
C H A P T E R 19

Distributed Databases

Practice Exercises

19.1 How might a distributed database designed for a local-area network differ
from one designed for a wide-area network?
Answer: Data transfer on a local-area network (LAN) is much faster than
on a wide-area network (WAN). Thus replication and fragmentation will
not increase throughput and speed-up on a LAN, as much as in a WAN.
But even in a LAN, replication has its uses in increasing reliability and
availability.

19.2 To build a highly available distributed system, you must know what kinds
of failures can occur.

a. List possible types of failure in a distributed system.

b. Which items in your list from part a are also applicable to a central-
ized system?

Answer:

a. The types of failure that can occur in a distributed system include

i. Site failure.

ii. Disk failure.

iii. Communication failure, leading to disconnection of one or more
sites from the network.

b. The first two failure types can also occur on centralized systems.

19.3 Consider a failure that occurs during 2PC for a transaction. For each pos-
sible failure that you listed in Practice Exercise 19.2a, explain how 2PC

ensures transaction atomicity despite the failure.
Answer: A proof that 2PC guarantees atomic commits/aborts inspite of
site and link failures, follows. The main idea is that after all sites reply
with a <ready T> message, only the co-ordinator of a transaction can
make a commit or abort decision. Any subsequent commit or abort by a

1

2 Chapter 19 Distributed Databases

site can happen only after it ascertains the co-ordinator’s decision, either
directly from the co-ordinator, or indirectly from some other site. Let us
enumerate the cases for a site aborting, and then for a site committing.

a. A site can abort a transaction T (by writing an <abort T> log record)
only under the following circumstances:

i. It has not yet written a <ready T> log-record. In this case, the
co-ordinator could not have got, and will not get a <ready T>

or <commit T> message from this site. Therefore only an abort
decision can be made by the co-ordinator.

ii. It has written the <ready T> log record, but on inquiry it found
out that some other site has an <abort T> log record. In this
case it is correct for it to abort, because that other site would
have ascertained the co-ordinator’s decision (either directly or
indirectly) before actually aborting.

iii. It is itself the co-ordinator. In this case also no site could have
committed, or will commit in the future, because commit deci-
sions can be made only by the co-ordinator.

b. A site can commit a transaction T (by writing an <commit T> log
record) only under the following circumstances:

i. It has written the <ready T> log record, and on inquiry it found
out that some other site has a <commit T> log record. In this
case it is correct for it to commit, because that other site would
have ascertained the co-ordinator’s decision (either directly or
indirectly) before actually committing.

ii. It is itself the co-ordinator. In this case no other participating
site can abort/ would have aborted, because abort decisions are
made only by the co-ordinator.

19.4 Consider a distributed system with two sites, A and B. Can site A distin-
guish among the following?

• B goes down.

• The link between A and B goes down.

• B is extremely overloaded and response time is 100 times longer than
normal.

What implications does your answer have for recovery in distributed
systems?
Answer:
Site A cannot distinguish between the three cases until communication
has resumed with site B. The action which it performs while B is inacces-
sible must be correct irrespective of which of these situations has actually

Practice Exercises 3

occurred, and must be such that B can re-integrate consistently into the
distributed system once communication is restored.

19.5 The persistent messaging scheme described in this chapter depends on
timestamps combined with discarding of received messages if they are too
old. Suggest an alternative scheme based on sequence numbers instead
of timestamps.
Answer: We can have a scheme based on sequence numbers similar to
the scheme based on timestamps. We tag each message with a sequence
number that is unique for the (sending site, receiving site) pair. The num-
ber is increased by 1 for each new message sent from the sending site to
the receiving site.
The receiving site stores and acknowledges a received message only if it
has received all lower numbered messages also; the message is stored in
the received-messages relation.
The sending site retransmits a message until it has received an ack from the
receiving site containing the sequence number of the transmitted message,
or a higher sequence number. Once the acknowledgment is received, it
can delete the message from its send queue.
The receiving site discards all messages it receives that have a lower
sequence number than the latest stored message from the sending site. The
receiving site discards from received-messages all but the (number of the)
most recent message from each sending site (message can be discarded
only after being processed locally).
Note that this scheme requires a fixed (and small) overhead at the receiving
site for each sending site, regardless of the number of messages received.
In contrast the timestamp scheme requires extra space for every message.
The timestamp scheme would have lower storage overhead if the number
of messages received within the timeout interval is small compared to the
number of sites, whereas the sequence number scheme would have lower
overhead otherwise.

