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Local dimension

Given a compact metric space X , a continuous map f : X → X ,
and an f -invariant Borel probability measure µ on X , the local
dimension (or pointwise dimension) of µ at a point x ∈ X is

dµ(x) = lim
r→0

log µ(B(x , r))

log r
,

provided the limit exists.
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Local dimension

Given a compact metric space X , a continuous map f : X → X ,
and an f -invariant Borel probability measure µ on X , the local
dimension (or pointwise dimension) of µ at a point x ∈ X is

dµ(x) = lim
r→0

log µ(B(x , r))

log r
,

provided the limit exists.
The level sets of the local dimension are

Kd
α = {x ∈ X | dµ(x) = α}.
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Local dimension

Given a compact metric space X , a continuous map f : X → X ,
and an f -invariant Borel probability measure µ on X , the local
dimension (or pointwise dimension) of µ at a point x ∈ X is

dµ(x) = lim
r→0

log µ(B(x , r))

log r
,

provided the limit exists.
The level sets of the local dimension are

Kd
α = {x ∈ X | dµ(x) = α}.

The decomposition

X =

(

⋃

α∈R

Kd
α

)

∪ Kd
∗

is a multifractal decomposition of X .
Black-box Multifractal Formalism
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Hyperbolic measures

We want to use the “sizes” of the level sets K d
α to characterise the

measure µ.
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Hyperbolic measures

We want to use the “sizes” of the level sets K d
α to characterise the

measure µ.

Theorem (Barreira–Pesin–Schmeling, 1999)

If µ is hyperbolic, then one of the level sets K d
α has full µ-measure.

Thus all but one of the level sets have measure zero, and measure
is not the appropriate tool to use.

Black-box Multifractal Formalism
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Dimension spectrum

The dimension spectrum for local dimensions of µ is

D(α) = dimH Kd
α .
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Dimension spectrum

The dimension spectrum for local dimensions of µ is

D(α) = dimH Kd
α .

Surprising fact (“Multifractal Miracle”): In many cases of interest,
D(α) is concave and smooth (indeed, even analytic)!

D
(α

)

α
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Local entropy

The local entropy of µ at a point x ∈ X is

hµ(x) = lim
δ→0

lim
n→∞

− log µ(B(x , n, δ))

n
,

provided the limit exists, where

B(x , n, δ) = {y ∈ X | d(f k(x), f k(y)) < δ for all 0 ≤ k ≤ n − 1}

is the Bowen ball of radius δ and length n.

Black-box Multifractal Formalism
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Local entropy

The local entropy of µ at a point x ∈ X is

hµ(x) = lim
δ→0

lim
n→∞

− log µ(B(x , n, δ))

n
,

provided the limit exists, where

B(x , n, δ) = {y ∈ X | d(f k(x), f k(y)) < δ for all 0 ≤ k ≤ n − 1}

is the Bowen ball of radius δ and length n.
The level sets of the local entropy are

K e
α = {x ∈ X | hµ(x) = α},

and we again have an associated multifractal decomposition.

Black-box Multifractal Formalism
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Entropy spectrum

Theorem (Brin–Katok, 1983)

If µ is ergodic, then one of the level sets K e
α has full µ-measure.
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Entropy spectrum

Theorem (Brin–Katok, 1983)

If µ is ergodic, then one of the level sets K e
α has full µ-measure.

Thus we define the entropy spectrum for local entropies of (µ, f ) as

E (α) = htopK
e
α,

where htop is defined in the sense of Bowen, since the level sets are
in general non-compact (indeed, dense).
This displays the same sort of behaviour as D(α).
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Birkhoff spectrum

Given a function ϕ : X → R, the level sets of the Birkhoff averages
are

Kb
α =

{

x ∈ X
∣

∣

∣
lim

n→∞

1

n
Snϕ(x) = α

}

,

where Snϕ(x) =
∑n−1

k=0 ϕ(f k(x)).

Theorem (G.D. Birkhoff, 1931)

If µ is ergodic, then one of the level sets K b
α has full µ-measure.

