=" \bigwedge_{x \in X} A "^{3}
$$

Examples:

- $S^{1} \otimes A=\operatorname{THH}(A)$,

[^1]
Setup

- A - commutative ring spectrum
- X - space
"Higher topological Hochschild homology" is represented by the commutative ring spectrum

$$
X \otimes A=" \bigwedge_{x \in X} A "^{3}
$$

Examples:

- $S^{1} \otimes A=\operatorname{THH}(A)$,
- $T^{n} \otimes A=\operatorname{THH}(\ldots \operatorname{THH}(A) \ldots)\left(T^{n}=S^{1} \times \cdots \times S^{1}\right)$.

[^2]
Setup

- A - commutative ring spectrum
- X - space
"Higher topological Hochschild homology" is represented by the commutative ring spectrum

$$
X \otimes A=" \bigwedge_{x \in X} A "^{3}
$$

Examples:

- $S^{1} \otimes A=\operatorname{THH}(A)$,
- $T^{n} \otimes A=\operatorname{THH}(\ldots \operatorname{THH}(A) \ldots)\left(T^{n}=S^{1} \times \cdots \times S^{1}\right)$.

From a cellular structure of X one can build $X \otimes A$ by means of $S^{d} \otimes A^{\prime}$ s, e.g.,

$$
\Sigma X \otimes A \simeq A \wedge_{X \otimes A} A
$$

[^3]
Some calculations

Theorem

A - discrete \mathbf{Q}-algebra.

- $\pi_{n}\left(S^{1} \otimes A\right)=\bigoplus_{j=0}^{n} H_{n}^{(j)}(A)$ (Hodge decomp.)
- $H_{n}^{(1)}(A)=\lim _{\vec{k}} \pi_{n+k}\left(S^{k} \otimes A\right)=$ Harrison $=A Q$
- $\pi_{n}\left(S^{d} \otimes A\right)=\bigoplus_{i+d j=n} H_{i+j}^{(j)}(A)\left(d_{\text {odd }} \quad\right.$ a)
${ }^{\text {a }}$ Pirashvili

Some other calculations, e.g., for Thom spectra (Cohen, Blumberg, Schlichtkrull)

Theorem (Schlichtkrull)

$S^{n} \otimes M U \simeq M U \wedge B^{n+1} U_{+}$.

Bjørn lan Dundas

Chromatic importance

The "negative multi-cyclic homology"

$$
\left(T^{n} \otimes A\right)^{h T^{n}}
$$

detects chromatic behavior of

$$
K^{(n)}(A)=K(\ldots K(A) \ldots):
$$

Theorem ($n \leq 2$: Browder, Snaith, Bökstedt, Madsen; $n=3$: Rognes; $n \leq p$: Veen)
The Rognes classes detect the periodic classes: $v_{n-1} \neq 0$ in

$$
k(n-1)_{*} K^{(n)}\left(\mathbf{F}_{p}\right)
$$

and in

$$
k(n-1)_{*}\left(T^{n} \otimes H \mathbf{F}_{p}\right)^{n T^{n}}
$$

Little comfort in being "close to algebra"

(connective) spectra 4	\nsim	${\text { (simplicial) } \text { sets }^{5}}^{5}$
HZ-modules	\sim	abelian groups
HZ-algebras	\sim	rings
commutative HZ-algebras	\nsim	commutative rings

$$
\begin{array}{cc}
\substack{\mathrm{HZ} \text {-alg. } \\
\uparrow} & \xrightarrow{\mathrm{THH}} \\
\text { com. } \mathrm{HZ} \text {-alg. } . \\
\xrightarrow{\mathrm{THH}} & \text { com. } \mathrm{HZ} \text {-alg. } \xrightarrow{\mathrm{THH}} \ldots
\end{array}
$$

In order to iterate THH one needs to understand the commutative structure...

