{" CERTIFIED PROGRAMMER & DEVELOPER

CHAPTERS

e

E

NS 2 ess Control
4

ar gnments

ceptions, and Assertions

ation, » l‘ ding and

Part |

The Programmer’s
Exam

6 Javalang—The Math Class, Strings,

and Wrappers

7 Objects and Collections
8 Inner Classes

9 Threads

JAVA 2

SUN™ CERTIFIED PROGRAMMER & DEVELOPER

Language
Fundamentals

CERTIFICATION OBJECTIVES

Java Programming Language Keywords

° Literals and Ranges of All Primitive
Data Types

Array Declaration, Construction,
and Initialization

° Using a Variable or Array Element
That Is Uninitialized and Unassigned

° Command-Line Arguments to Main
\/ Two-Minute Drill
Q&A Self Test

4 Chapter I:

Language Fundamentals

his chapter looks at the Java fundamentals that you need to pass the Java |.4

Programmer exam. Because you’re planning on becoming Sun certified, we assume

you already know the basics of Java, so this chapter concentrates just on the details
yoU’ll need for the exam. If you're completely new to Java, this chapter (and the rest of the
book) will be confusing, despite our spectacularly cogent writing. That’s our story and we’re

sticking to it!

CERTIFICATION OBJECTIVE

Java Programming Language Keywords
(Exam Objective 4.4)

TABLE I-1

Identify all Java programming language keywords and correctly constructed identifiers.

Keywords are special reserved words in Java that you cannot use as identifiers
(names) for classes, methods, or variables. They have meaning to the compiler; it
uses them to figure out what your source code is trying to do. Table 1-1 contains
all 49 of the reserved keywords.

You must memorize these for the test; you can count on being asked to select the
keywords (and nonkeywords) from a list. Notice none of the reserved words have

Complete List of Java Keywords

abstract boolean break byte case catch
char class const continue default do

double else extends final finally float

for goto if implements import instanceof
int interface long native new package
private protected public return short static
strictfp super switch synchronized this throw
throws transient try void volatile while
assert

Java Programming Language Keywords (Exam Objective 4.4) §

capital letters; this is a good first step when weeding out nonkeywords on the exam.
You're probably familiar with most of them, but we'll review them anyway. Don't
worry right now about what each keyword means or does; we’ll cover most of them
in more detail in later chapters.

exam

Match Look for questions that include reserved words from languages other than

Java. You might see include, overload, unsigned, virtual, friend,
and the like. Besides appearing in questions specifically asking for keyword
identification, the “imposter” words may show up in code examples used
anywhere in the exam. Repeat after me, “Java is not C++.”

Access Modifiers
The following are access modifiers:
B private Makesa method or a variable accessible only from within its
own class.

B protected Makesa method or a variable accessible only to classes in the
same package or subclasses of the class.

B public Makes a class, method, or variable accessible from any other class.

Class, Method, and Variable Modifiers

The following are class, method, and/or variable modifiers:

B abstract Used to declare a class that cannot be instantiated, or
a method that must be implemented by a nonabstract subclass.

B class Keyword used to specify a class.

extends Used to indicate the superclass that a subclass is extending.

B final Makes itimpossible to extend a class, override a method, or
reinitialize a variable.

B implements Used to indicate the interfaces that a class will implement.
B interface Keyword used to specify an interface.

B native Indicates a method is written in a platform-dependent language,
such as C.

B new Used to instantiate an object by invoking the constructor.

@ Chapter I: Language Fundamentals

B static Makesa method or a variable belong to a class as opposed to
an instance.

B strictfp Used in front of a method or class to indicate that
floating-point numbers will follow FP-strict rules in all expressions.

B synchronized Indicates that a method can be accessed by only one
thread at a time.

B transient DPrevents fields from ever being serialized. 77ransient fields are
always skipped when objects are serialized.

B volatile Indicates a variable may change out of sync because it is used
in threads.

Flow Control
The following are keywords used to control the flow through a block of code:

B break Exits from the block of code in which it resides.
B case Executesablock of code, dependent on what the switch tests for.

B continue Stops the rest of the code following this statement from
executing in a loop and then begins the next iteration of the loop.

B default Executes this block of code if none of the switch-case
statements match.

B do Executes a block of code one time, then, in conjunction with the
while statement, it performs a test to determine whether the block should
be executed again.

else Executes an alternate block of code if an 7ftest is false.
for Used to perform a conditional loop for a block of code.

if Used to perform a logical test for zrue or false.

instanceof Determines whether an object is an instance of a class,
superclass, or interface.

return Returns from a method without executing any code that follows
the statement (can optionally return a variable).

Java Programming Language Keywords (Exam Objective 4.4) 7

switch Indicates the variable to be compared with the case statements.

B while Executesa block of code repeatedly while a certain condition

Error Handling

is true.

The following are keywords used in error handling:

catch Declares the block of code used to handle an exception.

finally Block of code, usually following a zry-catch statement, which is
executed no matter what program flow occurs when dealing with an exception.

throw Used to pass an exception up to the method that called this method.

throws Indicates the method will pass an exception to the method that
called it.

try Block of code that will be tried, but which may cause an exception.

assert Evaluates a conditional expression to verify the programmer’s
assumption.

Package Control

The following are keywords used for package control:

Primitives

import Statement to import packages or classes into code.

package Specifies to which package all classes in a source file belong.

The following keywords are primitives:

boolean A value indicating #rue or false.
byte An 8-bit integer (signed).
char A single Unicode character (16-bit unsigned)

double A 64-bit floating-point number (signed).

8 Chapter I: Language Fundamentals

float A 32-bit floating-point number (signed).
int A 32-bit integer (signed).
long A 64-bit integer (signed).

short A 16-bit integer (signed).

Variable Keywords
The following keywords are a special type of reference variable:

B super Reference variable referring to the immediate superclass.

B this Reference variable referring to the current instance of an object.

Void Return Type Keyword

The void keyword is used only in the return value placeholder of a method
declaration.

B void Indicates no return type for a method.

Unused Reserved Words

There are two keywords that are reserved in Java but which are not used. If you try
to use one of these, the Java compiler will scold you with the following:

KeywordTest.java:4: 'goto' not supported.
goto MyLabel;
1 error

The engineers’ first-draft of the preceding compiler warning resembled the
following:

KeywordTest.java:4: ‘goto’ not supported. Duh.

You have no business programming in Java. Begin erasing Java
Software Development Kit? (Yes/OK)

1 life-altering error

B const Do not use to declare a constant; use public static final.

B goto Notimplemented in the Java language. It’s considered harmful.

exam

Jatch

exam

Datch

Java Programming Language Keywords (Exam Objective 44) @

Look for questions that use a keyword as the name of a method or variable.
The question might appear to be asking about, say, a runtime logic problem,
but the real problem will be that the code won’t even compile because of the
illegal use of a keyword. For example, the following code will not compile:
class Foo {
public void go() {

// complex code here

}
public int break(int b) {
// code that appears to break something

You might be fooled by the use of the keyword break as a method name, because
the method might genuinely appear to be code that “breaks” something, and therefore
the method name makes sense. Meanwhile, you're trying to figure out the complex
code within the methods, when you neednt look beyond the illegal method name and
choose the “Code does not compile” answer.

According to the Java Language Specification, null, true, and false are
technically literal values (sometimes referred to as manifest constants) and not keywords.
Just as with the other keywords, if you try to create an identifier with one of these
literal values, you'll get a compiler error. For the purposes of the exam, treat them
just as you would the other reserved words. You will 7oz be asked to differentiate
between reserved words and these reserved literals.

Be careful of practice exams with questions that, for example, ask if false
is a keyword. Many exam candidates worry about how to answer such

a question, but the real exam does not expect you to make a distinction
between the reserved keywords and the literals of null, true, and false.
Because the certainty of this being on the exam has reached urban legend
status, Sun modified the objectives for exam 310-035 to clear up any
confusion. Objective 4.4 now includes the statement, “Note: There will not
be any questions regarding esoteric distinctions between keywords and
manifest constants.” Contrary to popular belief, the exam creators are not
evil or malicious. (I will admit, however, that while creating the exam, we
experienced a giddy joy when one of us came up with a particularly tricky,
er, clever question. High-fives all around!)

I O Chapter I: Language Fundamentals

class LiteralTest {
public static void main (String [] args) {
int true = 100; // this will cause error
}
}

Compiling this code gives us the following error (or something similar depending
on which compiler you are using):

%javac LiteralTest.java
LiteralTest.java:3: not a statement.
int true = 100; // this will cause error

~

In other words, trying to assign a value to #7ue is much like saying:

int 200 = 100;

exam

Datch Look for words that differ from the Java reserved words in subtle ways. For

example, you might see protect rather than protected, extend rather than
extends.

CERTIFICATION OBJECTIVE

Literals and Ranges of All Primitive
Data Types (Exam Obijective 4.6)

State the range of all primitive data types and declare literal values for String and all
primitive types using all permitted formats, bases, and representations.

For the exam, you'll need to know the ranges of all primitive data types. Primitives
include byte, short, int, long, float, double, boolean, and char.
The primitive 1ong, for instance, has a range of -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. But you knew that. Go memorize them all and come
back when you've burned it in. Just kidding. The good news is you don’t have to
memorize such ridiculous numbers. There’s an easier method to calculate the ranges,
and for the larger integer values it will be enough to know that 16 bits gives you

Literals and Ranges of All Primitive Data Types (Exam Objective 4.6) | |

more than 60,000 possibilities, 32 bits gives you approximately 4 billion, and so on.
But you wil/ need to know that the number types (both integer and floating-point
types) are all signed, and how that affects the range. First, let’s review the concepts.

Range of Primitive Types

The sign bit
for a byte

All six number types in Java are signed, meaning they can be negative or positive.
The leftmost bit (the most significant digit) is used to represent the sign, where a 1
means negative (glass half empty) and 0 means positive (glass half full), as shown in
Figure 1-1. The rest of the bits represent the value, using two’s complement notation.

Table 1-2 shows the primitive types with their sizes and ranges. Figure 1-2 shows
that with a byte, for example, there are 256 possible numbers (or 2°). Half of these are
negative, and half -1 are positive. The positive range is one less than the negative range
because the number zero is stored as a positive binary number. We use the formula
2%V o calculate the negative range, and we use 2%“V_1 for the positive range.

The range for floating-point numbers is complicated to determine, but luckily
you don't need to know these for the exam (although you are expected to know that
a double holds 64 bits and a f1oat 32).

For boolean types there is not a range; a boolean can be only true or
false. If someone asks you for the bit depth of a boolean, look them straight
in the eye and say, “That’s virtual-machine dependent.” They’ll be impressed.

The char type (a character) contains a single, 16-bit Unicode character. Although
the extended ASCII set known as ISO Latin-1 needs only 8 bits (256 different
characters), a larger range is needed to represent characters found in languages other
than English. Unicode characters are actually represented by unsigned 16-bit integers,
which means 2" possible values, ranging from 0 to 65535 (2)-1. You'll learn in

sign bit: 0 = positive

| = negative
byte 0 wl value bits:
'\ byte: 7 bits can represent 27
sign bit value bits or 128 different values:

0 thru 127 -or- —128 thru —|

/—/%
short 1 111110100000011 short: |5 bits can represent
2'% or 32768 values:
0 thru 127 -or- —32768 thru —I

I 2 Chapter |I: Language Fundamentals

TABLE 1-2

Ranges of Primitive Numbers

Minimum Range Maximum Range
byte 8 1 2 2/-1
short 16 2 A" 2°-1
int 32 4 2" 21
long 64 8 2% 271
float 32 4 Not needed Not needed
double 64 8 Not needed Not needed

Chapter 3 that because a char is really an integer type, it can be assigned to any
number type large enough to hold 65535.

Literal Values for All Primitive Types

The range
of a byte

A primitive literal is merely a source code representation of the primitive data types—
in other words, an integer, floating-point number, boolean, or character that you
type in while writing code. The following are examples of primitive literals:

'b' // char literal

42 // int literal

false // boolean literal
2546789.343 // double literal

Integer Literals

There are three ways to represent integer numbers in the Java language: decimal
(base 10), octal (base 8), and hexadecimal (base 16). Most exam questions with
integer literals use decimal representations, but the few that use octal or hexadecimal
are worth studying for. Even though the odds that you’ll ever actually #se octal in
the real world are astronomically tiny, they were included in the exam just for fun.

-128 -127 .. -2 -1 0 I 2 3 .. 126 127 | byte
-32768 -32767 - -1 O 1 2 .. 32766 32767 short
-2147483648 -0 12 2147483467 int

negative positive

Literals and Ranges of All Primitive Data Types (Exam Objective 4.6) | 3

Decimal Literals Decimal integers need no explanation; you’ve been using them
since grade one or earlier. Chances are, you don’t keep your checkbook in hex. (If
you do, there’s a Geeks Anonymous (GA) group ready to help.) In the Java language,
they are represented as is, with no prefix of any kind, as follows:

int length = 343;

Octal Literals Octal integers use only the digits 0 to 7. In Java, you represent an
integer in octal form by placing a zero in front of the number, as follows:

class Octal {
public static void main(String [] args) {
int five = 06; // Equal to decimal 6
int seven = 07; // Equal to decimal 7
int eight = 010; // Equal to decimal 8
int nine = 011; // Equal to decimal 9
System.out.println("Octal 010 = " + eight);

}

Notice that when we get past seven and are out of digits to use (we are only
allowed the digits 0 through 7 for octal numbers), we revert back to zero, and one
is added to the beginning of the number. You can have up to 21 digits in an octal
number, not including the leading zero. If we run the preceding program, it displays
the following:

Octal 010 = 8

Hexadecimal Literals Hexadecimal (/ex for short) numbers are constructed
using 16 distinct symbols. Because we never invented single digit symbols for the
numbers 10 through 15, we use alphabetic characters to represent these digits.
Counting from 0 through 15 in hex looks like this:

0123456789%abcdet

Java will accept capital or lowercase letters for the extra digits (one of the few
places Java is not case-sensitive!). You are allowed up to 16 digits in a hexadecimal
number, not including the prefix Ox or the optional suffix extension Z, which will
be explained later.

All of the following hexadecimal assignments are legal:

class HexTest {
public static void main (String [] args) {
int x = 0X0001;

I 4 Chapter |: Language Fundamentals

int y = Ox7fffffff;
int z = OxDeadCafe;
System.out.println("x = " + x + "y =" +y + " z =" + z);

}
Running HexTest produces the following output:

x =1y = 2147483647 z = -559035650

exam

Datch Don’t be misled by changes in case for a hexadecimal digit or the ‘x’

preceding it. 0XCAFE and 0Oxcafe are both legal.

All three integer literals (octal, decimal, and hexadecimal) are defined as int
by default, but they may also be specified as Long by placing a suffix of L or /after
the number:

long jo = 110599L;
long so = OxXFFFF1; // Note the lowercase '1l'

Floating-Point Literals
Floating-point numbers are defined as a number, a decimal symbol, and more
numbers representing the fraction.

double d = 11301874.9881024;

In the preceding example, the number 11301874.9881024 is the literal value.
Floating-point literals are defined as double (64 bits) by default, so if you want to
assign a floating-point literal to a variable of type £1oat (32 bits), you must attach
the suffix #or fto the number. If you don’t, the compiler will complain about a
possible loss of precision, because you're trying to fit a number into a (potentially)
less precise “container.” The Fsuffix gives you a way to tell the compiler, “Hey, I know
what 'm doing and I'll take the risk, thank you very much.”

float £ = 23.467890; // Compiler error, possible loss of precision
float g = 49837849.029847F; // OK; has the suffix "F"

You may also optionally attach a D or & to double literals, but it is not necessary
because this is the default behavior. But for those who enjoy typing, knock yourself out.

double d = 110599.995011D; // Optional, not required
double g = 987.897; // No 'D' suffix, but OK because the
// literal is a double

exam

Jatch

exam

Jatch

exam

Datch

Literals and Ranges of All Primitive Data Types (Exam Objective 4.6) | §

Look for numeric literals that include a comma, for example,

int x = 25,343; // Won't compile because of the comma

Boolean Literals

Boolean literals are the source code representation for boolean values. Aboolean
value can only be defined as true or false. Although in C (and some other
languages) it is common to use numbers to represent true or false, this will
not work in _Java. Again, repeat after me, “Java is not C++.”

boolean t = true; // Legal
boolean f = 0; // Compiler error!

Be on the lookout for questions that use numbers where booleans are
required. You might see an if test that uses a number, as in the following:

int x = 1; 1if (x) { } // Compiler error!

Character Literals
A char literal is represented by a single character in single quotes.

char a ‘a';
char b = 'e';

You can also type in the Unicode value of the character, using the Unicode
notation of prefixing the value with \u as follows:

char letterN = '\u0OO04E'; // The letter 'N'

Remember, characters are just |6-bit unsigned integers under the hood. That
means you can assign a number literal, assuming it will fit into the unsigned
16-bit range (65535 or less). For example, the following are all legal:

char a = 0x892; // octal literal

char b = 982; // int literal

char ¢ (char) 70000; // The cast is required; 70000 is out of char range
char d (char) -98; // Ridiculous, but legal

And the following are not legal and produce compiler errors:

char e = -29; // Possible loss of precision; needs a cast
char f = 70000 // Possible loss of precision; needs a cast

I & Chapter I: Language Fundamentals

You can also use an escape code if you want to represent a character that can’t be
typed in as a literal, including the characters for linefeed, newline, horizontal tab,
backspace, and double and single quotes.

char ¢ = '\"'; // A double quote
char d = '\n'; // A newline

Now that you're familiar with the primitive data types and their ranges, you
should be able to identify the proper data type to use in a given situation. Next
are some examples of real-life quantities. Try to pick the primitive type that best
represents the quantity.

Literal Values for Strings

A string literal is a source code representation of a value of a String object. For
example, the following is an example of two ways to represent a string literal:

String s = "Bill Joy";
System.out.println("Bill" + " Joy");

SCENARIO & SOLUTION

Which primitive type would be best to represent the = long
number of stars in the universe?

Which primitive type would be best to represent a char
single multiple choice question on a test, with only
one answer allowed?

Which primitive type would be best to represent a char []
single multiple choice question on a test, with more
than one answer allowed?

Which primitive type would be best to represent the = int (or long for the world population)
population of the U.S. in 2003?

Which primitive type would be best to represent the = £loat (or double if you are a CEO of
amount of money (in dollars and cents) you plan on | a software company)
having at retirement?

Array Declaration, Construction, and Initialization (Exam Objective 1.1) |7

Although strings are not primitives, theyre included in this section because they
can be represented as literals—in other words, #yped directly into code. The only other
nonprimitive type that has a literal representation is an array, which we’ll look at in
the next section.

Thread t = ??? // what literal value could possibly go here?

CERTIFICATION OBJECTIVE

Array Declaration, Construction, and
Initialization (Exam Objective 1.1)

on the

Qob

Write code that declares, constructs, and initializes arrays of any base type using any of
the permitted forms both for declaration and for initialization.

Arrays are objects in Java that store multiple variables of the same type. Arrays
can hold either primitives or object references, but the array itself will always be an
object on the heap, even if the array is declared to hold primitive elements. In other
words, there is no such thing as a primitive array, but you can make an array of
primitives.

For this objective, you need to know three things:

B How to make an array reference variable (declare)
B How to make an array object (construct)

B How to populate the array with elements (initialize)

There are several different ways to do each of those, and you need to know about
all of them for the exam.

Arrays are efficient, but most of the time you’ll want to use one of the Collection
types from java.util (including HashMap, ArrayList, TreeSet). Collection classes
offer more flexible ways to access an object (for insertion, deletion, reading,
etc.) and unlike arrays, can expand or contract dynamically as you add or
remove elements (they’re really managed arrays, since they use arrays behind
the scenes). There’s a Collection type for a wide range of needs. Do you need
a fast sort? A group of objects with no duplicates? A way to access a namelvalue
pair? A linked list? Chapter 6 covers them in more detail.

I 8 Chapter I: Language Fundamentals

Declaring an Array

on the

Qob

exam

Jatch

Arrays are declared by stating the type of element the array will hold, which can
be an object or a primitive, followed by square brackets to the left or right of the
identifier.

Declaring an Array of Primitives

int[] key; // Square brackets before name (recommended)
int key []; // Square brackets after name (legal but less readable)

Declaring an Array of Object References

Thread[] threads; // Recommended
Thread threads []; // Legal but less readable

When declaring an array reference, you should always put the array brackets
immediately after the declared type, rather than after the identifier (variable
name). That way, anyone reading the code can easily tell that, for example,
key is a reference to an int array object, and not an int primitive.

We can also declare multidimensional arrays, which are in fact arrays of arrays.
This can be done in the following manner:

String[]1[][] occupantName;
String[] ManagerName [];

The first example is a three-dimensional array (an array of arrays of arrays) and
the second is a two-dimensional array. Notice in the second example we have one
square bracket before the variable name and one after. This is perfectly legal to the
compiler, proving once again that just because it’s legal doesn’t mean it right.

It is never legal to include the size of the array in your declaration. Yes, we
know you can do that in some other languages, which is why you might see
a question or two that include code similar to the following:

int[5] scores;
The preceding code won’t make it past the compiler. Remember, the [VM

doesn’t allocate space until you actually instantiate the array object. That’s
when size matters.

Array Declaration, Construction, and Initialization (Exam Objective I.1) | Q

Constructing an Array

Constructing an array means creating the array object on the heap—in other words,
doing a new on the array type. To create an array object, Java needs to know how
much space to allocate on the heap, so you must specify the size of the array at
construction time. The size of the array is the number of elements the array will hold.

Constructing One-Dimensional Arrays

The most straightforward way to construct an array is to use the keyword new followed
by the array type, with a bracket specifying how many elements of that type the
array will hold. The following is an example of constructing an array of type int:

int[] testScores; // Declares the array of ints
testScores = new int[4]; //constructs an array and assigns it
//the testScores variable

The preceding code puts one new object on the heap—an array object holding
four elements—with each element containing an int with a default value of 0.
Think of this code as saying to the compiler, “Create an array object on the heap
that will hold four primitives of type int, and assign it to the previously declared
reference variable named testScores. And while you're at it, go ahead and set each
int element to zero. Thanks.” (The compiler appreciates good manners.) Figure 1-3
shows how the zestScores array appears on the heap, after construction.

The next objective (4.5) covers more detail on the default values for array elements,
but for now we’re more concerned with how the array object itself is initialized.

| FIGURE 1-3 [puswe

A one-dimensional

The heap
array on the heap
int[1] array
reference
variable

Values

int [] array object
Indices

20 Chapter |I: Language Fundamentals

exam

$atch

exam

Jatch

You can also declare and construct an array in one statement as follows:
int[] testScores = new int[14];

This single statement produces the same result as the two previous statements.
Arrays of object types can be constructed in the same way:

Thread[] threads = new Thread[5];

The key point to remember here is that—despite how the code appears—zhe
Thread constructor is not being invoked. We're not creating a Thread instance, but
rather a single 7hread array object. After the preceding statements, there are still
no actual Thread objects!

Think carefully about how many objects are on the heap after a code statement
or block executes. The exam will expect you to know, for example, that the
preceding code produces just one object (the array assigned to the reference
variable named threads). The single object referenced by threads holds five
Thread reference variables, but no Thread objects have been created or assigned
to those references.

Remember, arrays must a/ways be given a size at the time they are constructed.
The JVM needs the size to allocate the appropriate space on the heap for the new
array object. It is never legal, for example, to do the following:

int[] carList = new int[]; // Will not compile; needs a size

So don’t do it, and if you see it on the test, run screaming toward the nearest answer
marked “Compilation fails.”

You may see the words construct, create, and instantiate used interchangeably.
They all mean, “An object is built and placed on the heap.” These words also
imply that the object’s constructor runs, as a result of the contruct/create/
instantiate code. You can say with certainty, for example, that any code that
uses the keyword new will (if it runs successfully) cause the class constructor
and all superclass constructors to run.

In addition to being constructed with new, arrays can also be created using a
kind of syntax shorthand that creates the array while simultaneously initializing the
array elements to values supplied in code (as opposed to default values). We'll look

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 2|

at that in detail in the section on initialization. For now, understand that because
of these syntax shortcuts, objects can still be created even without you ever using or
seeing the keyword new.

Constructing Multidimensional Arrays
Multidimensional arrays, remember, are simply arrays of arrays. So a two-dimensional
array of type int is really an object of type int array (int []), with each element
in that array holding a reference to another int array. The second dimension holds
the actual int primitives.

The following code declares and constructs a two-dimensional array of type int:

int[][] ratings = new int[3][];

Notice that only the first brackets are given a size. That’s acceptable in Java, since
the JVM needs to know only the size of the object assigned to the variable ratings.
Figure 1-4 shows how a two-dimensional int array works on the heap.

