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3. Abstract 
Assessment of a structure’s blast capacity has become an important focus in structural engineering.  In response to 

heightened terror awareness numerous existing structures must be evaluated for conformance with security 

standards.  Determining the blast resistance of a structure is a first step towards evaluating the potential need for 

retrofit construction.  Numerous methods can be employed to determine the blast resistance of a structure, 

oftentimes over-simplified or too complex.  A common lateral load resisting system that is particularly vulnerable to 

blast loads is a reinforced concrete shear wall.  The purpose of this paper is to outline a methodology to calculate the 

blast resistance of an existing shear wall, which will optimize the scope of results while minimizing the calculation 

complexity required.   

This analysis couples a static FE model with an equivalent SDOF dynamic analysis.  A prototypical corner shear 

wall with window openings is chosen for study.  A static pushover FE model is developed which pinpoints the 

location of failure to be the 2nd floor, outer wall, becoming the subject of the dynamic analysis study.  The 2nd floor 

wall is modeled two ways: as a system, including the stiffness contributions of adjoining wall sections, and as a 

component with fixed ends.  A moment-curvature analysis determines the formation of plastic hinges, and the stages 

of failure are represented by a multi-linear static resistance curve.  An equivalent SDOF model yields the dynamic 

response history of the wall.  Pressure vs. impulse curves are created to describe the blast resistance of the wall at 

each damage stage.  Comparison of the system and component methods reveals that the component model couples 

fewer calculations with a good quality response estimate for highly stiff walls.  The component model overestimates 

the blast resistance of the wall by 7%, when compared to the system model results for blasts in the impulse region.  

A simplification of the resistance curve from multi-linear to bi-linear is also presented.  This method yields values 

within 15% of the system model results and is recommended as a way of quickly determining the blast resistance of 

a structure at first yield or failure. 
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4. Introduction  
Blast loads have been a design concern for structural engineers for many years.  Originally, research and 

development was conducted to protect structures against accidental explosions, such as those that may occur in a 

chemical manufacturing plant or military ammunition depot.  Recent terror events world wide, however, have 

created a shift in design philosophy from dealing with an expected explosive event of given size to an event of 

unknown magnitude that could occur at any time in any location on a structural system.  Without a proper design 

approach these intentional explosive events have the potential for significant loss of life and economic damage.   

In response to this growing concern many building owners are prioritizing protection against blast.  This may take 

various forms including non-structural safeguards, such as a defended standoff distance and bag screening, or it may 

include complex analysis and design to create a blast hardened structure.  The United States government has taken 

the lead in creating blast guidelines for its buildings.  Currently all new and existing Department of Defense (DoD) 

facilities must conform to the Unified Facilities Criteria (U.S. Army Corp of Engineers 2005).  Also, the Interagency 

Security Committee (ISC) of the General Services Administration (GSA) recently outlined specific standards for all 

leased buildings, which will affect any existing building considered for lease by GSA.  It is apparent that many 

existing buildings must now be assessed for their conformance to these blast design guidelines.  When it is necessary 

to design a structure to resist blast there are numerous approaches which may be employed.  Existing design 

methods often oversimplify the problem or are too complex for an average design engineer to apply.  To effectively 

enhance the blast resistance of our existing infrastructure, and to integrate blast resistance into new design, 

simplified accurate methods to determine a structure’s strength under blast must be developed.  

Reinforced concrete shear walls are commonly designed in the United States as a lateral resisting system to 

withstand earthquake and wind loads.  The design of the shear wall to resist in-plane loads leaves them vulnerable to 

blast forces which typically generate out-of-plane loads captured by the large surface area of the wall.   Shear wall 

systems often assist in the load bearing action of the building, supporting larger floor spans.  Loss of such a 

component may lead to a progressive collapse.  It is therefore advantageous for designers to have the ability to 

predict the blast resistance of such a structure in order to design a shear wall to withstand blast loads.  The purpose 

of this research is to examine the blast resistance of a load bearing shear wall system by outlining a methodology 

that can be recreated in a time effective manner by engineers in practice.   
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5. Blast Demands and Structural Resistance 
The first step in protecting a structure from blast loads is prevention.  Prevention often takes the form of indirect 

measures such as surveillance and counter-terrorism intelligence or through direct physical measures such as that 

provided by a defended standoff distance. This creates a range between unregulated spaces through the use of 

concrete or steel barriers which prevent explosive carrying vehicles from approaching the structural system (General 

Services Administration 2003). While prevention can decrease the likelihood of an event, it cannot guarantee 

protection.  For example, many structures are built in densely populated areas where a defended standoff distance is 

almost nonexistent.  Therefore the second step, and primary task of the engineer, is to prevent loss of life by 

ensuring structural integrity during an explosion.  A structure designed with enough ductility will absorb the energy 

of the blast while still remaining load bearing.  

There are two fundamental tasks that must be conducted to ensure structural integrity under explosive events, 

determination of the blast load demand and blast load resistance.  Blast load demand relates to the amount of 

energy a blast imparts to a structure, while blast load resistance is the physical strength of a structure to withstand a 

blast load.  Many tools exist which can predict an explosion’s blast demand.  These have been well developed 

through research and are presented briefly in Section 5.1.  Methods for determining the blast resistance of a structure 

are covered in the remaining portion of the report. 

5.1. Blast Load Demand 

All structures are susceptible to damage from explosively generated blast loads.  Given adequate time and explosive, 

any structure is vulnerable to collapse.  A blast explosion is characterized by the rapid expansion of gas which 

generates a virtually instantaneous increase in local pressure (Mays and Smith 1995).  As a result, a high-velocity, 

high-pressure wave propagates through the air, moving outward from its source and dissipating in energy as it 

travels.  The characteristics of a blast load are dependent on many factors, most importantly, type and quantity of 

explosive and the location of the explosive relative to the structure.   

The load demand caused by a detonation of a high explosive (HE) can be divided into four parts as shown in Figure 

1 (a), impact of primary fragments, impact of secondary fragments, over-pressure, and reflective pressure.  Primary 

fragments originate from the source of the explosion, often times placed within the bomb or casing.  Secondary 

fragments consist of objects that are picked up and projected as the blast radiates.  This can include equipment or 

other objects not securely attached to the ground, bricks from unreinforced walls, or portions of the structure itself.  

Primary and secondary fragments are both associated with significant casualties, but in most cases neither 

contributes to major structural damage. 

The initial increase in ambient pressure, which expands radially from the source of the explosion, is known as the 

over-pressure.  The over-pressure is dependent on the size of the explosive and the distance from the explosion to 

the target.  Thus a small size explosive at close range may generate the same demands as a large explosive in the 

distance.  The equivalent scaled distance, Z, is used to compare the overpressures of explosions comprised of 

varying sizes and locations.  The equivalent scaled distance is found from the equation, 3
1

/WRZ = , where R [ft] is 

the distance from the explosion to the structure, and W [pounds of TNT] is the weight of the explosive (Conrath 
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1999).  The blast effects of explosives other than TNT can be determined by multiplying W by an equivalency factor 

(DSWA 1998).  For example the equivalency factor for Aluminum Nitrate and Fuel Oil (ANFO) would transform X 

pounds of ANFO into W pounds of TNT.   

When the radiating over-pressure wave reaches an object perpendicular to its path the wave is reflected creating an 

elevated pressure demand.  The magnitude of this reflected pressure is dependent on the shape of the object and the 

orientation of the object with respect to the blast wave.  For a building element perpendicular to the radiating over-

pressure wave a distributed reflected pressure is generated.  This distributed pressure is assumed to have an 

instantaneous rise time to a peak positive pressure value which subsequently dissipates to atmospheric pressure over 

a few milliseconds.  This is what is known as the reflected pressure, and it is the most destructive aspect of blast 

loading with respect to a structure.  The positive pressure is followed by a negative pressure phase which is much 

lower in magnitude but longer in duration, usually over a range of 10-40 ms.   

Secondary 
Fragments

T
N
T

Impact

Primary 
Fragments

Over-Pressure 
Blast 
Load

Over-Pressure 
Blast
Load

Structure

HE Wall  
(a) Blast demands 

 
(b) Pressure load profile 

Figure 1: Blast Load Effects 

An idealized pressure time response curve is presented in Figure 1 (b).  The blast pressure is characterized by an 

instantaneous rise to peak positive pressure which occurs at time after the detonation.  This peak pressure decreases 

exponentially to the negative phase.  This pressure profile characterizes the blast demand.  Three methods for 

determining the blast demand generated by conventional charge explosives have been developed by the military.  

These methods offer varied levels of complexity and detail.  The least complex method utilizes charts such as those 

presented in Army Technical Manual TM5-1300 (U.S. Department of the Army 1990).  These charts pertain to 
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accidental explosions and will yield a resulting pressure distribution for a given quantity of TNT, distance to the 

structure, and orientation of the structure to the blast.  The second tool available from the Army Corps of Engineers 

is the computer program ConWep (Hyde 2003).  ConWep generates the blast demands of conventional weapons as 

calculated from the equations and curves of Army Technical Manual TM 5-855-1 (U.S. Department of the Army 

1998).  The capabilities of ConWep include the calculation of an above ground air blast, ground shock, and the blast 

pressure on a concrete slab.  The most complex of the currently available methods is the program BlastX (Britt et al. 

2001).  BlastX allows for the computation of pressure profiles on irregularly shaped structural geometries.  BlastX 

has the capability to calculate the air blast generated by explosions inside or outside multiple room structures and 

will model the shock wave reflection off of walls, columns, and other structural elements.   

The three methods described for assessing blast demand provide increasing levels of accuracy.  For the majority of 

structural analysis, however the resulting pressure profiles may be simplified.  The exponential pressure-time 

demand, Figure 1 (b), can be represented as a triangular distribution.  For most cases, the negative pressure region 

has little effect on the behavior of the system and can be neglected.  The area under the pressure – time profile is 

referred to as the impulse, ∫= dttpi )( .  Equating the area under the exponential curve to the area under a 

triangular curve, as shown in Figure 2, the impulsive energy can be maintained, resulting in a reasonable 

approximation of the blast demand.  The maximum positive pressure, po, remains the same for both curves.  By 

equating the areas under both curves, the approximate curve will have a time duration of td1 = 2i / p0.   Thus po and i 

will describes how much energy the blast is imparting to a structure, and therefore defines the blast demand on a 

structure.  Often in blast assessment the responsibility of determining the specific threat level (i.e., weight of 

explosive and distance) is handled by an outside source.  Thus, engineers in practice who are instructed to design a 

structure for a specific threat level will usually be given the blast demands in terms of pressure and impulse. 

A typical blast demand on a structure has two features which are not commonly encountered by design engineers.  

This includes the large magnitude of the pressure demand and the dynamic aspect of the loading.  These 

characteristics must be considered together.  Applying the blast demand statically will in most cases significantly 

over estimate the demand.  The impulsive nature of the pressure in combination with the mass and stiffness of the 

system allows the structure to resist dynamic loads in excess of its static load capacity (i.e. td << Tn).   Methods for 

accounting for these effects are developed in detail in later sections.   
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Figure 2:  Idealized Blast Load (Exponential vs. Triangular) 

When the combination of pressure level and impulse is extremely elevated, the structure has a tendency to become 

pulverized.  This phenomenon is known as brisance.  The risk of brisance is commonly associated with reinforced 

concrete structures.  Brisance commonly occurs when the explosion occurs in close proximity to the structure.  This 

distance has been estimated to occur at a scaled distance of 3/15.1 lbftZ ≤  (McVay 1988).  Thus for an 

explosion in close proximity to a structure, a portion of the system may be subject to demands in excess of the 

scaled distance limit.  Elements within this range can be assumed to be instantaneously removed or to produce a 

static pull-down force on the remaining system.  As an upper bound the pull down force can be assumed to be equal 

to twice the pre-existing gravity load.   

