BKK the EZ way

Ric Colacito, Max Croce, Steven Ho, Philip Howard

Á

BKK the EZ way

Backus, Kehoe, and Kydland the Epstein and Zin way

Ric Colacito, Max Croce, Steven Ho, Philip Howard

Á

Summary

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth
 prospects

Summary

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth prospects
- Should capital always flow toward the most productive countries?

Summary

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth prospects
- Should capital always flow toward the most productive countries? No

Summary

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth prospects
- Should capital always flow toward the most productive countries? No
- Novel BKK-based model with (1) recursive risk-sharing and (2) low investment home-bias
 - positive short-run productivity shocks → inflow of investment goods (NX_I ↓ and NX ↓) standard

Summary

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth prospects
- Should capital always flow toward the most productive countries? No
- Novel BKK-based model with (1) recursive risk-sharing and (2) low investment home-bias
 - positive short-run productivity shocks → inflow of investment goods (NX_I ↓ and NX ↓) standard
 - ② positive long-run productivity shocks → outflow of investment goods (NX_I ↑ and NX ↑) NEW

Summary

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth prospects
- Should capital always flow toward the most productive countries? No
- Novel BKK-based model with (1) recursive risk-sharing and (2) low investment home-bias
 - positive short-run productivity shocks → inflow of investment goods (NX_I ↓ and NX ↓) standard
 - ② positive long-run productivity shocks → outflow of investment goods (NX_I ↑ and NX ↑) NEW
- Novel empirical evidence G7 countries support our model

Insight

- International allocation of resources depends on two channels:
 - **Productivity:** resources are invested in the high-productivity country
 - 2 Risk-sharing: resources go to the low-productivity country

Insight

- International allocation of resources depends on two channels:
 - Productivity: resources are invested in the high-productivity country
 - 2 Risk-sharing: resources go to the low-productivity country
- Add Epstein-Zin (EZ) to Backus-Kehoe-Kydland (BKK):
 - () Short-run shocks \rightarrow productivity channel dominates
 - 2 Long-run shocks \rightarrow risk-sharing channel dominates

Insight

- International allocation of resources depends on two channels:
 - Productivity: resources are invested in the high-productivity country
 - 2 Risk-sharing: resources go to the low-productivity country
- Add Epstein-Zin (EZ) to Backus-Kehoe-Kydland (BKK):
 - Short-run shocks → productivity channel dominates
 - 2 Long-run shocks \rightarrow risk-sharing channel dominates
- Convincing quantitative results:
 - 0
- Low investment home-bias ightarrow international quantities \checkmark
 - 2 Vintage capital \rightarrow international asset prices \checkmark

Resolved Puzzles

Quantity anomaly

Cross country correlations of GDP are higher than cross country correlations of consumption

Resolved Puzzles

- Cross country correlations of GDP are higher than cross country correlations of consumption
- 2 Equity premium puzzle
 - Excess return on equities over risk-free bonds is high from viewpoint of a large class of traditional models

Resolved Puzzles

- Cross country correlations of GDP are higher than cross country correlations of consumption
- 2 Equity premium puzzle
 - Excess return on equities over risk-free bonds is high from viewpoint of a large class of traditional models
- Israndt Cochrane Santa-Clara puzzle
 - Disconnect between the volatility of exchange rate and co-movement of SDFs

Resolved Puzzles

- Cross country correlations of GDP are higher than cross country correlations of consumption
- 2 Equity premium puzzle
 - Excess return on equities over risk-free bonds is high from viewpoint of a large class of traditional models
- Israndt Cochrane Santa-Clara puzzle
 - Disconnect between the volatility of exchange rate and co-movement of SDFs
- Backus-Smith puzzle
 - Low correlation between consumption and exchange rate

Resolved Puzzles

- Cross country correlations of GDP are higher than cross country correlations of consumption
- 2 Equity premium puzzle
 - Excess return on equities over risk-free bonds is high from viewpoint of a large class of traditional models
- Israndt Cochrane Santa-Clara puzzle
 - Disconnect between the volatility of exchange rate and co-movement of SDFs
- Backus-Smith puzzle
 - Low correlation between consumption and exchange rate
- 5 Forward premium anomaly
 - High interest rate currencies continue to appreciate despite uncovered interest rate parity predictions
 - Our model will produce endogenous time-varying currency risk premia, however the overall amount is not sufficient to fully reconcile the anomaly