Initializing an Array

Initializing an array means putting things into it. 7hings (why, yes that 7sa technical
term) in the array are the array’s elements, and they’re either primitive values (2, *a’,
false, etc.), or objects referred to by the reference variables in the array. If you
have an array of objects (as opposed to primitives) the array doesn’t actually hold the
objects, just as any other nonprimitive variable never actually holds the object, but
instead holds a reference to the object. But we talk about arrays as, for example, “an
array of five strings”, even though what we really mean is, “an array of five references
to String objects.” Then the big question becomes whether or not those references
are actually pointing (oops, this is Java, we mean referring) to real String objects, or
are simply 7ull. Remember, a reference that has not had an object assigned to it is a
null reference. And if you try to actually use that nu// reference by, say, applying the
dot operator to invoke a method on it, you'll get the infamous NullPointerException.
The individual elements in the array can be accessed with an index number. The
index number always begins with zero, so for an array of ten objects the index numbers
will run from 0 through 9. Suppose we create an array of three Animals as follows:

Animal [] pets = new Animal[3];

272 Chapter I: Language Fundamentals

A two-dimensional The heap
array on the heap

int[] array object

int [] array object

2-D int[][] array object

int[][1 (2-D array)
reference variable

Picture demonstrates the result of the following code:

int[][] myArray = new int[3][];
myArray[0] = new int[2];
myArray[0][0] = 6;

myArray[0] [1] = 7;

myArray[l] = new int[3];
myArray[1]1[0] = 9;

myArray[1][1] = 8;

myArray[1l][2] = 5;

We have one array object on the heap, with three 7u// references of type Animal, but
we still do not have any Animal objects. The next step is to create some Animal objects
and assign them to index positions in the array referenced by pets:

pets[0] = new Animal () ;
pets[1l] = new Animal () ;
pets[2] = new Animal () ;

This code puts three new Animal objects on the heap and assigns them to the
three index positions (elements) in the pezs array.

Array Declaration, Construction, and Initialization (Exam Objective I.1) 2.3

exa :; atch Look for code that tries to access an out of range array index. For example,
W if an array has three elements, trying to access the [3] element will raise an
ArrayIndexOutOfBoundsException, because in an array of three elements,
the legal index values are 0, I, and 2. You also might see an attempt to use a
negative number as an array index. The following are examples of legal and
illegal array access attempts. Be sure to recognize that these cause runtime
exceptions and not compiler errors! Nearly all of the exam questions list both
runtime exception and compiler error as possible answers.
int[] x=newint[5];
x[4] =2; // OK, the last element is at index 4
x[5] =3; // Runtime exception. There is no element at index 5!
int [] z=newint[2];
inty=-3;
z[y] =4; // Runtime exception.; y is a negative number
These can be hard to spot in a complex loop, but that’s where you’re most
likely to see array index problems in exam questions.
A two-dimensional array (an array of arrays) can be initialized as follows:
int[][] scores = new int[3][];

// Declare and create an array holding three references to int arrays

scores[0] = new int[4];
// the first element in the scores array is an int array of four int element

scores[1l] = new int[6];
// the second element in the scores array is an int array of six int elements

scores[2] = new int[1l];
// the third element in the scores array is an int array of one int element

Initializing Elements in a Loop

Array objects have a single public variable /ength that gives you the number of
elements in the array. The last index value, then, is always one less than the length.
For example, if the length of an array is 4, the index values are from 0 through 3.
Often, you'll see array elements initialized in a loop as follows:

Dog[] myDogs = new Dogl[6]; // creates an array of 6 Dog references
for (int x = 0; x < myDogs.length; x++) {

24 Chapter I: Language Fundamentals

myDogs[x] = new Dog(); // assign a new Dog to the index position x
}

The length variable tells us how many elements the array holds, but it does 7oz tell
us whether those elements have been initialized.

Declaring, Constructing, and Initializing on One Line

You can use two different array-specific syntax shortcuts to both initialize (put
explicit values into an array’s elements) and construct (instantiate the array object
itself) in a single statement. The first is used to declare, create, and initialize in one
statement as follows:

1. int x = 9;
2. int[] dots = {3,6,x,8};

Line 2 in the preceding code does four things:

B Declares an int array reference variable named dots.
B Creates an int array with a length of four (four elements).
B Populates the elements with the values 3, 6, 9, and 8.

B Assigns the new array object to the reference variable dots.

The size (length of the array) is determined by the number of items between the
comma-separated curly braces. The code is functionally equivalent to the following
longer code:

int[] dots;

dots = new int[4];
int x = 9;

dots[0] = 3;
dots[1l] = 6;
dots[2] = x;
dots[3] = 8;

This begs the question, “Why would anyone use the longer way?” Two reasons
come to mind. First, you might not know—at the time you create the array—the
values that will be assigned to the array’s elements. Second, you might just prefer
doing it the long, slower-to-type way. Or third (OK, that’s #hree reasons), maybe
you just didn’t know it was possible. This array shortcut alone is worth the price

of this book (well, that combined with the delightful prose).

Declaring,
constructing,
and initializing an
array of objects

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 2§

With object references rather than primitives, it works exactly the same way:

Dog puppy = new Dog("Frodo") ;
Dog[] myDogs = {puppy, new Dog("Clover"), new Dog("Aiko")};

The preceding code creates one Dog array, referenced by the variable 72yDogs,
with a length of three elements. It assigns a previously created Dog object (assigned
to the reference variable puppy) to the first element in the array, and also creates
two new Dog objects ("Clover" and "Aiko"), and assigns the two newly created instances
to the last two Dog reference variable elements in the 72yDogs array. Figure 1-5 shows
the result of the preceding code.

The heap

Dog object

Dog object

Dog object

Dog reference
variable

myDogs

Dog[] array
reference variable

Dog[] array object

Picture demonstrates the result of the following code:

Dog puppy = new Dog(”Frodo”) ;
Dog[] myDogs = {puppy, new Dog(”Clover”), new Dog(”Aiko")};

Four objects are created:

| Dog object referenced by puppy

| Dog[] array referenced by myDogs

2 Dog objects referenced by myDogs [0]and myDogs [1]

26 Chapter |:

Language Fundamentals

You can also use the shortcut syntax with multidimensional arrays, as follows:
int[]1[] scores = {{5,2,4,7}, {9,2}, {3,4}};

The preceding code creates a total of four objects on the heap. First, an array of
int arrays is constructed (the object that will be assigned to the scores reference
variable). The scores array has a length of three, derived from the number of items
(comma-separated) between the outer curly braces. Each of the three elements in
the scores array is a reference variable to an int array, so the three int arrays
are constructed and assigned to the three elements in the scores array.

The size of each of the three int arrays is derived from the number of items within
the corresponding inner curly braces. For example, the first array has a length of four,
the second array has a length of two, and the third array has a length of two. So far
we have four objects: one array of int arrays (each element is a reference to an int
array), and three int arrays (each element in the three int arrays is an int value).
Finally, the three int arrays are initialized with the actual int values within the inner
curly braces. Thus, the first int array contains the values 5, 2, 4, and 7. The following
code shows the values of some of the elements in this two-dimensional array:

scores[0] // an array of four ints
scores([1l] // an array of 2 ints
scores([2] // an array of 2 ints
scores[0][1] // the int wvalue 5
scores[2][1] // the int value 4

Figure 1-6 shows the result of declaring, constructing, and initializing
a two-dimensional array in one statement.

Constructing and Initializing an Anonymous Array

The second shortcut is called anonymous array creation and can be used to construct
and initialize an array, and then assign the array to a previously declared array
reference variable:

int[] testScores;
testScores = new int[] {4,7,2};

The preceding code creates a new int array with three elements, initializes the three
elements with the values 4, 7, and 2, and then assigns the new array to the previously
declared int array reference variable zestScores. We call this anonymous array creation
because with this syntax you don't even need to assign the new array to anything.

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 27

W Declaring, constructing, and initializing a two-dimensional array

The heap

Cat object

Cat object

Cat object

Cat object Cat object

Cat[
object

Cat[
object

Jarray Jarray

myCats

Cat[][] array

reference variable i
2-D Cat[][1 array object

Picture demonstrates the result of the following code:

Cat[1[] myCats = {{new Cat(”"Fluffy”), new Cat(”Zeus”)},
{new Cat (”Bilbo”), new Cat(”Legolas”), new Cat(”Bert”)}}

Eight objects are created:

1 2-D Ccat[][] array object
2 Cat[] array objects

5 Cat objects

Maybe you're wondering, “What good is an array if you don’t assign it to a reference
variable?” You can use it to create a just-in-time array to use, for example, as an argument
to a method that takes an array parameter. The following code demonstrates

a just-in-time array argument:

public class Foof {
void takesAnArray(int [] someArray) {
// use the array parameter

28 Chapter |:

exam
Jatch

Language Fundamentals

public static void main (String [] args) {
Foof £ = new Foof();
f.takesAnArray (new int[] {7,7,8,2,5}); //we need an array argument

Remember that you do not specify a size when using anonymous array creation
syntax. The size is derived from the number of items (comma-separated)
between the curly braces. Pay very close attention to the array syntax used
in exam questions (and there will be a lot of them). You might see syntax
such as

new Object[3] {null, new Object(), new Object()};

// not legal;size must not be specified

Legal Array Element Assignments
What can you put in a particular array? For the exam, you need to know that arrays
can have only one declared type (int [], Dog[], String [], and so on) but that
doesn’t necessarily mean that only objects or primitives of the declared type can be
assigned to the array elements. And what about the array reference itself? What kind
of array object can be assigned to a particular array reference? For the exam, you’ll
need to know the answer to all of these questions. And, as if by magic, we’re actually
covering those very same topics in the following sections. Pay attention.

Arrays of Primitives

Primitive arrays can accept any value that can be promoted implicitly to the declared
type of the array. Chapter 3 covers the rules for promotion in more detail, but for an
example, an int array can hold any value that can fit into a 32-bit int variable.
Thus, the following code is legal:

int[] weightList = new int[5];
byte b = 4;

char ¢ = 'c¢';
short s = 7;
weightList[0]
weightlist[1]
weightList[2]

b; // OK, byte is smaller than int
c; // OK, char is smaller than int
s; // OK, short is smaller than int

Array Declaration, Construction, and Initialization (Exam Objective I.1) 29

Arrays of Object References

If the declared array type is a class, you can put objects of any subclass of the
declared type into the array. For example, if Dog is a subclass of Animal, you
can put both Dog objects and Animal objects into the array as follows:

class Car {}

class Subaru extends Car {}

class Honda extends Car {}

class Ferrari extends Car {}

Car [] myCars = {new Subaru(), new Honda(), new Ferrari()};

It helps to remember that the elements in a Car array are nothing more than Car
reference variables. So anything that can be assigned to a Car reference variable can
be legally assigned to a Car array element. Chapter 5 covers polymorphic assignments
in more detail.

If the array is declared as an interface type, the array elements can refer to any
instance of any class that implements the declared interface. The following code
demonstrates the use of an interface as an array type:

interface Sporty {
void beSporty () ;

class Ferrari extends Car implements Sporty {
public void beSporty () {

// implement cool sporty method in a Ferrari-specific way
}

}

class RacingFlats extends AthleticShoe implements Sporty {
public void beSporty () {

// implement cool sporty method in a RacingShoe-specific way
}
}
class GolfClub { }
class TestSportyThings {
public static void main (String [] args) {
Sporty[] sportyThings = new Sporty [3];
sportyThings[0] = new Ferrari(); // OK, Ferrari implements Sporty
sportyThings[1l] = new RacingFlats();
// OK, RacingFlats implements Sporty
sportyThings[2] = new GolfClub();

30 Chapter I:

Language Fundamentals

// Not OK; GolfClub does not implement Sporty
// I don't care what anyone says

}

The bottom line is this: any object that passes the “IS-A” test for the declared
array type can be assigned to an element of that array.

Array Reference Assignments for One-Dimensional Arrays

For the exam, you need to recognize legal and illegal assignments for array reference
variables. We're not talking about references in the array (in other words, array
elements), but rather references ro the array object. For example, if you declare an
int array, the reference variable you declared can be reassigned to any int array
(of any size), but cannot be reassigned to anything that is zoran int array, including
an int value. Remember, all arrays are objects, so an int array reference cannot
refer to an int primitive. The following code demonstrates legal and illegal
assignments for primitive arrays:

int[] splats;

int[] dats = new int[4];

char[] letters = new char[5];

splats = dats; // OK, dats refers to an int array

splats = letters; // NOT OK, letters refers to a char array

It’s tempting to assume that because a variable of type byte, short, or char
can be explicitly promoted and assigned to an int, an array of any of those types
could be assigned to an int array. You can’t do that in Java, but it would be just like
those cruel, heartless (but otherwise attractive) exam developers to put tricky array
assignment questions in the exam.

Arrays that hold object references, as opposed to primitives, aren’t as restrictive.
Just as you can put a Honda object in a Car array (because Honda extends Car),
you can assign an array of type Honda to a Car array reference variable as follows:

Car[] cars;

Honda[] cuteCars = new Hondal[5];

cars = cuteCars; // OK because Honda is a type of Car
Beer[] beers = new Beer [99];

cars = beers; // NOT OK, Beer is not a type of Car

Apply the IS-A test to help sort the legal from the illegal. Honda IS-A Car, so
a Honda array can be assigned to a Car array. Beer IS-A Car is not true; Beer does
not extend Car (not to mention the fact that it doesn’t make logical sense, unless
you've already had too much of it).

exam

Jatch

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 3 ||

You cannot reverse the legal assignments. A Car array cannot be assigned to

a Honda array. A Car is not necessarily a Honda, so if you’ve declared a
Honda array, it might blow up if you were allowed to assign a Car array
to the Honda reference variable. Think about it: a Car array could hold a

reference to a Ferrari, so someone who thinks they have an array of Hondas
could suddenly find themselves with a Ferrari. Remember that the IS-A test
can be checked in code using the instanceof operator. The instanceof
operator is covered in more detail in Chapter 3. Figure 1-7 shows an example
of legal and illegal assignments for references to an array.

m Legal and illegal array assignments

moreCats
Cat[1] array The heap
reference variable
Array reference variable can ﬂ Cat[] array
ONLY refer toa 1-D Cat array = object
|
pa Cat object

Cat object Cat object

Fluffy E
A I = =gﬁ Elementina 1-D Cat array can
Wt 0 1 | 2 ONLY refer toaCat object
7 Cat[] array
myCats object Ccat[] array#,
-. object .7
Cat[][1 2-Darray o -
reference variable)
2-D reference variable can 2-Dcatl][] array object

Element in a 2-D Cat array can ONLY
refer toa 1-D Cat array

ONLY refer toa 2-D Cat array

Cat object

lllegal Array Reference Assignments KEY

AnmyCats = myCats[0];

// Can’'t assign a 1-D array to a 2-D array reference

BmyCats = myCats[0][0]; -

// Can’t assign a nonarray object to a 2-D array reference Legal

CmyCats[1l] = myCats[1][2];

// Can’t assign a nonarray object to a 1-D array reference EEREEEEEELE 4
lllegal

DmyCats[0] [1] = moreCats;

// Can’t assign an array object to a nonarray reference

//myCats[0][1] can only refer to a Cat object

32 Chapter I: Language Fundamentals

The rules for array assignment apply to interfaces as well as classes. An array
declared as an interface type can reference an array of any type that implements the
interface. Remember, any object from a class implementing a particular interface will
pass the IS-A (instanceof) test for that interface. For example, if Box implements
Foldable, the following is legal:

Foldablel] foldingThings;

Box[] boxThings = new Box[3];

foldingThings = boxThings;

// OK, Box implements Foldable, so Box IS-A Foldable

Array Reference Assignments for Multidimensional Arrays
When you assign an array to a previously declared array reference, the array you're
assigning must be the same dimension as the reference you're assigning it to. For example,
a two-dimensional array of int arrays cannot be assigned to a regular int array
reference, as follows:

int[] Dblots;

int[][] squeegees = new int[3]1[];

blots = squeegees; // NOT OK, squeegees 1s a two-d array of int arrays
int[] blocks = new int[6];

blots = blocks; // OK, blocks is an int array

Pay particular attention to array assignments using different dimensions. You
might, for example, be asked if it’s legal to assign an int array to the first element
in an array of int arrays, as follows:

int[][] books = new int[3]1[];

int[] numbers = new int[6];

int aNumber = 7;

books[0] = aNumber; //NOT OK, expecting an int array instead of an int
books[0] = numbers; //OK, numbers is an int array

CERTIFICATION OBJECTIVE

Using a Variable or Array Element That Is
Uninitialized and Unassigned (Exam Objective 4.5)

Identify all Java programming language keywords and correctly constructed identifiers.

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objective 4.5) 3 3

exam

Jatch

Java gives us the option of initializing a declared variable or leaving it uninitialized.
When we attempt to #se the uninitialized variable, we can get different behavior
depending on what type of variable or array we are dealing with (primitives or objects).
The behavior also depends on the level (scope) at which we are declaring our variable.
An instance variable is declared within the class but outside any method or constructor,
whereas a local variable is declared within a method (or in the argument list of the

method).

Local variables are sometimes called stack, temporary, automatic, or method
variables, but the rules for these variables are the same regardless of what
you call them. Although you can leave a local variable uninitialized, the
compiler complains if you try to use a local variable before initializing it
with a value, as we shall see.

Primitive and Object Type Instance Variables

Instance variables (also called member variables) are variables defined at the class level.
That means the variable declaration is not made within a method, constructor, or
any other initializer block. Instance variables are initialized to a default value each
time a new instance is created. Table 1-3 lists the default values for primitive and
object types.

Primitive Instance Variables
In the following example, the integer yearis defined as a class member because it is
within the initial curly braces of the class and not within a method’s curly braces:

public class BirthDate {

int year; // Instance variable

public static void main(String [] args) {
BirthDate bd = new BirthbDate() ;
bd.showYear () ;

}

public void showYear () {
System.out.println("The year is " + year);

}

When the program is started, it gives the variable year a value of zero, the default
value for primitive number instance variables.

34 Chapter I: Language Fundamentals

Default Values Object reference null (not referencing any object)
for Primitive and byte, short, int, long 0
Reference Types

float, double 0.0

boolean false

char *\u0000"

on the

Qob

It’s a good idea to initialize all your variables, even if you’re assigning them
with the default value. Your code will be easier to read; programmers who
have to maintain your code (after you win the lottery and move to Tahiti)
will be grateful.

Object Reference Instance Variables
When compared with uninitialized primitive variables, Object references that aren’t
initialized are a completely different story. Let’s look at the following code:

public class Book {
private String title;
public String getTitle() {
return title;

}

public static void main(String [] args) {
Book b = new Book();
System.out.println("The title is " + b.getTitle());

}
This code will compile fine. When we run it, the output is
The title is null

The title variable has not been explicitly initialized with a String assignment, so
the instance variable value is 7#/l. Remember that #u//is not the same as an empty
String (7

). A nullvalue means the reference variable is not referring to any object
on the heap. Thus, the following modification to the Book code runs into trouble:

public class Book {
private String title;

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objective 4.5) 3 §

public String getTitle() {
return title;
}
public static void main(String [] args) {
Book b = new Book() ;
String s = b.getTitle(); // Compiles and runs
String t = s.toLowerCase(); // Runtime Exception!

}
When we try to run the Book class, the JVM will produce the following error:

%java Book
Exception in thread "main" java.lang.NullPointerException
at Book.main (Book.java:12

We get this error because the reference variable tit1le does not point (refer) to
an object. We can check to see whether an object has been instantiated by using the
keyword null, as the following revised code shows:

public class Book {
private String title;
public String getTitle() {
return title;
}
public static void main(String [] args) {
Book b = new Book() ;
String s = b.getTitle(); // Compiles and runs
if (s != null) {
String t = s.toLowerCase() ;

}

The preceding code checks to make sure the object referenced by the variable s
is not null before trying to use it. Watch out for scenarios on the exam where you
might have to trace back through the code to find out whether an object reference
will have a value of null. In the preceding code, for example, you look at the instance
variable declaration for #itle, see that there’s no explicit initialization, recognize that
the #itle variable will be given the default value of null, and then realize that the
variable s will also have a value of null. Remember, the value of sis a copy of
the value of #itle (as returned by the getTitle () method), so if #tle is a null
reference, s will be too.

36 Chapter I: Language Fundamentals

Array Instance Variables

An array is an object; thus, an array instance variable that’s declared but not explicitly
initialized will have a value of nul1, just as any other object reference instance variable.
But...if the array s initialized, what happens to the elements contained in the array?
All array elements are given their default values—the same default values that elements
of that type get when they’re instance variables. The bottom line: Array elements are
always always always given default values, regardless of where the array isself is declared
or instantiated. By the way, if you see the word always three times in a row, reread
the sentence three times. Now, once more, with feeling!

If we initialize an array, object reference elements will equal null if they are not
initialized individually with values. If primitives are contained in an array, they will
be given their respective default values. For example, in the following code, the array
year will contain 100 integers that all equal zero by default:

public class BirthDays {

static int [] year = new int[100];
public static void main(String [] args) {
for (int 1=0;1<100;1i++)
System.out.println("year([" + 1 + "] = " + year[i]);

}

When the preceding code runs, the output indicates that all 100 integers in the
array equal zero.

Local (Stack, Automatic) Primitives and Objects

exam

$atch

Local variables are defined within a method, including method parameters.

“Automatic™ is just another term for “local variable.” It does not mean
the automatic variable is automatically assigned a value! The opposite
is true; an automatic variable must be assigned a value in the code;
otherwise, the compiler will complain.

Local Primitives
In the following time travel simulator, the integer year is defined as an automatic
variable because it is within the curly braces of a method.

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objective 4.5) 37

public class TimeTravel ({
public static void main(String [] args) {
int year = 2050;
System.out.println("The year is " + year);

}

Okay, so we've still got work to do on the physics. Local variables, including primitives,
always always always must be initialized before you attempt to use them (though not
necessarily on the same line of code). Java does not give local variables a default value;
you must explicitly initialize them with a value, as in the preceding example. If you
try to use an uninitialized primitive in your code, you'll get a compiler error:

public class TimeTravel {

public static void main(String [] args) {
int year; // Local variable (declared but not initialized)
System.out.println("The year is " + year); // Compiler error

}

Compiling produces the following output:

%$javac TimeTravel.java
TimeTravel.java:4: Variable year may not have been initialized.
System.out.println("The year is " + year);

1 error

To correct our code, we must give the integer year a value. In this updated
example, we declare it on a separate line, which is perfectly valid:

public class TimeTravel {
public static void main(String [] args) {
int year; // Declared but not initialized
int day; // Declared but not initialized
System.out.println("You step into the portal.");
yvear = 2050; // Initialize (assign an explicit wvalue)
System.out.println("Welcome to the year " + year);

}

Notice in the preceding example we declared an integer called day that never
gets initialized, yet the code compiles and runs fine. Legally, you can declare a local

38 Chapter I: Language Fundamentals

on the

Qob

variable without initializing it as long as you don't use the variable, but let’s face it,
if you declared it, you probably had a reason. (Although we have heard of programmers
declaring random local variables just for sport, to see if they can figure out how and

why they’re being used.)

The compiler can’t always tell whether a local variable has been initialized
before use. For example, if you initialize within a logically conditional block
(in other words, a code block that may not run, such as an if block or for loop
without a literal value of true or false in the test), the compiler knows that
the initialization might not happen, and can produce an error. The following
code upsets the compiler:
public class TestLocal {
public static voidmain(String [] args) {
int x;
if (args[0] !=null) { //assume you know thiswill always be true
x=7; //compiler can’t tell that this statement will run

}

inty=x;

The preceding code produces the following error when you attempt to compile it:

TestLocal.java:8: variable x might not have been initialized
int v = x;
1 error

Because of the compiler-can’t-tell-for-certain problem, you will sometimes need
to initialize your variable outside the conditional block, just to make the compiler
happy. You know why that’s important if you've seen the bumper sticker: “When the
compiler’s not happy, ain’t nobody happy.”

Local Objects

Objects, too, behave differently when declared within a method rather than as instance
variables. With instance variable object references, you can get away with leaving an
object reference uninitialized, as long as the code checks to make sure the reference
isn’t null before using it. Remember, to the compiler, null Zsa value. You can’t

use the dot operator on a null reference, because there is no object at the other

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objective 4.5) 39

end of it, but a null reference is not the same as an uninitialized reference. Locally
declared references can’t get away with checking for nul/ before use, unless you
explicitly initialize the local variable to null. The compiler will complain about
the following code:

import java.util.Date;
public class TimeTravel {
public static void main(String [] args) {
Date date;
if (date == null)
System.out.println("date is null");

}
Compiling the code results in the following error:

%$javac TimeTravel.java

TimeTravel.java:5: Variable date may not have been initialized.
If (date == null)

1 error

Instance variable references are always given a default value of null, until
explicitly initialized to something else. But local references are 7oz given a default
value; in other words, they aren’t null. If you don’t initialize a local reference variable,
then by default, its value is...well that’s the whole point—it doesn’t have any value at
all! So we'll make this simple: Just set the darn thing to null explicitly, until you're
ready to initialize it to something else. The following local variable will compile

properly:

Date date = null; // Explicitly set the local reference variable to null

Local Arrays

Just like any other object reference, array references declared within a method must
be assigned a value before use. That just means you must declare and construct the
array. You do not, however, need to explicitly initialize the elements of an array.
We've said it before, but it’s important enough to repeat: array elements are given
their default values (0, false, null, *\u0000", ezx.) regardless of whether the
array is declared as an instance or local variable. The array object itself, however, will
not be initialized if it’s declared locally. In other words, you must explicitly initialize
an array reference if it’s declared and used within a method, but at the moment you
construct an array object, all of its elements are assigned their default values.