5.2. Structural Resistance to Blast 

The goal for a blast resistant design includes preventing local or progressive collapse of a component or structural 

system, minimizing global damage, or localizing damage to absorb the blast energy.  Depending on the goal of the 

design, different analytical techniques can be utilized.  Analytical techniques can be divided into three categories: 

coupled dynamic analysis, uncoupled dynamic analysis, and static analysis.  Each analysis technique balances 

computational rigor with the amount of information attained.  The specifics of the design goal will determine which 

level of analytical detail is required. 

The most accurate analytical technique is a coupled blast analysis.  In this technique the blast pressure demand 

changes as the structure deforms under the load application.  These analyses are used for flexible structural systems 

of where isolated damage is expected.  This technique is most commonly used for military applications such as 

blasts on ship hulls.  This coupling between the load and the resistance requires advanced finite element techniques 

in which both the pressure wave and the nonlinear action of the structure is modeled.  To accurately perform this 

analysis requires proper application of computational fluid dynamics and dynamic finite element (FE) analysis with 
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geometric and material nonlinearities.  A few programs such as SHAMRC (Crepeau 2001) allow for coupled 

analysis, however, the computational effort and expertise required make these studies very uneconomical for bridge 

and building analysis.  Fortunately, due to the stiffness and mass of typical building systems, the response of the 

structural elements can be assumed to be uncoupled from the blast load.  In an uncoupled analysis the element is 

assumed to be rigid during the load application, thus the blast demand can be determined independently as discussed 

in the preceding section.  

Uncoupled dynamic analysis includes finite element analysis and simplified techniques such as single degree of 

freedom (SDOF) analysis.  Finite element methods can be conducted at varying levels of detail.  Material and 

geometric nonlinearities, large deformations, and dynamic responses can all be accurately modeled.  Such methods 

however require high level analytical tools (i.e. DYNA3D), costly computing time, and most importantly, advanced 

knowledge of nonlinear analysis.  In the interest of time and money this technique is seldom used by designers.   

As an alternative to complex dynamic analyses a less rigorous approach for design applications has been developed 

and implemented by the Government Security Agency (GSA).  This static, linear analysis method is well 

documented by the GSA in the manual “Progressive Collapse Analysis and Design Guidelines” (General Services 

Administration 2003).  The guide makes the assumption that a targeted structural element undergoes an 

instantaneous removal.  The removal process is assumed to occur locally to the section of the building under 

evaluation.  The remaining structure is then analyzed against a factored load of 2(DL+0.25*LL).  If the remaining 

capacity is less than the demand the members must be strengthened.  While this simplified calculation procedure 

provides a methodology for prevention of progressive collapse, it provides no information as to the actual response 

or damage states of a building under blast loads.  It is a threat independent methodology, meaning that it cannot 

predict the blast resistance of a structure or the damage associated with an event of a given size. 

To provide an effective and yet simple method for analysis of structures under blast loads a combined finite element 

and SDOF modeling method is developed.  The method begins with a static elastic FE push-over analysis of the 

structural system.  Using this tool the location of failure is qualitatively identified.  The identified damage region is 

then examined using an equivalent SDOF system.  The use of a SDOF model allows for material nonlinearities and 

dynamic action to be accounted for without significant computational time.  The equivalent SDOF system captures 

the dynamic response history of the structure.  Its elastic-plastic resistance behavior is considered, and the 

formations of plastic hinges determine critical displacement values that designate stages of failure.  From this 

information, a pressure-impulse curve can be generated which quantifies the blast resistance of a structure.  This 

analysis considers the case of a reinforced concrete wall, but it could be easily extended to other structural materials 

such as steel, precast concrete, or masonry. 

This analysis technique can be conducted independently of the blast demand assessment.  Therefore one individual 

can focus on calculating a structure’s resistance strength, while another can focus on calculating blast demands for 

different explosions.  This method is time effective while still providing valuable dynamic response information to 

the designer.  The method is presented in detail in the paper along with recommended model simplifications to 

reduce computation time and analytical rigor.   
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6. Research Significance 
The purpose of this research is to examine the blast resistance of a load bearing shear wall system.  While reinforced 

concrete shear wall systems have been used to successfully resist the effects of lateral demands generated from 

earthquakes and wind loads, the resistance to explosive loads has not been comprehensively examined.  Shear walls 

are conventionally designed to resist lateral loads through in-plane action; however, blast forces typically generate 

out-of-plane loads.  The large surface area of a wall provides an ideal area for capturing blast pressures, resulting in 

a complex, dynamic structural response. Exterior walls of the building are often a structure’s first line of defense 

against an explosion, but rarely have cladding for protection.  These systems often assist in the load bearing action 

of the building, supporting larger floor spans vulnerable to the risk of progressive collapse.  It is therefore 

advantageous for designers to have the ability to predict the blast resistance of such a structure in order to design a 

shear wall to withstand blast loads. 

This study presents the results of a simplified dynamic analysis method that can be utilized to determine the 

dynamic response of a structure and its stages of failure.  The paper outlines a methodology that couples a static FE 

model with a SDOF dynamic analysis in order to reduce computation time while preserving the scope of results 

obtained.  A prototypical building was chosen to represent commonly constructed office buildings in the United 

States.  The building studied is a low rise structure, three stories high, with gravity bearing shear walls located at 

each corner.  The system is designed for seismic demands and does not exhibit any special details for blast 

resistance.  The paper provides a methodology for assessing the blast resistance of the prototype building and 

provides numerical examples.  The strength of the wall is quantified through generation of pressure vs. impulse 

curves, delineating stages of failure by the FEMA performance level criteria.  The wall is first examined as a 

complete system.  Simplifying assumptions are then presented to reduce model complexity and calculation time.  

The analysis results for the two models are compared, with suggestions as to when it is appropriate to apply the 

simplified model.     
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7. Prototype Building 
The prototypical building studied is a low-rise structure, three stories high with a rectangular footprint of 

approximately 140 ft by 60 ft.  The lateral load resisting system is comprised of shear walls at all four corners of the 

building as shown in Figure 4 and Figure 3.  The shear walls are designed for seismic zone 4.  Perimeter columns 

are protected by cladding, and assumed to be far enough away from the center of the explosion so as not to be 

subject to structural damage.  The system is designed using normal weight concrete with a 28 day compressive 

strength of 4 ksi.  Live loads were taken to be 20 psf at the roof and 80 psf elsewhere.  A superimposed dead load of 

15 psf was assumed.  Steel reinforcement is Grade 60, ASTM A706.  Steel W-sections are ASTM A992 while steel 

channels are ASTM A36.   

The north-east corner wall is chosen for the blast resistance assessment.  It exhibits a regular geometry with 

architectural window openings integrated within the faces of the wall at each floor level.  Coupling beams are 

located at the top and bottom of each opening.  The perpendicular walls are cast monolithically.  Reinforcement in 

each wall is symmetric and is detailed according to Figure 10.  The size of longitudinal reinforcement decreases up 

the height of the wall.  The corner shear wall being studied supports the gravity load of the floor diaphragm as 

shown in Figure 5.  The floor is comprised of concrete over metal deck and is supported by steel channels attached 

to the shear wall with Nelson embed studs as shown in Figure 7.  Additional wall and floor diaphragm details are 

shown in Figure 6 through Figure 9. 

 
Figure 3: Building Shell Layout 
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Figure 4: Plan View of Prototype Building 
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Figure 5: Floor Diaphragm Details at Prototype Shear Wall 
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Figure 6: Cross Section 1-A 
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Figure 7: Cross Section 1-B 
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Figure 8: Cross Section 1-C 
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See Figure 10 for reinforcement
size and spacing

 
Figure 9:  Wall Reinforcement Details 

 
Figure 10:  Isometric View of Prototype Shear Wall  

7.1. Progressive Collapse Analysis 

The locations of window openings in the prototype shear wall create 6 foot wide outer walls spanning from floor to 
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floor, which are particularly vulnerable to blast loads.   Under a moderate blast load it is conceivable that both outer 

portions of the wall will be lost while the corner piece of the wall will remain intact.  The integrity of the slab is 

examined for this condition.  As shown in Figure 5 the W16 sections supporting the floor diaphragm frame into an 

MC18 section attached to the shear wall.  The channel section is attached to the wall with 7-3/4” diameter Nelson 

studs, shown in Figure 7.  In the event that the outer wall collapsed, the channel section would become a cantilever 

that is anchored by the remaining corner wall as shown in Figure 11.  The cantilevered channel would be the only 

remaining section to carry the gravity load of the floor diaphragm.  A shear capacity calculation of the remaining 

headed studs at the corner wall was performed in accordance with concrete design specifications 

(Precast/Prestressed Concrete Institute 1999).  The capacity of one stud was found to be 18 kips.  Assuming 6 studs 

remained attached to the corner wall, the total shear capacity is 108 kips.  The shear as a result of gravity loads the 

headed studs to 80% of their capacity.  Therefore the shear studs will not fail.  But flexural calculations of the 

cantilevered channel give an allowable stress value of Fb = 0.66*Fy = 23.76 ksi, while the maximum moment at the 

cantilevered end causes a tensile stress in the top flange of fb = 40 ksi.  Therefore the channel section will fail in 

flexure, precipitating a progressive collapse of the floor shown as illustrated in Figure 12.   

It is apparent that the outer walls of the shear wall are an important structural element to maintain integrity of the 

floor diaphragm. Loss of the outer wall will lead to loss of a large portion of the floor.  To enhance the integrity of 

this system a number of options could be pursued:  the slab edge restraint to the corner wall could be strengthened, 

the slab could be designed as self supporting under a cantilever condition, or the shear wall could be strengthened.  

However, prior to conducting any of these rehabilitations it is important to quantify how the wall will be damaged 

and what level of damage is associated with a given blast.  This study of the wall’s inherent strength may preclude 

the need for any rehabilitation.        
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8. Qualitative Push-Over Analysis 
As a first step in analyzing the prototype shear wall under a blast load, a static push-over analysis is conducted on 

the wall system.  This provides a qualitative estimate of the building response and determines the location where 

failure occurs in the wall.  In order to perform the push-over analysis, the relative blast demand pressures along the 

height of the structure must be determined.  For this study the software BlastX was used calculate the pressure 

distribution on the shear wall resulting from a blast (Britt et al. 2001).  The use of this software is restricted and 

requests for the program may be directed to the US Army Engineer Research and Development Center.   

8.1. Pressure Distribution Demand 

A pushover analysis is conducted to determine the relative pressure distribution along the height of the structure.  

For a ground level explosion the pressure distribution changes from a high value at the bottom of the structure to a 

low value at the upper floors. This distribution can be determined using one of the many blast load tools available as 

discussed section 5.  For this study Blast X is used.  The program accounts for geometry and reflected surfaces when 

computing the pressure – time demands.  An explosion would cause a continuous pressure distribution over the face 

of the structure.  However, for simplicity the assumption is made that the pressure is uniform at each floor.  

Pressures are estimated using targets at the center of each wall component.  The more target locations specified, the 

more detailed the pressure distribution will be.  For this study the shear wall was divided into thirty regions with 

target locations placed in the center of each piece, as shown in Figure 13.  The pressure levels and arrival times at 

each target vary according to its distance from the source of the explosion.  The distance to the structural component 

increases with floor level, resulting in a decreased maximum pressure and increased arrival time.  This is illustrated 

for one of the wall faces in Figure 14.   