- Economic Model
- Theoretical Predictions
- Empirical Results
- Summary

Results

Preferences

Results

Preferences

$$C_{t} = \left[\lambda X_{t}^{1-\frac{1}{2}} + (1-\lambda)Y_{t}^{1-\frac{1}{2}} \right]^{\frac{1}{1-\frac{1}{2}}}$$
$$\tilde{C}_{t} = C_{t} - \varphi N_{t}^{1+\frac{1}{t}}A_{t-1}$$
(Raffo)

Results

Preferences

$$C_{t} = \begin{bmatrix} \lambda X_{t}^{1-\frac{1}{2}} + (1-\lambda)Y_{t}^{1-\frac{1}{2}} \end{bmatrix}^{\frac{1}{1-\frac{1}{2}}}$$
$$\tilde{C}_{t} = C_{t} - \varphi N_{t}^{1+\frac{1}{t}}A_{t-1}$$
(Raffo)

$$U_t = \frac{1-\beta}{1-\frac{1}{\psi}} \tilde{C}_t^{1-\frac{1}{\psi}} + \beta E_t \left[U_t^{\frac{1-\gamma}{1-\frac{1}{\psi}}} \right]^{\frac{1-\frac{1}{\psi}}{1-\gamma}}$$
(EZ)

Summary

EZ Risk-Sharing Motive

Results

Summary

EZ Risk-Sharing Motive

$$U_{t} \approx \underbrace{(1-\delta)\frac{\tilde{C}_{t}^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} + \delta E_{t}[U_{t+1}]}_{\text{CRRA Preferences}} - \underbrace{(\gamma - \frac{1}{\psi}) Var_{t}[U_{t+1}]\kappa_{t}}_{\text{Utility}}}_{\text{Variance}}$$
$$M_{t+1} = \beta \left(\frac{\tilde{C}_{t+1}}{\tilde{C}_{t}}\right)^{-\frac{1}{\psi}} \left(\frac{U_{t+1}}{E_{t}\left[U_{t+1}^{1-\gamma}\right]^{\frac{1}{1-\gamma}}}\right)^{\frac{1}{\psi}-\gamma}$$

7 / 22

Summary

EZ Risk-Sharing Motive

$$U_{t} \approx \underbrace{(1-\delta)\frac{\tilde{C}_{t}^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} + \delta E_{t}[U_{t+1}]}_{\text{CRRA Preferences}} -\underbrace{(\gamma-\frac{1}{\psi})Var_{t}[U_{t+1}]\kappa_{t}}_{\text{Utility}}}_{\text{Variance}}$$
$$M_{t+1} = \beta \left(\frac{\tilde{C}_{t+1}}{\tilde{C}_{t}}\right)^{-\frac{1}{\psi}} \left(\frac{U_{t+1}}{E_{t}\left[U_{t+1}^{1-\gamma}\right]^{\frac{1}{1-\gamma}}}\right)^{\frac{1}{\psi}-\gamma}$$

 S_t is the relative distribution of wealth

•
$$\frac{S_t}{S_{t-1}} = \frac{\Delta C_t}{\Delta C_t^*} \frac{M_t}{M_t^*}$$

• Good long-run news \Rightarrow marginal utility $\downarrow \Rightarrow S_t \downarrow$

Results

Summary

Productivity growth

Symmetric specification across countries:

Calibration: Croce (2008) and Colacito Croce (AER 2011, JPE 2011, JF 2012).

Summary

Production

$$\underbrace{X_t^{Tot}}_{GDP} = K_t^{\alpha} (A_t N_t)^{1-\alpha}$$
$$= \underbrace{X_t + I_{x,t}}_{\text{Domestic Use}} + \underbrace{X_t^* + I_{y,t}}_{\text{Foreign Use}}$$

9/22

Summary

Production

$$\begin{aligned} \underbrace{X_t^{Tot}}_{GDP} &= K_t^{\alpha} (A_t N_t)^{1-\alpha} \\ &= X_t + I_{x,t} + X_t^* + I_{y,t} \\ &= \underbrace{X_t + Y_t P_t}_{Consumption} + \underbrace{I_{x,t} + I_{x,t}^* P_t}_{Investment} + \underbrace{X_t^* + I_{y,t}}_{Exports} - \underbrace{P_t (Y_t + I_{x,t}^*)}_{Imports} \end{aligned}$$

 P_t is the terms of trade

Summary

Capital & Investment

$$K_t = (1 - \delta)K_{t-1} + e^{\omega_t} \mathbf{G}_{t-1}$$

+ 10 / 22

Summary

Capital & Investment

$$K_t = (1 - \delta)K_{t-1} + e^{\omega_t}G_{t-1}$$

(Economy)