40 Chapter I: Language Fundamentals

CERTIFICATION OBJECTIVE

Command-Line Arguments to Main
(Exam Objective 4.3)

State the correspondence between index values in the argument array passed to a main
method and command line arguments.

Now that you know all about arrays, command-line arguments will be a piece of
cake. Remember that the main method—the one the JVM invokes—must take a
String array parameter. That String array holds the arguments you send along with
the command to run your Java program, as follows:

class TestMain {
public static void main (String [] args) {
System.out.println("First arg is " + args[0]);
}
}

When invoked at the command line as follows,
%java TestMain Hello

the output is
First arg is Hello

The length of the args array will always be equal to the number of command-line
arguments. In the following code, args . length is one, meaning there is one
element in the array, and it is at index zero. If you try to access beyond length-1,
you'll get an ArrayIndexOutOfBoundsException! This causes your entire
program to explode in a spectacular JVM shutdown, so be sure the right number of
arguments are being passed, perhaps with a nice user suggestion. The following code
is an example of a main method expecting three arguments:

Command-Line Arguments to Main (Exam Objective 4.3) 4 |

public static void main (String [] args) {
if (args.length < 3) {
System.out.println("Usage: [name] [social security #]
//[IQ] Try again when you have a clue");
}
}

exam

The String array parameter does not have to be named args or arg. It can be
atch g y P g g

named, for example, freddie. Also, remember that the main argument is just an
array! There’s nothing special about it, other than how it gets passed into
main (from the JVM).

EXERCISE I-1

Creating a Program That Outputs Command-Line Arguments

In the following exercise...

I. Create a program that outputs every command-line argument, then displays
the number of arguments.

2. You should use the array variable /ength to retrieve the length of the array.

An example of how you might write your code is at the end of this chapter.

CERTIFICATION SUMMARY ‘

After absorbing the material in this chapter, you should be familiar with some of the
nuances of the Java language. You may also be experiencing confusion around why

you ever wanted to take this exam in the first place. That’s normal at this point. If
you hear yourself saying, “What was I thinking?” just lie down until it passes. We
would /ike to tell you that it gets easier... that this was the toughest chapter and it’s

all downhill from here.

472 Chapter I:

Language Fundamentals

Let’s briefly review what you'll need to know for the exam.

There will be more than one question dealing with keywords, so be sure you can
identify which are keywords and which aren’t. Make sure you're familiar with the
ranges of integer primitives, and the bit depth of all primitives. And, although this
isn’t Java language specific, you must be able to convert between octal, decimal, and
hexadecimal literals. You have also learned about arrays, and how they behave when
declared in a class or a method.

Be certain that you know the effects of leaving a variable uninitialized, and how
the variable’s scope changes the behavior. You'll also be expected to know what happens
to the elements of an array when they’re not explicitly initialized.

For the exam, knowing what you can’t do with the Java language is just as
important as knowing what you can do. Give the sample questions a try! They’re
very similar to the difficulty and structure of the real exam questions, and should
be an eye opener for how difficult the exam can be. Don't worry if you get a lot of
them wrong. If you find a topic that you are weak in, spend more time reviewing
and studying. Many programmers need two or three serious passes through a chapter
(or an individual objective) before they can answer the questions confidently.

Two-Minute Drill 43

TWO-MINUTE DRILL

Java Programming Language Keywords

Q

Q

Keywords cannot be used as identifiers (names) for classes, methods,
variables, or anything else in your code.

All keywords start with a lowercase letter.

Literals and Ranges of All Primitive Data Types

Q

(I I I I I i

(N

All six number types in Java are signed, so they can be positive or negative.
Use the formula -2”*” to 2*"-1 to determine the range of an integer type.
A char is really a 16-bit unsigned integer.

Literals are source code representations of primitive data types, or String.

Integers can be represented in octal (0127), decimal (1245), and hexadecimal
(0XCAFE).

Numeric literals cannot contain a comma.
A char literal can be represented as a single character in single quotes (‘A’).
A char literal can also be represented as a Unicode value (\u0041’).

A char literal can also be represented as an integer, as long as the integer is

less than 65536.
A boolean literal can be either true or false.

Floating-point literals are always double by default; if you want a f1oat,
you must append an For fto the literal.

Array Declaration, Construction, and Initialization

Q
Q

Q

Arrays can hold primitives or objects, but the array itself is a/ways an object.

When you declare an array, the brackets can be to the left or right of the
variable name.

It is never legal to include the size of an array in the declaration.

44 Chapter |:

Language Fundamentals

Ciel) " EEEEE U

(]

a

a

You must include the size of an array when you construct it (using new)
unless you are creating an anonymous array.

Elements in an array of objects are not automatically created, although
primitive array elements are given default values.

You'll get aNullPointerException if you try to use an array element
in an object array, if that element does not refer to a real object.

Arrays are indexed beginning with zero. In an array with three elements, you
can access element 0, element 1, and element 2.

You'll get an ArrayIndexOutOfBoundsException if you try to
access outside the range of an array.

Arrays have a length variable that contains the number of elements in the array.
The last index you can access is always one less than the length of the array.
Multidimensional arrays are just arrays of arrays.

The dimensions in a multidimensional array can have different lengths.

An array of primitives can accept any value that can be promoted implicitly
to the declared type of the array. For example, a by te variable can be placed
in an int array.

An array of objects can hold any object that passes the IS-A (or instanceof)
test for the declared type of the array. For example, if Horse extends Animal,
then a Horse object can go into an Animal array.

If you assign an array to a previously declared array reference, the array you're
assigning must be the same dimension as the reference you’re assigning it to.

You can assign an array of one type to a previously declared array reference of
one of its supertypes. For example, a Honda array can be assigned to an array
declared as type Car (assuming Honda extends Car).

Using a Variable or Array Element That Is
Uninitialized and Unassigned

When an array of objects is instantiated, objects within the array are not
instantiated automatically, but all the references get the default value of null.

When an array of primitives is instantiated, all elements get their default values.

Two-Minute Drill 4.8

O Just as with array elements, instance variables are always initialized with
a default value.

O Local/automatic/method variables are never given a default value. If you
attempt to use one before initializing it, you'll get a compiler error.

Command-Line Arguments to Main
1 Command-line arguments are passed to the String array parameter in the
main method.

O The first command-line argument is the first element in the main String

array parameter.

Q If no arguments are passed to main, the length of the main String array
parameter will be zero.

46 Chapter I: Language Fundamentals

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully! These questions are very similar to the kinds of questions you’ll
see on the latest exam. Again, don’t worry if you have trouble with them at first; the style of the exam
questions can take some getting used to. For example, you might find yourself looking at the answers
and wanting to kick yourself for missing little things that you actually knew, but just didn’t see in the
question. The best advice we have for both the practice questions and the real exam is to always look
again. As soon as you get an idea in your head about the answer to a question, imagine someone standing
next to you and whispering in your ear, “Are you sure? Look again.” Much of the time, you’ll look
again and say, “I'm sure,” especially since your first reaction is often the best one to go with. But you’ll
be surprised by how often that second look brings up something new.

Java Programming Language Keywords (Objective 4.4)

I. Given the following,

1 public class Test {

2 public static void main(String [] args) {
3. signed int x = 10;

4. for (int y=0; y<5; y++, x--)

5 System.out.print (" " + x);

6 }

7 }

what is the result? (Choose one.)
A. 10 9 8 7 6

B. 987 65

C. Compilation fails

D

. An exception is thrown at runtime

2. Which is a reserved word in the Java programming language? (Choose one.)

A. method

B. native

C. subclasses
D. reference
E. array

Self Test 47

3. Which one of these lists contains only Java programming language keywords? (Choose one.)
A. class, if,void, long, Int, continue

goto, instanceof,native, finally, default, throws

try, virtual, throw, final, volatile, transient

strictfp, constant, super, implements, do

moQo®w

byte, break, assert, switch, include

4. Which two are keywords? (Choose two.)
A. interface

unsigned

Float

this

mooOw

string

Literals and Ranges of All Primitive Data Types (Objective 4.6)
5. Which three are valid declarations of a char? (Choose three.)
A. char cl =064770;
char c2 = ‘face’;
char c¢3 = Oxbeef;
char c4 =\u0022;

char ¢b = ‘\iface’;

mmo O W

char c6 = ‘\uface’;

6. Which two are valid declarations of a String? (Choose two.)
A. Stringsl =null;

String s2 = ‘null’;

String s3 = (String) ‘abc’;

String s4 = (String) ‘\ufeed’;

mooOw

String sb5 = “strings rule”;

48 Chapter I: Language Fundamentals

7. Which one is a valid declaration of a boolean? (Choose one.)
boolean bl = 0;

boolean b2 = ‘false’;

boolean b3 = false;

boolean b4 = Boolean.false();

mo O ® >

boolean b5 = no;

8. What is the numerical range of a char? (Choose one.)

A. -128to 127

B. -2715 w0 (2"15)-1
C. 01032767

D. Platform dependent

E. 0to65535

9. Which three are valid declarations of a f1oat? (Choose three.)
float f1 =-343;

float £2 =3.14;

float £3 =0x12345;

float £f4 = 42e7;

float £5=2001.0D;

float £6 =2.81F;

mmogN®w >

Array Declaration, Construction, and Initialization (Objective I.1)
10. Which three are legal array declarations? (Choose three.)

A. int [] myScores [];

B. char [] myChars;

C. int [6] myScores;

D. DogmyDogs [1;

E. DogmyDogs [7];
Il. Given the following,

1. public class Test {
2. public static void main(String [] args) {

0 J o Ul W

9.
10.
11.
12.
13.
14.

}

Self Test
int [1 []1 [] x = new int [3] [] [];
int 1,3;
x[0] = new int[4][];
x[1] = new int[2][];
x[2] = new int[5][];
for (i=0; i<x.length; i++)
for (j=0; j<x[i].length; Jj++) {
x[11[j] = new int [1i + J + 1];
System.out.println("size = " + x[1][]J].length);

how many lines of output will be produced? (Choose one.)

A 7
B. 9
C 11
D. 13
E.

F.

Compilation fails

An exception is thrown at runtime

Given the following,

1
2
3
4.
5.
6
7
8
9

public class Test {

}

public static void main(String [] args) {
byte []1[] big = new byte [7]1[7];
byte []1[] b = new byte [2][1];
byte b3 = 5;
byte b2 [1[1[1[] = new byte [2][3]1[11[2];

which of the following lines of code could be inserted at line 7, and still allow the code to
compile? (Choose four that would work.)

mmQgQOh®>»

b2[0][1] =b;

b[0][0] =b3;

b2[1]1[1][0] =b[0][O];
b2[1]1[2][0] =b;

b2[0] [1][0] [0] =b[O][O];
b2[0] [1] =big;

49

BQO Chapter I: Language Fundamentals

13. Which two will declare an array and initialize it with five numbers? (Choose two.)
A. Array a =newArray(5);
B. int []a=1{23,22,21,20,19};
C. int [] array;
D. int array [] =new int [5];
E. inta [] =newint(5);
F. int [5] array;

14. Which will legally declare, construct, and initialize an array? (Choose one.)
A (217, w2m, N3
B (5,8, 2);
C. intmyList [] []1={4,9,7,0};
D
E.
F.

int [] myList

int [] myList
intmyList [] = {4, 3, 7};
int [l myList = [3, 5, 6];

intmyList [] ={4; 6; 5};

Using a Variable or Array Element That Is Uninitialized and Unassigned

(Objective 4.5)
I15. Which four describe the correct default values for array elements of the types indicated?
(Choose four.)
A. int -> 0
B. String -> “null”
C. Dog -> null
D. char -> *\u0000’
E. float -> 0.0f
F. boolean -> true

16. Given the following,

1 public class TestDogs {

2 public static void main(String [] args) {

3. Dog [][] theDogs = new Dog[3][];

4. System.out.println(theDogs[2][0].toString()) ;
5

6

Self Test § ||

7.
8. <class Dog {1}

what is the result? (Choose one.)

A. null
B. theDogs
C. Compilation fails

D. An exception is thrown at runtime

17. Given the following,

1 public class X {

2 public static void main(String [] args) {
3. String names [] = new Stringl[5];

4. for (int x=0; x < args.length; =x++)
5 names [x] = args[x];

6 System.out.println (names[2]) ;

7 }

8: }
and the command line invocation is
java X a b
what is the result? (Choose one.)
A. names
B. null
C. Compilation fails
D

An exception is thrown at runtime

Command-Line Arguments to Main (Objective 4.3)
18. Given the following,

public class CommandArgs {
public static void main(String [] args) {

String sl = args[1l];
String s2 = argsl[2];
= args([3];
String s4 = argsl[4];
System.out.print (" args([2] = " + s2);

1
2
3
4.
5. String s3
6
7
8
9

B2 Chapter I: Language Fundamentals

and the command-line invocation,

java CommandArgs 1 2 3 4

what is the result?

A. args[2] =2

B. args([2] =3

C. args[2] =null

D. args[2] =1

E. Compilation fails

F. An exception is thrown at runtime

Given the following,

1 public class CommandArgsTwo {

2 public static void main(String [] argh)
3 String [] args;

4. int x;

5. x = argh.length;

6 for (int yv = 1; yv <= x; y++) {

7 System.out.print (" " + arghly]);
8 }

9 }

10 }

and the command-line invocation,
java CommandArgsTwo 1 2 3
what is the result?
012
123
000
null null null

Compilation fails

mmoN® >

An exception is thrown at runtime

Self Test §3

20. Given the following,

1 public class CommandArgsThree {

2 public static void main(String [] args) {
3 String [][] argCopy = new String([2][2];
4. int x;

5. argCopy[0] = args;

6 x = argCopy[0].length;

7 for (int v = 0; v < x; y++) {

8. System.out.print (" " + argCopy[0]I[y]);
9. }
10. }
11. 3}

and the command-line invocation,
java CommandArgsThree 1 2 3
what is the result?
00
12
000
123

Compilation fails

mmQgQOw>»

An exception is thrown at runtime

B4 Chapter I: Language Fundamentals

SELF TEST ANSWERS

Java Programming Language Keywords (Objective 4.4)

M C. The word “signed” is not a valid modifier keyword in the Java language. All number
primitives in Java are signed. Always.

M B. The word native is a valid keyword, used to modify a method declaration.
A, D, and E are not keywords. C is wrong because the keyword for subclassing in
Java is extends, not ‘subclasses’.

M B. All the words in answer B are among the 49 Java keywords.

A is wrong because the keyword for the primitive int starts with a lowercase 7. C is
wrong because “virtual” is a keyword in C++, but not Java. D is wrong because “constant”
is not a keyword. Constants in Java are marked static and final. E is wrong because
“include” is a keyword in C, but not Java.

M Aand D. Both interface and this are both valid keywords.

B is wrong because “unsigned” is a keyword in C/C++ but not in Java. C is wrong because
“Float” is a class type. The keyword for the Java primitive is £1oat. E is wrong because
although “String” is a class type in Java, “string” is not a keyword.

Literals and Ranges of All Primitive Data Types (Objective 4.6)

5. M A, C,andF. A is an octal representation of the integer value 27128, which is legal because

it fits into an unsigned 16-bit integer. C is a hexadecimal representation of the integer value
48879, which fits into an unsigned 16-bit integer. F is a Unicode representation of a character.
& B is wrong because you can’t put more than one character in a char literal. You know that
B is a literal character because it comes between single quotes. The only other acceptable char
literal that can go between single quotes is a Unicode value, and Unicode literals must always start
with a “\u’. D is wrong because the single quotes are missing. E is wrong because it appears to be
a Unicode representation (notice the backslash), but starts with ‘\ 1’ rather than “\u’.

M A and E. A sets the String reference to null; E initializes the String reference with a literal.
Xl B is wrong because null cannot be in single quotes. C is wrong because there are multiple
characters between the single quotes (‘abc’). D is wrong because you can’t cast a char
(primitive) to a String (object).

7.

8.

Self Test Answers § §

M C. Aboolean can only be assigned the literal true or false.
& A, B, D, and E are all invalid assignments for a boolean.

M E. A char is really a 16-bit integer behind the scenes, so it supports 2' (from 0 to 65535)
values.

M A, C,and F. A and C are integer literals (32 bits), and integers can be legally assigned to
floats (also 32 bits). F is correct because Fis appended to the literal, declaring itasa float
rather than a double (the default for floating point literals).

% B, D, and E are all doubles.

Array Declaration, Construction, and Initialization (Objective 1.1)

10.

M A, B, and D. With an array declaration, you can place the brackets to the right or left of
the identifier. A looks strange, but it’s perfectly legal to split the brackets in a multidimensional
array, and place them on both sides of the identifier. Although coding this way would only
annoy your fellow programmers, for the exam, you need to know it’s legal.

B C and E are wrong because you can’t declare an array with a size. The size is only needed
when the array is actually instantiated (and the JVM needs to know how much space to
allocate for the array, based on the type of array and the size).

M C. The loops use the array sizes (length).

If you think this question is unfairly complicated, get used to it. Question 11 is a good example
of the kinds of questions you’ll see on the exam. You should approach complex loop questions
by using a pencil and paper and stepping through the loop (or loops, in this case), keeping
track of the variable values at each iteration. Tedious, we know, but you can expect a lot of
questions like this on the exam. Take your time and recheck your work.

M A, B, E, and F. This question covers the issue of, “What can I assign to an array reference
variable?” The key is to get the dimensions right. For example, if an array is declared as a
two-dimensional array, you can’t assign a one-dimensional array to a one-dimensional array
reference.

C is wrong because it tries to assign a primitive byte where a byte ar7ay (one dimension) is
expected. D is wrong because it tries to assign a two-dimensional array where a one-dimensional
array is expected.

M B and D. Both are legal ways to declare and initialize an array with five elements.
[A is wrong because it shows an example of instantiating a c/ass named Array, passing
the integer value 5 to the object’s constructor. If you don’t see the brackets, you can be

B @ Chapter I: Language Fundamentals

certain there is no actual array object! In other words, an Array object (instance of class Array)
is not the same as an array object. C is wrong because it shows a legal array declaration, but
with no initialization. E is wrong (and will not compile) because the initialization uses parens ()
rather than brackets. F is wrong (and will not compile) because it declares an array with a size.
Arrays must never be given a size when declared.

14. M D. The only legal array declaration and assignment statement is D.
A is wrong because it initializes an int array with String literals. B and E are wrong
because they use something other than curly braces for the initialization. C is wrong because
it provides initial values for only one dimension, although the declared array is a two-dimensional
array. F is wrong because it uses semicolons where it should use commas, to separate the items
in the initialization.

Using a Variable or Array Element That Is Uninitialized and Unassigned
(Objective 4.5)

15. ¥ A, C,D,and E.
X B is wrong because the default value for a String (and any other object reference) is null,
with no quotes. F is wrong because the default value for boolean elements is false.

16. M D. The second dimension of the array referenced by theDogs has not been initialized.
Attempting to access an uninitialized object element (line 4) raises a
NullPointerException.

17. M B. The names array is initialized with five nu// elements. Then elements 0 and 1 are
assigned the String values “a” and “b” respectively (the command-line arguments passed
to main). Elements 2, 3, and 4 remain unassigned, so they have a value of null.

Command-line Arguments to Main (Objective 4.3)

18. M F. An exception is thrown because at line 6, the array index (the fifth element) is out of
bounds. The exception thrown is the cleverly named
ArrayIndexOutOfBoundsException.

19. M F. An exception is thrown because at some point in line 7, the value of x will be equal to y,
resulting in an attempt to access an index out of bounds for the array. Remember that you can
access only as far as length-1, so loop logical tests should use x<someArray.length as
opposed to x <= someArray.length.

20. M D.Inline 5, the reference variable argCopy [0], which was referring to an array with
two elements, is reassigned to an array (args) with three elements.

Exercise Answers §7

EXERCISE ANSWERS

Exercise |.I: Command-Line Arguments to Main

Your completed code should look something like the following:

public class MainTest {
public static void main (String [] args)
for (int 1 = 0;1 < args.length;i++)
System.out.println(args[i]) ;

{
{

}
System.out.println("Total words: " + args.length) ;

SUN™ CERTIFIED PROGRAMMER & DEVELOPER

Declarations and
Access Control

CERTIFICATION OBJECTIVES

° Declarations and Modifiers
° Declaration Rules
° Interface Implementation

\/ Two-Minute Drill
Q&A Self Test

2 Chapter 2: Declarations and Access Control

e’re on a roll. We've covered the fundamentals of keywords, primitives, arrays,

and variables. Now it’s time to drill deeper into rules for declaring classes,

methods, and variables. We’'ll tackle access modifiers, abstract method
implementation, interface implementation, and what you can and can’t return from a method.
Chapter 2 includes the topics asked most often on the exam, so you really need a solid grasp
of this chapter’s content. Grab your caffeine and let’s get started.

CERTIFICATION OBJECTIVE

Declarations and Modifiers (Exam Objective 1.2)

Declare classes, nested classes, methods, instance variables, static variables, and automatic
(method local) variables making appropriate use of all permitted modifiers (such as
public, final, static, abstract, and so forth). State the significance of
each of these modifiers both singly and in combination, and state the effect of package
relationships on declared items qualified by these modifiers.

When you write code in Java, you're writing classes. Within those classes, as
you know, are variables and methods (plus a few other things). How you declare
your classes, methods, and variables dramatically affects your code’s behavior. For
example, a public method can be accessed from code running anywhere in your
application. Mark that method private, though, and it vanishes from everyone’s
radar (except the class in which it was declared). For this objective, we'll study the
ways in which you can modify (or not) a class, method, or variable declaration.
You'll find that we cover modifiers in an extreme level of detail, and though we
know you're already familiar with them, we're starting from the very beginning.
Most Java programmers #hink they know how all the modifiers work, but on closer
study often find out that they don't (at least not to the degree needed for the exam).
Subtle distinctions are everywhere, so you need to be absolutely certain you're
completely solid on everything in this objective before taking the exam.

Declarations and Modifiers (Exam Objective 1.2) 3

Class Declarations and Modifiers

We'll start this objective by looking at how to declare and modify a class. Although
nested (often called znner) classes are on the exam, we’ll save nested class declarations

for Chapter 8. You're going to love that chapter. No, really. Seriously. No
kidding around.

Before we dig into class declarations, let’s do a quick review of the rules:
B There can be only one public class per source code file.

B The name of the file must match the name of the public class.

B If the class is part of a package, the package statement must be the first line
in the source code file.

M If there are import statements, they must go between the package statement
and the class declaration. If there isn’t a package statement, then the import
statement(s) must be the first line(s) in the source code file. If there are no
package or import statements, the class declaration must be the first line in
the source code file. (Comments don’t count; they can appear anywhere
in the source code file.)

B Import and package statements apply to all classes within a source code file.

The following code is a bare-bones class declaration:

class MyClass { }

This code compiles just fine, but you can also add modifiers before the class
declaration. Modifiers fall into two categories:

B Access modifiers: public, protected, private

B Nonaccess modifiers (including strictfp, final, and abstract)

We'll look at access modifiers first, so you'll learn how to restrict or allow access to
a class you create. Access control in Java is a little tricky because there are four access

controls (levels of access) but only #hree access modifiers. The fourth access control
level (called default or package access) is what you get when you don't use any of the

4 Chapter 2: Declarations and Access Control

three access modifiers. In other words, every class, method, and instance variable you
declare has an access control, whether you explicitly type one or not. Although all
four access controls (which means all three modifiers) work for most method and
variable declarations, a class can be declared with only public or default access; the
other two access control levels don’t make sense for a class, as you'll see.

on the

Qob

Java is a package-centric language; the developers assumed that for good
organization and name scoping, you would put all your classes into packages.
They were right, and you should. Imagine this nightmare: three different
programmers, in the same company but working on different parts of a
project, write a class named Utilities. If those three Utilities classes have not
been declared in any explicit package, and are in the classpath, you won’t
have any way to tell the compiler or JVM which of the three you’re trying to
reference. Sun recommends that developers use reverse domain names,
appended with division andl/or project names. For example, if your domain
name is geeksanonymous.com, and you’re working on the client code for the
TwelvePointOSteps program, you would name your package something like
com.geeksanonymous.steps.client. That would essentially change the name
of your class to com. geeksanonymous. steps.client.Utilities. You
might still have name collisions within your company, if you don’t come up
with your own naming schemes, but you’re guaranteed not to collide with
classes developed outside your company (assuming they follow Sun’s naming
convention, and if they don’t, well, Really Bad Things could happen).

Class Access
What does it mean to access a class? When we say code from one class (class A)
has access to another class (class B), it means class A can do one of three things:

B Create an instance of class B
B Extend class B (in other words, become a subclass of class B)
B Access certain methods and variables within class B, depending on the access

control of those methods and variables.

In effect, access means visibilizy. If class A can’t see class B, the access level of the
methods and variables within class B won’t matter; class A won't have any way to
access those methods and variables.