[^4]
Little comfort in being "close to algebra"

(connective) spectra 4	\nsim	${\text { (simplicial) } \text { sets }^{5}}^{5}$
HZ-modules	\sim	abelian groups
HZ-algebras	\sim	rings
commutative HZ-algebras	\nsim	commutative rings

$$
\begin{aligned}
& \text { HZ-alg. } \xrightarrow{\mathrm{THH}} H Z \text {-mod. } \\
& \uparrow \uparrow \\
& \text { com. HZ-alg. } \xrightarrow{\mathrm{THH}} \text { com. HZ-alg. } \xrightarrow{\mathrm{THH}} \ldots
\end{aligned}
$$

In order to iterate THH one needs to understand the commutative structure...

BUT occasionally one is lucky!

[^5]
Higher THH of $H F_{p}$

Bjørn lan Dundas

> Bökstedt/Breen $(80 \pm 5) \quad p$ prime
> $\pi_{*}\left(S^{1} \otimes H \mathbf{F}_{p}\right)=\mathbf{F}_{p}[x]=P(x), \quad|x|=2$

Prologue
Setun
Old calculations
Chromatic
importance
Close to algebra?
Higher THH of
HF ${ }_{p}$
Higher TIFI of the integers

Higher tent of
rings of integers A

Higher THH of $H \mathbf{F}_{p}$

Bökstedt/Breen $(80 \pm 5) \quad p$ prime
 $\pi_{*}\left(S^{1} \otimes H \mathbf{F}_{p}\right)=\mathbf{F}_{p}[x]=P(x), \quad|x|=2$

Basterra/Mandell (∞)
partial results by Veen ($n \leq 2 p$ arXiv13),
Bobkova/Lindenstrauss/Poirier/Richter/Zakharevich ($n \leq 2 p+2$ arXiv13)

$$
\pi_{*}\left(S^{n} \otimes H \mathbf{F}_{p}\right) \cong B^{n}(x)
$$

$|x|=2$, where

$$
B^{1}=P(x), \quad B^{n}(x)=\operatorname{Tor}^{B^{n-1}(x)}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right)
$$

$\pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right) \cong B^{2}(x)=E(\sigma x),|\sigma x|=3$
commutative
ring spectra
Bjørn Ian Dundas
a suggestion for sketch of a proof:

$$
\begin{aligned}
& \cong\left(D^{2} \otimes H F_{p}\right) \wedge_{S^{1} \otimes H F_{p}}\left(D^{2} \otimes H F_{p}\right) \\
& \simeq H F_{p} \wedge_{S^{1} \otimes H F_{p}}^{L} H F_{p},
\end{aligned}
$$

$$
\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right)=\operatorname{Tor}_{*}^{P(x)}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right) \Rightarrow \pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right),
$$

inger THIH of

$\pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right) \cong B^{2}(x)=E(\sigma x),|\sigma x|=3$

a suggestion for sketch of a proof:

$$
\begin{aligned}
S^{2} \otimes H \mathbf{F}_{p} & =\left(D^{2} \coprod_{S^{1}} D^{2}\right) \otimes H \mathbf{F}_{p} \\
& \cong\left(D^{2} \otimes H \mathbf{F}_{p}\right) \wedge_{S^{1} \otimes H \mathbf{F}_{p}}\left(D^{2} \otimes H \mathbf{F}_{p}\right) \\
& \simeq H \mathbf{F}_{p} \wedge_{S^{1} \otimes H \mathbf{F}_{p}}^{L} H \mathbf{F}_{p},
\end{aligned}
$$

Prologue

Setup
Old calculations

$\pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right) \cong B^{2}(x)=E(\sigma x),|\sigma x|=3$

a suggestion for sketch of a proof:

$$
\begin{aligned}
S^{2} \otimes H \mathbf{F}_{p} & =\left(D^{2} \coprod_{S^{1}} D^{2}\right) \otimes H \mathbf{F}_{p} \\
& \cong\left(D^{2} \otimes H \mathbf{F}_{p}\right) \wedge_{S^{1} \otimes H \mathbf{F}_{p}}\left(D^{2} \otimes H \mathbf{F}_{p}\right) \\
& \simeq H \mathbf{F}_{p} \wedge_{S^{1} \otimes H \mathbf{F}_{p}}^{L} H \mathbf{F}_{p},
\end{aligned}
$$