So define the entropy spectrum for Birkhoff averages of (ϕ, f ) (or
just the Birkhoff spectrum):

B(α) = htopK
b
α .

Black-box Multifractal Formalism
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Lyapunov spectrum

If f is conformal (Df is a scalar multiple of an isometry), then the
Lyapunov exponent of f at x is

λ(x) = lim
n→∞

1

n
log

n−1
∏

k=0

|Df (f k(x))| = lim
n→∞

1

n
Sn(log |Df |)(x),

provided the limit exists. Thus the Birkhoff spectrum of
ϕ = log |Df | is also called the entropy spectrum for Lyapunov
exponents of f . We may also consider the dimension spectrum for
Lyapunov exponents of f ,

L(λ) = dimH Kb
λ .

Black-box Multifractal Formalism
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The variational pressure

Given a continuous potential function ϕ : X → R, the variational
pressure of ϕ is

P(ϕ) = sup

{

hµ(f ) +

∫

X

ϕ dµ
∣

∣

∣
µ ∈ M(X )

}

,

where hµ(f ) is the measure-theoretic entropy and M(X ) is the set
of f -invariant Borel probability measures on X .
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The variational pressure

Given a continuous potential function ϕ : X → R, the variational
pressure of ϕ is

P(ϕ) = sup

{

hµ(f ) +

∫

X

ϕ dµ
∣

∣

∣
µ ∈ M(X )

}

,

where hµ(f ) is the measure-theoretic entropy and M(X ) is the set
of f -invariant Borel probability measures on X .
We will consider various functions defined in terms of the pressure,
the simplest of which is

Tb : R → R,

q 7→ P(qϕ).

Black-box Multifractal Formalism
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Legendre transforms

Standard approach: Show that multifractal spectra are concave
and smooth by establishing a Legendre transform duality with the
appropriate pressure function:

Tb(q) = BL1(q) = sup
α∈R

(B(α) + qα),

B(α) = T L2

b (α) = inf
q∈R

(Tb(q) − qα).

T
b
(q

)

q
B

(α
)

α
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The entropy spectrum

Similar results “should” hold for the other multifractal spectra.
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The entropy spectrum

Similar results “should” hold for the other multifractal spectra.
Gibbs measures: − 1

n
log µ(B(x , n, δ)) + 1

n
Snϕ(x) → P(ϕ) at every

point x , so for ϕ1 = ϕ − P(ϕ), we have

hµ(x) = − lim
n→∞

1

n
Snϕ1(x).
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The entropy spectrum

Similar results “should” hold for the other multifractal spectra.
Gibbs measures: − 1

n
log µ(B(x , n, δ)) + 1

n
Snϕ(x) → P(ϕ) at every

point x , so for ϕ1 = ϕ − P(ϕ), we have

hµ(x) = − lim
n→∞

1

n
Snϕ1(x).

Setting Te(q) = Tb(−q) = P(−qϕ1), we hope to find that

Te(q) = EL3(q) = sup
α∈R

(E (α) − qα),

E (α) = T L4
e (α) = inf

q∈R

(Te(q) + qα).

Black-box Multifractal Formalism
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The dimension spectrum

Conformal maps: Let Td(q) be the (hopefully unique) root of the
equation

P(qϕ1 − Td(q) log |Df |) = 0.
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The dimension spectrum

Conformal maps: Let Td(q) be the (hopefully unique) root of the
equation

P(qϕ1 − Td(q) log |Df |) = 0.

Again, we hope to find that

Td(q) = DL3(q) = sup
α∈R

(D(α) − qα),

D(α) = T L4

d (α) = inf
q∈R

(Td(q) + qα).
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Variational pressure
Legendre transforms
More pressure functions

The dimension spectrum

Conformal maps: Let Td(q) be the (hopefully unique) root of the
equation

P(qϕ1 − Td(q) log |Df |) = 0.

Again, we hope to find that

Td(q) = DL3(q) = sup
α∈R

(D(α) − qα),

D(α) = T L4

d (α) = inf
q∈R

(Td(q) + qα).

So, in what settings can all this actually be proved?