Declarations and Modifiers (Exam Objective 1.2)

Default Access A class with defaulr access has no modifier preceding it in the
declaration. In other words, it’s the access control you get when you don’t type a
modifier in the class declaration. Think of default access as package-level access,
because a class with default access can be seen only by classes within the same package.
For example, if class A and class B are in different packages, and class A has default
access, class B won’t be able to create an instance of class A, or even declare a
variable or return type of class A. In fact, class B has to pretend that class A doesn’t
even exist, or the compiler will complain. Look at the following source file:

package cert;
class Beverage {

}
Now look at the second source file:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage {

}

As you can see, the superclass (Beverage) is in a different package from the
subclass (Tea). The import statement at the top of the Tea file is trying (fingers
crossed) to import the Beverage class. The Beverage file compiles fine, but watch
what happens when we try to compile the Tea file:

>javac Tea.java
Tea.java:1: Can't access class cert.Beverage. Class or
interface must be public, in same package, or an accessible member
class.
import cert.Beverage;

Tea won't compile because its superclass, Beverage, has default access and is in
a different package. You can do one of two things to make this work. You could
put both classes in the same package, or declare Beverage as public, as the next
section describes.

5

6 Chapter 2:

exam

Datch

Declarations and Access Control

When you see a question with complex logic, be sure to look at the access
modifiers first. That way, if you spot an access violation (for example, a class
in package A trying to access a default class in package B), you’ll know the
code won’t compile so you don’t have to bother working through the logic.
It’s not as if, you know, you don’t have anything better to do with your time
while taking the exam. Just choose the “Compilation fails’ answer and zoom
on to the next question.

Public Access A class declaration with the public keyword gives all classes
from all packages access to the public class. In other words, a// classes in the Java
Universe (JU) (you’ll be tested on this acronym) have access to a public class. Don’t
forget, though, that if a public class you’re trying to use is in a different package
from the class you’re writing, you'll still need to import the public class. (Just
kidding about the JU acronym. We just made that up to keep you on your toes.)

In the example from the preceding section, we may not want to place the subclass
in the same package as the superclass. To make the code work, we need to add the
keyword public in front of the superclass (Beverage) declaration, as follows:

package cert;
public class Beverage {

}

This changes the Beverage class so it will be visible to all classes in all packages.
The class can now be instantiated from all other classes, and any class is now free to
subclass (extend from) it—unless, that is, the class is also marked with the nonaccess
modifier final. Read on.

Other (Nonaccess) Class Modifiers
You can modify a class declaration using the keyword final, abstract,
or strictfp. These modifiers are in addition to whatever access control is on
the class, so you could, for example, declare a class as both public and final.
But you can’t #/ways mix nonabstract modifiers. You're free to use strictfp in
combination with abstract or f£inal, but you must never, ever, ever mark a
class as both final and abstract. You'll see why in the next two sections.
You won't need to know how strictfp works, so we're focusing only on
modifying a class as final or abstract. For the exam, you need to know only
that strictfp is a keyword and can be used to modify a class or a method, but
never a variable. Marking a class as strict fp means that any method code in the

Declarations and Modifiers (Exam Objective 1.2) 7

class will conform to the IEEE754 standard rules for floating points. Without that
modifier, floating points used in the methods might behave in a platform-dependent
way. If you don’t declare a class as strictfp, you can still get strictfp
behavior on a method-by-method basis, by declaring a method as strictfp. If
you don’t know the IEEE754 standard, now’s not the time to learn it. You have, as

we say, bigger fish to fry.

Final Classes When used in a class declaration, the final keyword means
the class can’t be subclassed. In other words, no other class can ever extend (inherit
from) a £inal class, and any attempts to do so will give you a compiler error.

So why would you ever mark a class f£inal? After all, doesn’t that violate the
whole OO notion of inheritance? You should make a final class only if you need an
absolute guarantee that 7one of the methods in that class will ever be overridden. If
youre deeply dependent on the implementations of certain methods, then using
final gives you the security that nobody can change the implementation out
from under you.

You'll notice many classes in the Java core libraries are final. For example, the
String class cannot be subclassed. Imagine the havoc if you couldn’t guarantee how
a String object would work on any given system your application is running on! If
programmers were free to extend the String class (and thus substitute their new
String subclass instances where java.lang.String instances are expected),
civilization—as we know it—could collapse. So use £inal for safety, but on/y when
youre certain that your final class has indeed said all that ever needs to be said in its
methods. Marking a class final means, in essence, your class can’t ever be improved
upon, or even specialized, by another programmer.

Another benefit of having nonfinal classes is this scenario: imagine you find a
problem with a method in a class you're using, but you don’t have the source code.
So you can't modify the source to improve the method, but you can extend the class
and override the method in your new subclass, and substitute the subclass everywhere
the original superclass is expected. If the class is final, though, then you're stuck.

Let’s modify our Beverage example by placing the keyword £inal in the declaration:

package cert;

public final class Beverage{
public void importantMethod() {
}

8 Chapter 2:

on the

Qob

Declarations and Access Control

Now, if we try to compile the Tea subclass:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage {

}
We get the following error:

>javac Tea.java

Tea.java:3: Can't subclass final classes: class
cert.Beverage class Tea extends Beverage({

1 error

In practice, you’ll almost never make a final class. A final class obliterates

a key benefit of OO—extensibility. So unless you have a serious safety or
security issue, assume that some day another programmer will need to extend
your class. If you don’t, the next programmer forced to maintain your code
will hunt you down and <insert really scary thing>.

Abstract Classes An abstract class can never be instantiated. Its sole purpose,
mission in life, raison d’étre, is to be extended (subclassed). Why make a class if you
can’t make objects out of it? Because the class might be just too, well, abstract. For
example, imagine you have a class Car that has generic methods common to all
vehicles. But you don’t want anyone actually creating a generic, abstract Car object.
How would they initialize its state? What color would it be? How many seats?
Horsepower? All-wheel drive? Or more importantly, how would it behave? In other
words, how would the methods be implemented?

No, you need programmers to instantiate actual car types such as SubaruOutback,
BMWBosxster, and the like, and we'll bet the Boxster owner will tell you his car
does things the Subaru can do “only in its dreams!” Take a look at the following
abstract class:

abstract class Car {
private double price;
private Color carColor;
private String model;
private String year;
public abstract void goFast() ;
public abstract void goUpHill () ;

exam
Jatch

Declarations and Modifiers (Exam Objective 1.2) €@

public abstract void impressNeighbors() ;
// Additional, important, and serious code goes here

}

The preceding code will compile fine. However, if you try to instantiate a Car in
another body of code, you'll get a compiler error:

AnotherClass.java:7: class Car is an abstract
class. It can't be instantiated.

Car x = new Car();
1 error

Notice that the methods marked abstract end in a semicolon rather than
curly braces.

Look for questions with a method declaration that ends with a semicolon,
rather than curly braces. If the method is in a class—as opposed to an
interface—then both the method and the class must be marked abstract.
You might get a question that asks how you could fix a code sample that
includes a method ending in a semicolon, but without an abstract modifier
on the class or method. In that case, you could either mark the method and
class abstract, or remove the abstract modifier from the method. Oh,
and if you change a method from abstract to nonabstract, don’t forget to change
the semicolon at the end of the method declaration into a curly brace pair!

We'll look at abstract methods in more detail later in this objective, but always
remember that if even a single method is abstract, the whole class must be declared
abstract. One abstract method spoils the whole bunch. You can, however, put
nonabstract methods in an abstract class. For example, you might have methods
with implementations that shouldn’t change from car type to car type, such as
getColor () or setPrice (). By putting nonabstract methods in an abstract
class, you give all concrete subclasses (concrete just means nor abstract) inherited
method implementations. The good news there is that concrete subclasses get to
inherit functionality, and need to implement only the methods that define
subclass-specific behavior.

(By the way, if you think we misused raison détre, for gosh sakes don't send an
email. We're rather pleased with ourselves, and let’s see you work it into a programmer
certification book.)

I O Chapter2: Declarations and Access Control

on th?

Qob

exam

Jatch

Coding with abstract class types (including interfaces, discussed later in
this chapter) let’s you take advantage of polymorphism, and gives you the
greatest degree of flexibility and extensibility. You’ll learn more about
polymorphism in Chapter 5.

You can’t mark a class as both abstract and final. They have nearly opposite
meanings. An abstract class must be subclassed, whereas a final class must not
be subclassed. If you see this combination of abstract and final modifiers,
used for a class or method declaration, the code will not compile.

EXERCISE 2-1

Creating an Abstract Superclass and Concrete Subclass

The following exercise will test your knowledge of public, default, final, and abstract
classes. Create an abstract superclass named Fruit and a concrete subclass named
Apple. The superclass should belong to a package called food and the subclass can
belong to the default package (meaning it isn’t put into a package explicitly). Make
the superclass public and give the subclass default access.

I. Create the superclass as follows:

package food;
public abstract class Fruit{ /* any code you want */}

2. Create the subclass in a separate file as follows:

import food.Fruit;
class Apple extends Fruit{ /* any code you want */}

3. Create a directory called food off the directory in your class path setting.

4. Attempt to compile the two files. If you want to use the Apple class, make
sure you place the Fruit.class file in the food subdirectory.

Method and Variable Declarations and Modifiers

We've looked at what it means to use a modifier in a class declaration, and now we’ll
look at what it means to modify a method or variable declaration.

exam
Datch

Declarations and Modifiers (Exam Objective 1.2) | ||

Methods and instance (nonlocal) variables are collectively known as members. You
can modify a member with both access and nonaccess modifiers, and you have more
modifiers to choose from (and combine) than when you're declaring a class.

Member Access
Because method and variable members are usually given access control in exactly
the same way, we’ll cover both in this section.

Whereas a class can use just two of the four access control levels (default or
public), members can use all four:

B public
B protected
W default

B private

Default protection is what you get when you don’t type an access modifier in the
member declaration. The default and protected access control types have almost
identical behavior, except for one difference that will be mentioned later.

It’s crucial that you know access control inside and out for the exam. There
will be quite a few questions with access control playing a role. Some
questions test several concepts of access control at the same time, so not
knowing one small part of access control could blow an entire question.

What does it mean for code in one class to have access to a member of another
class? For now, ignore any differences between methods and variables. If class A has
access to a member of class B, it means that class B’s member is vzsible to class A.
When a class does 70z have access to another member, the compiler will slap you
for trying to access something that you're not even supposed to know exists!

You need to understand two different access issues:

B Whether method code in one class can access a member of another class
B Whether a subclass can inherit a member of its superclass
The first type of access is when a method in one class tries to access a method or

a variable of another class, using the dot operator (.) to invoke a method or retrieve a
variable. For example,

I 2 Chapter 2: Declarations and Access Control

class Zoo {

public String coolMethod() {
return "Wow baby";

}

class Moo {
public void useAZoo () {
7200 z = new Zoo () ;

// If the preceding line compiles Moo has access
// to the Zoo class

// But.. does it have access to the coolMethod()?

System.out.println("A Zoo says, " + z.coolMethod());
// The preceding line works because Moo can access the
// public method

The second type of access revolves around which, if any, members of a superclass a
subclass can access through inheritance. We're not looking at whether the subclass
can, say, invoke a method on an instance of the superclass (which would just be an
example of the first type of access). Instead, we’re looking at whether the subclass
inherits a member of its superclass. Remember, if a subclass inherits a member, it’s
exactly as if the subclass actually declared the member itself. In other words, if a
subclass inberits a member, the subclass /as the member.

class Zoo {
public String coolMethod () {
return "Wow baby";

}

class Moo extends Zoo {
public void useMyCoolMethod () {
// Does an instance of Moo inherit the coolMethod()?
System.out.println ("Moo says, " + this.coolMethod()) ;
// The preceding line works because Moo can inherit the public method

// Can an instance of Moo invoke coolMethod() on an instance of Zoo?
700 Z = new Zoo();

System.out.println("Zoo says, " + z.coolMethod());
// coolMethod() is public, so Moo can invoke it on a Foo reference

Comparison of
inheritance vs.
dot operator for
member access

Declarations and Modifiers (Exam Objective 1.2)

13

Figure 2-1 compares the effect of access modifiers on whether a class can inherit a

member of another class, or access a member of another class using a reference of an

instance of that class.

Much of access control (both types) centers on whether the two classes involved
are in the same or different packages. Don't forget, though, if class A 7zself can’t be
accessed by class B, then no members within class A can be accessed by class B.

SportsCar

goFast{ }

doStuff(){
goFast();
}

superclass

Convertible

doThings () {
SportsCar sc =
sc.goFast();
}

doMore() {
goFast();
}

new SportsCar();
subclass

Driver

®
®

doDriverStuff (
SportsCar car =
car.goFast();

Convertible con
con.goFast ();

}

) {

new SportsCar();

= new Convertible();

Three ways to access a method:

@ Invoking a method declared in the same class

@ Invoking a method using a reference of the class

@ Invoking an inherited method

I 4 Chapter2: Declarations and Access Control

exam

Datch

You need to know the effect of different combinations of class and member
access (such as a default class with a public variable). To figure this out, first
look at the access level of the class. If the class itself will not be visible to
another class, then none of the members will be either, even if the member
is declared public. Once you’ve confirmed that the class is visible, then it
mabkes sense to look at access levels on individual members.

Public Members When a method or variable member is declared public,
it means all other classes, regardless of the package they belong to, can access the
member (assuming the class itself is visible). Look at the following source file:

package book;

import cert.*; // Import all classes in the cert package
class Goo {
public static void main(String [] args) {
Sludge o = new Sludge();
o.testIt();

}
Now look at the second file:

package cert;
public class Sludge {
public void testIt() {
System.out.println("sludge") ;

}
}

As you can see, Goo and Sludge are in different packages. However, Goo can
invoke the method in Sludge without problems because both the Sludge class and
its testIt () method are marked public.

For a subclass, if a member of its superclass is declared public, the subclass
inherits that member regardless of whether both classes are in the same package. Read
the following code:

package cert;
public class Roo {
public String doRooThings () {
// imagine the fun code that goes here

}

Declarations and Modifiers (Exam Objective 1.2) | §

The Roo class declares the doRooThings () member as public. So if we
make a subclass of Roo, any code in that Roo subclass can call its own inherited
doRooThings () method.

package notcert; //Not the package Roo is in
import cert.Roo;
class Cloo extends Roo {
public void testCloo() {
System.out.println(doRooThings()) ;

}

Notice in the preceding code that the doRooThings () method is invoked
without having to preface it with a reference. Remember, if you see a method invoked
(or a variable accessed) without the dot operator (.), it means the method or variable
belongs to the class where you see that code. It also means that the method or
variable is implicitly being accessed using the this reference. So in the preceding
code, the call to doRooThings () in the Cloo class could also have been written
as this.doRooThings (). The reference this always refers to the currently
executing object—in other words, the object running the code where you see the
this reference. Because the this reference is implicit, you don’t need to preface
your member access code with it, but it won't hurt. Some programmers include it
to make the code easier to read for new (or non) java programmers.

Besides being able to invoke the doRooThings () method on itself, code from
some other class can call doRooThings () on a Cloo instance, as in the following:

class Toon {

public static void main (String [] args) {
Cloo ¢ = new Cloo();
System.out.println(c.doRooThings()); //No problem; method is public

Private Members Members marked private can’t be accessed by code in
any class other than the class in which the private member was declared. Let’s make
a small change to the Roo class from an earlier example.

package cert;
public class Roo {
private String doRooThings () {
// imagine the fun code that goes here, but only the Roo class knows

}

I & Chapter2: Declarations and Access Control

The doRooThings () method is now private, so no other class can use it. If we
try to invoke the method from any other class, we'll run into trouble.

package notcert;
import cert.Roo;
class UseARoo {
public void testIt() {
Roo r = new Roo(); //So far so good; class Roo is still public
System.out.println(r.doRooThings()); //Compiler error!

}
If we try to compile the UseARoo class, we get the following compiler error:

%javac Balloon.java
Balloon.java:5: No method matching doRooThings () found in class
cert.Roo.
r.doRooThings () ;
1 error

It’s as if the method doRooThings () doesn’t exist, and as far as any code
outside of the Roo class is concerned, it’s true. A private member is invisible to any
code outside the members own class.

What about a subclass that tries to inberit a private member of its superclass?
When a member is declared private, a subclass can't inherit it. For the exam, you
need to recognize that a subclass can’t see, use, or even think about the private
members of its superclass. You can, however, declare a matching method in the
subclass. But regardless of how it looks, it is 7oz an overriding method! It is simply a
method that happens to have the same name as a private method (which you're not
supposed to know about) in the superclass. The rules of overriding do not apply, so
you can make this newly-declared-but-just-happens-to-match method declare new
exceptions, or change the return type, or anything else you want to do with it.

package cert;
public class Roo {
private String doRooThings () {
// imagine the fun code that goes here, but no other class will know
}
}

The doRooThings () method is now off limits to all subclasses, even those in
the same package as the superclass.

on the

Qob

Declarations and Modifiers (Exam Objective 1.2) | 7

package cert; //Cloo and Roo are in the same package
class Cloo extends Roo { //Still OK, superclass Roo is public
public void testCloo() {
System.out.println(doRooThings()); //Compiler error!

}

If we try to compile the subclass Cloo, the compiler is delighted to spit out the
following error:

%$javac Cloo.java

Cloo.java:4: Undefined method: doRooThings ()
System.out.println(doRooThings ()) ;

1 error

Although you’re allowed to mark instance variables as public, in practice
it’s nearly always best to keep all variables private or protected. If
variables need to be changed, set, or read, programmers should use public
accessor methods, so that code in any other class has to ask to get or set

a variable (by going through a method), rather than access it directly.
Accessor methods should usually take the form get<propertyName> and
set<propertyName>, and provide a place to check and/or validate before
returning or modifying a value. Without this protection, the weight variable of
a Cat object, for example, could be set to a negative number if the offending
code goes straight to the public variable as in someCat.weight = -20. But
an accessor method, setieight (int wt), could check for an inappropriate
number. (OK, wild speculation, but we’re guessing a negative weight might be
inappropriate for a cat. And no wisecracks from you cat haters.) Chapter 5
will discuss this data protection (encapsulation) in more detail.

Can a private method be overridden by a subclass? That’s an interesting question,
but the answer is technically no. Since the subclass, as we've seen, cannot inherita
private method, it therefore cannot override the method—overriding depends on
inheritance. We'll cover the implications of this in more detail a little later in this
section as well as in Chapter 5, but for now just remember that a method marked
private cannot be overridden. Figure 2-2 illustrates the effects of the public and
private access modifiers on classes from the same or different packages.

Protected and Default Members The protected and default access control
levels are almost identical, but with one critical difference. A default member may

1 8 Chapter2:

The effects of
public and
private access

Declarations and Access Control

The effect of private access control

SportsCar
private
goFast{..}
@ doStuff(){ superclass
goFast ();
}
K
Convertible
doThingg() {
ZEZZ Spor ar sc = new SportsCar();
sc. st() subclass
}
doMoxe)) {
& gorask()
}
Driver
doDxiverstuff (){
;gj SporksCar car = new SportsCar();
cay/ . gofast();
Conyeptible con = new Convertible();
@ con, oFast();
}

Three ways to access a method:
@ Invoking a method declared in the same class
® Invoking a method using a reference of the class

@ Invoking an inherited method

be accessed only if the class accessing the member belongs to the same package,
whereas a protected member can be accessed (through inheritance) by a subclass
even if the subclass is in a different package. Take a look at the following two classes:

package certification;
public class OtherClass {

Declarations and Modifiers (Exam Objective 1.2) | Q@

void testIt() { // No modifier means method has default access
System.out.println("OtherClass") ;

}
In another source code file you have the following:

package somethingElse;
import certification.OtherClass;
class AccessClass {
static public void main(String [] args) {
OtherClass o = new OtherClass() ;
o.testIt();

}

As you can see, the testIt () method in the second file has default (think:
package-level) access. Notice also that class OtherClass is in a different package
from the AccessClass. Will AccessClass be able to use the method testIt ()?
Will it cause a compiler error? Will Daniel ever marry Francesca? Stay tuned.

%javac AccessClass.java
AccessClass.java:5: No method matching testIt() found in class
certification.OtherClass.
o.testIt();
1 error

From the preceding results, you can see that AccessClass can’t use the OtherClass
method testIt () because testIt () has default access, and AccessClass is
not in the same package as OtherClass. So AccessClass can't see it, the compiler
complains, and we have no idea who Daniel and Francesca are.

Default and protected behavior differ only when we talk about subclasses. This
difference is not often used in actual practice, but that doesn’t mean it won’t be on
the exam! Let’s look at the distinctions between protected and default access.

If the protected keyword is used to define a member, any subclass of the class
declaring the member can access it. It doesn’t matter if the superclass and subclass
are in different packages, the protected superclass member is still visible to the
subclass (although visible only in a very specific way as we'll see a little later). This
is in contrast to the default behavior, which doesn’t allow a subclass to access a
superclass member unless the subclass is in the same package as the superclass.

20 Chapter 2: Declarations and Access Control

Whereas default access doesn’t extend any special consideration to subclasses
(you're either in the package or you're not), the protected modifier respects
the parent-child relationship, even when the child class moves away (and joins a
new package). So, when you think of default access, think package restriction. No
exceptions. But when you think protected, think package + kids. A class with
a protected member is marking that member as having package-level access for all
classes, but with a special exception for subclasses outside the package.

But what does it mean for a subclass-outside-the-package to have access (visibility)
to a superclass (parent) member? It means the subclass inberits the member. It does
not, however, mean the subclass-outside-the-package can access the member using a
reference to an instance of the superclass. In other words, protected = inheritance.
Protected does 70r mean that the subclass can treat the protected superclass member
as though it were public. So if the subclass-outside-the-package gets a reference to
the superclass (by, for example, creating an instance of the superclass somewhere
in the subclass’ code), the subclass cannor use the dot operator on the superclass
reference to access the protected member. To a subclass-outside-the-package, a
protected member might as well be default (or even private), when the subclass is
using a reference to the superclass. 7he subclass can only see the protected member
through inheritance.

Are you confused? So are we. Hang in there and it will all become clear with the
next batch of code examples. (And don’t worry; we're not actually confused. We're
just trying to make you feel better if yox are. You know, like it’s OK for you to feel as
though nothing makes sense, and that it isn’t your fault. Or is i#? <insert evil laugh>)

Let’s take a look at a protected instance variable (remember, an instance variable is
a member) of a superclass.

package certification;
public class Parent {
protected int x = 9; // protected access

}

The preceding code declares the variable x as protected. This makes the
variable accessible to all other classes in the certification package, as well as
inheritable by any subclasses outside the package. Now let’s create a subclass in a
different package, and attempt to use the variable x (that the subclass inherits).

package other; // Different package
import certification.Parent;
class Child extends Parent {

Declarations and Modifiers (Exam Objective 1.2) 2 |

public void testIt() {
System.out.println("x is " + x); // No problem; Child inherits x

}

The preceding code compiles fine. Notice, though, that the Child class is
accessing the protected variable through inheritance. Remember, anytime we talk
about a subclass having access to a superclass member, we could be talking about
the subclass inheriting the member, not simply accessing the member through a
reference to an instance of the superclass (the way any other nonsubclass would
access it). Watch what happens if the subclass Child (outside the superclass’ package)
tries to access a protected variable using a Parent class reference.

package other;
import certification.Parent;
class Child extends Parent ({
public void testIt() {
System.out.println("x is " + x); // No problem; Child inherits x
Parent p = new Parent(); // Can we access x using the p reference?
System.out.println("X in parent is " + p.x); // Compiler error!

}
The compiler is more than happy to show us the problem:

%javac -d . other/Child.java
other/Child.java:9: x has protected access in certification.Parent
System.out.println("X in parent is " + p.x);

~

1 error

So far we’ve established that a protected member has essentially package-level or
defaulr access to all classes except for subclasses. We've seen that subclasses outside
the package can inherit a protected member. Finally, we’ve seen that subclasses
outside the package can’t use a superclass reference to access a protected member.
For a subclass outside the package, the protected member can be accessed only through
inberitance.

But there’s still one more issue we haven’t looked at...what does a protected
member look like to ozher classes trying to use the subclass-outside-the-package to
get to the subclass’ inherited protected superclass member? For example, using our
previous Parent/Child classes, what happens if some other class—Neighbor, say—
in the same package as the Child (subclass), has a reference to a Child instance and

272 Chapter 2: Declarations and Access Control

wants to access the member variable x ? In other words, how does that protected
member behave once the subclass has inherited it? Does it maintain its protected
status, such that classes in the Child’s package can see it?

No! Once the subclass-outside-the-package inherits the protected member, that
member (as inherited by the subclass) becomes private to any code outside the
subclass. So if class Neighbor instantiates a Child object, then even if class Neighbor
is in the same package as class Child, class Neighbor won't have access to the Child’s
inherited (but protected) variable x. The bottom line: when a
subclass-outside-the-package inherits a protected member, the member is essentially
private inside the subclass, such that only the subclass’ own code can access it.
Figure 2-3 illustrates the effect of protected access on classes and subclasses in the
same or different packages.

Whew! That wraps up protected, the most misunderstood modifier in Java.
Again, it’s used only in very special cases, but you can count on it showing up on
the exam. Now that we've covered the protected modifier, we'll switch to default
member access, a piece of cake compared to protected.