Results

Summary

Capital & Investment

$$K_t = (1 - \delta)K_{t-1} + e^{\omega_t}G_{t-1}$$

$$\frac{\partial G_t}{\partial I_{x,t}}^{-1} = E_t \left[M_{t+1}^X (MPK_{t+1} + (1-\delta)Q_{K,t+1}) e^{\omega_{t+1}} \right]$$

$$\frac{\partial G_{t}^{*}^{-1}}{\partial I_{y,t}} = E_{t} \begin{bmatrix} M_{t+1}^{X} (MPK_{t+1}^{*} + (1-\delta)Q_{K,t+1}^{*})e^{\omega_{t+1}^{*}} & P_{t+1} \end{bmatrix}$$

(Economy)

Results

Summary

- 10 / 22

Capital & Investment

$$K_t = (1 - \delta)K_{t-1} + e^{\omega_t}G_{t-1}$$

$$\frac{\partial G_{t}}{\partial I_{x,t}}^{-1} = E_{t} \left[M_{t+1}^{X} (MPK_{t+1} + (1-\delta)Q_{K,t+1})e^{\omega_{t+1}} \right]$$
$$\frac{\partial G_{t}^{*}}{\partial I_{x,t}}^{-1} = E_{t} \left[M_{t+1}^{X} (MPK_{t+1}^{*} + (1-\delta)Q_{K,t+1}^{*})e^{\omega_{t+1}^{*}} \quad \underbrace{P_{t+1}}_{t+1} \right]$$

$$E_{t} = E_{t} \left[M_{t+1}^{X} (MPK_{t+1}^{*} + (1-\delta)Q_{K,t+1}^{*}) e^{\omega_{t+1}^{*}} \underbrace{P_{t+1}}_{\text{Terms of trade}} \right]$$

Model	(4)	(5b)	(6)	Data
EZ (<i>IES</i> = 1.1; <i>RRA</i> = 10)	Y	Y	Y	
Long-run risk	Y	Y	Y	
Low Invest. home bias		Υ	Y	
Vintage Capital			Y	
$E[\frac{l_y P}{l}]$	15	47√	43√	40
$E[\frac{Y \cdot P}{C}]$	15	3√	3√	5

Model	(4)	(5b)	(6)	Data
EZ (<i>IES</i> = 1.1; <i>RRA</i> = 10)	Υ	Υ	Y	
Long-run risk	Y	Υ	Y	
Low Invest. home bias		Υ	Y	
Vintage Capital			Y	
$E[\frac{l_yP}{l}]$	15	47√	43√	40
$E[\frac{Y \cdot P}{C}]$	15	3√	3√	5
$\rho(\Delta \frac{NXQ}{GDP}, \Delta GDP)$	-0.53	-0.06√	-0.14√	-0.27
$\sigma(\Delta e)$	0.54	9√	10√	11
$\rho(C) - \rho(GDP)$	0.10	-0.12√	-0.06√	-0.17

Model	(4)	(5b)	(6)	Data
EZ (<i>IES</i> = 1.1; <i>RRA</i> = 10)	Y	Y	Y	
Long-run risk	Y	Y	Y	
Low Invest. home bias		Y	Y	
Vintage Capital			Y	
$E[\frac{l_yP}{l}]$	15	47√	43√	40
$E[\frac{Y \cdot P}{C}]$	15	3√	3√	5
$ ho(\Delta \frac{NXQ}{GDP}, \Delta GDP)$	-0.53	-0.06√	-0.14√	-0.27
$\sigma(\Delta e)$	0.54	9√	10√	11
ho(C) - ho(GDP)	0.10	-0.12√	-0.06√	-0.17
E[r ^{ex}]	0.08	0.22	3.46√	5.01
β _{UIP}	1.04	0.81	0.51√	-0.72

Results

Key Differences

Results

Summary

Empirical Analysis

• Focus on G-7 countries

Empirical Analysis

- Focus on G-7 countries
- Estimate short-run shocks, ε_{a,t}:

$$\Delta \ln A_t = \underbrace{c + \beta_1 \cdot pd_{t-1} + \beta_2 \cdot rf_{t-1}}_{x_{t-1}} + \varepsilon_{a,t}$$