Black-box Multifractal Formalism
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Conformal repellers

A maximally invariant set J is a repeller if |Df (v)| is uniformly > 1
for |v | = 1.

Theorem (Pesin–Weiss, 1997)

If f is C 1+α and µ is a Gibbs measure for a Hölder continuous
potential ϕ on a conformal repeller, then the multifractal
formalism holds for the dimension spectrum of µ and the Birkhoff
spectrum of ϕ (and hence the entropy spectrum of µ as well).

Black-box Multifractal Formalism
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Conformal repellers

A maximally invariant set J is a repeller if |Df (v)| is uniformly > 1
for |v | = 1.

Theorem (Pesin–Weiss, 1997)

If f is C 1+α and µ is a Gibbs measure for a Hölder continuous
potential ϕ on a conformal repeller, then the multifractal
formalism holds for the dimension spectrum of µ and the Birkhoff
spectrum of ϕ (and hence the entropy spectrum of µ as well).

In particular, this holds for one-dimensional uniformly expanding
Markov maps. Note that in one dimension conformality is
automatic.

Black-box Multifractal Formalism
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Beyond uniformity

Manneville–Pomeau maps: A class of one-dimensional Markov
maps with indifferent fixed points. Pollicott and Weiss (1999),
Nakaishi (2000), and Gelfert and Rams (2008) studied the
multifractal formalism for the Lyapunov spectrum.

Black-box Multifractal Formalism



Introduction
Heuristics – a connection to thermodynamic formalism

Known results
New results

Applications and extensions

Uniformly expanding maps
Beyond uniformity
Maps with critical points

Beyond uniformity

Manneville–Pomeau maps: A class of one-dimensional Markov
maps with indifferent fixed points. Pollicott and Weiss (1999),
Nakaishi (2000), and Gelfert and Rams (2008) studied the
multifractal formalism for the Lyapunov spectrum.
Expansive maps with specification: Takens and Verbitski (1999)
established the multifractal formalism for the entropy spectrum of
Gibbs measures for sufficiently regular potentials.

Black-box Multifractal Formalism
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Unimodal maps

The logistic family of maps is fa : [0, 1] → [0, 1] given by

fa(x) = ax(1 − x).

For a positive Lebesgue measure set of parameters a, fa is
Collet–Eckmann (exponential growth along orbit of critical point).
Thus we have some sort of hyperbolicity, but the presence of the
critical point and the discontinuity of the potential − log |Df |
disrupts previous approaches.

Black-box Multifractal Formalism
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Unimodal maps

The logistic family of maps is fa : [0, 1] → [0, 1] given by

fa(x) = ax(1 − x).

For a positive Lebesgue measure set of parameters a, fa is
Collet–Eckmann (exponential growth along orbit of critical point).
Thus we have some sort of hyperbolicity, but the presence of the
critical point and the discontinuity of the potential − log |Df |
disrupts previous approaches.
Thermodynamic results were obtained by Bruin and Todd (2008)
and Pesin and Senti (2008); multifractal results have been
obtained by Todd (2008) and Todd and Iommi (2009).
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Multifractal formalism as a black box

What do all these have in common? The general scheme is:

1 Develop tools for specific class of maps (finite Markov
partitions, inducing schemes, specification).
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Multifractal formalism as a black box

What do all these have in common? The general scheme is:

1 Develop tools for specific class of maps (finite Markov
partitions, inducing schemes, specification).

2 Use these tools to derive thermodynamic results.

3 Use these tools, together with the thermodynamic results, to
derive multifractal results.
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Multifractal formalism as a black box

What do all these have in common? The general scheme is:

1 Develop tools for specific class of maps (finite Markov
partitions, inducing schemes, specification).

2 Use these tools to derive thermodynamic results.

3 Use these tools, together with the thermodynamic results, to
derive multifractal results.

Idea: Suppose we know that a system has “nice” thermodynamic
properties – for example, existence and uniqueness of equilibrium
states for qϕ (or the appropriate potentials ϕq) over some range of
q – but we do not know anything else about the system. What can
we say about the multifractal formalism?