Let’s start with the default behavior of a member in a superclass. We'll modify
the Parent’s member x to make it default.

package certification;
public class Parent {
int x = 9; // No access modifier, means default (package) access

}

Notice we didn’t place an access modifier in front of the variable x. Remember
that if you don't type an access modifier before a class or member declaration, the
access control is default, which means package level. We'll now attempt to access
the default member from the Child class that we saw earlier. When we compile the
Child file, we get the following error:

%$javac Child.java

Child.java:4: Undefined variable: x
System.out.println("Variable x is " + X);

1 error

The compiler gives the same error as when a member is declared as private.
The subclass Child (in a different package from the superclass Parent) can’t see or

m The effects of protected access

Declarations and Modifiers (Exam Objective 1.2) 2.3

| If goFast() is default ||If goFast()is protected
Package A Package A Package A Package A
SportsCar SportsCar SportsCar SportsCar

goFast (){ }

©)

goFast (){ }

©)

goFast (){ 1}

©

protected goFast (

©)

) £

}

T

T

Convertible Convertible
Driver

® ®

A

A

Package B Package B Package B
Driver Convertible Convertible
Driver Driver

S

XX

Key:
goFast(){ } doThings () {
@ doStuff(){ @ SportsCar sc = new SportsCar(); @ dgg;;Zé()){.
goFast (); sc.goFast(); } !
} }
Where goFast Invoking goFast () using a Reference to the Invoking the
is Declared in the class in which goFast () was declared. goFast ()
same class. method
Inherited from

a superclass.

use the default superclass member x! Now, what about default access for two classes
in the same package?

package certification;
public class Parent{
int x = 9; // default access

24 Chapter 2: Declarations and Access Control

And in the second class you have the following:

package certification;
class Child extends Parent{
static public void main(String [] args) {
Parent sc = new Parent() ;
sc.testIt();
}
public void testIt() {
System.out.println("Variable x is " + x); // No problem;
}
}

The preceding source file compiles fine, and the class Child runs and displays the
value of x. Just remember that default members are visible only to the subclasses that
are in the same package as the superclass.

Local Variables and Access Modifiers Can access modifiers be applied to
local variables? This one should be simple to remember: NO!

exam

Datch There is never a case where an access modifier can be applied to a local

variable, so watch out for code like the following:

class Foo {
void doStuff() {
private int x=7;
this.doMore (x) ;

}
You can be certain that any local variable declared with an access modifier

will not compile. In fact, there is only one modifier that can ever be applied
to local variables—final.

That about does it for our discussion on member access modifiers. Table 2-1
shows all the combinations of access and visibility; you really should spend some
time with it. Next, were going to dig into the other (nonaccess) modifiers that
you can apply to member declarations.

Declarations and Modifiers (Exam Objective 1.2) 2§

TABLE 2-1 Determining Access to Class Members

Visibility Public Protected Default Private
From the same class Yes Yes Yes Yes
From any class in the same package Yes Yes Yes No
From any non-subclass class outside the package ~ Yes No No No
From a subclass in the same package Yes Yes Yes No
From a subclass outside the same package Yes Yes No No

Nonaccess Member Modifiers

We've discussed member access, which refers to whether or not code from one

class can invoke a method (or access an instance variable) from another class. That
still leaves a boatload of o#her modifiers you can use on member declarations. Two
you’re already familiar with—final and abstract—because we applied them
to class declarations earlier in this chapter. But we still have to take a quick look at
transient, synchronized, native, strictfp, and then a long look at
the Big One—static. We'll look first at modifiers applied to methods, followed
by a look at modifiers applied to instance variables. We'll wrap up this objective
with a look at how static works when applied to variables and methods.

Final Methods The final keyword prevents a method from being overridden
in a subclass, and is often used to enforce the API functionality of a method. For
example, the Thread class has a method called isAlive () that checks whether a
thread is still active. If you extend the Thread class, though, there is really no way
that you can correctly implement this method yourself (it uses native code, for one
thing), so the designers have made it final. Just as you can’t subclass the String class
(because we need to be able to trust in the behavior of a String object), you can’t
override many of the methods in the core class libraries. This can’t-be-overridden
restriction provides for safety and security, but you should use it with great caution.
Preventing a subclass from overriding a method stifles many of the benefits of OO
including extensibility through polymorphism.

26 Chapter 2:

Declarations and Access Control

A typical final method declaration looks like this:

class SuperClass{
public final void showSample () {
System.out.println("One thing.");

}

It’s legal to extend SuperClass, since the class itself isn’t marked £inal, but we
can’t override the final method showSample (), as the following code attempts
to do:

class SubClass extends SuperClass{
public void showSample() { // Try to override the final superclass method
System.out.println("Another thing.");

}
Attempting to compile the preceding code gives us the following:

%javac FinalTest.java

FinalTest.java:5: The method void showSample() declared in class

SubClass cannot override the final method of the same signature

declared in class SuperClass. Final methods cannot be overridden.
public void showSample() { }

1 error

Final Arguments Method arguments are the variable declarations that appear
in between the parentheses in a method declaration. A typical method declaration
with multiple arguments looks like this:

public Record getRecord(int fileNumber, int recordNumber) {}

Method arguments are essentially the same as local variables. In the preceding
example, the variables fileNumber and recordNumber will both follow all the rules
applied to local variables. This means they can also have the modifier £inal:

public Record getRecord(int fileNumber, final int recordNumber) {}

In this example, the variable recordNumber is declared as £inal, which of course
means it can’t be modified within the method. In this case, “modified” means
reassigning a new value to the variable. In other words, a final argument must keep
the same value that the parameter had when it was passed into the method.

Declarations and Modifiers (Exam Objective 1.2) 2.7

Abstract Methods An abstract method is a method that’s been declared (as
abstract) but not implemented. In other words, the method contains no functional
code. And if you recall from the previous section on abstract classes, an abstract
method declaration doesn’t even have curly braces for where the implementation
code goes, but instead closes with a semicolon. You mark a method abstract
when you want to force subclasses to provide the implementation. For example,
if you write an abstract class Car with a method goUpH111 (), you might want
to force each subtype of car to define its own goUpH111 () behavior, specific to
that particular type of car. (If you've ever lived in the Rockies, you know that the
differences in how cars go uphill (or fzi/to) is not, um, subtle.)

A typical abstract method declaration is as follows:

public abstract void showSample() ;

Notice that the abstract method ends with a semicolon instead of curly braces. It
is illegal to have an abstract method in a class that is not declared abstract. Look at
the following illegal class:

public class IllegalClass{
public abstract void doIt();
}

The preceding class will produce the following error if you try to compile it:

%javac IllegalClass.java

IllegalClass.java:1: class IllegalClass must be declared abstract.
It does not define void doIt() from class IllegalClass.

public class IllegalClass{

1 error

You can, however, have an abstract class with no abstract methods. The following
example will compile fine:

public abstract class LegalClass({
void goodMethod () {
// lots of real implementation code here

28 Chapter 2: Declarations and Access Control

In the preceding example, goodMethod () is not abstract. Three different clues
tell you it’s not an abstract method:

B The method is not marked abstract.

B The method declaration includes curly braces, as opposed to ending in
a semicolon.

B The method provides actual implementation code.

Any class that extends an abstract class must implement all abstract methods of the
superclass. Unless the subclass is also abstract. The rule is

The first concrete subclass of an abstract class must implement all abstract methods of
the superclass.

Concrete just means nonabstract, so if you have an abstract class extending another
abstract class, the abstract subclass doesn’t need to provide implementations for the
inherited abstract methods. Sooner or later, though, somebody’s going to make a
nonabstract subclass (in other words, a class that can be instantiated), and that
subclass will have to implement all the abstract methods from up the inheritance
tree. The following example demonstrates an inheritance tree with two abstract
classes and one concrete class:

public abstract class Vehicle {
private String type;
public abstract void goUpHill(); // Abstract method
public String getType() {
return type;
} // Non-abstract method

public abstract class Car extends Vehicle {
public abstract void goUpHill(); // Still abstract
public void doCarThings () {
// special car code goes here

public class Mini extends Car {
public void goUpHill() {

The effects of
abstract on
subclasses

Declarations and Modifiers (Exam Objective 1.2) 2.9

// Mini-specific going uphill code

So how many methods does class Mini have? Three. It inherits both the getType ()
and doCarThings () methods, because they’re public and concrete (nonabstract).
But because goUpH1i11 () is abstract in the superclass Vehicle, and is never
implemented in the Car class (so it remains abstract), it means class Mini—as the
first concrete class below Vehicle—must implement the goUpH111 () method. In
other words, class Mini can’t pass the buck (of abstract method implementation) to
the next class down the inheritance tree, but class Car can since Car, like Vehicle, is
abstract. Figure 2-4 illustrates the effects of the abstract modifier on concrete and
abstract subclasses.

abstract Car

startEngine()
abstract goForward()
abstract reverse()
stop ()
abstract turn(int whichiWay)

A

SportsCar abstract SUV
startEngine()//optional enabledwd();
goForward()//Required goForward ()
reverse()//Required reverse()
turn(int whichWay)//Required abstract goOffRoad()

//turn()not implemented
/'y

Abstract methods must be implemented by a
non-abstract subclass. If the subclass is abstract,
it is not required to implement the abstract
methods, but it is allowed to implement any

or all of the superclass abstract methods. The enabledwd()//optional
AcmeRover class is non-abstract, so it must goOffRrRoad()//Required
implement the abstract method declared in its turn (int whichWay)//Required
superclass, SUV, and it must also implement
turn (),which was not implemented by SUV.

AcmeRover

30 Chapter 2: Declarations and Access Control

exam

Datch

Look for concrete classes that don’t provide method implementations for
abstract methods of the superclass. For example, the following code won’t
compile:
public abstract class A {

abstract void foo () ;
}
class Bextends A {

void foo (int I) {

7
7
Class B won’t compile because it doesn’t implement the inherited abstract
method foo (). Although the foo (int I) method in class B might appear
to be an implementation of the superclass’ abstract method, it is simply
an overloaded method (a method using the same identifier, but different
arguments), so it doesn’t fulfill the requirements for implementing the
superclass’ abstract method. We’ll look at the differences between overloading
and overriding in detail in Chapter 5.

A method can never, ever, ever be marked as both abstract and final, or
both abstract andprivate. Think about it—abstract methods must be
implemented (which essentially means overridden by a subclass) whereas final and
private methods cannot ever be overridden by a subclass. Or to phrase it another
way, an abstract designation means the superclass doesn’t know anything about
how the subclasses should behave in that method, whereas a final designation
means the superclass knows everything about how all subclasses (however far down the
inheritance tree they may be) should behave in that method. The abstract and
final modifiers are virtually opposites. Because private methods cannot even
be seen by a subclass (let alone inherited) they too cannot be overridden, so they too
cannot be marked abstract.

Abstract methods also cannot be marked as synchronized, strictfp, or
native, all of which are modifiers describing something about the implementation
of a method. Because abstract methods define the signature, access, and return type,
but can say nothing about implementation, be watching for any of the following
illegal method declarations:

abstract synchronized void foo();
abstract strictfp void foof();
abstract native void poof () ;

Declarations and Modifiers (Exam Objective 1.2) 3 |

The preceding declarations will deliver you a nice compiler error message similar to

MyClass.java:18: illegal combination of modifiers: abstract and synchronized
abstract synchronized void foo() ;

S

MyClass.java:19: illegal combination of modifiers: abstract and strictfp
abstract strictfp void foof();

S

MyClass.java:20: illegal combination of modifiers: abstract and native
abstract native void poof () ;

S

Finally, you need to know that the abstract modifier can never be combined
with the static modifier. We'll cover static methods later in this objective,
but for now just remember that the following would be illegal:

abstract static void dostuff();
And it would give you an error that should be familiar by now:

MyClass.java:2: illegal combination of modifiers: abstract and static
abstract static void doStuff();

A

Synchronized Methods The synchronized keyword indicates that a
method can be accessed by only one thread at a time. We'll discuss this nearly to
death in Chapter 9, but for now all we’re concerned with is knowing that e
synchronized modifier can be applied only to methods—not variables, not
classes, just methods. A typical synchronized declaration looks like this:

public synchronized Record retrieveUserInfo (int id) { }

You should also know that the synchronized modifier can be matched with
any of the four access control levels (which means it can be paired with any of the
three access modifier keywords). And you can also combine synchronized
with final, but never with abstract. Synchronization is an implementation
issue; only the programmer can decide whether a method needs to be marked as
synchronized. If you declare a method like the following,

abstract synchronized void doStuff () ;

32 Chapter 2: Declarations and Access Control

you'll get a compiler error similar to this:

MyClass.java:2: illegal combination of modifiers: abstract and synchronized
abstract synchronized void doStuff();

~

Native Methods The native modifier indicates that a method is implemented
in a platform-dependent language, such as C. You don’t need to know how to use
native methods for the exam, other than knowing that nat ive is a modifier (thus
a reserved keyword), native can never be combined with abstract, and
native can be applied only to methods—not classes, not variables, just methods.

Strictfp Methods We looked earlier at using strictfp asa class modifier,
but even if you don’t declare a classas strict fp, you can still declare an individual
method as strictfp. Remember, strictfp forces floating points (and any
floating-point operations) to adhere to the IEE754 standard. With strictfp,
you can predict how your floating points will behave regardless of the underlying
platform the JVM is running on. The downside is that if the underlying platform
is capable of supporting greater precision, a strictfp method won’t be able to
take advantage of it.

You'll need to have the IEEE754 standard pretty much memorized—that is,
if you need something to help you fall asleep. For the exam, however, you don't
need to know anything about strictfp other than what it’s used for, that it can
modify a class or nonabstract method declaration, and that a variable can never be
declared strictfp.

Variable Declarations

We've already discussed variable access, which refers to the ability of code in one class
to access a variable in another class. In this section we’ll look at the other keywords
that apply to variable declarations, but first we’ll do a quick review of the difference
between instance and local variables.

Instance Variables [nstance variables are defined inside the class, but outside of
any method, and are only initialized when the class is instantiated. Instance variables
are the fields that belong to each unique object. For example, the following code defines
fields (instance variables) for the name, title, and manager for employee objects:

Declarations and Modifiers (Exam Objective 1.2) 3 3

class Employee {
// define fields (instance variables) for employee instances
private String name;
private String title,
private String manager;
// other code goes here including access methods for private fields

}

The preceding Employee class says that each employee instance will know its own
name, title, and manager. In other words, each instance can have its own unique
values for those three fields. If you see the term “field,” “instance variable,”
“property,” or “attribute,” they mean virtually the same thing. (There actually are
subtle but occasionally important distinctions between the terms, but those distinctions
aren’t used on the exam.)

For the exam, you need to know that instance variables

B Can use any of the four access levels (which means they can be marked
with any of the three access modifiers)

Can be marked final

Can be marked transient

Cannot be marked abstract

Cannot be marked synchronized

Cannot be marked strictfp

Cannot be marked native

We've already covered the effects of applying access control to instance variables

(it works the same way as it does for member methods). A little later in this chapter
we'll look at what it means to apply the final or transient modifier to an
instance variable. First, though, we’ll take a quick look at the difference between
instance and local variables. Figure 2-5 compares the way in which modifiers can be
applied to methods vs. variables.

Local (Automatic/Stack/Method) Variables Local variables are variables
declared within a method. That means the variable is not just nitialized within the
method, but also declared within the method. Just as the local variable starts its life
inside the method, it’s also destroyed when the method has completed. Loca/

34 Chapter 2: Declarations and Access Control

Variables (non-local) Methods

Comparison
of modifiers final final final
on variables public public
protected protected
vs. methods private private
static static
transient
abstract
synchronized
strictfp
native

variables are always on the stack, not the heap. Although the value of the variable
might be passed into, say, another method that then stores the value in an instance
variable, the variable itself lives only within the scope of the method.

Just don’t forget that while the local variable is on the stack, if the variable is an
object reference the object itself will still be created on the heap. There is no such thing
as a stack object, only a stack variable. You'll often hear programmers use the phrase,
“local object,” but what they really mean is, “locally declared reference variable.” So
if you hear a programmer use that expression, you'll know that he’s just too lazy to
phrase it in a technically precise way. You can tell him we said that—unless he’s
really really big and knows where we live.

Local variable declarations can’t use most of the modifiers that can be applied to
instance variables, such as public (or the other access modifiers), transient,
volatile, abstract, or static, but as we saw earlier, local variables can
be marked £inal. And if you remember Chapter 1 (which we know you do, since
it is, in fact, unforgettable), before a local variable can be used, it must be initialized

with a value.

class TestServer {
public void logIn() {
int count = 10;

Declarations and Modifiers (Exam Objective 1.2) 3 §

Typically, you'll initialize a local variable in the same line in which you declare
it, although you might still need to reinitialize it later in the method. The key is to
remember that a local variable must be initialized before you try to use it. The compiler
will reject any code that tries to use a local variable that hasn’t been assigned a value,
because—unlike instance variables—/local variables don’t get default values.

A local variable can't be referenced in any code outside the method in which it’s
declared. In the preceding code example, it would be impossible to refer to the
variable count anywhere else in the class except within the scope of the method
logIn (). Again, that’s not to say that the value of count cant be passed out of the
method to take on a new life. But the variable holding that value, count, can’t be
accessed once the method is complete, as the following illegal code demonstrates:

class TestServer ({
public void logIn() {
int count = 10;
}
public void doSomething (int i) {
count = 1; // Won't compile! Can't access count outside method login()

}

It 75 possible to declare a local variable with the same name as an instance variable.
That’s known as shadowing, and the following code demonstrates this in action:

class TestServer {
int count = 9; // Declare an instance variable named count

public void logIn() {

int count = 10; // Declare a local variable named count
System.out.println("local variable count is " + count);
}
public void count () {

System.out.println("instance variable count is " + count) ;

}

public static void main(String[] args) ({
new TestServer().logIn();
new TestServer () .count();

}
The preceding code produces the following output:

local variable count is 10
instance variable count is 9

36 Chapter 2: Declarations and Access Control

Why on earth (or the planet of your choice) would you want to do that? Normally,
you won’t. But one of the more common reasons is to name an argument with

the same name as the instance variable to which the parameter will be assigned.
The following (but wrong) code is trying to set an instance variable’s value using

a parameter:

class Foo {
int size = 27;
public void setSize(int size) {
size = size; // ??? which size equals which size???

}

So you've decided that—for overall readability—you want to give the argument the
same name as the instance variable its value is destined for, but how do you resolve
the naming collision? Use the keyword this. The keyword this always always
always refers to the object currently running. The following code shows this in action:

class Foo {
int size = 27;
public void setSize(int size) {
this.size = size; // this.size means the current object's
// instance variable for size

Final Variables Declaring a variable with the final keyword makes it
impossible to reinitialize that variable once it has been initialized with an explicit
value (notice we said explicit rather than defauls). For primitives, this means that
once the variable is assigned a value, the value can’t be altered. For example, if

you assign 10 to the int variable x, then xis going to szy 10, forever. So that’s
straightforward for primitives, but what does it mean to have a final object reference
variable? A reference variable marked final can’t ever be reassigned to refer to a
different object. The data within the object, however, can be modified, but the
reference variable cannot be changed. In other words, you can use a final reference
to modify the object it refers to, but you can’t modify the reference variable to make it
refer to a different object. Burn this in: there are no final objects, only final references.

Declarations and Modifiers (Exam Objective 1.2) 37

You might need to remind yourself what the va/ue of a reference variable actually
is. A reference variable’s value—in other words, the bit pattern the variable holds—:is
not an object. Just as the value of a primitive variable is the bit pattern representing
the primitive (for example, the bits representing the integer value 2), the value of
a reference variable is a bit pattern representing, well, a reference. We're not using
“traditional” pointers in Java, but you can still #hink of it as a pointer (not necessarily
a pointer to an object, but a pointer to a pointer to...). A reference variable holds
bits that represent, in a platform-dependent format, a way to get to an object. That’s
really all we care about, and all we're even allowed to £now about reference variables
in Java, unless you happen to be one of the developers of a JVM.

Final instance variables don’t have to be explicitly initialized in the same line in
which they’re declared, but the compiler will make sure that the final variable has
a value by the time the constructor has completed. Don’t count on the default
value for final variables, though, because a final variable—even if it’s an instance
variable—won't be given one. The rule is: if you declare a final instance variable,
you're obligated to give it an explicit value, and you must do so by the time the
constructor completes. Look at the following code:

class FinalTest({
final int x; // Will not work unless x is assigned in the constructor
public void showFinal () {
System.out.println("Final x = " + X);

}

Attempting to compile the preceding code gives us the following:

%javac FinalTest.java
FinalTest.java:2: Blank final variable 'x' may not have been
initialized. It must be assigned a value in an initializer, or in
every constructor.

final int x;
1 error

If you declare an instance variable as £inal, but don't give it an explicit value at
the time you declare it, the variable is considered a blank £inal. The final instance
variable can stay blank only until the constructor completes.

class FinalTest({
final int x; // Will work because it's initialized in the constructor

38 Chapter 2: Declarations and Access Control

public FinalTest () {
x = 28; // Whew! The compiler is relieved that we took care of it
System.out.println("Final x = " + x);

}

So now we've seen that you need to assign a value to a final variable, but #hen
what? As we mentioned earlier, you can’t change a final variable once its been
initialized! Let’s look at declaring an object reference variable as f£inal:

import java.util.Date;
class TestClass {
final Date d = new Date();
public void showSample () {
d.setYear (2001); //Altering Date object, not d variable, so it's OK

}

In the showSample () method in the preceding class, the year of the Date
instance is modified by invoking setYear () on the final reference variable 4.
That’s perfectly legal, and the class compiles fine, because an instance can have its
data modified even though the reference to it is declared £inal. But now lets see
what happens when we try to assign a new object to the final reference variable 4,
after 4 has been initialized.

import java.util.Date;
class FinalTest {
final Date d = new Date(); // Initialize d
public void showSample() {
d.setYear (2001) ;
d = new Date(); // Won't work! Can't change the value of d

}

Code within the showSample () method tries to reassign a new object to d.
If we try to compile the preceding class, we're treated to this error:

%javac FinalTest.java

FinalTest.java:6: Can't assign a value to a final variable: d
d = new Date() ;

1 error

exam

Jatch

Declarations and Modifiers (Exam Objective 1.2) 39

Look for code that tries to reassign a final variable, but don’t expect it to be
obvious. For example, a variable declared in an interface is always implicitly final,
whether you declare it that way or not! So you might see code similar to the
following:
interface Foo {

Integer x = new Integer (5); //xis implicitly final
}
class FooImpl implements Foo {

void doStuff() {

x =new Integer(5); // Big Trouble! Can’t assign new object tox

}

The reference variable x is final. No matter what. You’re allowed to explicitly
declare it as final if you like, but it doesn’t matter to the compiler whether
you do or not. It simply is final, just because it’s an interface variable, and
they are always implicitly public static final. We’ll look at interface
variables again later in this chapter, but for now just remember that a final
variable can’t be reassigned, and that in the case of interface variables,
they’re final even if they don’t say it out loud. The exam expects you to

spot any attempt to violate this rule.

We've now covered how the £inal modifier can be applied to classes, methods,
and variables. Figure 2-6 highlights the key points and differences of the various
applications of final.

Transient Variables If you mark an instance variable as transient, you're
telling the JVM to skip (ignore) this variable when you attempt to serialize the
object declaring it. Serialization is one of the coolest features of Java; it lets you save
(sometimes called “flatten”) an object by writing its state (in other words, the value
of its instance variables) to a special type of 1O stream. With serialization you can
save an object to a file, or even ship it over a wire for reinflating (deserializing) at
the other end, in another JVM. For the exam, you aren’t required to know how
serialization works, but you need to know that transient can be applied only
to instance variables.

Don’t be surprised, though, if serialization shows up in some future version of
the exam. Regardless of its relevance for the exam, serialization is one of the most

40 Chapter2:

The effect
of final
on variables,
methods,
and classes

Declarations and Access Control

final final class Foo
class final class
cannot be
subclassed
class%ﬁ{ exteghds Foo
final class Baz
method) . i
final void go() final method
cannot be
overridden by
? a subclass
class Bat extends Baz
fin% go()
final class Roo
variable final variable cannot be

final int size = 42;

void changeSize(){

}

assigned a new value, once
the initial method is made
(the initial assignment of a
value must happen before
the constructor completes).

powerful aspects of Java and is worth your learning all about it. Most advanced uses
of Java—RM]I, EJB, and Jini, for example—depend on it. OK, we'll step off the

serialization soapbox now, and resume our exam prep already in progress.

Volatile Variables

The volatile modifier tells the JVM that a thread

accessing the variable must always reconcile its own private copy of the variable with

the master copy in memory. Say what? Don’t worry about it. For the exam, all you
need to know about volatile is that, as with transient, it can be applied
only to instance variables. Make no mistake, the idea of multiple threads accessing

on the

Qob

Declarations and Modifiers (Exam Objective 1.2) 4 ||

an instance variable is scary stuff, and very important for any Java programmer to
understand. But as you'll see in Chapter 9, you'll probably use synchronization,
rather than the volatile modifier, to make your data thread-safe.

The volatile modifier may also be applied to project managers.