 
             (a)  Case 1: Corner Loading   (b) Case 2: Face Loading 

Figure 13:  Blast demand scenarios 
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Figure 14: Reflective pressure demand on wall 

When constructing a blast demand model the location of the explosion must be specified.  Two scenarios were 

investigated, Case 1 located the bomb 20 ft from the corner of the shear wall and Case 2 located the bomb 20 ft 

directly in front of one wall, as show in Figure 13.  The resulting pressure distributions are shown in Figure 15, with 

the pressure normalized to 1.0 for both cases.  For the same explosive size it was determined that Case 2 had a 

maximum pressure magnitude that was 3 times larger than the maximum pressure of Case 1.  This is because in 

Case 2, one wall takes the full brunt of the explosive load, while the side wall feels negligible pressure loads.  Case 1 

results in a symmetric loading case which would cause both walls to fail at the same time.  This is a more 

catastrophic failure, therefore a corner blast load was chosen for the purposes of this study. 

 
 (a)  Corner Blast (b) Face Blast 

Figure 15: Normalized Blast Pressures Compared 
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8.2. Finite Element Analysis 

The blast pressure demand is used for a non-linear, static push-over analysis of the wall model.  An actual blast load 

would act dynamically not statically on the wall, therefore results of the FE model are confirmed by dynamic 

response calculations later on.  The finite element (FE) program Diana 8 (Witte 2002) was used to create the push-

over model.  When extracting the blast demand calculations from BlastX several simplifying assumptions were 

made.  First the pressure is assumed to act uniformly over pieces of the wall as calculated in BlastX and act 

perpendicular to the wall’s surface.  Second, the delay in arrival time between the closest and furthest element is on 

the order of 4 ms, therefore the pressure loads are assumed to act simultaneously.  Third, the structure is rigid with 

respect to the blast pressure; thus for simplicity the pressure does not change due to deformation of the structure.  In 

addition the floor diaphragm is assumed to be rigid during a blast load; therefore the floor diaphragm will provide 

full bracing to the wall at each level.  Lastly, the walls and coupling beams are taken to be axially rigid.  The 

assumed constraints are shown as applied to the FE model in Figure 16. 

  

Figure 16:  FE Model Constraints 

The FE model was constructed using a 20 node isoparametric, solid brick element (CHX60), based on quadratic 

interpolation and Gauss integration.  Approximately 12”x12”x12” (0.30x0.30x0.30 meters) elements were used to 

model the concrete illustrated in Figure 17.  Diana allows for embedment of reinforcement elements into the 

concrete elements, creating a perfect bond with the concrete.  All reinforcement was included in the model, as 

detailed as shown in Figure 18, including vertical, horizontal, and boundary reinforcement located in the walls and 

coupling beams.  Plastic behavior of the concrete elements was modeled using Von Mises yielding at a stress of 3.4 

ksi and work hardening was considered.  Concrete cracking was governed by a tensile stress of 0.47 ksi and 
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compression stress of 4.0 ksi.  Tension softening was brittle and constant shear retention was used.  Reinforcement 

elements were also modeled with Von Mises yielding and work hardening, with a yield stress of 60 ksi.   

  
Figure 17:  FE Model Concrete Mesh 

   
 Side Elevation View Isometric View 

Figure 18:  FE Model Reinforcement  
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In the Diana FE model the wall was loaded statically under the blast demand distribution determined previously 

until a cross-section of the wall had formed a plastic hinge, as shown in Figure 19.  Formation of a plastic hinge was 

assumed to initiate at the nominal flexural capacity.  This was taken to be the point when the longitudinal 

reinforcement had reached a tensile strain of 002.0=yε , and the concrete had crushed in compression at a strain 

of 003.0−=cε .  Figure 20 shows the strain values of the outer longitudinal reinforcement, and Figure 21 shows 

the strain values of the concrete on the inside face of the wall.  

 
Figure 19:  FE Model Applied Load Distribution 
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Figure 20:  Strain Distribution in Longitudinal Reinforcement at Initiation of Yield 

 
Figure 21:  Principal Strain Distribution in Concrete at Crushing 
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8.3. Pushover Failure Modes 

The window openings in the shear wall leave the outer wall sections more vulnerable to blast loads.  As illustrated in 

the deformed shape of Figure 21 the corner portion of the shear wall is resistance to blast pressures.  Under uniform 

loading the corner of the wall is stiffened by the two sections framing into it.  While two-way action on the corner 

wall will lead to damage along the free edge of the wall, the remaining corner column will likely stay intact.  

Complete failure of this segment of the wall is unlikely under a conventional blast demand.  Taking this into 

consideration, it was expected that failure would occur in the first floor, outer wall, where the blast pressure was 

highest.  Figure 20 and Figure 21 however, show that the failure occurs in the 2nd floor, outer wall due to formation 

of hinges at the 2nd and 3rd floor levels.  It can be seen that the 2nd floor, outer wall has the highest midspan 

displacement, as a result of its increased span and the reduction in longitudinal reinforcement up the height of the 

wall.  Therefore the 2nd floor, outer wall will undergo the greatest curvature at each of its ends and form plastic 

hinges first.  This portion of the wall becomes the “weak link” of the structure.   

As the failure scenario illustrated in Figure 11 demonstrated, the loss of any of the outer walls will precipitate a 

catastrophic failure of the floor diaphragm framing into the shear wall.  Therefore, when the 2nd floor outer wall fails 

the 3rd floor diaphragm framing into the shear wall will collapse, potentially producing a progressive collapse of the 

2nd floor.   It is apparent that when the 2nd floor, outer wall fails the integrity of the entire wall has been 

compromised.  The subsequent dynamic analyses will focus on this outer portion of the wall to determine its 

resistance to blast loading.   
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9. “System” Dynamic Analysis 
The FE model analyzed in Section 8.2 yielded a qualitative representation of the failure zone of the prototypical 

shear wall under a static load.  The next analysis step is to determine the dynamic failure response of the wall.  The 

dynamic response can be examined at different levels of complexity ranging from 3D nonlinear finite element, to 

multi-degree of freedom models (MDOF), to simplified single degree of freedom models (SDOF).  Nonlinear 

dynamic FE studies are well within the capabilities of US engineering practice.  Unfortunately the time and 

associated costs required to conduct these studies make them very impractical.  As an alternative to an FE model, a 

less complex MDOF dynamic model can be analyzed.  But this still requires time consuming numerical analysis.  

An analysis technique that has been used in the past by the Army Corps of Engineers and various blast analysts is 

the equivalent SDOF method.  This method converts a MDOF system to a simple spring-mass SDOF system.  

Performing an equivalent SDOF analysis is time effective while still yielding the desired dynamic response history. 

The equivalent SDOF model method equates the energies of the real and equivalent systems.  In this procedure, the 

actual force, mass, and stiffness of the wall (F, M, and k) are transformed into an equivalent force, mass, and 

stiffness (Fe, Me, and ke) as shown in Figure 22.  The equivalent system is chosen so that the deflection of the 

concentrated mass is the same as that of the midspan of the actual wall (Biggs 1964).  The values of the equivalent 

parameters, as derived by dynamic theory, are shown in Eqns. 1-3 (Chopra 1995).  The definition of the assumed 

shape function, )(xϕ , will be described in Section 9.2. 

 
Figure 22:  Equivalent SDOF System 
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 )('' tFykyM eee =+  Eqn. 4 

The equation of motion (EQM) that describes the behavior of the equivalent SDOF system is written in Eqn. 4.  

According to Eqn. 4 the EQM of the equivalent SDOF model can be solved only when the stiffness of the structure 

has been calculated.  The full dynamic response of the wall will be governed by stages of inelastic behavior during 

which the stiffness of the wall will change.  Therefore before the solution of the dynamic problem can be discussed 

it is necessary to quantify the inelastic behavior of the wall.  This requires calculation of the flexural and polar 

moments of inertia.  The moment-curvature behavior of the wall sections are then derived to determine when plastic 

hinges form along the wall.  The stages of inelastic behavior are then delineated by calculating critical 

displacements, i.e. the midspan displacement of the wall when each hinge develops.  This information will then be 

used to construct a static resistance curve which will describe the inelastic behavior of the wall for solution of the 

dynamic EQM.  The steps of the analysis methodology are presented in detail in this section. 

9.1. Structural Resistance 

It was determined from the static push-over analysis that the wall fails first at the 2nd floor, outer wall.  As described 

earlier, assumptions were made about the rigidity of the structure, namely, the floor diaphragm is assumed to 

prevent in-plane translation of the wall, and the walls and coupling beams are taken to be axially rigid.  These 

assumptions are used to represent the symmetric wall system as shown in Figure 23.  The degrees of freedom (DOF) 

reduce to three rotations at each joint.  These rotations are symbolized as θxn, θyn, θzn, where n represents the joint 

number.   

Applying the equivalent SDOF analysis technique to the prototypical shear wall requires critical thinking to 

determine what assumptions can be made and how the model should be constructed.  As determined previously the 

failure occurs in the 2nd floor, outer wall, therefore the dynamic analysis will focus at this location.  Two scenarios 

will be considered.  The first regards the wall as a system, as shown in Figure 23, taking into account the flexural 

resistance of the adjoining walls.  The second scenario considers the wall acting as a component, i.e. the end 

conditions of the wall are assumed to be fixed-fixed therefore the wall acts alone.  The dynamic response of the wall 

acting as a system will be considered in this chapter.  Chapter 10 will consider the wall acting as a component. 

9.1.1. Stiffness Properties 

In order to construct an equivalent SDOF model for the wall system the stiffness of the wall must be determined.  

This is done by first calculating the moment of inertia of each section of the idealized wall shown in Figure 23 and 

detailed in Figure 24.  Transverse reinforcement provides minimal confinement for out-of-plane flexure therefore its 

contribution was neglected.  According to the theory of concrete cracking, the actual moment of inertia will vary 

along the span of the wall depending on its deflection value.  For blast design use of fully cracked, transformed 

sections provides a conservative estimate of the moment of inertia (Biggs 1964; Smith and Hetherington 1994).  

This assumption will be verified in the following sections.  When computing the modular ratio Es was taken to be 

29,000 ksi and Ec was taken as 3605 ksi.   In order to account for torsional stiffness of the framing coupling beams, 
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the polar moment of inertia was calculated for each section using the equation 
12

)( 22 bhbhJ +
=  , where b = the 

width of the section and h = the height of the section (Gere and Timoshenko 1997).  The fully cracked transformed 

and polar moment of inertias for each wall cross section are presented in Table 1. 

 
Figure 23:  Wall System 

Table 1:  Moment of inertias of wall sections 

 Iz’z’ (in4) Iy’y’ (in4) J (in4) 

Section A-A 5752 109082 4.5192x105 

Section B-B 3766 91197 4.5192x105 

Section C-C 4786 101088 4.5192x105 

Section D-D 2981 82208 4.5192x105 

Section E-E 18992 1982 6.2664x104 
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Figure 24:  Wall Cross-Sections (Transverse Reinforcement Not Illustrated) 

9.1.2. Moment-Curvature 

To determine the ability of a structure to withstand a blast, the inelastic capacity of each element must be assessed.  