Tor SS:
$\operatorname{Tor}_{*}^{\pi_{*}\left(S^{1} \otimes H F_{p}\right)}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right)=\operatorname{Tor}_{*}^{P(x)}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right) \Rightarrow \pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right)$,

Prologue

Setup
Old calculations
Chromatic
importance
Close to algebra?
Higher THH of
H_{p}
Higher THII of the integers

$\pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right) \cong B^{2}(x)=E(\sigma x),|\sigma x|=3$

a suggestion for sketch of a proof:

$$
\begin{aligned}
S^{2} \otimes H \mathbf{F}_{p} & =\left(D^{2} \coprod_{S^{1}} D^{2}\right) \otimes H \mathbf{F}_{p} \\
& \cong\left(D^{2} \otimes H \mathbf{F}_{p}\right) \wedge_{S^{1} \otimes H \mathbf{F}_{p}}\left(D^{2} \otimes H \mathbf{F}_{p}\right) \\
& \simeq H \mathbf{F}_{p} \wedge_{S^{1} \otimes H \mathbf{F}_{p}}^{L} H \mathbf{F}_{p},
\end{aligned}
$$

Tor SS:
$\operatorname{Tor}_{*}^{\pi_{*}\left(S^{1} \otimes H \mathbf{F}_{p}\right)}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right)=\operatorname{Tor}_{*}^{P(x)}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right) \Rightarrow \pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right)$, no room for differentials or extensions:

$$
\pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right) \cong B^{2}(x) \cong E(\sigma x)
$$

Enter: good fortune!

Bjørn Ian Dundas

Prologue

Setup
Old calculations

$$
\pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right) \cong B^{2}(x) \cong E(\sigma x) .
$$

Chromatic
 importance

Close to algebra?
Higher THH of H_{p}

Enter: good fortune!

$$
\pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right) \cong B^{2}(x) \cong E(\sigma x) .
$$

Unique ht. type of commutative $H F_{p}$-algebra, ${ }^{6}$ \square

[^6]
Enter: good fortune!

$$
\pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right) \cong B^{2}(x) \cong E(\sigma x) .
$$

Unique ht. type of commutative $H F_{p}$-algebra, ${ }^{6}$ so

$$
S^{2} \otimes H \mathbf{F}_{p} \simeq H \mathbf{F}_{p} \vee \Sigma^{3} H \mathbf{F}_{p} \simeq H\left(\mathbf{F}_{p}\left[S^{3}\right]\right)
$$

(square zero) as commutative $H \mathbf{F}_{p}$-algebras(!)... ${ }^{7}$

[^7]
Enter: good fortune!

$$
\pi_{*}\left(S^{2} \otimes H \mathbf{F}_{p}\right) \cong B^{2}(x) \cong E(\sigma x) .
$$

Unique ht. type of commutative $H F_{p}$-algebra, ${ }^{6}$ so

$$
S^{2} \otimes H \mathbf{F}_{p} \simeq H \mathbf{F}_{p} \vee \Sigma^{3} H \mathbf{F}_{p} \simeq H\left(\mathbf{F}_{p}\left[S^{3}\right]\right)
$$

(square zero) as commutative $H \mathbf{F}_{p}$-algebras(!)... ${ }^{7}$

[^8]
Higher THH of integers

$$
V(0)_{*}\left(S^{n} \otimes H \mathbf{Z}\right) \cong B^{n}(x) \otimes B^{n+1}(y),
$$

$$
|x|=2 p,|y|=2 p-2
$$

$B^{1}=P(x), \quad B^{n}(x)=\operatorname{Tor}^{B^{n-1}(x)}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right)$

Higher THH of integers ${ }^{10}$

Relative constructions: $A \rightarrow B, * \rightarrow X$;

$$
X \otimes(A, B)=(X \otimes A) \wedge_{A} B \quad 8
$$

commutative ring spectrum.
Examples:

Prologue

Setup
Old calculations

$$
\begin{aligned}
& { }^{8} * \otimes A=A \\
& 9
\end{aligned}{ }^{10} V(0)_{*}\left(S^{n} \otimes H Z\right) \cong B^{n}(x) \otimes B^{n+1}(y) .
$$

Higher THH of integers ${ }^{10}$

Relative constructions: $A \rightarrow B, * \rightarrow X$;

$$
X \otimes(A, B)=(X \otimes A) \wedge_{A} B \quad 8
$$

commutative ring spectrum.
Examples:

- $S^{1} \otimes(A, B)=\operatorname{THH}(A, B)$,

Higher THH of the integers

$$
\begin{aligned}
& { }^{8} * \otimes A=A \\
& 9
\end{aligned}{ }^{10} V(0)_{*}\left(S^{n} \otimes H Z\right) \cong B^{n}(x) \otimes B^{n+1}(y) .
$$

Higher THH of integers ${ }^{10}$

Relative constructions: $A \rightarrow B, * \rightarrow X$;

$$
X \otimes(A, B)=(X \otimes A) \wedge_{A} B \quad 8
$$

commutative ring spectrum.
Examples:

- $S^{1} \otimes(A, B)=\operatorname{THH}(A, B)$,
- $H \mathbf{Z} \rightarrow H \mathbf{F}_{p}, S^{n} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right) \simeq V(0) \wedge\left(S^{n} \otimes H \mathbf{Z}\right)$

Prologue

Setup
Old calculations

$$
\begin{aligned}
& { }^{8} * \otimes A=A \\
& { }_{9} \\
& { }^{10} V(0)_{*}\left(S^{n} \otimes H Z\right) \cong B^{n}(x) \otimes B^{n+1}(y)
\end{aligned}
$$

Higher THH of integers ${ }^{10}$

Relative constructions: $A \rightarrow B, * \rightarrow X$;

$$
X \otimes(A, B)=(X \otimes A) \wedge_{A} B \quad 8
$$

commutative ring spectrum.
Examples:

- $S^{1} \otimes(A, B)=\operatorname{THH}(A, B)$,
- $H \mathbf{Z} \rightarrow H F_{p}, S^{n} \otimes\left(H \mathbf{Z}, H F_{p}\right) \simeq V(0) \wedge\left(S^{n} \otimes H \mathbf{Z}\right)$
- $\ell_{p} \rightarrow H \mathbf{F}_{p}, S^{n} \otimes\left(\ell_{p}, H F_{p}\right) \simeq V(1) \wedge\left(S^{n} \otimes \ell_{p}\right)^{9}$

Prologue

Setup
Old calculations

$$
\begin{aligned}
& { }^{8} * \otimes A=A \\
& { }^{9} \ell_{p} \text { Adams summand, } V(1)=\mathbf{S} /\left(p, v_{1}\right) \\
& { }^{10} V(0)_{*}\left(S^{n} \otimes H Z\right) \cong B^{n}(x) \otimes B^{n+1}(y)
\end{aligned}
$$

Higher THH of integers ${ }^{13}$

Sketch proof. Bökstedt: ok for $n=1$:

$$
\begin{aligned}
& \quad V(0)_{*}\left(S^{1} \otimes H Z\right) \cong B^{1}(x) \otimes B^{2}(y) \cong P(x) \otimes E(\sigma y), \\
& |x|=2 p,|y|=2 p-2,|\sigma y|=2 p-1 .
\end{aligned}
$$

Mapping to the first Postnikov section we get
${ }^{12}$ warning: pushouts are in commutative $H F_{p}$-algebras.
${ }^{13} V(0)_{*}\left(S^{n} \otimes H \mathbf{Z}\right) \cong \pi_{*}\left(S^{n} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)\right) \cong B^{n}(x) \otimes B^{n+1}(y)$