Static Variables and Methods
The static modifier has such a profound impact on the behavior of a method or
variable that we're treating it as a concept entirely separate from the other modifiers.
To understand the way a static member works, we’ll look first at a reason for using
one. Imagine you’ve got a utility class with a method that always runs the same way;
its sole function is to return, say, a random number. It wouldn’t matter which
instance of the class performed the method—it would always behave exactly the
same way. In other words, the method’s behavior has no dependency on the state
(instance variable values) of an object. So why, then, do you need an object when
the method will never be instance-specific? Why not just ask #he class itself to run
the method?

Let’s imagine another scenario: suppose you want to keep a running count of
all instances instantiated from a particular class. Where do you actually keep that
variable? It won't work to keep it as an instance variable within the class whose
instances you're tracking, because the count will just be initialized back to a default
value with each new instance. The answer to both the utility-method-always-
runs-the-same scenario and the keep-a-running-total-of-instances scenario is to use
the static modifier. Variables and methods marked static belong to the class,
rather than to any particular instance. In fact, you can use a static method or variable
without having any instances of that class at all. You need only have the class available
to be able to invoke a static method or access a static variable. Static variables, too, can
be accessed without having an instance of a class. But if there are instances, a static
variable of a class will be shared by a// instances of that class; there is only one copy.

The following code declares and uses a static counter variable:

class Frog {
static int frogCount = 0; // Declare and initialize static variable
public Frog() {

frogCount += 1; // Modify the value in the constructor
}
public static void main (String [] args) {

new Frog();

new Frog() ;

472 Chapter 2: Declarations and Access Control

new Frog() ;
System.out.println("Frog count is now " + frogCount) ;

}

In the preceding code, the static frogCount variable is set to zero when the Frog class
is first loaded by the JVM, before any Frog instances are created! (By the way, you
don’t actually need to initialize a static variable to zero; static variables get the same
default values instance variables get.) Whenever a Frog instance is created, the Frog
constructor runs and increments the static frogCount variable. When this code
executes, three Frog instances are created in main (), and the result is

Frog count is now 3

Now imagine what would happen if frogCount were an instance variable (in other
words, nonstatic):

class Frog {

int frogCount = 0; // Declare and initialize instance variable
public Frog() {
frogCount += 1; // Modify the value in the constructor

}
public static void main (String [] args) {
new Frog() ;
new Frog() ;
new Frog() ;
System.out.println("Frog count is now " + frogCount) ;

}

When this code executes, it should still create three Frog instances in main (), but
the result is...a compiler error! We can never get this code to run because it won’t

even compile.

Frog.java:1ll: non-static variable frogCount cannot be referenced
from a static context
System.out.println("Frog count is " + frogCount) ;

~

1 error

The JVM doesn’t know which Frog object’s frogCount you're trying to access. The
problem is that main () is itself a static method, and thus isn’t running against any
particular instance of the class, rather just on the class itself. A static method can’t
access a nonstatic (instance) variable, because #here is no instance! That’s not to say
there aren’t instances of the class alive on the heap, but rather that even if there are,

exam

Jatch

Declarations and Modifiers (Exam Objective 1.2) 43

the static method doesn’t know anything about them. The same applies to instance
methods; a static method can’t directly invoke a nonstatic method. Think static =
class, nonstatic = instance. Making the method called by the JVM (main()) a
static method means the JVM doesn’t have to create an instance of your class just
to start running code.

One of the mistakes most often made by new Java programmers is attempting
to access an instance variable (which means nonstatic variable) from the
static main () method (which doesn’t know anything about any instances,

so it can’t access the variable). The following code is an example of illegal
access of a nonstatic variable from a static method:

class Foo {
intx=3;
public static voidmain (String [] args) {
System.out.println("x is " + x) ;
}
}

Understand that this code will never compile, because you can’t access a
nonstatic (instance) variable from a static method. Just think of the compiler
saying, “Hey, | have no idea which Foo object’s x variable you’re trying to print!”
Remember, it’s the class running the main () method, not an instance of the
class. Of course, the tricky part for the exam is that the question won’t look
as obvious as the preceding code. The problem you’re being tested for—
accessing a nonstatic variable from a static method—uwiill be buried in code
that might appear to be testing something else. For example, the code above
would be more likely to appear as

class Foo {
intx=23;
floaty=4.3f;
public static voidmain (String [] args) {
for (intz=x; z<++xX; z--, y=v +2z) {

// complicated looping and branching code

}

So while you’re off trying to follow the logic, the real issue is that x and y can’t
be used within main (), because x and y are instance, not static, variables! The
same applies for accessing nonstatic methods from a static method. The rule
is, a static method of a class can’t access a nonstatic (instance) member—
method or variable—of its own class.

44 Chapter 2: Declarations and Access Control

Accessing Static Methods and Variables

Since you don’t need to have an instance in order to invoke a static method or access
a static variable, then how do you invoke or use a static member? What's the syntax?
We know that with a regular old instance method, you use the dot operator on a
reference to an instance:

class Frog {
int frogSize = 0;
public int getFrogSize() {
return frogSize;
}
public Frog(int s) {
frogSize = s;

}

public static void main (String [] args) {
Frog f = new Frog(25);
System.out.println(f.getFrogSize()); // Access instance method using f

}

In the preceding code, we instantiate a Frog, assign it to the reference variable £ and
then use that freference to invoke a method on the Frog instance we just created. In
other words, the getFrogSize () method is being invoked on a specific Frog
object on the heap.

But this approach (using a reference to an object) isn't appropriate for accessing
a static method, because there might not be any instances of the class at all! So, the
way we access a static method (or static variable) is to use the dot operator o7 the
class name, as opposed to on a reference to an instance, as follows:

class Frog {
static int frogCount = 0; // Declare and initialize static variable
public Frog() {
frogCount += 1; // Modify the value in the constructor

class TestFrog {
public static void main (String [] args) {
new Frog() ;
new Frog() ;
new Frog() ;
System.out.print ("frogCount: "+Frog.frogCount); //Access static variable

Declarations and Modifiers (Exam Objective 1.2) 4§

But just to make it really confusing, the Java language also allows you to use an object
reference variable to access a static member:

Frog f = new Frog() ;
int frogs = f.getFrogCount; // Access static method getFrogCount using £

In the preceding code, we instantiate a Frog, assign the new Frog object to the
reference variable f; and then use the freference to invoke a static method! But even
though we are using a specific Frog instance to access the static method, the rules
haven’t changed. This is merely a syntax trick to let you use an object reference
variable (but not the object it refers to) to get to a static method or variable, but the
static member is still unaware of the particular instance used to invoke the static
member. In the Frog example, the compiler knows that the reference variable fis of
type Frog, and so the Frog class static method is run with no awareness or concern
for the Frog instance at the other end of the freference. In other words, the compiler
cares only that reference variable fis declared as type Frog. Figure 2-7 illustrates the
effects of the static modifier on methods and variables.

Another point to remember is that szatic methods can’t be overridden! This doesn’t
mean they can’t be redefined in a subclass, as we'll see a little later when we look at
overriding in more detail, but redefining and overriding aren’t the same thing.

Things you can mark as static:

B Methods
B Variables

B Top-level nested classes (we'll look at nested classes in Chapter 8)
Things you cant mark as static:

B Constructors (makes no sense; a constructor is used only to create instances)
B Classes
B Interfaces
[|

Inner classes (unless you want them to be top-level nested classes; we'll explore

this in Chapter 7)

Inner class methods and instance variables

Local variables

46 Chapter2:

FIGURE 2-7

The effects of
static on methods
and variables

Declarations and Access Control

class Foo

int size = 42; static method cannot
static void doMore() {

int x = s}{e- access an instance
) ! (non-static) variable

class Bar

void go ();
stat;% void doMore() {
()

static method cannot
access a non-static

) method

class Baz

static i1int count; static method

static void woo(){ } ati
ctatic void doMore(){ can access a static
woo () method or variable

int x = count;

CERTIFICATION OBJECTIVE

Declaration Rules (Exam Objective 4.1)

Identify correctly constructed source files, package declarations, import statements, class
declarations (of all forms, including nested classes), interface declarations, method
declarations (including the main () method that is used to start execution of a class),
variable declarations, and identifiers.

The previous objective, 1.2, covered the fundamentals of declarations including
modifiers applied to classes, methods, and variables. In this objective, we'll look at
how those fundamentals must be applied in a few specific situations. We're not
covering all of Objective 4.1 in this section, however. Inner classes won't be discussed
here because they’re already in Chapter 8, the chapter on inner classes (what are the

Declaration Rules (Exam Objective 4.1) 47

odds?), and we'll hold off on interfaces until we get to Objective 4.2, the section

immediately following this one.

We promise that this section will be much shorter than the previous one. We
promise that we'll introduce very little new information. We promise you'll win
friends and influence people with your declaration prowess. We promise to stop

making promises.

Source Files, Package Declarations, and Import Statements

It’s been awhile since we looked at source declaration rules (about 30+ pages ago),

so let’s do a quick review of the rules again:

There can be only one public class per source code file.
The name of the file must match the name of the public class.

If the class is part of a package, the package statement must be the first line
in the source code file.

Import and package statements apply to @// classes within a source code file.

If there are import statements, they must go between the package statement
and the class declaration. If there isn’t a package statement, the import
statement(s) must be the first line(s) in the source code file. If there are no
package or import statements, the class declaration must be the first line

in the source code file. (Comments don’t count; they can appear anywhere in
the source code file.)

Source File Structure

We know that you know all this, so we’ll just focus on the kinds of import and
package issues you might see on the exam. The following legal (albeit pretty useless)
code declares a class Foo, in package com. geeksanonymous:

package com.geeksanonymous; // Notice the semicolon
class Foo { }

There can be only one package statement per source code file, so the following

would not be legal:

package com.geeksanonymous ;
package com.wickedlysmart; // Illegal! Only one package declaration allowed
class Foo { }

48 Chapter 2: Declarations and Access Control

If class Foo adds any import statements, they must be below the package declaration
and above the class declaration, as follows:

package com.geeksanonymous;

import java.util.*; // Wildcard package import

import com.wickedlysmart.Foo; // Explicit class import
class Foo { }

If class Foo has no package declaration, the import statements must be above the
class declaration, as follows:

import java.util.*; // Wildcard package import
import com.wickedlysmart.Foo; // Explicit class import
class Foo { }

You can have only one public class per source code file. You can put as many
classes in a source code file as you like, but only one (or none) can be public. The
file name should match the name of the public class, but if no public class is in the
file, you can name it whatever you like. The following source code file, with two
public classes, would be illegal:

package com.geeksanonymous;
public class Foo { }
public class Bat { }

But the following is fine:

package com.geeksanonymous;
class Foo { }
public class Bat { }

The order in which the classes appear makes no difference; as long as the package
and import statements appear before the first class (and in the correct order), the
class order doesn’t matter.

on the

Qob

You should group classes into a single source code file only when those classes
should only be used together as one component. Typically, you’ll keep
each class in a separate file, with the file name matching the class name (a
requirement if the class is public; optional, but good practice, if the class has
default access). Putting multiple classes into a single source code file makes it
much harder to locate the source for a particular class, and makes the source
code less reusable.

exam

Jatch

Declaration Rules (Exam Objective 4.1) 4.9

Keep in mind that package and import declarations apply to all classes in a source
file! For the exam, you'll need to recognize that the package declaration at the top
of a code example means that all classes in that file are in the same package.

The exam uses a line numbering scheme that indicates whether the code in
the question is a snippet (a partial code sample taken from a larger file), or
a complete file. If the line numbers start at I, you’re looking at a complete
file. If the numbers start at some arbitrary (but always greater than [)
number, you’re looking at only a fragment of code rather than the complete
source code file. For example, the following indicates a complete file:

1. package fluffy;

2. class Bunny {

3. public void hop() { }

4. }

whereas the following indicates a snippet:

9. publicvoidhop() {
10. System.out.println(“hopping”);
11. }

Using Import Statements
Import statements come in two flavors—uwildcard import and explicit class import.
Before we look at both in more detail, say it with me again, “Java is not C.” An
import statement is not an include ! Import statements are lictle more than a way
for you to save keystrokes when you’re typing your code. When you put a class in
a package (through the package declaration), you essentially give the class a longer
name, which we call the fully qualified name. The fully qualified name of a class,
as opposed to just the class name, is like talking about the difference between your
full name (say, Albert James Bates V) and your first name (Albert).

For example, if class Foo is in a package com. geeksanonymous,
the Foo class is still named Foo, but it also has a fully qualified name of
com.geeksanonymous . Foo. As we looked at earlier, package organization
helps prevent name collisions—in case other programmers build a class named
Foo, for example. But if a programmer from WickedlySmart builds a Foo class,
its fully qualified name will be com.wickedlysmart .Foo (or possibly
even com.wickedlysmart.projectx.Foo), while a programmer
from GeeksAnonymous gives her Foo class the fully qualified name of

BO Chapter2: Declarations and Access Control

com.geeksanonymous . Foo. Once you put Foo in a package, if you refer
to the Foo class in some other code, the compiler needs to know which Foo you're

talking about.

OK, so given that there might be more than one Foo floating around, and that
even within a single application you might want to use, say, two different Foo classes,
you need a way to distinguish between them. Otherwise, the compiler would never

know what you meant if you typed the following:

class Bar {
void doStuff () {

Foo f = new Foo(); // Here you want the WickedlySmart version
} // But how will the compiler know?

}

To eliminate the confusion, you're required to do one of two things to help the

compiler:

I. Use an import statement,

import com.wickedlysmart.Foo;
class Bar {
void doStuff () {

Foo f = new Foo(); // Now the compiler knows which one to use

}

or

2. Use the fully qualified name throughout your code:

class Bar {
void doStuff() {

com.wickedlysmart.Foo f = new com.wickedlysmart.Foo ()

}

// No doubts

OK, we don’t know about you, but we’d prefer the one with less typing. The
import statement is almost always the way to go. You need to recognize that
either option is legal, however. And using both together is legal as well. It’s not a

problem, for example, to do the following:

exam

Jatch

Declaration Rules (Exam Objective 4.1) § |

import com.wickedlysmart.Foo; // Import class Foo
class Bar {
void doStuff () {
com.wickedlysmart.Foo £ = new com.wickedlysmart.Foo() //OK; not needed
}

You might see questions that appear to be asking about classes and packages
in the core Java API that you haven’t studied, because you didn’t think they
were part of the exam objectives. For example, if you see a question like
class Foo extends java.rmi.UnicastRemoteObject {

/// more code
}
don’t panic! You’re not actually being tested on your RMI knowledge, but
rather a language and/or syntax issue. If you see code that references a class
you’re not familiar with, you can assume you’re being tested on the way in
which the code is structured, as opposed to what the class actually does. In the
preceding code example, the question might really be about whether you
need an import statement if you use the fully qualified name in your code
(the answer is no, by the way).

When do you use wildcard package imports vs. explicit class imports? Most of the
time the compiler is just as happy with either, so the choice is more a matter of style
and/or convenience. The tradeoffs usually come down to readability vs. typing.

If you use the wildcard import, other programmers reading your code will know
that you're referencing classes from a particular package, but they won’t be able to
know how many classes—and what those classes are—from the package you've used
unless they wade through the rest of the code! So the explicit class import helps folks
reading your code (including you, if you're like most programmers and forget what
you wrote a week after writing it) know exactly which classes you're using. On the
other hand, if you're using, say, seven classes from a single package, it gets tedious to
type each class in specifically. If we were forced at gunpoint to pick sides, we'd prefer
the explicit class import, because of its, well, explicitness.

The one difference that might matter to you (but which you won't need to know
for the exam) is that the order in which the compiler resolves imports is not simply
top to bottom. Explicit imports are resolved first, then the classes from the current
package, and last—the implicit imports.

B2 Chapter 2: Declarations and Access Control

exam

Datch

Look for syntax errors on import statements. Can you spot what’s wrong with
the following code?

import java.util.Arraylist.*; //Wildcard import

import java.util; // Explicit class import

The first import looks like it should be a valid wildcard import, but ArraylList
is a class, not a package, so it makes no sense (not to mention making the
compiler cranky) to use the wildcard import on a single class. Pay attention to
the syntax detail of the import statement, by looking at how the statement
ends. If it ends with . *; (dot, asterisk, semicolon), then it must be a wildcard
statement; therefore, the thing immediately preceding the . *; must be a
package name, not a class name. Conversely, the second import looks like

an explicit class import, but util is a package, not a class, so you can’t end

that statement with a semicolon.

Think about another dilemma for a moment: what happens if you have two
classes with the same name, from two different packages, and you want to use both
in the same source code? In that case, you have to use the fully qualified names in
code. Even in the core class libraries you'll find more than one class using the same
name. You'll find a List class, for example, in both java.awt and java.util.
If you want to use both, you’ll have to make it clear to the compiler.

Wildcard imports alone won't work properly since importing both packages still
doesn’t help the compiler figure out which version of the List class you want. The
following code shows the problem of trying to use two classes of the same name

(although different packages):

import java.awt.*;
import java.util.*;

class TestImport {
void dostuff () {
List fromAWT = new List(); // How will the compiler know which to use?
List fromUtil = new List(); // How will the compiler know which to use?

}

The preceding code confuses the compiler (nevera pretty thing), and you'll get a
message similar to this:

TestImport.java:6: reference to List is ambiguous, both class
java.util.List in java.util and class java.awt.List in java.awt
match

Declaration Rules (Exam Objective 4.1) §3

List w = new List();

A

Formatting the Main() Method

When you want your code to actually run, you have to get the ball rolling with a
main () method. The following rules apply to the main () method:

B It must be marked static.
B It must have a void return type.

M It must have a single String array argument.

B You can name the argument anything you want.

B It should be declared public (for the purposes of the exam, assume it
must be public).

There’s nothing special about the main () method; it’s just another static
method in your class. The only thing that makes it different from other methods is
that it has the signature the JVM is looking for when you invoke Java as follows:

java MyClass

Typing that at the command line starts the JVM looking for the class file named
MyClass, and when it finds it, it looks for the main () method—the one with a
signature matching what the JVM is searching for. If it finds the matching method,
you're good to go. If it doesn’t, you get a runtime error like this:

Exception in thread "main" java.lang.NoSuchMethodError: main

The tricky thing about this error is that you can get it even when there ssamain ()
method. The following code compiles fine, but still produces the previous
NoSuchMethodError when you try to invoke this class from the command line:

class MyClass {
public void main (String [] args) { }

}

Did you spot the problem? There samain () method, but it isn’t static. So when
we say “‘themain () method,” you need to know whether we mean “ method that

B4 Chapter 2: Declarations and Access Control

exam
Jatch

happens to be named main () ” (which you’re allowed to have) or “#he Main()
Method”—the one the JVM looks for.

Look for lots of subtle variations surrounding the main () method. You might
see classes with a main () method similar to the preceding example, where
the signature doesn’t match what the JVM wants. You must know that not
having a proper main () method is a runtime error, not a compiler error! So while
you’re completely free to have as many methods named main () as you like
(or none at all), if no methods match the main () method the JVM looks for,
then you won’t be able to run the class by invoking Java using that class’
name. You can still instantiate the class from other code (or invoke its static
methods once the JVM is already running), it just can’t be used to crank up a
virtual machine and bootstrap your program. If the main () method doesn’t
look like this:

public static voidmain (String [] args) { }

you won’t be able to run the class. You actually do have a few slight variations
you can make to the main () method. For example, the following is a
perfectly legal, executable main () method:

static public voidmain (String whatever []) { }

In other words, you’re allowed to name the String array argument whatever
you like, and the static and public modifiers can be used in a different
order. The most important point for the exam is to know that not having the
“able-to-run” main () method is a runtime, rather than compiler, error. A
class with a legal, nonstatic main () method, for example, will compile just
fine, and other code is free to call that method. But when it comes time to
use that class to invoke the JVM, that nonstatic main () method just won’t
cut it, and you’ll get the runtime error.

We've covered everything we need for this objective except for interface declarations,
which we’ll look at next, and inner class declarations, which we’ll look at in Chapter
8. The key points for this objective are the structure of a source code file (where to
place the package, import, and class declarations) and the signature of the main ()
method (public static voidmain (String [] args)). Next, we're going
to dive into the rules for declaring and implementing interfaces.

Interface Implementation (Exam Objective 42) §§

CERTIFICATION OBJECTIVE

Interface Implementation (Exam Objective 4.2)

exam

Datch

Identify classes that correctly implement an interface where that interface is either
Jjava.lang. Runnable or a fully specified interface in the question.

So far in this chapter, we began with Objective 1.2—a look at how to use
modifiers in class, method, and variable declarations. Next, for Objective 4.1, we
covered the rules for structuring a source code file and declaring the main ()
method. In this objective, we'll focus on interface declarations and implementations.

You must know how to implement the java.lang.Runnable interface,
without being shown the code in the question. In other words, you might
be asked to choose from a list of six classes which one provides a correct
implementation of Runnable. Be sure you memorize the signature of the
one and only one Runnable interface method:

publicvoidrun() { }

For any other interface-related question not dealing with Runnable, if the
specification of the interface matters, the interface code will appear in the
question. A question, for example, might show you a complete interface and
a complete class, and ask you to choose whether or not the class correctly
implements the interface. But if the question is about Runnable, you won’t
be shown the interface. You’re expected to have Runnable memorized!

Declaring an Interface

When you create an interface, you're defining a contract for what a class can do,
without saying anything about sow the class will do it. An interface is a contract.
You could write an interface Bounceable, for example, that says in effect, “This
is the Bounceable interface. Any class type that implements this interface must agree
to write the code for the bounce () and setBounceFactor () methods.”

B 6 Chapter2: Declarations and Access Control

FIGURE 2-8

The relationship
between
interfaces

and classes

By defining an interface for Bounceable, any class that wants to be treated as a
Bounceable thing can simply implement the Bounceable interface and provide code
for the interface’s two methods.

Interfaces can be implemented by any class, from any inberitance tree. This lets
you take radically different classes and give them a common characteristic. For
example, you might want both a Ball and a Tire to have bounce behavior, but
Ball and Tire don’t share any inheritance relationship; Ball extends Toy while
Tire extends only java.lang.Object. But by making both Ball and Tire
implement Bounceable, you're saying that Ball and Tire can be treated as, “Things
that can bounce,” which in Java translates to “Things on which you can invoke the
bounce () and setBounceFactor () methods.” Figure 2-8 illustrates the
relationship between interfaces and classes.

Think of an interface as a 100-percent abstract class. Like an abstract class, an
interface defines abstract methods that take the form,

abstract void bounce(); // Ends with a semicolon rather than curly braces

But while an abstract class can define both abstract and nonabstract methods,
an interface can have only abstract methods. Another place interfaces differ from

interface Bounceable

void bounce(); What you
void setBounceFactor (int bf); declare.

interface Bounceable

public abstract void bounce(); What.lthe
public abstract void setBounceFactor (int bf); compiier
sees.
A
1
1
:
What the

implementing

Class Tire implements Bounceable class must do.

public void bounce(){...}
public void setBounceFactor (int bf){ } (All interface
methods must
be implemented,
and must be
marked public.)

Interface Implementation (Exam Objective 4.2) §7

abstract classes is that interfaces have very little flexibility in how the methods and
variables defined in the interface are declared. The rules are strict, but simple:

B All interface methods are implicitly public and abstract.

B Interface methods must not be static.

B You do not need to actually #ype the public or abstract modifiers in
the method declaration, but the method is still always public and abstract.

B All variables defined in an interface must be public, static, and final—in
other words, interfaces can declare only constants, not instance variables.

Because interface methods are abstract, they cannot be marked final,
native, strictfp, or synchronized.

An interface can extend one or more other interfaces.
An interface cannot extend anything buranother interface.
An interface cannot implement another interface or class.

An interface must be declared with the keyword interface.

Interface types can be used polymorphically (see Chapter 5 for more details).

The following is a legal interface declaration:
public abstract interface Rollable { }

Typing in the abstract modifier is considered redundant; interfaces are
implicitly abstract whether you type abstract or not. You just need to know that
both of these declarations are legal, and functionally identical:

public abstract interface Rollable { }
public interface Rollable { }

The public modifier is required if you want the interface to have public rather
than default access.

We've looked at the interface declaration but now we'll look closely at the methods
within an interface:

public interface Bounceable {
public abstract void bounce() ;
public abstract void setBounceFactor (int bf);

B8 Chapter 2: Declarations and Access Control

exam

Datch

Typing in the public and abstract modifiers on the methods is redundant,
though, since all interface methods are implicitly public and abstract. Given that
rule, you can see that the following code is exactly equivalent to the preceding
interface:

public interface Bounceable {

void bounce(); // No modifiers

void setBounceFactor (int bf); // No modifiers
}

You must remember that all interface methods are public and abstract regardless of
what you see in the interface definition.