The level of inelastic capacity is computed in terms of ductility defined as the ratio of the ultimate deformation to 
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the deformation at first yield.  The ductility of ordinary reinforced concrete walls subject to lateral loads are 

typically on the order of 4.5 (International Code Council 2003).  However, since blast loading occurs out-of-plane of 

the wall the actual level of inelastic resistance must be computed for the system and conditions in question.  This is 

conventionally determined according to the moment-curvature response of the section.  The points of concrete 

cracking, steel yield, concrete crushing, and ultimate capacity can be correlated to points on a moment-curvature 

graph.   

9.1.2.1. Fiber Element Analysis 

Developing a fiber-element model is an accurate method for finding the moment-curvature graph of a cross-section.  

In a fiber-element model a structure is represented by numerous cross-sectional slices along its length and each 

cross-section is subdivided into horizontal fibers, as shown in Figure 25.  Each fiber is governed by a nonlinear, 

longitudinal stress-strain relationship dependent on the material type it represents (i.e. steel or concrete).  The model 

is loaded by stepping the strain in each fiber increases according to a linear strain profile, as shown in Figure 25.  

The axial forces are equated to the axial force present and the cross-section and the resulting moment is computed.  

The corresponding curvature is the gradient of the strain profile.   
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Figure 25:  Fiber Analysis Details 
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For this analysis the program DRAIN-2DX (Prakash et al. 1993) was used to construct a fiber-element model. An 

inelastic fiber element was used (element 15) accounting for strain hardening, yield of steel, and cracking and 

crushing of concrete.  The element model is of “distributed plasticity” type, which accounts for the spread of 

inelastic behavior along the member length.  This is opposed to a “lumped plasticity” model which uses the concept 

of zero-length “plastic hinges”.  Shear behavior is assumed to be elastic.  Uniform loading is represented as point 

loads placed at nodes along the length of the member.  The ends of the wall were taken to be completely fixed.  The 

material properties as specified for steel or concrete fibers are shown in Figure 26 & Figure 27.   
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Figure 26:  Concrete Constitutive Properties  
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Figure 27:  Steel Constitutive Properties  
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The fiber model for the wall is based on the as-built reinforcement details.  The concrete was assumed to be 

unconfined, as the boundary elements of the wall were not designed to provide confinement.  The wall 

reinforcement is reduced along the height of the structure as the shear demand decreases.  The longitudinal 

reinforcement in the second floor wall decreases from #9 to #7 bars as shown in Figure 10.   It was assumed that the 

#9 bars are fully developed and extend 2/3 up the height of the second floor wall.  The resulting moment-curvature 

graphs for Sections A-A and B-B are shown in Figure 28.  Section C-C was assumed to behave as Section A-A with 

#9 reinforcement instead of #9 and #7 spliced.  Section D-D was not analyzed because it was determined that failure 

will be localized at the top and bottom of the 2nd floor wall, therefore the 3rd floor cross-section will not affect 

subsequent analysis of the progression of failure.   
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Figure 28:  Moment Curvature Response of Wall 

The stages of inelastic behavior are apparent by the shape of the moment-curvature graphs.  Once cracking has 

occurred the moment-curvature relationship softens slightly and remains linear until the onset of yield.  The major 

change in slope on the graph occurs when the yield point of tensile steel is reached, at a strain of 0.002, and the 

curvature greatly increases while the moment stays almost constant.  After yield the internal lever arm of the section 

will increase, causes the moment to slowly rise until the wall reaches its ultimate strength.  The ultimate capacity is 

assumed to be controlled by reinforcement fracture.  Based on ASTM A706 mill certification reports, an ultimate 

strain of 0.140 is used.   

The moment-curvature response is simplified to a bi-linear model for all subsequent analyses.  These approximated 

values are tabulated in Table 2 and plotted in Figure 28.  The yield and ultimate points determined in the DRAIN 
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analysis will determine when plastic hinges form and fail, as described subsequently.   

Section A-A Section B-B  

Curvature 
(rad/in) Moment (k-in) Curvature 

(rad/in) Moment (k-in) 

Yield Point 0.000367 7340 0.000271 5410 

Failure Point 0.0149 9167 0.0143 5720 
Table 2:  Moment-Curvature Response 

9.1.2.2.  Section Analysis 

In the practice of engineering it may not be practical to develop a fiber element model to determine a moment-

curvature graph.  In such cases a simplified calculation may be appropriate to estimate the moment-curvature 

behavior of a section  (Park and Paulay 1975).  Points on the graph can be calculated by a section analysis of the 

strain profile at various stages of inelastic behavior.  The points are then connected linearly producing a simplified 

moment-curvature graph.  Figure 29 shows the results of a section analysis for cross-sections A-A and B-B up to the 

nominal moment capacity of the sections.  Three points are calculated, those of concrete cracking ( 0001.0=cε ), 

yielding of the steel ( 002.0=sε ), and crushing of the concrete ( 003.0−=cε ).  In comparison, the moment-

curvature graphs calculated by DRAIN are also shown on the graph.  It can be seen that the hand calculation is a 

very close approximation to the DRAIN results.  To determine the ultimate moment and curvature point, as was 

done in the DRAIN calculation, a section analysis could be performed based upon the ultimate steel strength at the 

point of steel fracture. 
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Figure 29:  Comparison of Moment-Curvature Graphs at Nominal Capacity 
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9.1.3. Critical Displacements 

With the inelastic behavior of the wall sections known the progression of damage in the wall can be determined.  

This is assessed by determining when and where plastic hinges form in the wall system.  A plastic hinge will form 

when a section reaches its yield moment.  Plastic theory predicts that under a large enough load, three hinges will 

form in succession in the 2nd floor wall before failure; a hinge at both ends and one in the middle.  The magnitude of 

midspan deflections at the time each hinge forms are known as the critical displacements.  These displacements are 

the benchmark to describe the transition of the wall through various stages of inelastic behavior.   

When a plastic hinge forms, the rules of elementary beam theory describing deflection no longer apply.  Therefore 

several assumptions will be made to simplify the deflection calculations during plastic behavior.  The first 

assumption is that when a plastic hinge forms it will hold a constant moment, but as the load is increased it will hold 

no additional moment, essentially acting as a pin during the next stage of loading.  Also, the formation of a hinge 

causes a local spike in curvature which results in additional plastic hinge rotation.  This additional rotation is 

accounted for in the final stage of deflection when it has the largest effect.   

To calculate the critical displacements the following procedure is used.  First, the wall system is loaded statically 

according to the blast pressure distribution in Figure 15 (a).  As shown in Figure 30, the load is incremented until a 

cross-section along the height of the wall reaches its yield moment, My, forming a plastic hinge.  The first hinge 

forms at the top of the 2nd floor wall (Section B-B) when MB = MyB.   The blast pressure is incremented again until 

the 1st floor cross-section (Section A-A) forms a plastic hinge at MA = MyA.  The pressure then increases a third time 

until the last hinge formed in the middle of the 2nd floor wall (Section C-C) at MC = MyC.  Note that the three stages 

of loading do not act independent of one another but rather they are additive.  

The critical displacements, yel, are calculated as the midspan deflection of the 2nd floor wall when each hinge forms.  

These deflections can be calculated by modeling the wall as a series of structural subassemblies as illustrated in 

Figure 30.  This analysis can be conducted in any standard structural analysis program.  For this analysis the 

program MASTAN (Ziemian and McGuire 2000) was used.  The moments of inertia tabulated in Table 1 are used to 

define the stiffness of the members in the model.  The pressure load varies up the height of the wall as determined 

by BlastX.  P-delta effects are not included because the gravity floor loads acting axially on the wall are small 

enough in magnitude that the second-order moment at the maximum wall displacement is less than 5% of the yield 

moment.  The displacement values calculated in when the three hinges form are found to be 0.341 in, 0.426 in, and 

0.994 in, respectively.  The critical displacements are tabulated in Table 3. 
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Figure 30: Formation of Plastic Hinges 

 Displacement at midspan of wall (in) 

yel1 0.341 

yel2 0.426 

yel3 0.994 

yel,ultimate 1.340 
Table 3:  Critical Displacements 

9.1.3.1. Ultimate Rotation Capacity 

Having determined the critical displacements for the first three stages of inelastic behavior, one last critical 

displacement remains to be calculated.  That is the displacement at failure.  The wall will fail when one of the plastic 

hinges reaches its ultimate rotation, uθ .   

Figure 31 shows a portion of a concrete structure loaded uniformly to the point of yield and ultimate moments.  The 

corresponding curvature for the two cases is shown for comparison.  When My is reached at a cross-section a plastic 

deformation initiates, i.e., a plastic hinge forms, and the localized curvature increases as the plastic hinge rotates.  As 

My increases to Mu, the inelastic curvature spreads over a length of the member, creating a plastic hinge length, lp.  

The area under the curvature diagram is equal to the rotation at that section.  Therefore the spike in curvature creates 

a localized increase in rotation at the plastic hinge, causing the maximum deflection in the member to increase also. 
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Figure 31:  Formation of Plastic Hinge 

The ultimate rotation value, uθ , is calculated as the area under the curvature diagram when the curvature has 

reached ultimate, uφ .  As shown in Figure 31, the shape of the curvature distribution at ultimate capacity is 

irregularly shaped.  The nature of crack propagation makes it hard to predict the value of the plastic hinge length, lp.  

Some empirical formulas exist which try to predict lp, but most pertain to highly confined concrete in seismic zones 

(Priestly et al. 1996).  Baker’s Equation (Institution of Civil Engineers 1964) has been widely used to find lp for 

unconfined beam sections, but the equation was derived empirically from tests that did not include wall sections.  

For this analysis, it was determined that Baker’s Equation overestimated the ductility of the wall and was therefore 

not used.  Some researchers specify a rotation value to designate the point of hinge failure. For example, the US 

Army Corp of Engineers assumes that a rotation of two degrees or more will cause the compression face of a 

concrete beam to crush (U.S. Army Corp of Engineers 1998).  But once again, this is usually applied for sections 

with high confinement and high ductility.  These methods are summarized in Table 4. 

Columns in Seismic Zones 
(Priestly et al. 1996) 

blyeblyep dfdfLl 3.015.008.0 ≥+=  

where, 
 L  = distance from the critical section to the point of 
        contraflexure 
dbl = diameter of longitudinal reinforcement 
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fye = characteristic yield strength 

Unconfined Beams 
(Baker (Institution of Civil Engineers 1964)) 

d
d
zkkkl p

4/1

321 





=  

where, 
k1  = 0.7 for mild steel 
k2  = (1+0.5*P/Pu) 
k3  = 0.6 when f’c = 5100 psi  
        or 0.9 when f’c = 1700 psi 
Pu  = ultimate capacity of member for axial load 
P   = ultimate axial load for member 
d   = effective depth of member 

U.S. Army Corps of Engineers θu  = 2° 
Table 4:  Plastic Hinge Length Estimates 
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Figure 32: Curvature Along Wall at Ultimate Load Level for 2nd Floor, Outer Wall 

In order to calculate the ultimate rotation value we refer back to the fiber element model developed in Section 

9.1.2.1.  The fiber-element model yields the curvature along the length of the wall for a given uniform load.  The 

curvature profile at ultimate is graphed in Figure 32.  It can be seen that the curvature increases to 

inradu /0148.0=φ  at L = 168”, therefore the plastic hinge at Section B-B will be the location of failure.  