Higher THH of integers ${ }^{13}$

Sketch proof. Bökstedt: ok for $n=1$:

$$
\begin{aligned}
& \qquad V(0)_{*}\left(S^{1} \otimes H Z\right) \cong B^{1}(x) \otimes B^{2}(y) \cong P(x) \otimes E(\sigma y), \\
& |x|=2 p,|y|=2 p-2,|\sigma y|=2 p-1 . \\
& \text { Mapping to the first Postnikov section we get }
\end{aligned}
$$

Prologue
Setup
Old calculations

11
${ }^{12}$ warning: pushouts are in commutative $H F_{p}$-algebras.
${ }^{13} V(0)_{*}\left(S^{n} \otimes H \mathbf{Z}\right) \cong \pi_{*}\left(S^{n} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)\right) \cong B^{n}(x) \otimes B^{n+1}(y)$

Higher THH of integers ${ }^{13}$

Sketch proof. Bökstedt: ok for $n=1$:

$$
\begin{aligned}
& V(0)_{*}\left(S^{1} \otimes H Z\right) \cong B^{1}(x) \otimes B^{2}(y) \cong P(x) \otimes E(\sigma y), \\
& |x|=2 p,|y|=2 p-2,|\sigma y|=2 p-1
\end{aligned}
$$

Mapping to the first Postnikov section we get

Prologue
Setup
Old calculations

[^9]
Higher THH of integers ${ }^{13}$

Sketch proof. Bökstedt: ok for $n=1$:

$$
\begin{aligned}
& V(0)_{*}\left(S^{1} \otimes H Z\right) \cong B^{1}(x) \otimes B^{2}(y) \cong P(x) \otimes E(\sigma y) \\
& |x|=2 p,|y|=2 p-2,|\sigma y|=2 p-1
\end{aligned}
$$

Mapping to the first Postnikov section we get

$$
\begin{gathered}
S^{1} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right) \longrightarrow H \mathbf{F}_{p}\left[S^{2 p-1}\right] \longrightarrow H \mathbf{F}_{p} \\
\\
\vdots \\
\\
\\
\\
\\
\mathbf{F}_{p} \longrightarrow
\end{gathered}
$$

Prologue
Setup
Old calculations
Chromatic
importance
Close to algebra?
Highen mplat of

Higher THH of the
integers
${ }^{11}$ unique ht. type -()
${ }^{12}$ warning: pushouts are in commutative $H \mathbf{F}_{p}$-algebras.
${ }^{13} V(0)_{*}\left(S^{n} \otimes H \mathbf{Z}\right) \cong \pi_{*}\left(S^{n} \otimes\left(H Z, H F_{p}\right)\right) \cong B^{n}(x) \otimes B^{n+1}(y)$

Higher THH of integers ${ }^{13}$

Sketch proof. Bökstedt: ok for $n=1$:

$$
V(0)_{*}\left(S^{1} \otimes H \mathbf{Z}\right) \cong B^{1}(x) \otimes B^{2}(y) \cong P(x) \otimes E(\sigma y)
$$

$$
|x|=2 p,|y|=2 p-2,|\sigma y|=2 p-1
$$

Mapping to the first Postnikov section we get
$S^{1} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right) \longrightarrow H \mathbf{F}_{p}\left[S^{2 p-1}\right] \longrightarrow H \mathbf{F}_{p}$

[^10]
Higher THH of integers ${ }^{14}$

So,

$$
\begin{aligned}
S^{2} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right) & \simeq H \mathbf{F}_{p}\left[S^{2 p+1}\right] \wedge H \mathbf{F}_{p} \Sigma H \mathbf{F}_{p}\left[S^{2 p-1}\right] \\
& \simeq H\left(\mathbf{F}_{p}\left[S^{2 p+1}\right] \otimes_{\mathbf{F}_{p}}\left(\mathbf{F}_{p} \otimes_{\mathbf{F}_{p}\left[S^{2 p-1}\right]} \mathbf{F}_{p}\right)\right) .
\end{aligned}
$$

${ }^{14} V(0)_{*}\left(S^{n} \otimes H \mathbf{Z}\right) \cong \pi_{*}\left(S^{n} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)\right) \cong B^{n}(x) \otimes B^{n+1}(y)$