Results

Empirical Analysis

- Focus on G-7 countries
- Estimate short-run shocks, ε_{a,t}:

$$\Delta \ln A_t = \underbrace{c + \beta_1 \cdot pd_{t-1} + \beta_2 \cdot rf_{t-1}}_{x_{t-1}} + \varepsilon_{a,t}$$

Estimate long-run shocks, ε_{x,t}:

$$x_t = \rho x_{t-1} + \varepsilon_{x,t}$$

Results

Empirical Analysis

- Focus on G-7 countries
- Estimate short-run shocks, ε_{a,t}:

$$\Delta \ln A_t = \underbrace{c + \beta_1 \cdot pd_{t-1} + \beta_2 \cdot rf_{t-1}}_{x_{t-1}} + \varepsilon_{a,t}$$

Estimate long-run shocks, ε_{x,t}:

$$x_t = \rho x_{t-1} + \varepsilon_{x,t}$$

• Estimate response of investments

$$\Delta \ln I_t^{US} - \Delta \ln I_t^{World} = c + \beta_1 (\varepsilon_t^{US} - \varepsilon_t^{World}) + \beta_2 (\varepsilon_{x,t}^{US} - \varepsilon_{x,t}^{World})$$

Results

Empirical Analysis

- Focus on G-7 countries
- Estimate short-run shocks, ε_{a,t}:

$$\Delta \ln A_t = \underbrace{c + \beta_1 \cdot pd_{t-1} + \beta_2 \cdot rf_{t-1}}_{x_{t-1}} + \varepsilon_{a,t}$$

Estimate long-run shocks, ε_{x,t}:

$$x_t = \rho x_{t-1} + \varepsilon_{x,t}$$

• Estimate response of investments

$$\Delta \ln I_t^{US} - \Delta \ln I_t^{World} = c + \beta_1 (\varepsilon_t^{US} - \varepsilon_t^{World}) + \beta_2 (\varepsilon_{x,t}^{US} - \varepsilon_{x,t}^{World})$$

Estimate response of NX of investments

$$\frac{NX_{l,t}}{GDP_t} = c + \beta_1(\varepsilon_t^{US} - \varepsilon_t^{World}) + \beta_2(\varepsilon_{x,t}^{US} - \varepsilon_{x,t}^{World})$$

Empirical Evidence

Panel A: Resp	onse of	Investments					
		Benchmark	pd	pd,rf	pr,rf,dc	pr,rf,di	pd,rf,dc,di
GDP	ε_a	2.53	2.17^{***} [0.58]	2.31*** [0.56]	2.39*** [0.50]	2.67^{***} [0.53]	2.84*** [0.53]
	ε_x	-0.85	-0.74 [4.01]	-1.42 [3.83]	-1.69 [1.53]	-3.69^{***} [1.07]	-4.10^{***} [1.02]
Investments	ε_a	2.53	1.91^{***} [0.55]	2.09*** [0.53]	2.25*** [0.49]	2.60*** [0.50]	2.70^{***} [0.50]
	ε_x	-0.85	$\begin{bmatrix} 0.37 \\ 3.60 \end{bmatrix}$	-0.98 [3.29]	-1.88 [1.59]	-3.49^{***} [1.04]	-3.77*** [1]
Solow	ε_a	2.53	$\begin{bmatrix} 2.12^{***}\\ [0.71] \end{bmatrix}$	2.16^{***} [0.70]	2.04^{***} [0.58]	2.23*** [0.76]	2.55*** [0.71]
	ε_x	-0.85	-2.69 [5.97]	-2.96 [6.10]	-2.49^{*} [1.69]	-5.15^{***} [1.17]	-5.54^{***} [1.06]
System	ε_a	2.53	1.27^{***} [0.04]	[0.04]	1.39^{***} [0.04]	1.44^{***} [0.04]	1.53^{***} [0.04]
	ε_x	-0.85	0.30 [0.25]	-1.07^{***} [0.27]	0.04 [0.23]	-3.82*** [0.11]	-3.31^{***} [0.11]
Panel B: Resp	onse of	Net Exports of Ir	vestments				
		Benchmark	pd	pd,rf	pr,rf,dc	pr,rf,di	pd,rf,dc,di
GDP	ε_a	-0.35	-0.19 [0.23]	-0.18 [0.22]	-0.20 [0.23]	-0.13 [0.33]	-0.08 [0.35]
	ε_x	0.35	0.66 [0.90]	$\begin{bmatrix} 0.62 \\ [0.71] \end{bmatrix}$	1.14^{***} [0.42]	0.64^{***} [0.17]	0.47^{**} [0.20]
Investments	ε_a	-0.35	-0.16 [0.22]	-0.15 [0.22]	-0.18 [0.22]	-0.12 [0.32]	-0.06 [0.34]
	ε_x	0.35	$\begin{array}{c} 0.54 \\ [0.94] \end{array}$	0.57 [0.66]	1.07^{***} [0.35]	0.60^{***} [0.16]	0.44^{***} [0.18]
Solow	ε_a	-0.35	-0.26 [0.25]	-0.23 [0.22]	-0.26 [0.22]	-0.17 [0.31]	-0.10 [0.34]
	ε_x	0.35	1.12 [1.02]	$\begin{bmatrix} 0.74 \\ [0.81] \end{bmatrix}$	1.26^{***} [0.54]	0.73^{***} [0.19]	0.51** [0.22]
System	ε_a	-0.35	-0.24^{***} [0.01]	-0.17^{***} [0.02]	-0.19^{***} [0.02]	-0.12^{***} [0.02]	-0.07^{***} [0.01]
	ε_x	0.35	1.26*** [0.11]	0.93 ^{***} [0.05]	0.90^{***} [0.04]	0.43 ^{***} [0.04]	0.22**** [0.03]