Figure 33 shows a close-up view of the ultimate curvature at Section B-B.  .  In order to give an accurate 

representation of the ultimate curvature profile, the nodes from L = 156” to L = 168” were discretized at various 

densities until the ultimate rotation value converged.  Figure 34 shows the ultimate rotation plotted vs. the number of 

elements/inch.  The model converges at a discretization of ¼” or 4 elements / inch.  The curvature profile 
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approximates the plastic hinge length to be 4”.  Summing the area under the curvature diagram, the ultimate rotation 

at Section B-B was calculated to be uθ = 0.90 degrees or 0.016 radians. 
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Figure 33:  Curvature Along Wall in Plastic Hinge Region 
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Figure 34:  Convergence of Plastic Hinge Rotation for Increasing Discretization 
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9.1.3.2. Displacement at Failure 

Assuming that the elastic deformation of the wall is small compared to the plastic, the critical displacement value at 

failure can now be determined.  The displaced shape after three hinges have formed is assumed to be that shown in 

Figure 35.  As derived from the DRAIN model, the wall will fail when Section B-B reaches a rotation of 

inradu /016.0=θ .  According to similar triangles and assuming that θθ ≈)tan( , the critical displacement at 

failure is defined as
2

*,
Ly uuel θ= .  Therefore yel,u = 1.340”. The ductility of the wall is equal to 

93.3
341.0
340.1

==
∆
∆

=
y

uµ .   The critical displacement values at each inelastic stage are summarized in Table 3.  

 
Figure 35:  Plastic Hinge Reaches Ultimate Curvature 

9.2. Nonlinear Dynamic Response 

Section 9.1 outlined a procedure to determine the inelastic behavior of the wall under a static pushover.  A moment-

curvature analysis of the wall system sections revealed when plastic hinges formed and failed.  The locations of 

plastic hinges were also determined in a structural analysis model of the wall system and the critical displacements 

corresponding to hinge formation were calculated.  With this information the equivalent SDOF model can now be 

analyzed under a dynamic blast load. 

9.2.1. Equivalent SDOF Model 

As shown in Figure 22 an equivalent SDOF model equates the actual force, mass, and stiffness of the wall (F, M, 

and k) to an equivalent force, mass, and stiffness (Fe, Me, and ke).  The SDOF system is developed to have the same 

deflection as the midspan of the actual system.  The equivalent parameters are defined in Eqns. 1-3.  The equivalent 

system is equated to the real system using shape functions, f(x), derived directly from the displaced shape of the 

real wall, v(x).  The assumed shape function must satisfy two criteria.  First, the shape must be the same as that 

resulting from the static deflection under application of the dynamic load.  The second criterion is that the magnitude 

of the displaced shape shall be normalized to unity at the midpoint (Biggs 1964). For a given failure stage the shape 

function is calculated by the equation 
midv
xvx )()( =ϕ , where vmid is equal to the displacement at midspan.    
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As shown in Figure 36 the 2nd floor wall will go through four stages of inelastic behavior before failure, therefore 

four shape functions are required to capture the behavior.  The equation for the displaced shape of the real wall can 

be directly computed using theoretical principals of structural analysis.  While this method is very accurate the time 

required is prohibitive for this purpose.  As an alternative the shape function can be approximated by creating a 

computer model of the wall in a standard structural analysis program.  The MASTAN model developed in Section 

9.1 can be used to calculate the displacement equations, v(x), of the 2nd floor wall during the first three stages of 

inelastic behavior.  As shown in Figure 30, the moment values at the ends and middle of the 2nd floor wall are 

computed by the analysis program.  Since the loading is a uniform load the equation of moment as a function of the 

wall length, M(x), can be calculated by fitting a parabolic curve to these three points.  Applying the elementary beam 

theory the equation for displacement, v(x), can be derived using  Eqn. 5 (Ugural and Fenster 1995).              

21
00

)()( cxcdxxMdxxEIv
xx

++= ∫∫        Eqn. 5 

The constants c1 and c2 correspond to the homogeneous solution of the differential equations and are evaluated from 

the boundary conditions.  The constant 
EI
c1  is equal to the value of rotation, Θ , at Section A-A (the wall base of the 

2nd floor, outer wall).  The constant 
EI
c2  is equal to the value of the displacement, v, at Section A-A, which will 

always be assumed to equal zero.  The moment and displacement equations derived from the MASTAN model are 

shown in Table 5.  The equation for the displaced shape of Stage 4 can be calculated directly because the shape is 

assumed to be bi-linear with maximum displacement at the center as shown in Figure 35.  The assumed shape 

functions for Stages 1-4 are normalized using the equation 
midv
xvx )()( =ϕ , and the results are shown in Figure 36. 

 M(x) v(x) 

Stage 1 615221727.1 2 +− xx  xxxx 4243649 10*48.310*78.110*10.210*12.6 −−−− ++−  

Stage 2 11899.3718.0 2 +− xx  xxxx 42537410 10*48.310*44.310*66.310*86.8 −−−− ++−  

Stage 3 xx 3.8249.0 2 −  xxx 23749 10*08.110*67.710*28.2 −−− +−  

Stage 4 

 

2
68.2016.0

2
016.0

Lxforx

Lxforx

>+−

<
 

Table 5:  Moment and Computed Deflection Equations 
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Stage 1 

 
xxxxx 3243648 10*03.110*15.510*07.610*77.1)(1 −−−− ++−=ϕ  

 

Stage 2 

 
xxxxx 3243649 10*53.310*46.310*69.310*92.8)(2 −−−− ++−=ϕ  

Stage 3 

 
xxxx 23649 10*90.110*35.110*01.4)(3 −−− +−=ϕ  

Stage 4 

 

2
22)(4

2
2)(4

Lxfor
L

xx

Lxfor
L
xx

>+
−

=

<=

ϕ

ϕ
 

Figure 36:  Assumed Shape Functions 

As illustrated by Figure 36 there are four shape functions describing the behavior of the wall as it goes through the 

elastic, elastic-plastic, and plastic stages.  Therefore Eqns. 1 – 3 must be solved four times using each of the shape 

functions, an example of which is shown in Eqn. 6.  Fe is a function of p(x) and therefore will vary according to the 

magnitude of the blast load.  The values of Me and ke are tabulated in Table 6.  
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97.15

)10*03.110*15.510*07.610*77.1(*227.0

)(*)(
168

0

23243648

2

=

++−=

=

∫

∫
−−−− dxxxxx

dxxxmM e φ

            
Eqn. 6 

 Me (lb-sec2/in) ke (lb/in) 

Stage 1 15.97 589,264 

Stage 2 18.40 336,113 

Stage 3 19.19 185,204 

Stage 4 12.69 0 
Table 6:  Equivalent Mass and Stiffness 

9.2.2. Static Resistance Curve 

In order to calculate the dynamic response of the wall a static resistance curve must be derived.  The resistance of an 

element is the internal force which restores the element to its unloaded static position (Biggs 1964).  Thus the 

maximum resistance is the total load that the wall can support statically.  The slope of the resistance curve is the 

stiffness value for a given stage of inelastic behavior, and the area under the resistance curve represents the potential 

energy, PE, that the wall can resist.  The values for yel in Table 3 and the equivalent stiffness values, ke, in Table 6 

allow calculation of the resistance values, Re, using the equation elee ykR *= .  The results are graphed in Figure 

37.   It can be seen that the wall exhibits an elastic-plastic resistance curve with slope equal to the spring constants 

k1e,, k2e, and  k3e corresponding to the formation of the three plastic hinges.  After the third hinge forms, the wall is in 

the purely plastic phase and the stiffness drops to zero.   
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Figure 37: Static Resistance of Equivalent SDOF Model 

As the wall goes from the elastic to the inelastic stages the EQM governing its behavior changes according to the 

resistance function in Figure 37.  Because the parameters of the equivalent system change as the element progresses 

through the different stress ranges (see Table 6) a complete solution requires that each range be treated separately 

(Biggs 1964).  The EQM for each stage are shown below in Eqns. 7-10.  It is seen that damping has been neglected.  

This is because we are interested in the maximum displacement response of the wall.  This occurs during the first 

cycle of oscillation when damping is relatively unimportant.  Also, the energy dissipation in the wall will occur 

mainly through plastic deformation.  Omitting damping leads to a slightly more conservative design overall (Smith 

and Hetherington 1994). 

Stage 1:     eleee yytFykyM 1111 0)('' <<=+   Eqn. 7 

Stage 2:   eleleeelee yyytFRyykyM 2121122 )(])(['' <<=+−+   Eqn. 8 

Stage 3:   eleleeelee yyytFyRyykyM 3232233 )(])(['' <<=+−+   Eqn. 9 

Stage 4:     meleee yyytFRyM <<=+ 34max,4 )(''   Eqn. 10 

The EQM is solved for each stage using an explicit numerical analysis method.  A number of methods can be 

utilized for this analysis including the Central Difference Method and Newmark’s Method.  The procedure shown 

here is a constant velocity method (Biggs 1964).  The procedure is described in Table 6 and is included in Appendix 

A as it was programmed. 
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Initial variables defined outside loop: 

td = duration of load (sec) 
tend = end of numerical analysis (sec) 
∆t = time step of numerical analysis 

choose nTt *1.0≤∆  

Initial calculations for t = 0: 
 

eooe FpF '1*1 =  (Foe = max blast load) 

eooe FpF '2*2 =  

eooe FpF '3*3 =  

eooe FpF '4*4 =  

0)0( =y   (y = displacement) 

e

oe

M
tFf

1

1)0( )0( =
=  (f = blast force) 

0)0( =r     (r = resistance) 
)0()0()0('' rfy −=   (y’’ = acceleration) 
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2)()()( *)('' trfy sss ∆−=  
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Stage 3 until y = yel3  
or rebound begins (y = ymax): 
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2)()()( *)('' trfy sss ∆−=  
2)()1()()1( )(''2 tyyyy ssss ∆+−= −+  

Table 7: Constant Velocity Numerical Analysis Procedure to Solve EQM 

9.2.3. Wall Response 

Solution of the EQM according to the numerical analysis procedure of Table 7 will yield the dynamic time history 

response of the wall for a specific blast demand.  The procedure requires two input variables relating to the blast 

demand, the maximum pressure, po, and the impulse, i.  The program then outputs the midspan displacement of the 

structure as a function of time.  Figure 38 gives example time history responses at various stages.  An illustration of 

the resistance curve shows the corresponding stage of inelastic behavior for each response.  The values of po and i 

causing the response are also tabulated.  It can be seen that because no damping is included in the EQM, the 

response of curves 1-4 will oscillate without decay.  Curve 5 represents failure; therefore the response stops at the 

critical displacement value of 1.340”, as derived in Section 9.1.3.2.  This failure response is one of numerous 

combinations of po and i that will cause the wall to fail.  It is useful to develop an “envelope” of blast demands 

which will define a failure zone as a function of po and i.  A method of doing so is discussed in Section 9.3.2.  