19.6 Give an example where the read one, write all available approach leads
to an erroneous state.
Answer: Consider the balance in an account, replicated at N sites. Let the
current balance be $100 – consistent across all sites. Consider two trans-
actions T1 and T2 each depositing $10 in the account. Thus the balance
would be $120 after both these transactions are executed. Let the transac-
tions execute in sequence: T1 first and then T2. Let one of the sites, say s,
be down when T1 is executed and transaction t2 reads the balance from
site s. One can see that the balance at the primary site would be $110 at
the end.

19.7 Explain the difference between data replication in a distributed system
and the maintenance of a remote backup site.
Answer: In remote backup systems all transactions are performed at
the primary site and the data is replicated at the remote backup site. The

4 Chapter 19 Distributed Databases

remote backup site is kept synchronized with the updates at the primary
site by sending all log records. Whenever the primary site fails, the remote
backup site takes over processing.
The distributed systems offer greater availability by having multiple
copies of the data at different sites whereas the remote backup systems
offer lesser availability at lower cost and execution overhead.
In a distributed system, transaction code runs at all the sites whereas in
a remote backup system it runs only at the primary site. The distributed
system transactions follow two-phase commit to have the data in con-
sistent state whereas a remote backup system does not follow two-phase
commit and avoids related overhead.

19.8 Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master)
copy.
Answer: Consider the balance in an account, replicated at N sites. Let the
current balance be $100 – consistent across all sites. Consider two trans-
actions T1 and T2 each depositing $10 in the account. Thus the balance
would be $120 after both these transactions are executed. Let the trans-
actions execute in sequence: T1 first and then T2. Suppose the copy of the
balance at one of the sites, say s, is not consistent – due to lazy replication
strategy – with the primary copy after transaction T1 is executed and let
transaction T2 read this copy of the balance. One can see that the balance
at the primary site would be $110 at the end.

19.9 Consider the following deadlock-detection algorithm. When transaction
Ti , at site S1, requests a resource from Tj , at site S3, a request message with
timestamp n is sent. The edge (Ti , Tj , n) is inserted in the local wait-for
graph of S1. The edge (Ti , Tj , n) is inserted in the local wait-for graph of
S3 only if Tj has received the request message and cannot immediately
grant the requested resource. A request from Ti to Tj in the same site is
handled in the usual manner; no timestamps are associated with the edge
(Ti , Tj). A central coordinator invokes the detection algorithm by sending
an initiating message to each site in the system.

On receiving this message, a site sends its local wait-for graph to the
coordinator. Note that such a graph contains all the local information that
the site has about the state of the real graph. The wait-for graph reflects
an instantaneous state of the site, but it is not synchronized with respect
to any other site.

When the controller has received a reply from each site, it constructs a
graph as follows:

• The graph contains a vertex for every transaction in the system.

• The graph has an edge (Ti , Tj) if and only if:

◦ There is an edge (Ti , Tj) in one of the wait-for graphs.

Practice Exercises 5

◦ An edge (Ti , Tj , n) (for some n) appears in more than one wait-for
graph.

Show that, if there is a cycle in the constructed graph, then the system is
in a deadlock state, and that, if there is no cycle in the constructed graph,
then the system was not in a deadlock state when the execution of the
algorithm began.
Answer: Let us say a cycle Ti → Tj → · · · → Tm → Ti exists in the graph
built by the controller. The edges in the graph will either be local edges
of the from (Tk, Tl) or distributed edges of the form (Tk, Tl, n). Each local
edge (Tk, Tl) definitely implies that Tk is waiting for Tl . Since a distributed
edge (Tk, Tl, n) is inserted into the graph only if Tk ’s request has reached
Tl and Tl cannot immediately release the lock, Tk is indeed waiting for Tl .
Therefore every edge in the cycle indeed represents a transaction waiting
for another. For a detailed proof that this imlies a deadlock refer to Stuart
et al. [1984].
We now prove the converse implication. As soon as it is discovered that
Tk is waiting for Tl :

a. a local edge (Tk, Tl) is added if both are on the same site.

b. The edge (Tk, Tl, n) is added in both the sites, if Tk and Tl are on
different sites.

Therefore, if the algorithm were able to collect all the local wait-for graphs
at the same instant, it would definitely discover a cycle in the constructed
graph, in case there is a circular wait at that instant. If there is a circu-
lar wait at the instant when the algorithm began execution, none of the
edges participating in that cycle can disappear until the algorithm fin-
ishes. Therefore, even though the algorithm cannot collect all the local
graphs at the same instant, any cycle which existed just before it started
will anyway be detected.