Higher THH of integers ${ }^{15}$

$$
S^{2} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right) \simeq H\left(\mathbf{F}_{p}\left[S^{2 p+1}\right] \otimes_{\mathbf{F}_{p}}\left(\mathbf{F}_{p} \otimes_{\mathbf{F}_{p}\left[S^{2 p-1}\right]} \mathbf{F}_{p}\right)\right) .
$$

Tor SS now gives the result for $n=2$:

$$
\begin{aligned}
V(0)_{*}\left(S^{2} \otimes H \mathbf{Z}\right) & \cong \pi_{*}\left(S^{2} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)\right) \\
& \cong B^{2}(x) \otimes B^{3}(y) \cong E(\sigma x) \otimes \Gamma\left(\sigma^{2} y\right)
\end{aligned}
$$

$$
|\sigma x|=2 p+1,\left|\sigma^{2} y\right|=2 p
$$

$$
{ }^{15} V(0)_{*}\left(S^{n} \otimes H \mathbf{Z}\right) \cong \pi_{*}\left(S^{n} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)\right) \cong B^{n}(x) \otimes B^{n+1}(y)
$$

Higher THH of integers ${ }^{16}$

In higher dimension: do all directions simultaneously, remembering that

$$
S^{2} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right) \simeq H\left(\mathbf{F}_{p}\left[S^{2 p+1}\right] \otimes_{\mathbf{F}_{p}}\left(\mathbf{F}_{p} \otimes_{\mathbf{F}_{p}\left[S^{2 p-1}\right]} \mathbf{F}_{p}\right)\right)
$$

and that

$$
H \mathbf{F}_{p} \quad \longrightarrow S^{n+1} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)
$$

is a homotopy pushout of commutative $H F_{p}$-algebras; and using a multisimplicial Bar-resolution.
${ }^{16} V(0)_{*}\left(S^{n} \otimes H \mathbf{Z}\right) \cong \pi_{*}\left(S^{n} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)\right) \cong B^{n}(x) \otimes B^{n+1}(y)$

Higher THH of rings of integers A

A prime at a time:

$$
\left(S^{n} \otimes A\right)_{p} \simeq \prod_{p \in \mathfrak{m} \in \operatorname{Spec}(A)}\left(S^{n} \otimes A_{\mathfrak{m}}\right)_{p}
$$

D, Lindenstrauss, Richter (∞) A a number ring,
$k=A / \mathfrak{m}$

$$
\pi_{*}\left(S^{n} \otimes\left(A_{\mathfrak{m}}, k\right)\right) \cong B_{k}^{n}\left(x_{\mathfrak{m}}\right) \otimes B_{k}^{n+1}\left(y_{\mathfrak{m}}\right)
$$

$\left|x_{\mathfrak{m}}\right|=2 p^{r_{\mathfrak{m}}},\left|y_{\mathfrak{m}}\right|=2 p^{r_{\mathfrak{m}}}-2$, where
(1) $r_{\mathfrak{m}}=1$ if $\widehat{A_{\mathfrak{m}}}$ unramified over \mathbf{Z}_{p}
(2) $r_{\mathfrak{m}}=0$ if $\widehat{A_{\mathfrak{m}}}$ ramified over \mathbf{Z}_{p}

$$
{ }^{a} B_{k}^{1}(x)=k[x] \text { and } B_{k}^{n+1}(x)=\operatorname{Tor}^{B_{k}^{n}}(k, k)
$$

Prologue
Setun
Old calculations
Chromatic
importance
Close to algebra?
Higher THII of