It should be noted in the numerical analysis procedure of Table 7 that specific calculation loops are required to 

describe the rebound response of the wall.  This is in order to capture the correct resistance behavior of the wall as it 

oscillates dynamically.  As the displacement of the wall increases, the resistance of the wall increases according to 

the slope of the static resistance curve, i.e. k1e, k2e, k3e.  When the wall reaches a peak oscillation it will then unload 

according to the initial elastic stiffness, k1e.  When the oscillation reaches a low point, the resistance once again 

increases along the slope of k1e until the wall reaches a large enough displacement that the elastic-plastic stiffness 

once again applies.  This behavior of moving up and down the static resistance curve is illustrated in Figure 39.  The 

analysis procedure described in Table 7 and presented in Appendix A will calculate the complete response for blast 

loads in the dynamic and impulse ranges.  For quasi-static loads the program should be used to calculate the 

maximum dynamic response only.  If the dynamic response is required beyond the first oscillation peak, the program 

should be revised to capture a more advanced hysteretic behavior of the multi-linear resistance curve.  Newmark’s 

method with application of the Newton-Raphson iteration can be used.  This advanced method of analysis was not 

employed for the purposes of this analysis, because the majority of blast loads will occur in the dynamic and 

impulsive regions only.  See Section 9.3 for an explanation of the delineation of the quasi-static, dynamic, and 

impulse regions.    
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Figure 38: Example Dynamic Response History of Wall 

1 

2 

3

4 
5

Stage po (lb/in) i (psi*s) 

1 600 0.100 

2 600 0.174 

3 600 0.275 

4 600 0.425 

5 600 0.490 
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Figure 39:  Assumed rebound response  

9.3. Damage Quantification 

Recall in Figure 2 the shape of the idealized blast curve.  The blast curve is described by its maximum pressure 

value, po, and its time duration, td.  Depending on the length of td compared to the natural period of the structure, Tn, 

the behavior of the structure will fall into one of three categories, quasi-static, dynamic, or impulsive.  First consider 

the case when td is much longer that Tn.  The pressure, po, changes so slowly that the force is considered constant up 

to the maximum displacement, as shown in Figure 40 (a).  This loading regime is known as quasi-static.  A quasi-

static blast load would occur from an explosion that releases a virtually constant pressure for a relatively long time 

duration (~1-10 sec).  This type of explosive loading is very rarely encountered with respect to intentional blast 

loading.  The response history of the wall loaded by a quasi-static load is illustrated in Figure 41.  The response is 

shown normalized with respect to the maximum static displacement, (yst)o, and is compared to the normalized blast 

demand.  As characterized by a quasi-static load it can be seen that the wall undergoes many oscillations before the 

loading completes. 

 
Figure 40: (a) Long Duration Loading (b) Short Duration Loading   
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The next case, shown in Figure 40 (b), is when td is much shorter that Tn.  As shown in the response history graph of 

Figure 42 the loading is applied so quickly relative to the wall response that the wall reaches its maximum 

displacement after the blast load application has been completed.  This is described as the impulsive region and 

represents most blast loading combinations.  In between the two extreme cases lays the dynamic region, illustrated 

in Figure 43.  
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Figure 41: Normalized Dynamic Response of Wall under Quasi-Static Load 
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Figure 42:  Normalized Dynamic Response of Wall under Dynamic Load 
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Figure 43: Normalized Dynamic Response of Wall Under Impulse Load 

The three regimes can be delineated with respect to the relative duration of the blast load, td, and the period of the 

system, Tn.  These regimes can be approximated as shown in Table 8 (Mays and Smith 1995). 

0.4  >  td/Tn Impulsive 

0.4  <  td/Tn  <  40 Dynamic 

40  <  td/Tn Quasi-Static 
Table 8:  Regimes of Loading 

9.3.1. Dynamic and Impulsive Response of 1st Floor Wall 

As described previously, the FEM analysis in Diana indicated that failure would occur in the 2nd floor wall under a 

quasi-static load.  Depending on the type of explosive a blast load may act in the quasi-static, impulsive, or dynamic 

range.  Therefore it is prudent to check that our assumption holds true in the impulsive and dynamic zones as well.  

The dynamic response of the 1st floor wall can be determined through the procedure outlined in Chapter 9 and 10.  

Figure 44 shows the curvature diagram calculated in DRAIN-2DX for the 1st floor, outer wall.  Note that the 1st floor 

wall has #9 longitudinal reinforcement along its entire length; therefore plastic hinges will form simultaneously at 

both ends of the wall where the moment peaks.  Summing the area under the curvature diagram, the ultimate rotation 

value, uθ , is calculated to be 0.022 rad or 1.25 degrees.  According to the assumed failure geometry (see Figure 35) 

when the plastic hinge reaches uθ the critical displacement value at failure will equal 1.650”.  
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Figure 44:  Curvature along first floor outer wall at ultimate 

For simplicity the 1st and 2nd floor walls are modeled as components with fixed-fixed ends.  This assumption will be 

validated as a legitimate simplification in the next chapter.  Using the numerical analysis procedure outlined in 

Table 7 the EQM for the each wall is solved to determine the history response under a dynamic or impulsive load.  

A dynamic blast demand causing the 2nd floor, outer wall to fail is equal to (po = 3460 lb/in, i = 0.96 psi*sec).  The 

corresponding pressure on the 1st floor, outer wall is equal to (4083 lb/in, 1.13 psi*sec), according to the normalized 

blast pressure distribution developed in Figure 15.  The resulting response of both walls in Figure 45 shows that 

when the 2nd floor wall has reached failure, the 1st floor has achieved inelastic deformation but has not yet failed.  In 

the impulse region the 2nd floor wall will fail with a blast demand of (po = 70,000 lb/in, i = 0.49 psi*sec).  This 

corresponds to a demand of (82,600 lb/in, 0.57 psi*sec) on the 1st floor wall.  Once again the 2nd floor, outer wall 

fails with only minimal damage to the first.  The previous assumption made from the static pushover analysis that 

the 2nd floor wall fails first holds true under dynamic evaluation.  For the quasi-static, impulse, and dynamic regions 

of loading the second floor wall will be lost before the first.   
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Figure 45: Response Curve of First and Second Floor Wall 

9.3.2. Pressure-Impulse Curve 

As shown in Figure 2 the blast demand is described by two criteria, maximum pressure and time duration, po and td 

respectively.  The area under the blast curve is the impulse, i, imparted to the structure (i.e. i = ½*po*td).  As 

illustrated in Figure 38 the dynamic time history response of the system model has been calculated for a specific 

blast demand.  It is informative to develop an “envelope” of blast demands, as a function of po and td , which will 

define the four failure stages in the wall.  This can be done by graphing a pressure vs. impulse curve.  A pressure vs. 

impulse curve is a very informative means to describe how much damage a structure will sustain under a variety of 

blast load magnitudes.   

The pressure vs. impulse curve generated for the system model is illustrated in Figure 46.  These curves were 

created by solving the EQM’s in Eqns 7-10. The numerical analysis technique outlined in Table 7 was modified 

slightly for the purposes of this analysis; see Appendix B for the revised MathCad program.  The program was 

rewritten to input td and a critical displacement value, yel (corresponding to one of the four failure stages).  The 

program outputs the resulting pressure, po, which causes the structure to reach the specified failure level.  The 

impulse corresponding to the failure level can then be calculated from the equation i = ½*po*td.. The program was 

run for 15 values of td ranging from 0.0005 sec to 5 sec.  The program was also run for each critical displacement, 

yel1, yel2, yel3, and yel,u (Stages 1-4).     
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Figure 46:  Pressure vs. Impulse Curve (System Model) 

As discussed in Section 9.3 a blast demand will load a structure in one of three regions, quasi-static, dynamic, or 

impulsive.  Using the criteria as tabulated in Table 8, lines delineating the three zones can be graphed on the 

pressure vs. impulse curve.  It can be seen that for low pressures the wall is loaded in the quasi-static zone, high 

pressures correspond to the impulse zone, and in the middle is the dynamic zone.   

For design purposes, it is convenient to name the four stages of failure are according to the performance levels 

defined by FEMA (Applied Technology Council and Building Seismic Safety Council 1997).  When one hinge has 

formed the structure is at the Immediate Occupancy (IO) level.  When two hinges have formed it is the Life Safety 

(LS) level, three hinges is called the Collapse Prevention (CP) level, and when a hinge fails the structure is at 

Collapse.  These performance levels define failure regions as illustrated on the pressure vs. impulse curve of Figure 

48. 
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Figure 47:  Three Regimes of Loading (System Model) 

Development of the pressure vs. impulse curve for a specific structure is an advantageous tool for a designer.  With 

the knowledge yielded by the graph, it is possible to determine for a given blast demand which performance level a 

structure will maintain.  Instead of designing for the criteria of “fail” or “not fail”, the pressure vs. impulse graph 

allows a designer to determine what damage level a structure will incur.  For example, say a wall system exists 

which is considered at risk for terrorist attacks.  It is desired that the wall can resist an impulsive blast demand, i, of 

magnitude 0.3 psi*sec with a peak pressure, po ,equal to 600 psi.  The wall is part of a building which requires a Life 

Safety Level to be maintained under these demands.   In order to determine if the wall is adequately designed for 

such blast criteria, the pressure vs. impulse curve is developed.  From this chart the po vs. i can be mapped to 

determine the expected performance of the system.  For example the coordinate (po, i) = (600, 0.3) is plotted on the 

graph of Figure 48.  The intercept lies in the LS range.  Therefore the current blast resist capabilities of the wall 

would meet the design criteria.  If the response had exceeded the Life Safety Level, retrofit options may be 

considered to increase the strength of the wall.  A new pressure vs. impulse curve would have to be derived 

corresponding to the redesigned wall.  Design time is always an important consideration in practice, and oftentimes 

simplifications are sought which will increase efficiency without loss of sufficient accuracy.  As a means of 

simplifying the analysis method presented in Chapter 9, a component study of the wall is examined in the next 

chapter.   

Quasi-Static Region 

Impulse Region

Dynamic Region 
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Figure 48: FEMA Performance Levels (System Model) 
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10.   “Component” Dynamic Analysis 
In the course of design it is advantageous to ascertain when simplifying assumptions can be made which do not 

deteriorate the required accuracy of the solution.  The preceding chapter outlines a detailed methodology of finding 

the dynamic response of the 2nd floor, outer wall when acting as a system with the adjacent walls and coupling 

beams.  Performing calculations to this level of detail may not always be desirable or necessary.  A simplified model 

is developed which considers the 2nd floor, outer wall as a component.  The component model assumes that the 

stiffness at the top and bottom of the wall is large enough so as to be considered fixed ends.  In addition the blast 

load profile is assumed to act uniformly along the height of the wall component.  Revising the system model using 

these simplifications yields the component model shown in Figure 49.  The dynamic analysis outlined in Chapter 9 

will now be replicated for the component wall. It will be shown that the component model can be analyzed with a 

substantial decrease in computational effort while still maintaining a comparable estimate of response. 

 
Figure 49:  System Model vs. Component Model 

10.1. Static Resistance Curve 

As defined in Section 9.2.2the static resistance of a structure can be represented in terms of wall resistance vs. 

midspan displacement (i.e. R vs. yel).  The slope of the graph is equal to the wall stiffness, k.  The simplifications of 

the component model allow for its static resistance curve to be calculated with a few simple equations.  The values 

of k and R for the component wall are derived according to the procedure in Table 9.  The critical displacement 

values are then calculated using the equation yel = R/k.   

Recall that the yield moments for Sections A-A & B-B were derived in Chapter 10 as tabulated in Table 2, and the 
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yield moment for Section C-C was assumed to be that of Section A-A.  The procedure to derive R and k for the 

component wall is as follows.  First, a uniform distributed load, w1, is placed on the wall causing the moment at 

Section B-B to reach yield, MyB, and form a plastic hinge.  The total load acting on the wall is R1.  At Stage 2 

Section B-B now acts as a pin.  A distributed load, w2, is added onto the wall so that the total moment of Stage 1 and 

2 is equal to yield at Section A-A, MyA.  Therefore Section A-A forms a hinge and the total load acting on the wall is 

R2.  In Stage 3 a distributed load, w3, is added to the wall so that the total moment of all three stages at Section C-C 

is yield, MYc.  For this analysis MyC = MyA , per the geometry of longitudinal reinforcement as discussed in Section 

9.1.2.   The stiffness at each stage is calculated from the deflected shape of the wall under a unit uniform load. 
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Table 9:  Derivation of R and k for Component Model 

The values of R, k, and yel for the component model are tabulated in Table 10.  Note that the resistance curve is in 

terms of the actual resistance parameters (R and k) as opposed to the equivalent resistance parameters (Re and ke).  