Black-box Multifractal Formalism
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Entropy spectrum for Birkhoff averages

Consider a compact metric space X , a continuous map f : X → X
be continuous, and a continuous function ϕ : X → R.

Theorem (C., 2009)

Let (q1, q2) ⊂ R be such that the following hold.

Existence: For every q ∈ (q1, q2) there exists a (not necessarily
unique) equilibrium state for the potential function qϕ.

Differentiability: The map Tb : q 7→ P(qϕ) is C1 on (q1, q2).

Then the Birkhoff spectrum satisfies the multifractal formalism on
(α1, α2), where αi = T ′

b(qi ).

Note that we require nothing of the system beyond the
thermodynamic conditions!

Black-box Multifractal Formalism
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Gibbs measures

To deal with the entropy and dimension spectra of a measure µ in
terms of the thermodynamics of ϕ, we need a way to link µ with ϕ.
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Gibbs measures

To deal with the entropy and dimension spectra of a measure µ in
terms of the thermodynamics of ϕ, we need a way to link µ with ϕ.

Definition

µ is a Gibbs measure for ϕ if for every δ > 0 there exists M > 0
and P ∈ R such that

1

M
≤

µ(B(x , n, δ))

exp(−nP + Snϕ(x))
≤ M

for every x ∈ X , n ∈ N.

This is equivalent to demanding that

−
1

n
log µ(B(x , n, δ)) +

1

n
Snϕ(x) = P + O(1/n)

uniformly in x .
Black-box Multifractal Formalism
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Various sorts of Gibbs-ness

Gibbs:

−
1

n
log µ(B(x , n, δ)) +

1

n
Snϕ(x) → P

for every x , with uniform error term of size O(1/n).

Birkhoff and Brin–Katok: If µ is an ergodic equilibrium
measure for ϕ, then

−
1

n
log µ(B(x , n, δ)) +

1

n
Snϕ(x) → hµ(f ) +

∫

ϕ dµ = P(ϕ)

for µ-a.e. x , with no information on uniformity or rate of
convergence.

We require convergence everywhere, but do not need any
uniformity or estimates on rate of convergence.

Black-box Multifractal Formalism



Introduction
Heuristics – a connection to thermodynamic formalism

Known results
New results

Applications and extensions

Entropy spectrum for Birkhoff averages
Entropy spectrum for local entropies
Dimension spectrum for Lyapunov exponents
Dimension spectrum for local dimensions

Entropy spectrum for local entropies

Recall that Te(q) = P(qϕ1), where ϕ1 = ϕ − P(ϕ).

Theorem (C., 2009)

Let µ be a Gibbs measure for ϕ. Suppose that Te is C1 on some
interval (q1, q2) on which existence holds. Then the entropy
spectrum satisfies the multifractal formalism on (α2, α1), where
αi = −T ′

e(qi ).

Black-box Multifractal Formalism
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From entropy to dimension

The analogous result for the dimension spectrum uses two
important tools, both of which require f to be conformal:

When f is conformal, the Bowen balls B(x , n, δ) are quite
regular in shape and are not distorted. Heuristically, we have
the following relationship between local entropy, local
dimension, and Lyapunov exponent:

dµ(x) =
hµ(x)

λ(x)
.

If log |Df | is continuous, then pressure and Hausdorff
dimension are related by a generalisation of Bowen’s equation

PZ (−t log |Df |) = 0 ⇐⇒ t = dimH Z .

Black-box Multifractal Formalism



Introduction
Heuristics – a connection to thermodynamic formalism

Known results
New results

Applications and extensions

Entropy spectrum for Birkhoff averages
Entropy spectrum for local entropies
Dimension spectrum for Lyapunov exponents
Dimension spectrum for local dimensions

Dimension spectrum for Lyapunov exponents

Using the generalised Bowen’s equation, we observe that when the
Lyapunov exponent λ(x) = λ is constant on Z , we have

PZ (−t log |Df |) = htop(Z ) − tλ = 0

if and only if t = htop(Z )/λ. Thus the dimension spectrum for
Lyapunov exponents is

L(λ) = dimH Kb
λ =

1

λ
htop(K

b
λ ) =

1

λ
B(λ).