Higher THH of rings of integers

$$
\begin{aligned}
& \text { DLR }(\infty) \quad A \text { a number ring, } \quad p \in \mathfrak{m} \in \operatorname{Spec}(A), \\
& k=A / \mathfrak{m} \\
& \qquad \pi_{*}\left(S^{n} \otimes\left(A_{\widehat{m}}, k\right)\right) \cong B_{k}^{n}\left(x_{\mathfrak{m}}\right) \otimes B_{k}^{n+1}\left(y_{\mathfrak{m}}\right) \quad \text { a } \\
& \left|x_{\mathfrak{m}}\right|=2 p^{r_{\mathfrak{m}}},\left|y_{\mathfrak{m}}\right|=2 p^{r_{\mathfrak{m}}}-2 \text {, where } \\
& \text { (1) } r_{\mathfrak{m}}=1 \text { if } A_{\mathfrak{m}} \text { unramified over } \mathbf{Z}_{p} \\
& \text { (2) } r_{\mathfrak{m}}=0 \text { if } A_{\mathfrak{m}} \text { ramified over } \mathbf{Z}_{p} \\
& \hline{ }^{2} B_{k}^{1}(x)=k[x] \text { and } B_{k}^{n+1}(x)=\operatorname{Tor}^{B^{n}}(k, k)
\end{aligned}
$$

Prologue
Setup
Old calculations
Chromatic
importance
Close to algebra?
Higher TITIT of

Higher THH of the integers
rings of integers A

Higher THH of rings of integers

$$
\begin{aligned}
& \text { DLR }(\infty) \quad A \text { a number ring, } \quad p \in \mathfrak{m} \in \operatorname{Spec}(A), \\
& k=A / \mathfrak{m} \\
& \qquad \pi_{*}\left(S^{n} \otimes\left(A_{\mathfrak{m}}, k\right)\right) \cong B_{k}^{n}\left(x_{\mathfrak{m}}\right) \otimes B_{k}^{n+1}\left(y_{\mathfrak{m}}\right) \quad \text { a } \\
& \begin{array}{l}
\left|x_{\mathfrak{m}}\right|=2 p^{r_{\mathfrak{m}}},\left|y_{\mathfrak{m}}\right|=2 p^{r_{\mathfrak{m}}}-2 \text {, where } \\
\text { (1) } r_{\mathfrak{m}}=1 \text { if } A_{\mathfrak{m}} \text { unramified over } \mathbf{Z}_{p} \\
\text { (2) } r_{\mathfrak{m}}=0 \text { if } A_{\mathfrak{m}} \text { ramified over } \mathbf{Z}_{p} \\
\hline{ }^{2} B_{k}^{1}(x)=k[x] \text { and } B_{k}^{n+1}(x)=\operatorname{Tor}^{B_{k}^{n}}(k, k)
\end{array}
\end{aligned}
$$

Prologue
Setup
Old calculations
Chromatic
importance
Close to algebra?
Higher TItIt of
rings of integers A

Proof:

- Unramified: follows directly from $\pi_{*}\left(S^{n} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)\right)$

Higher THH of rings of integers

$$
\begin{aligned}
& \operatorname{DLR}(\infty) \quad A \text { a number ring, } \quad p \in \mathfrak{m} \in \operatorname{Spec}(A), \\
& k=A / \mathfrak{m} \\
& \quad \pi_{*}\left(S^{n} \otimes\left(A_{\mathfrak{m}}, k\right)\right) \cong B_{k}^{n}\left(x_{\mathfrak{m}}\right) \otimes B_{k}^{n+1}\left(y_{\mathfrak{m}}\right) \\
& \left|x_{\mathfrak{m}}\right|=2 p^{r_{\mathfrak{m}}},\left|y_{\mathfrak{m}}\right|=2 p^{r_{\mathfrak{m}}}-2, \text { where }
\end{aligned}
$$

(1) $r_{\mathfrak{m}}=1$ if $\widehat{A_{\mathfrak{m}}}$ unramified over \mathbf{Z}_{p}
(2) $r_{\mathfrak{m}}=0$ if $\widehat{A_{\mathfrak{m}}}$ ramified over \mathbf{Z}_{p}

$$
{ }^{a} B_{k}^{1}(x)=k[x] \text { and } B_{k}^{n+1}(x)=\operatorname{Tor}^{B_{k}^{n}}(k, k)
$$

Proof:

- Unramified: follows directly from $\pi_{*}\left(S^{n} \otimes\left(H \mathbf{Z}, H F_{p}\right)\right)$
- Ramified: use Lindenstrauss and Madsen's calculation when $n=1$ and a slight Postnikov twist of the proof of the $H Z$-case.
commutative ring spectra

Bjørn Ian Dundas

Prologue
Setup
Old calculations

Chromatic
importance
Close to algebra？
Higher TITIT of
H_{P}
Higher THH of the integers

Higher THH of
rings of integers A

To do

(1) Bockstein

Chromatic

importance
Close to algebra?
Higher TTITH of H_{p}

Higher THH of the integers

To do

(1) Bockstein
(2) Reengineer (a la Borel/Cartan, j / w Ausoni) $T^{n} \otimes A$ from

$$
\Sigma T^{n} \otimes A \simeq \bigwedge_{X} S^{|X|+1} \otimes A
$$

To do

(1) Bockstein
(2) Reengineer (a la Borel/Cartan, j / w Ausoni) $T^{n} \otimes A$ from

$$
\Sigma T^{n} \otimes A \simeq \bigwedge_{X} S^{|X|+1} \otimes A
$$

(3) Analyze fixed points

To do

(1) Bockstein
(2) Reengineer (a la Borel/Cartan, j / w Ausoni) $T^{n} \otimes A$ from

$$
\Sigma T^{n} \otimes A \simeq \bigwedge_{X} S^{|X|+1} \otimes A
$$

(3) Analyze fixed points
(9) Thank the audience

[^0]: ${ }^{3}$ McClure, Schwänzl, Vogt. Fancy equivariant versions irrelevant for this talk, but things may be derived without notice.

[^1]: ${ }^{3}$ McClure, Schwänzl, Vogt. Fancy equivariant versions irrelevant for this talk, but things may be derived without notice.

[^2]: ${ }^{3}$ McClure, Schwänzl, Vogt. Fancy equivariant versions irrelevant for this talk, but things may be derived without notice.

[^3]: ${ }^{3}$ McClure, Schwänzl, Vogt. Fancy equivariant versions irrelevant for this talk, but things may be derived without notice.

[^4]: ${ }^{4}$ on this side everything is connective
 ${ }^{5}$ on this side everything is simplicial

[^5]: ${ }^{4}$ on this side everything is connective
 ${ }^{5}$ on this side everything is simplicial

[^6]: ${ }^{6}$ Kriz? Learned from Mandell. C.f. also Lazarev's (04) writeup of Basterra/Mandell's identification of $\mathrm{TAQ}\left(\boldsymbol{H F}_{p}\right)$

[^7]: ${ }^{6}$ Kriz? Learned from Mandell. C.f. also Lazarev's (04) writeup of Basterra/Mandell's identification of TAQ $\left(H F_{p}\right)$

[^8]: ${ }^{6}$ Kriz? Learned from Mandell. C.f. also Lazarev's (04) writeup of Basterra/Mandell's identification of TAQ $\left(H F_{p}\right)$
 ${ }^{7}$ Veen and BLPRZ do it algebraically. I have not seen Basterra/Mandell's proof, but I will return to how one might deal with some of the problems that have to be addressed

[^9]: ${ }^{11}$ unique ht. type -
 ${ }^{12}$ warning: pushouts are in commutative $H F_{p}$-algebras
 ${ }^{13} V(0)_{*}\left(S^{n} \otimes H \mathbf{Z}\right) \cong \pi_{*}\left(S^{n} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)\right) \cong B^{n}(x) \otimes B^{n+1}(y)$

[^10]: ${ }^{11}$ unique ht. type $-(-)$ - the factorization is a small calculation ${ }^{12}$ warning: pushouts are in commutative $H F_{p}$-algebras. Suspensions likewise ${ }^{13} V(0)_{*}\left(S^{n} \otimes H \mathbf{Z}\right) \cong \pi_{*}\left(S^{n} \otimes\left(H \mathbf{Z}, H \mathbf{F}_{p}\right)\right) \cong B^{n}(x) \otimes B^{n+1}(y)$