19.10 Consider a relation that is fragmented horizontally by plant number:

employee (name, address, salary, plant number)

Assume that each fragment has two replicas: one stored at the New York
site and one stored locally at the plant site. Describe a good processing
strategy for the following queries entered at the San Jose site.

a. Find all employees at the Boca plant.

b. Find the average salary of all employees.

c. Find the highest-paid employee at each of the following sites: Toronto,
Edmonton, Vancouver, Montreal.

d. Find the lowest-paid employee in the company.

6 Chapter 19 Distributed Databases

Answer:

a. i. Send the query 5name (employee) to the Boca plant.

ii. Have the Boca location send back the answer.

b. i. Compute average at New York.

ii. Send answer to San Jose.

c. i. Send the query to find the highest salaried employee to Toronto,
Edmonton, Vancouver, and Montreal.

ii. Compute the queries at those sites.

iii. Return answers to San Jose.

d. i. Send the query to find the lowest salaried employee to New York.

ii. Compute the query at New York.

iii. Send answer to San Jose.

19.11 Compute r ⋉ s for the relations of Figure 19.9.
Answer: The result is as follows.

r ⋉ s = A B C

1 2 3
5 3 2

19.12 Give an example of an application ideally suited for the cloud and another
that would be hard to implement successfully in the cloud. Explain your
answer.
Answer: Any application that is easy to partition, and does not need
strong guarantees of consistency across partitions, is ideally suited to the
cloud. For example, Web-based document storage systems (like Google
docs), and Web based email systems (like Hotmail, Yahoo! mail or GMail),
are ideally suited to the cloud. The cloud is also ideally suited to certain
kinds of data analysis tasks where the data is already on the cloud; for
example, the Google Map-Reduce framework, and Yahoo! Hadoop are
widely used for data analysis of Web logs such as logs of URLs clicked by
users.
Any database application that needs transactional consistency would
be hard to implement successfully in the cloud; examples include bank
records, academic records of students, and many other types of organiza-
tional records.

19.13 Given that the LDAP functionality can be implemented on top of a database
system, what is the need for the LDAP standard?
Answer: The reasons are:

a. Directory access protocols are simplified protocols that cater to a
limited type of access to data.

Practice Exercises 7

b. Directory systems provide a simple mechanism to name objects in
a hierarchical fashion which can be used in a distributed directory
system to specify what information is stored in each of the directory
servers. The directory system can be set up to automatically forward
queries made at one site to the other site, without user intervention.

19.14 Consider a multidatabase system in which it is guaranteed that at most
one global transaction is active at any time, and every local site ensures
local serializability.

a. Suggest ways in which the multidatabase system can ensure that
there is at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global
schedule to result despite the assumptions.

Answer:

a. We can have a special data item at some site on which a lock will
have to be obtained before starting a global transaction. The lock
should be released after the transaction completes. This ensures the
single active global transaction requirement. To reduce dependency
on that particular site being up, we can generalize the solution by
having an election scheme to choose one of the currently up sites to
be the co-ordinator, and requiring that the lock be requested on the
data item which resides on the currently elected co-ordinator.

b. The following schedule involves two sites and four transactions. T1

and T2 are local transactions, running at site 1 and site 2 respectively.
TG1 and TG2 are global transactions running at both sites. X1, Y1 are
data items at site 1, and X2, Y2 are at site 2.

T1 T2 TG1 TG2

write(Y1)

read(Y1)

write(X 2)

read(X 2)

write(Y2)

read(Y2)

write(X 1)

read(X 1)

In this schedule, TG2 starts only after TG1 finishes. Within each site,
there is local serializability. In site 1, TG2 → T1 → TG1 is a serializ-
ability order. In site 2, TG1 → T2 → TG2 is a serializability order. Yet
the global schedule schedule is non-serializable.

19.15 Consider a multidatabase system in which every local site ensures local
serializability, and all global transactions are read only.

8 Chapter 19 Distributed Databases

a. Show by example that nonserializable executions may result in such
a system.

b. Show how you could use a ticket scheme to ensure global serializ-
ability.

Answer:

a. The same system as in the answer to Exercise 19.14 is assumed,
except that now both the global transactions are read-only. Consider
the schedule given below.

T1 T2 TG 1 TG2

read(X 1)
write(X 1)

read(X 1)

read(X 2)

write(X 2)

read(X 2)

Though there is local serializability in both sites, the global schedule
is not serializable.

b. Since local serializability is guaranteed, any cycle in the system wide
precedence graph must involve at least two different sites, and two
different global transactions. The ticket scheme ensures that when-
ever two global transactions access data at a site, they conflict on
a data item (the ticket) at that site. The global transaction manager
controls ticket access in such a manner that the global transactions
execute with the same serializability order in all the sites. Thus the
chance of their participating in a cycle in the system wide precedence
graph is eliminated.