Results

Summary

• Empirical Contribution: investment outflows upon good long-run news

Summary

- Empirical Contribution: investment outflows upon good long-run news
- Model Contribution: international production economy with recursive risk-sharing and long-run risk
 - good news for the long (short) run \rightarrow capital outflows (inflows)
 - quantity anomaly turned into a regularity

Summary

- Empirical Contribution: investment outflows upon good long-run news
- Model Contribution: international production economy with recursive risk-sharing and long-run risk
 - good news for the long (short) run \rightarrow capital outflows (inflows)
 - quantity anomaly turned into a regularity
- Next step: incorporate frictions à la Stockman and Tesar 1995, Baxter and Crucini 1995, Kehoe and Perri 2002, Heathcote and Perri 2004, Bai and Zhang 2010, Petrosky-Nadeau 2011, Alessandria et al. 2011

Summary

- Empirical Contribution: investment outflows upon good long-run news
- Model Contribution: international production economy with recursive risk-sharing and long-run risk
 - good news for the long (short) run \rightarrow capital outflows (inflows)
 - quantity anomaly turned into a regularity
- Next step: incorporate frictions à la Stockman and Tesar 1995, Baxter and Crucini 1995, Kehoe and Perri 2002, Heathcote and Perri 2004, Bai and Zhang 2010, Petrosky-Nadeau 2011, Alessandria et al. 2011
- Broader point: conveying the need of introducing long-run risk considerations in international investment theory

Relation to literature

Prior work by the authors:

- Colacito Croce (AER 2010, JPE 2011, JF 2012): International asset pricing with EZ preferences in endowment economy
 - \hookrightarrow International production and investment flows
- Ai Croce Li (RFS 2012): Closed production economy with vintage capital to explain EP and VP & investment vintages
 - \hookrightarrow International perspective

Previous papers:

- Backus Kehoe Kydland (JPE 1992, AER 1994): IRBC
- Raffo (JIE 2008): NX empirically driven by quantities (GHH preferences)
- Erceg Guerrieri Gust (JEDC 2008): Home bias is strong in consumption, mild in investment
 - \hookrightarrow LRR-based AP perspective
- Tretvoll (2012): Robust-BKK with short-run risk only

EZ prefs Calibration

$$W_{t} = MRS_{t}^{C,L}$$

$$W_{t} = \frac{\partial X_{t}^{Tot}}{\partial N_{t}}$$

$$MRS_{t}^{C,L} = \frac{\partial \tilde{C}_{t}/\partial L_{t}}{\partial \tilde{C}_{t}/\partial C_{t}}$$

$$(1-\alpha)\frac{X_{t}^{Tot}}{N_{t}} = \varphi\left(1+\frac{1}{f}\right)N_{t}^{\frac{1}{T}}A_{t-1}e^{\phi\Delta a_{t}}$$