Look for interface methods declared with any combination of public,
abstract, or no modifiers. For example, the following five method
declarations, if declared within an interface, are legal and identical!

void bounce () ;

public void bounce() ;
abstract void bounce () ;
public abstract void bounce () ;

abstract public void bounce () ;
The following interface method declarations won’t compile:

final void bounce(); // final and abstract can never be used

static void bounce(); // interfaces define instance methods
private void bounce(); // interface methods are always public
protected void bounce(); // (same as above)

synchronized void bounce(); // can’t mix abstract and synchronized
native void bounce(); // can’t mix abstract and native

strictfp voidbounce(); // can’t mix abstract and strictfp

Declaring Interface Constants

You’re allowed to put constants in an interface. By doing so, you guarantee that
any class implementing the interface will have access to the same constant. Imagine
that a Bounceable thing works by using int values to represent gravity where the
Bounceable thing is, its degree of bounciness (bounce-osity?), and so on. Now
imagine that for a Bounceable thing, gravity is set such that a 1 is low, 2 is medium,
3 is high, and for bounciness, 4 is a little bouncy, 8 is very bouncy, and 12 is

Interface Implementation (Exam Objective 4.2) 59

extremely bouncy. Those numbers are tough to remember when you’re trying to
decide how to set the values (“let’s see, was it 8 for high gravity and 3 for medium
bounce? Or was it the other way around...”). Now let’s say that you (the developer
of Bounceable) decide that it would be much easier for programmers to remember
names like HIGH_GRAVITY, LOW_BOUNCE, and HIGH_BOUNCE as opposed
to knowing the exact int values corresponding to each of those. So, you know you
want to define some constants so the programmer can just use the constant name
rather than the inzvalue. You need something like the following:

public final static int LOW_BOUNCE = 4;
public final static int HIGH_GRAVITY = 3;
// and so on

That way, if a method takes the int values,
public void animatelIt (int gravity, int bounceFactor) { }

then the code that calls animateIt () can substitute the constants wherever the
int values are expected, as follows:

animator.animateIt (LOW_GRAVITY, HIGH_BOUNCE) ;

So we've made a case for using constants with easy-to-remember names (as
opposed to using nearly arbitrary numbers), but where do you pur these constants
so that all Bounceable things (things as in “things that implement the Bounceable
interface”) can substitute the int constant name everywhere one of the int values
is needed? You could define them in some companion class called, for example,
BounceableConstants. But why not just put them in the Bounceable interface? That
way you can guarantee that all Bounceable things will always have access to the
constants, without having to create another class. Look at the changes we've made
to the Bounceable interface:

public interface Bounceable {
int LOW_GRAVITY = 1
int MEDIUM_GRAVITY
int HIGH_GRAVITY =
int LOW_BOUNCE = 4;
int MEDIUM_BOUNCE = 8;
int HIGH_BOUNCE = 12;

:2;
3;

void bounce() ;

60 Chapter 2: Declarations and Access Control

vold setBounceFactor (int bounceFactor) ;
void setGravity(int gravity);

}

By placing the constants right in the interface, any class that implements the interface
has direct access to the constants, just as if the class had inherited them. For example,
the following would be legal for a Bounceable implementation class:

class Ball implements Bounceable {
// Lots of exciting code goes here
public void bounce() {
animator.animateIt (LOW_GRAVITY, HIGH_BOUNCE); // MUCH easier this way

}

// Still more action-packed code goes here

}

You need to remember a few rules for interface constants. They must always be

B public
B static

B final

So that sounds simple, right? After all, interface constants are no different
from any other publicly accessible constants, so they obviously must be declared
public, static, and £inal. But before you breeze past the rest of this
discussion, think about the implications. First, because interface constants are
defined in an interface, they don't have to be declared as public, static, or
final. They must be public, static, and final, but you don't have to actually declare
them that way. Just as interface methods are always public and abstract whether
you say so in the code or not, any variable defined in an interface must be—and
implicitly is—a public constant. See if you can spot the problem with the following
implementation of Bounceable:

class Check implements Bounceable {

// Implementation code goes here

public void adjustGravityFactors(int x) {
if (x > LOW_GRAVITY) {
LOW_GRAVITY = x;
MEDIUM_GRAVITY = x + 1;
HIGH-GRAVITY = x + 2;
}

exam
Jatch

Interface Implementation (Exam Objective 4.2) @ |l

You can’t change the value of a constant! Once the value has been assigned, the
value can never be modified. The assignment happens in the interface itself (where
the constant is declared), so the implementing class can access it and use it, but as a
read-only value.

Look for interface definitions that define constants, but without explicitly
using the required modifiers. For example, the following are all identical:

public int x =1; // Looks non-static and non-final, but isn’t!

int x=1; // Looks default, non-final, and non-static, but isn’t!
static int x=1; // Doesn’t show final or public

final int x=1; // Doesn’t show static or public

public static int x=1; // Doesn’t show final

public final int x=1; // Doesn’t show static

static final int x=1 // Doesn’t show public

public static final int x=1; // Exactly what you get implicitly

Any combination of the required (but implicit) modifiers is legal, as is using
no modifiers at all! On the exam, you can expect to see questions you won’t
be able to answer correctly unless you know, for example, that an interface
variable is final and can never be given a value by the implementing (or any
other) class.

Implementing an Interface

When you implement an interface, you're agreeing to adhere to the contract defined
in the interface. That means you’re agreeing to provide legal implementations for
every method defined in the interface, and that anyone who knows what the interface
methods look like (not how they’re implemented, but how they can be called and
what they return) can rest assured that they can invoke those methods on an instance
of your implementing class.

For example, if you create a class that implements the Runnable interface (so
that your code can be executed by a specific thread), you must provide the public
void run () method. Otherwise, the poor thread could be told to go execute your
Runnable object’s code and—surprise surprise—the thread then discovers the
object has no run () method! (At which point, the thread would blow up and the
JVM would crash in a spectacular yet horrible explosion.) Thankfully, Java prevents
this meltdown from occurring by running a compiler check on any class that claims
to implement an interface. If the class says it's implementing an interface, it darn well

62 Chapter 2: Declarations and Access Control

better have an implementation for each method in the interface (with a few exceptions
we'll look at in a moment).

We looked earlier at several examples of implementation classes, including the
Ball class that implements Bounceable, but the following class would also
compile legally:

public class Ball implements Bounceable { // Keyword 'implements'
public void bounce() { }
public void setBounceFactor (int bf) { }

}

OK, we know what you're thinking: “This has got to be the worst implementation
class in the history of implementation classes.” It compiles, though. And runs. The
interface contract guarantees that a class will have the method (in other words,
others can call the method subject to access control), but it never guaranteed a good
implementation—or even any actual implementation code in the body of the
method. The compiler will never say to you, “Um, excuse me, but did you really
mean to put nothing between those curly braces? HELLO. This is a method after
all, so shouldn't it do something?”

Implementation classes must adhere to the same rules for method implementation
as a class extending an abstract class. In order to be a legal implementation class, a
nonabstract implementation class 7ust do the following:

B Provide concrete (nonabstract) implementations for all methods from the
declared interface.

B Follow all the rules for legal overrides (see Chapter 5 for details).

B Declare no checked exceptions on implementation methods other than
those declared by the interface method, or subclasses of those declared by
the interface method.

B Maintain the signature of the interface method, and maintain the same
return type (but does not have to declare the exceptions declared in the
interface method declaration).

But wait, there’s more! An implementation class can itself be abstract! For
example, the following is legal for a class Ball implementing the Bounceable
interface:

abstract class Ball implements Bounceable { }

exam

Jatch

Interface Implementation (Exam Objective 4.2) &3

Notice anything missing? We never provided the implementation methods. And
that’s OK. If the implementation class is abstract, it can simply pass the buck to its
first concrete subclass. For example, if class BeachBall extends Ball, and BeachBall is
not abstract, then BeachBall will have to provide all the methods from Bounceable:

class BeachBall extends Ball {
// Even though we don't say it in the class declaration above,
//BeachBall implements Bounceable, since BeachBall's abstract
//superclass (Ball) implements Bounceable

public void bounce () {

// interesting BeachBall-specific bounce code
}
public void setBounceFactor (int bf) {

// clever BeachBall-specific code for setting a bounce factor
}
// 1f class Ball defined any abstract methods, they'll have to be
// implemented here as well.

}

Look for methods that claim to implement an interface but don’t provide the
correct method implementations. Unless the implementing class is abstract,
the implementing class must provide implementations for all methods defined
in the interface.

Two more rules you need to know and then we can put this topic to sleep (or put
you to sleep; we always get those two confused):

I. A class can extend more than one interface.
I¢’s perfectly legal to say, for example, the following:

public class Ball implements Bounceable, Serializable,
Runnable { .. }

You can extend only one class, but implement many. But remember that
subclassing defines who and what you are, whereas implementing defines

a role you can play or a hat you can wear, despite how different you

might be from some other class implementing the same interface (but from
a different inheritance tree). For example, a person extends HumanBeing
(although for some, that’s debatable). But a person may also implement
programmer, snowboarder, employee, parent, or
personcrazyenoughtotakethisexam.

64 Chapter 2: Declarations and Access Control

2. An interface can itself extend another interface, but never implement
anything.
The following code is perfectly legal:

public interface Bounceable extends Moveable { }

What does that mean? The first concrete (nonabstract) implementation class
of Bounceable must implement all the methods of Bounceable, plus all
the methods of Moveable! The subinterface, as we call it, simply adds more
requirements to the contract of the superinterface. You’ll see this concept
applied in many areas of Java, especially J2EE where you’ll often have to
build your own interface that extends one of the J2EE interfaces.

Hold on though, because here’s where it gets strange. An interface can extend
more than one interface! Think about that for a moment. You know that when we're
talking about classes, the following is illegal:

public class Programmer extends Employee, Geek { } // Illegal!

A class is not allowed to extend multiple classes in Java. It that were allowed, it
would be multiple inheritance, a potential nightmare in some scenarios (more on
that in Chapter 5). An interface, however, is free to extend multiple interfaces.

interface Bounceable extends Moveable, Spherical {
void bounce() ;
vold setBounceFactor (int bf);

interface Moveable {
void moveIt () ;

interface Spherical {
void doSphericalThing() ;
}

Ball is required to implement Bounceable, plus all methods from the interfaces
that Bounceable extends (including any interfaces zhose interfaces extend and so on

Interface Implementation (Exam Objective 4.2) & §

until you reach the top of the stack—or is it botzom of the stacki—well, you know
what we mean). So Ball would need to look like the following:

class Ball implements Bounceable {
// Implement the methods from Bounceable
public void bounce() { }
public void setBounceFactor (int bf) { }

// Implement the methods from Moveable
public void moveIt() { }

// Implement the methods from Spherical
public void doSphericalThing() { }
}

If class Ball fails to implement any of the methods from Bounceable, Moveable,
or Spherical, the compiler will jump up and down wildly, red in the face, until it
does. Unless, that is, class Ball is marked abstract. In that case, Ball could choose to
implement any, all, or none of the methods from any of the interfaces, thus leaving
the rest of the implementations to a concrete subclass of Ball, as follows:

abstract class Ball implements Bounceable {
public void bounce() { .. } // Define bounce behavior
public void setBounceFactor (int bf) { ..}
// Don't implement the rest; leave it for a subclass

class SoccerBall extends Ball {
// class SoccerBall must implement the interface methods that Ball didn't
public void moveIt() { .. }
public void doSphericalThing() { .. }
// SoccerBall can choose to override the Bounceable methods
// implemented by Ball
public void bounce() { .. }

}

Figure 2-9 compares the legal and illegal use of extends and implements, for both
classes and interfaces.

66 Chapter 2: Declarations and Access Control

m Legal and illegal uses of extends and implements

interface Bounceable
-
void bounce(); "7 abstract Ball implements Bounceable
void setBounceFactor (int bf);
//no methods of
Bounceable are
implemented
= in Ball
H void beSpherical() {}
1
H 4
i
:
class Tire implements Bounceable class BeachBall extends Ball
public void bounce(){ } public void bounce(){ }
public void setBounceFactor (int bf){ } public void setBounceFactor (int bf){ }

//beSpherical is not abstract
so BeachBall is not
required to implement it.

Because BeachBall is the first concrete class to implement
Bounceable, it must provide implementations for all methods of
Bounceable, except those defined in the abstract class Ball. Because
Ball did not provide implementations of Bounceable methods,
BeachBall was required to implement all of them.

exam

Jatch

Interface Implementation (Exam Objective 4.2) &7

Look for illegal uses of extends and implements. The following shows
examples of legal and illegal class and interface declarations:

class Foo { } Il OK

class Bar implements Foo { } I/ No! Can’t implement a class

interface Baz { } Il OK

interface Fi { } I/ OK

interface Fee implements Baz { } I/ No! Interface can’t implement an interface
interface Zee implements Foo { } Il No! Interface can’t implement a class
interface Zoo extends Foo { } I/ No! Interface can’t extend a class

interface Boo extends Fi { } I/ OK. Interface can extend an interface

class Toon extends Foo, Button { } I/ No! Class can’t extend multiple classes
class Zoom implements Fi, Fee { } [/ OK class can implement multiple interfaces

interface Vroom extends Fi, Fee { } I/ OK interface can extend multiple interfaces

Burn these in, and watch for abuses in the questions you get on the exam.
Regardless of what the question appears to be testing, the real problem might
be the class or interface declaration. Before you get caught up in, say, tracing
a complex threading flow, check to see if the code will even compile. (Just
that tip alone may be worth your putting us in your will!) (You’ll be impressed
by the effort the exam developers put into distracting you from the real
problem.) (How did people manage to write anything before parentheses
were (was?) invented?)

CERTIFICATION SUMMARY ‘

You now have a good understanding of access control as it relates to classes,
methods, and variables. You’ve looked at how access modifiers (public,
protected, private) define the access control of a class or member.

You've also looked at the other modifiers including static, final, abstract,
synchronized, etc. You've learned how some modifiers can never be combined
in a declaration, such as mixing final with abstract or abstract with
private.

Keep in mind that there are no final objects in Java. A reference variable marked
final can never be changed, but the object it refers to can be modified. You've seen
that final applied to methods means a subclass can’t override them, and when
applied to a class, the final class can’t be subclassed.

68 Chapter 2: Declarations and Access Control

You learned that abstract classes can contain both abstract and nonabstract
methods, but that if even a single method is marked abstract, the class must be
marked abstract. Don’t forget that a concrete (nonabstract) subclass of an abstract
class must provide implementations for all the abstract methods of the superclass,
but that an abstract class does not have to implement the abstract methods from
its superclass. An abstract subclass can “pass the buck” to the first concrete subclass.

Remember what you've learned about static variables and methods, especially
that static members are per-class as opposed to per-instance. Don’t forget that a static
method can’t directly access an instance variable from the class it’s in, because it
doesn’t have an explicit reference to any particular instance of the class.

You've also looked at source code declarations, including the use of package and
import statements. Don’t forget that you can have amain () method with any legal
signature you like, but if it isn’t public static voidmain (String []
args) , the JVM won't be able to invoke it to start your program running.

Finally, you covered interface implementation, including the requirement to
implement public void run () for a class that implements Runnable. You
also saw that interfaces can extend another interface (even multiple interfaces), and
that any class that implements an interface must implement all methods from a//
the interfaces in the inheritance tree of the interface the class is implementing.

Before you hurl yourself at the practice test, spend some time with the following
optimistically named “Two-Minute Drill.” Come back to this particular drill often,
as you work through this book and especially when you're doing that last-minute
cramming. Because—and here’s the advice you wished your mother had given you
before you left for college—it’s not what you know, it’s when you know it.

Two-Minute Drill 69

TWO-MINUTE DRILL

Class Access Modifiers

O There are three access modifiers public, protected, and private.

Q

Q
Q

Q

Q

There are four access levels: public, protected, default, and
private.

Classes can have only public or default access.

Class visibility revolves around whether code in one class can:
1 Create an instance of another class

 Extend (or subclass), another class

1 Access methods and variables of another class

A class with default access can be seen only by classes within the same

package.

A class with public access can be seen by all classes from all packages.

Class Modifiers (nonaccess)

Q

I Ty Ny Ny By

Classes can also be modified with final, abstract, or strictfp.
A class cannot be both final znd abstract.

A final class cannot be subclassed.

An abstract class cannot be instantiated.

A single abstract method in a class means the whole class must be abstract.
An abstract class can have both abstract and nonabstract methods.

The first concrete class to extend an abstract class must implement all
abstract methods.

70 Chapter 2: Declarations and Access Control

Member Access Modifiers

d
4

EREsEE

EEERE)

(]

Methods and instance (nonlocal) variables are known as “members.”

Members can use all four access levels: public, protected, default,
private.

Member access comes in two forms:

U Code in one class can access a member of another class.

O A subclass can inherit a member of its superclass.

If a class cannot be accessed, its members cannot be accessed.

Determine class visibility before determining member visibility.

Public members can be accessed by all other classes, even in different packages.

If a superclass member is public, the subclass inherits it—regardless of

package.

Members accessed without the dot operator (.) must belong to the same class.
this. always refers to the currently executing object.

this.aMethod () is the same as just invoking aMethod ().

Private members can be accessed only by code in the same class.

Private members are not visible to subclasses, so private members cannot be
inherited.

Default and protected members differ only in when subclasses are involved:
O Default members can be accessed only by other classes in the same package.

U Protected members can be accessed by other classes in the same package,
plus subclasses regardless of package.

Protected = package plus kids (kids meaning subclasses).

For subclasses outside the package, the protected member can be accessed
only through inheritance; a subclass outside the package cannot access a
protected member by using a reference to an instance of the superclass (in
other words, inheritance is the only mechanism for a subclass outside the
package to access a protected member of its superclass).

A protected member inherited by a subclass from another package is, in
practice, private to all other classes (in other words, no other classes from

Two-Minute Drill 7 ||

the subclass’ package or any other package will have access to the protected
member from the subclass).

Local Variables

U Local (method, automatic, stack) variable declarations cannot have access
modifiers.

U final is the only modifier available to local variables.

O Local variables don’t get default values, so they must be initialized before use.

Other Modifiers—Members
U Final methods cannot be overridden in a subclass.

O Abstract methods have been declared, with a signature and return type, but
have not been implemented.

U Abstract methods end in a semicolon—no curly braces.
O Three ways to spot a nonabstract method:

U The method is not marked abstract.

U The method has curly braces.

U The method has code between the curly braces.

U The first nonabstract (concrete) class to extend an abstract class must
implement all of the abstract class’ abstract methods.

O Abstract methods must be implemented by a subclass, so they must be
inheritable. For that reason:

O Abstract methods cannot be private.
U Abstract methods cannot be final.
O The synchronized modifier applies only to methods.

O Synchronized methods can have any access control and can also be marked
final.

U Synchronized methods cannot be abstract.

U

The native modifier applies only to methods.

Q The strictfp modifier applies only to classes and methods.

72 Chapter 2: Declarations and Access Control

d
d

Instance variables can
U Have any access control
U Be marked final or transient

Instance variables cannot be declared abstract, synchronized,
native, or strictfp.

It is legal to declare a local variable with the same name as an instance
variable; this is called “shadowing.”

Final variables have the following properties:
O Final variables cannot be reinitialized once assigned a value.

U Final reference variables cannot refer to a different object once the object
has been assigned to the final variable.

U Final reference variables must be initialized before the constructor completes.

There is no such thing as a final object. An object reference marked £inal
does not mean the object itself is immutable.

The transient modifier applies only to instance variables.

The volatile modifier applies only to instance variables.

Static variables and methods

d
d

U

They are not tied to any particular instance of a class.

An instance of a class does not need to exist in order to use static members of
the class.

There is only one copy of a static variable per class and all instances share it.
Static variables get the same default values as instance variables.

A static method (such asmain ()) cannot access a nonstatic (instance)
variable.

Static members are accessed using the class name:
ClassName. theStaticMethodName ()

Static members can also be accessed using an instance reference variable,
someObj . theStaticMethodName ()

but that’s just a syntax trick; the static method won’t know anything about
the instance referred to by the variable used to invoke the method. The

Two-Minute Drill 73

compiler uses the class zype of the reference variable to determine which static
method to invoke.

Static methods cannot be overridden, although they can be redeclared/
redefined by a subclass. So although static methods can sometimes appear to
be overridden, polymorphism will not apply (more on this in Chapter 5).

Declaration Rules

Q
Q

Q

U

U

(I I I

A source code file can have only one public class.

If the source file contains a public class, the file name should match the
public class name.

A file can have only one package statement, but can have multiple import
statements.

The package statement (if any) must be the first line in a source file.

The import statements (if any) must come after the package and before
the class declaration.

If there is no package statement, import statements must be the first
statements in the source file.

Package and import statements apply to all classes in the file.
A file can have more than one nonpublic class.
Files with no public classes have no naming restrictions.

In a file, classes can be listed in any order (there is no forward referencing
problem).

Import statements only provide a typing shortcut to a class’ fully qualified
name.

Import statements cause no performance hits and do not increase the size
of your code.

If you use a class from a different package, but do not import the class, you
must use the fully qualified name of the class everywhere the class is used
in code.

Import statements can coexist with fully qualified class names in a source file.

7

Imports ending in . *; are importing all classes within a package.

74 Chapter 2:

Declarations and Access Control

d
d

Imports ending in * ; * are importing a single class.

You must use fully qualified names when you have different classes from
different packages, with the same class name; an import statement will not
be explicit enough.

Properties of main()

a
a
Q

It must be marked static.
It must have a void return type.

It must have a single String array argument; the name of the argument is
flexible, but the convention is args.

For the purposes of the exam, assume that zhemain () method must be

public.

Improper main () method declarations (or the lack of amain () method)
cause a runtime error, not a compiler error.

In the declaration of main (), the order of public and static can be
switched, and args can be renamed.

Other overloaded methods named main () can exist legally in the class, but
if none of them match the expected signature for zhemain () method, then
the JVM won’t be able to use that class to start your application running,.

java.lang.Runnable

a

You must memorize the java.lang.Runnable interface; it has a single
method you must implement: public void run {}.

Interface Implementation

Q

a

Interfaces are contracts for what a class can do, but they say nothing about
the way in which the class must do it.

Interfaces can be implemented by any class, from any inheritance tree.

An interface is like a 100-percent abstract class, and is implicitly abstract
whether you type the abstract modifier in the declaration or not.

An interface can have only abstract methods, no concrete methods allowed.

U

Two-Minute Drill 7§

Interfaces are by default public and abstract—explicit declaration of these
modifiers is optional.

Interfaces can have constants, which are always implicitly public,
static,and final.

Interface constant declarations of public, static, and final are
optional in any combination.

A legal nonabstract implementing class has the following properties:
U It provides concrete implementations for all methods from the interface.
O It must follow all legal override rules for the methods it implements.

Q' Tt must not declare any new checked exceptions for an implementation
method.

U It must not declare any checked exceptions that are broader than the
exceptions declared in the interface method.

O It may declare runtime exceptions on any interface method
implementation regardless of the interface declaration.

U It must maintain the exact signature and return type of the methods it
implements (but does not have to declare the exceptions of the interface).

A class implementing an interface can itself be abstract.

An abstract implementing class does not have to implement the interface
methods (but the first concrete subclass must).

A class can extend only one class (no multiple inheritance), but it can
implement many.

Interfaces can extend one or more other interfaces.
Interfaces cannot extend a class, or implement a class or interface.

When taking the exam, verify that interface and class declarations are legal
before verifying other code logic.

76 Chapter 2: Declarations and Access Control

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all

correct answers for each question.

Declarations and Modifiers (Sun Objective 1.2)

I. What is the most restrictive access modifier that will allow members of one class to have access

to members of another class in the same package?

A

moow

public
abstract
protected
synchronized

default access

2. Given a method in a protected class, what access modifier do you use to restrict access to
that method to only the other members of the same class?

A.

m

mooOw

final
static
private
protected
volatile

default access

3. Given the following,

abstract class A {

abstract short ml() ;

short m2() { return (short) 420; }
}

abstract class B extends A {

// missing code ?

short ml() { return (short) 42; }
}

W 0 ~Jo Ul i WDN

which three of the following statements are true? (Choose three.)

Self Test 77

The code will compile with no changes.

Class B must either make an abstract declaration of method m2 () or implement
method m2 () to allow the code to compile.

It is legal, but not required, for class B to either make an abstract declaration of method
m2 () or implement method m2 () for the code to compile.

As long as line 8 exists, class A must declare method m1 () in some way.
If line 6 were replaced with *class B extends A { " the code would compile.

If class A was not abstract and method m1 () on line 2 was implemented, the
code would not compile.

Which two of the following are legal declarations for nonnested classes and interfaces?
(Choose two.)

A

B
C.
D.
E.
F.

final abstract class Test {}
public static interface Test {}
final public class Test {}
protected abstract class Test {}
protected interface Test {}

abstract public class Test {}

How many of the following are legal method declarations?

mmQgQOh®>»

1 - protected abstract void ml();

2 — static final void ml () {}

3 - transient private native void ml () {}

4 - synchronized public final void ml () {}

5 - private native void ml () ;

6 — static final synchronized protected void ml () {}
1

2

3

4

5

All of them

78 Chapter 2: Declarations and Access Control

6. Given the following,

1 package testpkg.pl;

2. public class ParentUtil {

3. public int x = 420;

4 protected int doStuff() { return x; }
5

1. package testpkg.p2;

2. 1import testpkg.pl.ParentUtil;

3. public class ChildUtil extends ParentUtil {

4. public static void main(String [] args) {

5. new Childutil().callStuff();

6. }

7. void callStuff() {

8. System.out.print ("this " + this.doStuff());
9. ParentUtil p = new ParentUtil();

10. System.out.print (" parent " + p.doStuff());
11. }

12. }

which statement is true?