Transformation to the equivalent parameters for solution of the equivalent SDOF model will be described in the next 

section.  These values are used to graph a static resistance curve, as shown in Figure 50.  The graph is compared to 

the resistance curve calculated for the system model.  The area under the resistance curve represents the potential 

energy, PE, which the wall can resist.  The areas under both curves are compared in Table 10.  As expected the 

component wall will absorb more energy than the system model because it is artificially stiffer due to the fixed-fixed 

assumptions used.  Therefore dynamic analysis of the component wall should result in an over-approximation of the 

strength of the wall.  This is true for all stages except for the first, which actually absorbs less energy than the 

system model.  Subsequent analysis will show that this difference in energy absorption affects the accuracy of the 

pressure vs. impulse graph by only a small percentage.  

 R (lb) k (lb/in) yel (in) PEcomponent 
(lb-in) 

PEsystem 
(lb-in) 

% 
Difference 

Stage 1 386,429 1,399,609 0.276 53,346 62,291 -14.36% 

Stage 2 478,333 674,291 0.412 112,278 95,336 +17.77% 

Stage 3 653,095 279,922 1.037 465,468 376,134 +23.75% 

Stage 4 653,095 0 1.34 663,538 575,620 +15.27% 
Table 10: Resistance Parameters for Component Model 
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Figure 50:  Static Resistance Curve (System vs. Component Model) 

10.2.     Equivalent SDOF Model 

Now that the static resistance curve of the component model has been calculated, an equivalent SDOF model can be 

analyzed.  Recall that development of the equivalent SDOF model requires that the actual mass, stiffness, and force 

(M, K, F) be converted to an equivalent mass, stiffness, and force (Me, ke, Fe).  The assumption of a fixed-fixed wall 

now allows us to introduce the concept of transformation factors, K.  These factors are used to convert the actual 

parameters of the wall directly into equivalent parameters without solving the integrals defined in Eqns. 1-3.  The 

transformation factors are defined in Eqns. 11-13.  The mass factor, KM,, is the ratio of the equivalent mass to the 

actual total mass of the structure.  Similarly, the load factor, KL,, is defined as the ratio of the equivalent load to the 

actual total load.  The load-mass factor, KLM, is simply the mass factor divided by the load factor.   
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Eqn. 12

 L

M
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KK =          Eqn. 13 

The resistance parameters of the actual wall can also be converted to equivalent values by use of a transformation 
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factor.  The ratio of the equivalent resistance to the actual resistance is equal to the load factor, KL.  The ratio of the 

equivalent stiffness to the actual stiffness is also equal to the load factor (Biggs 1964), as shown in Eqn. 14.     The 

EQM governing the equivalent SDOF system can now be represented in terms of the transformation factors defined 

in Eqn. 15.  The transformation factors corresponding to the deformed shapes of Stages 1-4 wall have been 

previously derived and are presented in Table 11 (Biggs 1964).  The values of R and k derived in Table 9 are re-

tabulated below as well. 

L
ee K

k
k

R
R

==

          

Eqn. 14 

)('')('' tFKkyKMyKtFykyM LLMeee =+⇔=+      Eqn. 15 

Loading Diagram Stages KL KM KLM R k 
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Stage 4 
Plastic 

0.50 0.33 0.66 L
MM yByA *4*12 +

 
0 

Table 11: Component Model Parameters 

The values of Me , ke, and Re  are tabulated in Table 12.  The EQM describing the wall’s dynamic behavior are 

shown in Eqns. 16-19.  From these equations the pressure vs. impulse diagram can be calculated as before. 

 Me [lb-sec2/in] ke [lb/in] Re [lb] yel [in] 

Stage 1 15.61 741,792 204,807 0.276 

Stage 2 17.14 391,088 277,433 0.412 

Stage 3 19.04 179,150 417,981 1.037 

Stage 4 12.57 0 417,981 1.34 
Table 12:  Equivalent Resistance Parameters of Component Model 

Stage 1:  elLLM yytFKykKMyK 11111 0)('' <<=+   Eqn. 16 

A-A B-B 

A-A 

A-A 

B-B 

B-B 

A-A B-B 
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Stage 2:  elelLelLM yyytFKRyykKMyK 21211222 )(])(['' <<=+−+  Eqn. 17 

Stage 3:  elelLelLM yyytFKRyykKMyK 32322333 )(])(['' <<=+−+   Eqn. 18 

Stage 4:  melLLM yyytFKRKMyK <<=+ 34max44 )(''   Eqn. 19 

10.3. Pressure vs. Impulse Curve 

The EQM of the component wall can be solved using the numerical analysis procedure previously discussed in 

Table 7 and presented in Appendix B.  In order to quantify the structural strength of the component wall the pressure 

vs. impulse curves are graphed for all four damage states, as described in Section 9.3.2.  Figure 51 shows the 

pressure vs. impulse curve of the component model compared to that of the system model.  The results show that the 

simplifications made to represent the component model still produce a comparable solution.  As mentioned 

previously the most common blast demands will load a structure impulsively.  In the impulsive region for Stages 1-3 

the strength of the component wall is calculated to be ~9% higher than the system model.  In Stage 1 the component 

model underestimates the system response by ~7%.  These values support the expected results corresponding to the 

allowable potential energy capacity for each stage, as described in Table 10.   

The results of the component analysis yield a comparable solution to that of the system model.  But it must be 

carefully noted that the simplifications of the component model assume the wall to be stiffer than it actually is, 

therefore the wall resistance will be over-estimated.  The assumption of fixed-fixed ends should only be made on 

structures that exhibit a large stiffness.  For the case of a flexible structure it may be prudent to derive a component 

model with pinned-pinned ends, in order to determine a lower-bound estimate of the response.     
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Figure 51:  Pressure vs. Impulse Curve (Component & System Models) 
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10.4. Summary of Component Model Method 

The complete procedure to calculate the dynamic response of the component model is summarized in the flow chart 

of Figure 52.  The method to develop a pressure vs. impulse diagram is also summarized in Figure 53. 

 

Figure 52:  Flow Chart of Dynamic Response Methodology (Component Model) 
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Figure 53:  Flow Chart of Pressure vs. Impulse Curve Methodology 
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10.5. Component Analysis with Bi-linear Approximation 

If it is not necessary to designate the intermediate stages of damage in a blast assessment, further simplifications can 

be incorporated.  When only the yield and ultimate levels are needed it is advantageous to simplify the resistance 

curve as bi-linear or “elastic-plastic”.  For the case of a bi-linear resistance curve graphs can be developed which 

correlate the natural period of a structure with its maximum midspan displacement under a certain blast demand.   

Figure 54 shows such a graph derived for a triangular load.  Use of such tables allows a designer to quickly 

determine the blast resistance of a structure without ever having to solve the dynamic EQM problem.  This is a much 

quicker way to gain information, but as the following results will show, the solution will differ somewhat from the 

previous estimate of response as a result of the simplification.  This must be considered before a designer would 

choose to approximate a multi-linear resistance curve as bi-linear.   

 
Figure 54:  Maximum Response of Elastic-Plastic SDOF System Due to Triangular Load (Biggs 1964) 

When converting the multi-linear resistance curve to bi-linear the stiffness values of Stage 1-3 will be replaced by an 

effective spring constant, ke
E, as shown in Figure 55.  The effective spring constant is chosen so that the areas under 

both curves are equal, which shifts the value of yel3 to yel
E. This ensures that the energy absorbed by the two systems 

will be the same.  The values of ke
E and yel

E are calculated to be 536,058 lb/in and 0.69” respectively.  Using energy 

equivalence again, an effective displacement corresponding to failure stage 1 can also be calculated, yel1
E.  The point 

designating Stage 1 is found to be (yel1
E, Re1

E) = (0.325 in, 174103 lb).        

The parameters of the equivalent SDOF system (Me, ke, and Fe) must be estimated for the “elastic” stage, which now 

encompasses Stages 1-3 of the component model.  It has been suggested that the parameters can be approximated by 

employing a weighted average of the transformation factors for each stage (Biggs 1964).  Therefore, the 

transformation factors for each stage were weighted according to the area under the resistance curve for that stage, 

and the values were averaged to determine an effective transformation factor.  Table 13 tabulates the effective load 
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and mass transformation factors, KL
E

 and KM
E respectively.  The value of the effective equivalent mass, Me

E, is 

calculated using the effective mass transformation factor, Me
E = M*KM

E = 38.08 lb-sec2/in * 0.48 = 18.31 lb-sec2/in.  

The effective equivalent load is found similarly, Fe
E = F*KL

E.  The value of Fe
E will be calculated for increasing 

values of po as illustrated in the numerical analysis program of Appendix B. 

-

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0.00 0.40 0.80 1.20 1.60

y [in]

R
e [

lb
]

Multi-linear
Resistance
Bi-linear
Resistance

k3e

ke
E

k2e

k1e

yel
E

Re,max

yel3

yel1
E

yel1

Re1

Re1
E

 
Figure 55: Effective Bi-linear Resistance Curve 

 KL
 KM

 

Stage 1 0.53 0.41 

Stage 2 0.58 0.45 

Stage 3 0.64 0.50 

Effective Value 0.62 0.48 
Table 13: Effective Parameters for Bi-Linear Resistance Curve 

The EQM for the bi-linear model are represented in Eqn. 20-21.  The transformation factors from Stage 4 in Table 

11 apply to the plastic stage.   

Elastic:    E
el

E
L

E
e

E
M yytFKykMyK <<=+ 0)(''    Eqn. 20 

Plastic:   m
E

elLLM yyytFKRKMyK <<=+ )('' 4max44    Eqn. 21 

Figure 56 compares the results of the system model with the results of the bi-linear model.  The error as a result of 

using a bi-linear resistance curve is apparent.  When compared to the expected results of the system model the bi-

linear model overestimates the system strength at Stage 4 by 15% in the impulsive region.  This approximation is 
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non-conservative.  The result of Stage 1 underestimates the response by 13%.   These errors are a result of using a 

weighted average of the transformation factors to represent the bi-linear curve.  The biggest drawback to the bi-

linear model is that the intermediate stages of failure are not clearly delineated on the resistance curve.  Therefore 

the pressure vs. impulse curve for Stages 2 & 3 cannot be generated by the bi-linear model.  This technique is useful 

to determine the approximate response of the first and last stages, but it should be kept in mind that an 

unconservative answer may result. 

Pressure [psi]

Im
pu

ls
e 

[p
si

*s
ec

]

10 50 100 500 1,000
0.1

0.5

1

5

10

50

100

 

Figure 56:  Pressure vs. Impulse Curve (Bi-Linear & System Models) 
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Dashed Line- Bi-Linear Model 
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11. Conclusions and Recommendations 
The purpose of this paper was to describe a procedure to determine the behavior of a reinforced concrete shear wall 

under a blast load.  Consideration was made to develop an efficient calculation method that can be replicated in 

practice, while still yielding informative dynamic response information.  A prototypical building was chosen which 

represents common office buildings constructed throughout the U.S.  The building is three stories high with gravity 

bearing shear walls located at each corner.  The shear walls have window openings at each floor and do not exhibit 

any special details or design for blast load.  One of the corner shear walls was chosen for in-depth investigation.  A 

combination of a static, FE analysis and a SDOF dynamic analysis was used to determine the response of the wall 

under a blast load.   