+ 17 / 22

prefs Calibra

Time varying Pareto weights

$$S_{t} = S_{t-1} \frac{M_{t}}{M_{t}^{*}} \frac{C_{t}/C_{t-1}}{C_{t}^{*}/C_{t-1}^{*}}$$
$$= \frac{1-\lambda}{\lambda} \left(\frac{C_{t}}{C_{t}^{*}}\right)^{1-\frac{1}{2}} \left(\frac{X_{t}}{X_{t}^{*}}\right)^{\frac{1}{2}}$$
$$= \frac{\lambda}{1-\lambda} \left(\frac{C_{t}}{C_{t}^{*}}\right)^{1-\frac{1}{2}} \left(\frac{Y_{t}}{Y_{t}^{*}}\right)^{\frac{1}{2}}$$

- 18 / 22

The terms of trade is the price of imports over the price of exports:

$$P_t = \frac{1-\lambda}{\lambda} \left(\frac{X_t}{Y_t}\right)^{\frac{1}{2}}$$

Terms of trade

(Domestic SDF)

EZ prefs Calibration

Domestic SDF

$$M_{t+1} = \frac{\partial U_{t+1}/\partial C_{t+1}}{\partial U_t/\partial C_t}$$
$$= \beta \left(\frac{\tilde{C}_{t+1}}{\tilde{C}_t}\right)^{-\frac{1}{\Psi}} \left(\frac{U_{t+1}}{E_t \left[U_{t+1}^{1-\gamma}\right]^{\frac{1}{1-\gamma}}}\right)^{\frac{1}{\Psi}-\gamma}$$
$$M_{t+1}^X = \frac{\partial U_{t+1}/\partial X_{t+1}}{\partial U_t/\partial X_t}$$
$$= \left(\frac{C_{t+1}}{C_t}\frac{X_t}{X_{t+1}}\right)^{\frac{1}{2}} M_{t+1}$$

20 / 22

EZ Prefs

Ordinally equivalent transformation: $V_t = \frac{U_t^{1-\frac{1}{\Psi}}}{1-\frac{1}{\Psi}}$

$$V_{t} = \frac{1 - \beta}{1 - \frac{1}{\psi}} \tilde{C}_{t}^{1 - \frac{1}{\psi}} + \beta E_{t} \left[V_{t}^{\frac{1 - \gamma}{1 - \frac{1}{\psi}}} \right]^{\frac{1 - \frac{1}{\psi}}{1 - \gamma}}$$
$$U_{t} = \left[(1 - \beta) \tilde{C}_{t}^{1 - \frac{1}{\psi}} + \beta E_{t} \left[U_{t+1}^{1 - \gamma} \right]^{\frac{1 - \frac{1}{\psi}}{1 - \gamma}} \right]^{\frac{1}{1 - \frac{1}{\psi}}}$$

- 21 / 22

EZ prefs

Calibration

Calibration

TABLE 2: Calibrated Parameter Values									
Model:		(1)	(2)	(3)	(4)	(5)	(5b)	(6)	
Subjective discount factor	β	0.985	0.985	0.985	0.985	0.985	0.985	0.9873	
Risk aversion	γ	2	2	10	10	10	10	10	
IES	ψ	0.5	0.5	0.5	1.1	1.1	1.1	1.1	
Consumption home bias	λ	0.76	0.76	0.76	0.76	0.76	0.97	0.97	
Consumption-bundle elasticity	コ	1.5	1.5	1.5	1.5	1.5	1	1	
Consumption-labor elasticity	f	1	1	1	1	1	1	1	
Capital Income Share	α	0.36	0.36	0.36	0.36	0.3	0.3	0.3	
Depreciation rate of capital	δ	0.1	0.1	0.1	0.1	0.06	0.06	0.06	
Investment home bias	ν	0.76	0.76	0.76	0.76	0.76	0.53	0.57	
Investment-bundle elasticity	ξ	1.5	1.5	1.5	1.5	1.5	1	1	
Exposure of young vintages	ϕ_0	1	1	1	1	0	1	0	
Long run mean of productivity	μ	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
Persistence of long run shock	ρ	0.9859	0.9859	0.9859	0.9859	0.9859	0.9859	0.9859	
Co-integration parameter	τ	5E-05	5E-05	5E-05	5E-05	5E-05	5E-05	5E-05	
Short-run shock vol.	σ	0.027	0.027	0.027	0.027	0.027	0.027	0.027	
Long-run shock vol.	σ_x	0	$.15\sigma$	$.15\sigma$	$.15\sigma$	$.15\sigma$	$.15\sigma$	$.15\sigma$	
Short-run shocks correlation	ρ_{srr}	0	0.027	0.027	0.027	0.027	0.027	0.027	
Long-run shocks correlation	ρ_{lrr}	-	0.85	0.85	0.85	0.85	0.85	0.85	

Á