This may not be concave!

Black-box Multifractal Formalism
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Dimension spectrum for local dimensions

Recall that Td(q) is defined by P(qϕ1 − Td(q) log |Df |) = 0.

Theorem (C., 2009)

Let µ be a Gibbs measure for ϕ. Suppose that the following hold.

f is conformal.

log |Df | is continuous.

Every f -invariant measure has positive Lyapunov exponent.

Td is C1 on some interval (q1, q2).

For every α ∈ R and q ∈ (q1, q2), there exists an equilibrium
state for qϕ1 − α log |Df |.

Then the dimension spectrum satisfies the multifractal formalism
on (α2, α1), where αi = −T ′

d(qi ).

Black-box Multifractal Formalism
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Critical points – discontinuous potentials

Birkhoff and entropy spectra

Applications using htop – no dimensional requirements
For suitable continuous potentials, thermodynamic results are
available for all three classes of examples (uniformly expanding,
Manneville–Pomeau, Collet–Eckmann), and so the present results
establish the multifractal formalism for Birkhoff averages on the
corresponding part of the spectrum.

Black-box Multifractal Formalism
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No critical points – continuous potentials
Critical points – discontinuous potentials

Birkhoff and entropy spectra

Applications using htop – no dimensional requirements
For suitable continuous potentials, thermodynamic results are
available for all three classes of examples (uniformly expanding,
Manneville–Pomeau, Collet–Eckmann), and so the present results
establish the multifractal formalism for Birkhoff averages on the
corresponding part of the spectrum.
One particularly interesting potential is ϕ = log |Df |, for which the
Birkhoff averages are the Lyapunov exponents, and for which the
equilibrium measure is physically observable (an SRB measure).

No critical points: ϕ is continuous, the present results apply.

Critical points: ϕ is discontinuous. What happens?
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Lyapunov and dimension spectra

For the dimensional results, we must check the
non-thermodynamic requirements:

Conformality – automatic for one-dimensional maps.

Continuity of log |Df | – holds if f has no critical points.

Positive Lyapunov exponents for all invariant measures – holds
for Collet–Eckmann, but not Manneville–Pomeau.
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Problems with discontinuities

We would like to include Lyapunov and dimension spectra for maps
with critical points in this result, which requires us to deal with the
case where ϕ = log |Df | is discontinuous. This creates two
difficulties.

Continuity of ϕ is used exactly once in each result; to

guarantee that
∫

ϕ dµn →
∫

ϕ dµ when µn
wk∗
→ µ. In general,

this does not hold for discontinuous ϕ.
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Problems with discontinuities

We would like to include Lyapunov and dimension spectra for maps
with critical points in this result, which requires us to deal with the
case where ϕ = log |Df | is discontinuous. This creates two
difficulties.

Continuity of ϕ is used exactly once in each result; to

guarantee that
∫

ϕ dµn →
∫

ϕ dµ when µn
wk∗
→ µ. In general,

this does not hold for discontinuous ϕ.

The two results on dimensions – dµ = hµ/λ and the
generalised form of Bowen’s equation – become much more
subtle in the presence of critical points. They rely on the fact
that the Bowen balls are somehow “well-behaved”, that the
diameter of B(x , n, δ) decays according to λ(x), but the proof
of this fact does not carry over to maps with critical points.
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A convergence requirement

Given x ∈ X , the empirical measures along the orbit of x are

µx ,n =
1

n

n−1
∑

k=0

δx ◦ f −k .

In order to establish the multifractal formalism for B for
discontinuous ϕ using the present approach, we need the following
to hold:

If µx ,nj
→ µ and 1

nj
Snj

ϕ(x) =
∫

ϕ dµx ,nj
→ α ∈ R, then

∫

ϕ dµ = α.
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The set A

The requirements that the Bowen balls be well-behaved and that
Lyapunov exponents be positive can potentially be swept under the
rug by restricting our attention to a set A on which these both
hold. Then we compute the spectrum

DA(α) = dimH Kd
α ∩ A,

and hope to show that this is equal to dimH Kd
α , but this has yet

to be done.
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