The program BlastX was used to determine the blast demand of an explosion located 20 ft off the corner of the shear 

wall.  As a preliminary study an FE model was constructed with static push-over loads to determine where failure 

likely occurs in the wall.  It was determined that the 2nd floor, outer wall was the weak link in the total shear wall.  

This portion of the wall became the focus of further dynamic analysis.  Two models were investigated.  A system 

model was chosen that represented the actual end fixity of the 2nd floor, outer wall by including the stiffness 

contributions of its adjoining wall sections.  Simplifying assumptions were then recommended to create a 

component model requiring less computational complexity.  The component model assumed the ends of the 2nd 

floor, outer wall to be fixed-fixed. 

First, the system model was analyzed to determine its dynamic response under a blast load.  The static resistance 

curve of the wall was derived by calculating the stiffness of the wall pieces and their moment-curvature behavior.  It 

was determined when and where plastic hinges form.  An equivalent SDOF system was then developed to calculate 

the maximum dynamic response of the wall at four stages of failure.  The final results were plotted as a pressure vs. 

impulse diagram which represented the level of damage the wall would sustain for varying sized blasts.   

The dynamic analysis was replicated for the component model, requiring less rigorous calculation of the static 

resistance curve and equivalent SDOF parameters pertaining to the assumption of fixed ends.  Comparison of the 

pressure vs. impulse curves for the system and component models showed that the component model is a close 

representation of the response predicted by the system model.  For an impulsive blast demand, the component model 

overestimated the wall’s resistance by 7%.  While this is small percentage difference, it should be kept in mind that 

the component model results will always be non-conservative because it is assuming the wall is stiffer than actuality.   

For this reason the component model is recommended only for structures which exhibit a large amount of stiffness.  

For flexible structures, pinned-pinned end conditions could be used to represent the structure and would offer a 

lower bound estimate of the wall strength. 

An additional simplification was studied in comparison to the system model results.  In lieu of analyzing the 

dynamic problem using a multi-linear curve an equivalent elastic-plastic curve was derived.  This model was used to 

estimate the blast resistance of the wall at first yield and failure.  The intermediate stages of failure were not 

included because they are not delineated by a bi-linear model.  The results yielded a pressure-impulse curve that was 

a 15% overestimate of the system model.    For these reasons, a bi-linear approximation of the multi-linear resistance 
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curve would be recommended as a means to get an order of magnitude approximation of the response for elastic 

behavior or at failure.    

It should be noted that this procedure considers the flexural resistance of the wall only.  The consideration of a shear 

failure was not considered, but this is a very important failure mechanism which should be investigated in any blast 

design.  Oftentimes, extra shear reinforcement will be necessary for a structure to reach its full flexural capacity.   

Two methods of shear failure should be considered, flexural shear and direct shear.  A direct shear failure occurs 

when the load is applied at a high enough magnitude and rate that the wall does not have time to defect before it is 

sheared.  This failure mechanism is a possibility under high impulse blast loads.  Research into adequate detailing to 

resist flexural and direct shear failure would be highly informative to designers.    

The methodology developed in this paper outlines an efficient procedure to determine the blast resistance of a wall 

under varying stages of inelastic behavior.  The resulting pressure-impulse curves are a useful source of information 

to determine for a certain structure how much damage will results from a specific blast demand.  This analysis is 

valuable for designers who are considering retrofit options to protect a structure against blast.  Determining the blast 

resistance of existing structures is the first step towards determining what hardening options may be warranted. 
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Appendix A:  Mathcad Program to Solve System Model Equivalent SDOF Model 
 
Define Constants: 
 

E = Modulus of Elasticity 
I   = Moment of Inertia 
L  = Length of Wall 
m = distributed mass of wall 

 
φ1(x) = Stage 1 shape function 
φ2(x) = Stage 2 shape function 
φ3(x) = Stage 3 shape function 
φ4(x) = Stage 4 shape function 

 
M1e = Stage 1 equivalent mass 
M2e = Stage 2 equivalent mass 
M3e = Stage 3 equivalent mass 
M4e = Stage 4 equivalent mass 

 
k1e = Stage 1 equivalent stiffness 
k2e = Stage 2 equivalent stiffness 
k3e = Stage 3 equivalent stiffness 
k4e = Stage 4 equivalent stiffness 

 
F1’e = Stage 1 equivalent force normalized by max pressure = F1e/po 
F2’e = Stage 2 equivalent force normalized by max pressure = F2e/po 
F3’e = Stage 3 equivalent force normalized by max pressure = F3e/po 
F4’e = Stage 4 equivalent force normalized by max pressure = F4e/po   

 
yel1 = Stage 1 critical displacement 
yel2 = Stage 2 critical displacement 
yel3 = Stage 3 critical displacement 
yel4 = Stage 4 critical displacement 

 
R1e = Stage 1 max equivalent resistance = k1e*yel1 
R2e = Stage 2 max equivalent resistance = k2e(yel2 – yel1) + R1e 
R3e = Stage 3 max equivalent resistance = k3e(yel3 – yel2) + R2e 
R4e = Stage 4 max equivalent resistance = R3e 

 

 
 



DRAFT FOR REVIEW 

 73 

 

y ∆t( )

yn 0←

n 0
tend

∆t
10+..∈for

F1oe po F1'e⋅←

F2oe po F2'e⋅←

F3oe po F3'e⋅←

F4oe po F4'e⋅←

y0 0←

f
F1oe( )
M1e

←

r
y0 k1e⋅

M1e
←

y''∆t f r−( ) ∆t
2

⋅←

y1
1
2

y''∆t⋅←

m 1←

break ym yel1>if

f

F1oe−

td
i⋅ F1oe+

M1e
← f 0>if

f 0← otherwise

r
ym k1e⋅

M1e
←

y''∆t f r−( ) ∆t
2

⋅←

m m 1+←

ym 2 ym 1−⋅ ym 2−− y''∆t+←

i 1 ∆t⋅ 2 ∆t⋅, tend..∈for

po 0 1, 500000..∈for:=  *po = lb/in 
*Foe = lb 

td  

tend  

∆t  

Initial calculation for t = 0

Elastic Stage until y = yel1 
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break ym yel2>if

break ym ym 1−<if

ymax ym←

f

F2oe−

td
j⋅ F2oe+

M2e
← f 0>if

f 0← otherwise

r
k2e ym yel1−( )⋅ R1e+

M2e
←

rmax r M2e⋅←

y''∆t f r−( ) ∆t
2

⋅←

m m 1+←

ym 2 ym 1−⋅ ym 2−− y''∆t+←

j i i ∆t+, tend..∈for

break ym yel2>if

f

F1oe−

td
k⋅ F1oe+

M1e
← f 0>if

f 0← otherwise

r
rmax k1e ymax ym−( )⋅−

M1e
←

y''∆t f r−( ) ∆t
2

⋅←

m m 1+←

ym 2 ym 1−⋅ ym 2−− y''∆t+←

k j j ∆t+, tend..∈for

 

Stage 2 until y = yel2  
or rebound begins (y = ymax) 

Stage 2 rebound until y = yel2 
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break ym yel3>if

break ym ym 1−<if

ymax ym←

f

F3oe−

td
l⋅ F3oe+

M3e
← f 0>if

f 0← otherwise

r
k3e ym yel2−( )⋅ R2e+

M3e
←

rmax r M3e⋅←

y''∆t f r−( ) ∆t
2

⋅←

m m 1+←

ym 2 ym 1−⋅ ym 2−− y''∆t+←

l k k ∆t+, tend..∈for

break ym yel3>if

f

F1oe−

td
n⋅ F1oe+

M1e
← f 0>if

f 0← otherwise

r
rmax k1e ymax ym−( )⋅−

M1e
←

y''∆t f r−( ) ∆t
2

⋅←

m m 1+←

ym 2 ym 1−⋅ ym 2−− y''∆t+←

n l l ∆t+, tend..∈for

 

Stage 3 until y = yel3  
or rebound begins (y = ymax) 

Stage 3 rebound until y = yel3 
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break ym yfail>if

break ym ym 1−<if

ymax ym←

f

F4oe−

td
o⋅ F4oe+

M4e
← f 0>if

f 0← otherwise

r
R3e

M4e
←

rmax r M4e⋅←

y''∆t f r−( ) ∆t
2

⋅←

m m 1+←

ym 2 ym 1−⋅ ym 2−− y''∆t+←

o n n ∆t+, tend..∈for

break ym yfail>if

f

F1oe−

td
n⋅ F1oe+

M1e
← f 0>if

f 0← otherwise

r
rmax k1e ymax ym−( )⋅−

M1e
←

y''∆t f r−( ) ∆t
2

⋅←

m m 1+←

ym 2 ym 1−⋅ ym 2−− y''∆t+←

l k k ∆t+, tend..∈for

po

break ym yfail>if

 

y ∆t( )  

Stage 4 until y = yfail  
or rebound begins (y = ymax) 

Stage 4 rebound until y = yfail 
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Appendix B: Mathcad Program to Solve Component Model Equivalent SDOF Model 
 
Define Constants: 
 

E = Modulus of Elasticity 
I   = Moment of Inertia 
L  = Length of Wall 
m = distributed mass of wall 
 

Calculate per Table 10: 
 
R1 = Stage 1 max resistance  
R2 = Stage 2 max resistance  
R3 = Stage 3 max resistance  
R4 = Stage 4 max resistance  
 
k1 = Stage 1 stiffness 
k2 = Stage 2 stiffness 
k3 = Stage 3 stiffness 
k4 = Stage 4 stiffness 
 
K1M = Stage 1 mass transformation factor 
K2M = Stage 2 mass transformation factor 
K3M = Stage 3 mass transformation factor 
K4M = Stage 4 mass transformation factor 
 
K1L = Stage 1 load transformation factor 
K2L = Stage 2 load transformation factor 
K3L = Stage 3 load transformation factor 
K4L = Stage 4 load transformation factor 
 
M1e = Stage 1 equivalent mass = K1M*m 
M2e = Stage 2 equivalent mass = K2M*m 
M3e = Stage 3 equivalent mass = K3M*m 
M4e = Stage 4 equivalent mass = K4M*m 

 
k1e = Stage 1 equivalent stiffness = K1L*k1 
k2e = Stage 2 equivalent stiffness = K2L*k2 
k3e = Stage 3 equivalent stiffness = K2L*k3 
k4e = Stage 4 equivalent stiffness = K4L*k4 

 
yel1 = Stage 1 critical displacement = R1/k1 
yel2 = Stage 2 critical displacement = R2/k2 
yel3 = Stage 3 critical displacement = R3/k3 
yel4 = Stage 4 critical displacement = R4/k4 

 
R1e = Stage 1 max equivalent resistance = k1e*yel1 
R2e = Stage 2 max equivalent resistance = k2e(yel2 – yel1) + R1e 
R3e = Stage 3 max equivalent resistance = k3e(yel3 – yel2) + R2e 
R4e = Stage 4 max equivalent resistance = R3e 
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y ∆t( )

yn 0←

n 0
tend

∆t
10+..∈for

F1oe po L2⋅ K1L⋅←

F2oe po L2⋅ K2L⋅←

F3oe po L2⋅ K3L⋅←

F4oe po L2⋅ K4L⋅←

y0 0←

f
F1oe( )
M1e

←

r
y0 k1e⋅

M1e
←

y''∆t f r−( ) ∆t
2

⋅←

y1
1
2

y''∆t⋅←

m 1←

po 0 1, 500000..∈for:=  *po = lb/in td  

tend  

∆t  

Initial calculations when t = 0 

• Continue numerical analysis as for the system model in Appendix A. 
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