A. The code compiles and runs, with output this 420 parent 420.
If line 8 is removed, the code will compile and run.

If line 10 is removed, the code will compile and run.

Both lines 8 and 10 must be removed for the code to compile.

mooOw

An exception is thrown at runtime.

Declaration Rules (Sun Objective 4.1)
7. Given the following,

interface Count {
short counter = 0;
void countUp() ;

}

public class TestCount implements Count {

public static void main(String [] args) {
TestCount t = new TestCount() ;
t.countUp() ;

P W oo Jo Ul W

11. public void countUp() {

12. for (int x = 6; x>counter; x--, ++counter)
13. System.out.print (" " + counter);

14. }

15. }

16. 1}

what is the result?

o

moON® >

012

123

0123

1234
Compilation fails

An exception is thrown at runtime

8. Given the following,

1. import java.util.*;

2. public class NewTreeSet2 extends NewTreeSet {
3. public static void main(String [] args) {
4. NewTreeSet2 t = new NewTreeSet2();

5. t.count () ;

6. }

7. }

8. protected class NewTreeSet ({

9. void count () {

10 for (int x = 0; x < 7; x++,x++) {

11. System.out.print (" " + x);

12. }

13. }

14. 3}

what is the result?

mmQgOQOw>»

0214

0246

Compilation fails at line 4
Compilation fails at line 5
Compilation fails at line 8

Compilation fails at line 10

Self Test

79

80 Chapter 2: Declarations and Access Control

9. Given the following,

1.

2. public class NewTreeSet extends java.util.TreeSet{
3. public static void main(String [] args) {

4. java.util.TreeSet t = new java.util.TreeSet();
5. t.clear();

6. }

7. public void clear () {

8. TreeMap m = new TreeMap () ;

9. m.clear () ;

10. }

11. 3}

which two statements, added independently at line 1, allow the code to compile? (Choose two.)
No statement is required

import java.util.*;

import.java.util.Tree*;

import java.util.TreeSet;

moOo®»

import java.util.TreeMap;

10. Which two are valid declarations within an interface? (Choose two.)
public static short stop =23;

protected short stop =23;

transient short stop =23;

final void madness (short stop) ;

public Boolean madness (long bow) ;

mmoN® >

static char madness (double duty) ;

I'l. Which of the following class level (rnonlocal) variable declarations will not compile?
protected int a;

transient intb=3;

public static final int c;

volatile int d;

moOo®»

private synchronized int e;

Self Test 81

Interface Implementation (Sun Objective 4.2)
12. Given the following,

interface DoMath {
double getArea(int rad); }

interface MathPlus {
double getVol (int b, int h); }

0 ~J o Ul W N

which two code fragments inserted at lines 7 and 8 will compile? (Choose two.)

A. class AllMath extends DoMath {
double getArea(int r); }

B. interfaceAllMath implements MathPlus {
double getVol (int x, intvy); }

C. interface AllMath extends DoMath {
float getAvg(inth, int 1); }

D. class AllMath implements MathPlus {
double getArea(int rad); }

E. abstract class AllMath implements DoMath, MathPlus {
public double getArea (int rad) { returnrad *rad *3.14; } }

13. Which three are valid method signatures in an interface? (Choose three.)

A. private int getAreal() ;

B. public float getVol (float x) ;

C. publicvoidmain(String [] args) ;

D. public staticvoidmain(String [] args) ;

E. boolean setFlag(Boolean [] test []);

14. Which two statements are true for any concrete class implementing the
java.lang.Runnable interface? (Choose two.)

A. You can extend the Runnable interface as long as you override the public run ()
method.

82 Chapter 2: Declarations and Access Control

0

The class must contain a method called run () from which all code for that thread will
be initiated.

The class must contain an empty public void method named run () .
The class must contain a public void method named runnable () .

The class definition must include the words implements Threads and contain a
method called run () .

The mandatory method must be public, with a return type of void, must be called
run (), and cannot take any arguments.

Given the following,

1. interface Base {

2. boolean ml ();

3. byte m2 (short s);
4. }

which two code fragments will compile? (Choose two.)

A
B.

0

interface Base2 implements Base {}

abstract class Class2 extends Base {
public booleanml () { return true; } }

abstract class Class2 implements Base { }

abstract class Class2 implements Base {
public booleanml () { return (7>4); }}

class Class2 implements Base {
booleanml () { return false; }
bytem2 (short s) { return42; } }

Self Test Answers 83

SELF TEST ANSWERS

Declarations and Modifiers

I. M E.default access is the “package oriented” access modifier.
A and C are wrong because public and protected are less restrictive. B and D are
wrong because abstract and synchronized are not access modifiers.

2. M C.The private access modifier limits access to members of the same class.
X A, B, D, E, and F are wrong because protected and default are the wrong access
modifiers, and final, static, and volatile are modifiers but not access modifiers.

3. M A, C,and E. A and C are correct, because an abstract class does not need to
implement any of its superclass’ methods. E is correct because as it stands, it is a valid concrete
extension of class A.

Xl B is wrong because an abstract class does not need to implement any of its superclass’
methods. D is wrong because a class that extends another class is free to add new methods. F is
wrong because it is legal to extend an abstract class from a concrete class.

4. M C,F. Both are legal class declarations.
A is wrong because a class cannot be abstract and final—there would be no way
to use such a class. B is wrong because interfaces and classes cannot be marked as static.
D and E are wrong because classes and interfaces cannot be marked as protected.

5. M E. Statements 1, 2, 4, 5, and 6 are legal declarations.
& A, B, C, D, and F are incorrect because the only illegal declaration is 3; transient
applies only to variable declarations, not to method declarations. As you can see from these
other examples, method declarations can be very extensive.

6. M C. The ParentUtil instance p cannot be used to access the doStuff () method. Because
doStuff () has protected access, and the ChildUtil class is not in the same package as
the ParentUrtil class, doStuff () can be accessed only by instances of the ChildUtil class (a
subclass of ParentUtil).
A, B, D, and E are incorrect because of the access rules described previously.

Declaration Rules

7. M E. The code will not compile because the variable counter is an interface variable that is
by default final static. The compiler will complain at line 12 when the code attempts to

84 Chapter 2: Declarations and Access Control

increment counter.
A, B, C, and D are incorrect because of the explanation given above.

8. M E. Nonnested classes cannot be marked protected (or £inal for that matter), so the
compiler will fail at line 8.
& A, B, C, and D are incorrect because of the explanation given above.

9. M BandE. TreeMap is the only class that must be imported. TreeSet does not need an
import statement because it is described with a fully qualified name.
Xl A is incorrect because TreeMap must be imported. C is incorrect syntax for an import
statement. D is incorrect because it will not import TreeMap, which is required.

10. M A and E are valid interface declarations.
¥ B and C are incorrect because interface variables cannot be either protected or
transient. D and F are incorrect because interface methods cannot be £inal or
static.

Il. M E will not compile; the synchronized modifier applies only to methods.
A and B will compile because protected and transient are legal variable modifiers.
C will compile because when a variable is declared £inal it does not have to be initialized
with a value at the same time. D will compile because volatile is a proper variable
modifier.

Interface Implementation

12. M Cand E. C are E are correct because interfaces and abstract classes do not need to fully
implement the interfaces they extend or implement (respectively).
A is incorrect because a class cannot extend an interface. B is incorrect because an interface
cannot implement anything. D is incorrect because the method being implemented is from the
wrong interface.

13. M B, C, and E. These are all valid interface method signatures.
Xl A, is incorrect because an interface method must be public; if it is not explicitly
declared public it will be made public implicitly. D is incorrect because interface
methods cannot be static.

14. M BandF. When a thread’s run () method completes, the thread will die. The run ()
method must be declared public void and not take any arguments.
X A is incorrect because classes can never extend interfaces. C is incorrect because the

Self Test Answers 85§

run () method is typically not empty; if it were, the thread would do nothing. D is incorrect
because the mandatory method is run (). E is incorrect because the class implements
Runnable.

M Cand D. Cis correct because an abstract class doesn’t have to implement any or all
of its interface’s methods. D is correct because the method is correctly implemented ((7 > 4) is
aboolean).

A is incorrect because interfaces don’t implement anything. B is incorrect because classes
don’t extend interfaces. E is incorrect because interface methods are implicitly public, so the
methods being implemented must be public.

SUN™ CERTIFIED PROGRAMMER & DEVELOPER

Operators and
Assignments

CERTIFICATION OBJECTIVES

Java Operators

Logical Operators

Passing Variables into Methods
\/ Two-Minute Drill

Q&A Self Test

2 Chapter 3: Operators and Assignments

f you’ve got variables, you’re going to modify them. You’ll increment them, add them

together, shift their bits, flip their bits, and compare one to another. In this chapter you'll

learn how to do all that in Java. We'll end the chapter exploring the effect of passing
variables of all types into methods. For an added bonus, you'll learn how to do things that you'll
probably never use in the real world, but that will almost certainly be on the exam. After all,
what fun would it be if you were tested only on things you already use?

CERTIFICATION OBJECTIVE

Java Operators (Exam Obijective 5.1)

Determine the result of applying any operator (including assignment operators and
instanceof) to operands of any type, class, scope, or accessibility, or any combination

of these.

Java operators produce new values from one or more operands (just so we're all clear,
the operands are things on the right or left side of the operator). The result of most
operations is either a boolean or numeric value. And because you know by now that
Java is not C++, you won’t be surprised that Java operators can’t be overloaded.
There is, however, one operator that comes overloaded out of the box: If applied to a
String, the + operator concatenates the right-hand operand to the operand on the left.

Stay awake. The operators and assignments portion of the exam is typically the
one where exam takers see their lowest scores. We aren’t naming names or anything,
but even some of the exam crearors (including one whose last name is a mountain
range in California) have been known to get a few of these wrong.

Assignment Operators

Assigning a value to a variable seems straightforward enough; you simply assign the
stuff on the right side of the = to the variable on the left. Well, sure, but don’t expect
to be tested on something like this:

X = 6;

No, you won't be tested on the ro-brainer (technical term) assignments. You will,
however, be tested on the trickier assignments involving complex expressions and

Java Operators (Exam Objective 5.1) 3

casting. We'll look at both primitive and reference variable assignments. But before
we begin, let’s back up and peek inside of a variable. What 75 a variable? How are the
variable and its value related?

Variables are just bit holders, with a designated type. You can have an 7n¢ holder,
a double holder, a Button holder, and even a String[] holder. Within that holder
is a bunch of bits representing the value. For primitives, the bits represent a numeric
value (although we don’t know what that bit pattern looks like for boolean, but
we don’t care). A byte with a value of 6, for example, means that the bit pattern in
the variable (the &yze holder) is 00000110, representing the 8 bits.

So the value of a primitive variable is clear, but what’s inside an object holder? If
you say

Button b = new Button() ;

what’s inside the Button holder 42 Is it the Button object? /No! A variable referring to
an object is just that—a reference variable. A reference variable bit holder contains
bits representing 2 way to get to the object. We don’t know what the format is; the
way in which object references are stored is virtual-machine specific (it’s a pointer to
something, we just don’t know what that something really is). All we can say for sure
is that the variable’s value is not the object, but rather a value representing « specific
object on the heap. Or null. If the reference variable has not been assigned a value,
or has been explicitly assigned a value of null, the variable holds bits
representing—you guessed it—null. You can read

Button b = null;

as “The Button variable & is not referring to any object.”

So now that we know a variable is just a little box o’ bits, we can get on with the
work of changing those bits. We'll look first at assigning values to primitives, and
finish with assignments to reference variables.

Primitive Assignments

The equal (=) sign is used for assigning a value to a variable, and it’s cleverly named
the assignment operator. There are actually 12 assignment operators, but the other 11
are all combinations of the equal sign and other arithmetic operators, as shown in
Table 3-1. These compound assignment operators have a couple of special properties
we'll look at in this section.

4 Chapter 3:

TABLE 3-1

Compound
Assignment
Operators

Operators and Assignments

- % /= %=
+= -= <<= >>=
>>>= &= A= |=

You can assign a primitive variable using a literal or the result of an expression.
Take a look at the following:

int x = 7; // literal assignment
int v = x + 2; // assignment with an expression (including a literal)
int z = x * y; // assignment with an expression

The most important point to remember is that a literal integer (such as 7) is
always implicitly an int. Thinking back to Chapter 1, you'll recall that an int is a
32-bit value. No big deal if you're assigning a value to an int or a long variable,
but what if you're assigning to a byze variable? After all, a byre-sized holder can't hold
as many bits as an 7n#-sized holder. Here’s where it gets weird. The following is legal,

byte b = 27;

but only because the compiler automatically narrows the literal value to a byze. In
other words, the compiler puts in the cast. The preceding code is identical to the
following:

byte b = (byte) 27; // Explicitly cast the int literal to a byte

It looks as though the compiler gives you a break, and let’s you take a shortcut
with assignments to integer variables smaller than an inz. (Everything we're saying
about byte applies equally to char and short, both of which are smaller than an inz.)
We're not actually at the weird part yet, by the way.

We know that a literal integer is always an 77z, but more importantly—the result
of an expression involving anything 7n#-sized or smaller is always an inz In other
words, add two byres together and you'll get an inr—even if those two byzes are tiny.
Multiply an inrand a short and you'll get an inz. Divide a short by a byre and you'll
get...an nt. OK, now we're at the weird part. Check this out:

byte b = 3; // No problem, 3 fits in a byte
byte ¢ = 8; // No problem, 8 fits in a byte
byte d = b + ¢; // Should be no problem, sum of the two bytes

// fits in a byte

Java Operators (Exam Objective 5.1) §

The last line won’t compile! You'll get the following error:

TestBytes.java:5: possible loss of precision
found : int
required: byte

byte ¢ = a + b;

~

We tried to assign the sum of two byzes to a byte variable, the result of which (11)
was definitely small enough to fit into a éyze, but the compiler didn’t care. It knew
the rule about 7n#-or-smaller expressions always resulting in an 77z It would have
compiled if we’d done the explicit cast:

byte ¢ = (byte) (a + b);

Assigning Floating-Point Numbers Floating-point numbers have slightly
different assignment behavior than integer types. We've already discussed this in
Chapter 1, but we'll do another quick review here while we’re on the subject. First,
you must know that every floating-point literal is implicitly a double (64 bizs), not a
float. So the literal 2.3, for example, is considered a double. If you try to assign a
double to a float, the compiler knows you don’t have enough room in a 32-bit
float container to hold the precision of a 64-bit double, and it lets you know.
The following code looks good, but won’t compile:

float £ = 32.3;

You can see that 32.3 should fit just fine into a float-sized variable, but the compiler
won’t allow it. In order to assign a floating-point literal to a floar variable, you must
either cast the value or append an fto the end of the literal. The following
assignments will compile:

float £ = (float) 32.3;
float g 32.3f;
float h = 32.3F;

Assigning a Literal That Is Too Large for the Variable We'll also geta
compiler error if we try to assign a literal value that the compiler knows is too big to
fit into the variable.

byte a = 128; // byte can only hold up to 127

6 Chapter 3:

Operators and Assignments

The preceding code gives us this error:

TestBytes.java:5: possible loss of precision
found : int

required: byte

byte a = 128;

We can fix it with a cast:
byte a = (byte) 128;

But then what’s the result? When you narrow a primitive, Java simply truncates the
higher-order bits that won’t fit. In other words, it loses all the bits to the left of the
bits you're narrowing to.

Let’s take a look at what happens in the preceding code. There, 128 is the bit
pattern 10000000. It takes a full 8 bits to represent 128. But because the literal
128 is an int, we actually get 32 bits, with the 128 living in the right-most
(lower-order) 8 bits. So a literal 128 is actually

00000000000000000000000010000000

Take our word for it; there are 32 bits there.

To narrow the 32 bits representing 128, Java simply lops off the leftmost
(higher-order) 24 bits. We're left with just the 170000000. But remember that a
byte is signed, with the leftmost bit representing the sign (and not part of the value
of the variable). So we end up with a negative number (the 1 that used to represent
128 now represents the negative sign bit). Remember, to find out the value of a
negative number using two’s complement notation, you flip all of the bits and then
add 1. Flipping the 8 zeroes give us: 01111111, and adding 1 to that gives us
10000000, or back to 128! And when we apply the sign bit, we end up with -128.

You must use an explicit cast to assign 128 to a byre, and the assignment leaves
you with the value -128. A cast is nothing more than your way of saying to the
compiler, “Trust me. 'm a professional. I take full responsibility for anything weird
that happens when those top bits are chopped off.”

That brings us to the compound assignment operators. The following will
compile,

byte b = 3;
b += 7; // No problem - adds 7 to b (result is 10)

Java Operators (Exam Objective 5.1) 7

and is equivalent to

byte b = 3;
b = (byte) (b + 7); // Won’'t compile without the
// cast, since b + 7 results in an int

The compound assignment operator += let’s you add to the value of 4, without
putting in an explicit cast.

Assigning One Primitive Variable to Another Primitive Variable
When you assign one primitive variable to another, the contents of the right-hand
variable are copied, for example,

int a = 6;
int b = a;

The preceding code can be read as, “Assign the bit pattern for the number 6 to the
int variable 4. Then copy the bit pattern in 4, and place the copy into variable &.
So, both variables now hold a bit pattern for 6, but the two variables have no other
relationship. We used the variable z only to copy its contents. At this point, 2and &
have identical contents (in other words, identical values), but if we change the contents
of a or b, the other variable won’t be affected.”

Take a look at the following example:

class ValueTest {
public static void main (String [] args) {

int a = 10; // Assign a value to a
System.out.println("a = " + a);

int b = a;

b = 30;

System.out.println("a = " + a + "after change to b");

}
The output from this program is

%java ValueTest
= 10

a
a = 10 after change to b

8 Chapter 3: Operators and Assignments

Notice the value of z stayed at 10. The key point to remember is that even after you
assign 4 to b, a and b are not referring to the same place in memory. The zand &
variables do not share a single value; they have identical copies.

Reference Variable Assignments

You can assign a newly created object to an object reference variable as follows:

Button b = new Button();
The preceding line does three key things:

B Makes a reference variable named 4, of type Button
B Creates a new Button object on the heap

B Assigns the newly created Button object to the reference variable &

You can also assign null to an object reference variable, which simply means the
variable is not referring to any object:

Button ¢ = null;

The preceding line creates space for the Button reférence variable (the bit holder
for a reference value), but doesn't create an actual Button object.

You can also use a reference variable to refer to any object that is a subclass of the
declared reference variable type, as follows:

public class Foo {
public void doFooStuff () {
}

}

public class Bar extends Foo {
public void doBarStuff () { }
}

}

class Test {

public static void main (String [] args) {
Foo reallyABar = new Bar(); // Legal because Bar is a subclass of Foo
Bar reallyAFoo = new Foo(); // Illegal! Foo is not a subclass of Bar

}

We'll look at the concept of reference variable assignments in much more detail
in Chapter 5, so for now you just need to remember the rule that you can assign a

Java Operators (Exam Objective 5.1) @

subclass of the declared type, but not a superclass of the declared type. But think
about it...a Bar object is guaranteed to be able to do anything a Foo can do, so
anyone with a Foo reference can invoke Foo methods even though the object is
actually a Bar.

In the preceding code, we see that Foo has a method doFooStuff () that
someone with a Foo reference might try to invoke. If the object referenced by the
Foo variable is really a Foo, no problem. But it’s also no problem if the object is a
Bar, since Bar inherited the doFooStuff () method. You can’t make it work in
reverse, however. If a somebody has a Bar reference, they’re going to invoke
doBarStuff(), but if the object being referenced is actually a Foo, it won't know
how to respond.

Assigning One Reference Variable to Another

With primitive variables, an assignment of one variable to another means the contents
(bit pattern) of one variable are copied into another. Object reference variables work
exactly the same way. The contents of a reference variable are a bit pattern, so if you
assign reference variable # to reference variable 4, the bit pattern in « is copied and
the new copy is placed into &. If we assign an existing instance of an object to a new
reference variable, then two reference variables will hold the same bit pattern—a bit
pattern referring to a specific object on the heap. Look at the following code:

import java.awt.Dimension;
class ReferenceTest {
public static void main (String [] args) {
Dimension a = new Dimension(5,10);

System.out.println("a.height = " + a.height);
Dimension b = a;

b.height = 30;

System.out.println("a.height = " + a.height +

"after change to b");

}

In the preceding example, a Dimension object # is declared and initialized with
a width of 5 and a height of 10. Next, Dimension & is declared, and assigned the
value of a. At this point, both variables (2 and 4) hold identical values, because the
contents of 2 were copied into &. There is still only one Dimension object—the

one that both zand 6 refer to. Finally, the height property is changed using the &

1 O Chapter3:

Operators and Assignments

reference. Now think for a minute: Is this going to change the height property of 2
as well? Let’s see what the output will be:

%$java ReferenceTest
a.height = 10
a.height = 30 after change to b

From this output, we can conclude that both variables refer to the same instance
of the Dimension object. When we made a change to 4, the height property was also
changed for a.

One exception to the way object references are assigned is String. In Java, String
objects are given special treatment. For one thing, String objects are immutable; you
can't change the value of a String object. But it sure /ooks as though you can.
Examine the following code:

class Strings {
public static void main(String [] args) {
String x = "Java"; // Assign a value to x
String v = X; // Now y and x refer to the same String object

System.out.println("y string = " + y);
X = x + " Bean"; // Now modify the object using the x reference

System.out.println("y string = " + vy);

}

You might think String y will contain the characters Java Bean after the variable x
is changed, because strings are objects. Let’s see what the output is:

%java String
v string = Java
y string = Java

As you can see, even though yis a reference variable to the same object that x
refers to, when we change x it doesn’t change y! For any other object type, where two
references refer to the same object, if either reference is used to modify the object,
both references will see the change because there is still only a single object. But with
a string, the VM creates a brand new String object every time we use the + operator
to concatenate two strings, or any time we make any changes at all to a string.

You need to understand what happens when you use a String reference variable to
modify a string:

B A new string is created, leaving the original String object untouched.

B The reference used to modify the String (or rather, make a new String by
modifying a copy of the original) is then assigned the brand new String object.

Java Operators (Exam Objective 5.1) | |

So when you say,

1. String s = "Fred";
2. String t = s; // Now t and s refer to the same String object
3. t.toUpperCase(); // Invoke a String method that changes the String

you actually haven’t changed the original String object created on line 1. When line
2 completes, both zand s reference the same String object. But when line 3 runs,
rather than modifying the object referred to by t (which is the one and only String
object up to this point), a brand new String object is created. And then abandoned.
Because the new String isn’t assigned to a String variable, the newly created String
(which holds the string “FRED?”) is toast. So while two String objects were created
in the preceding code, only one is actually referenced, and both rand s refer to it.
The behavior of strings is extremely important in the exam, so we’ll cover it in much
more detail in Chapter 6.

Comparison Operators

Comparison operators always result in a boolean (true or false) value. This
boolean value is most often used in an iftest, as follows,

int x = 8;
if (x < 9) {

// do something
}

but the resulting value can also be assigned directly to a boolean primitive:

class CompareTest {
public static void main(String [] args) {
boolean b = 100 > 99;
System.out.println("The value of b is " + b);

}

You have four comparison operators that can be used to compare any combination
of integers, floating-point numbers, or characters:

M > greater than

M >= greater than or equal to
M < less than
|

<= less than or equal to

I 2 Chapter 3: Operators and Assignments

Let’s look at some legal comparisons:

class GuessAnimal {
public static void main(String [] args) {

String animal = "unknown";

int weight = 700;

char sex = 'm';

double colorWaveLength = 1.630;

if (weight >= 500) animal = "elephant";

if (colorWaveLength > 1.621) animal = "gray " + animal;
if (sex <= 'f') animal = "female " + animal;

System.out.println("The animal is a " + animal);
}

In the preceding code, we are using a comparison between characters. It’s also
legal to compare a character primitive with any number, as the code shows
(though it isn’t great programming style). Running the preceding class will
output the following:

%java GuessAnimal
The animal is a gray elephant

We mentioned that characters can be used in comparison operators. When
comparing a character with a character, or a character with a number, Java will take
the ASCII or Unicode value of the character as the numerical value, and compare
the numbers.

instanceof Comparison

The instanceof operator is used for object reference variables only, and you can
use it to check whether an object is of a particular type. By type, we mean class or
interface type—in other words, if the object referred to by the variable on the left
side of the operator passes the IS-A test for the class or interface type on the right
side (Chapter 5 covers IS-A relationships in detail). Look at the following example:

public static void main (String [] args) {
String s = new String("foo");
if (s instanceof String) {
System.out.print("s is a String");

Java Operators (Exam Objective 5.1) | 3

Even if the object being tested is not an actual instantiation of the class type on
the right side of the operator, instanceof will still return true if the object being
compared is assignment compatible with the type on the right. The following example
demonstrates testing an object using instanceof, to see if it’s an instance of one of
its superclasses:

class A { }
class B extends A { }
public static void main (String [] args) {
B b = new B();
if (b instanceof A) {
System.out.print("b is an A");

}

The preceding code shows that & is an a. So you can test an object reference
against its own class type, or any of its superclasses. This means that a7y object
reference will evaluate to true if you use the instanceof operator against type
Object, as follows,

B b = new B();
if (b instanceof Object) {

System.out.print ("b is definitely an Object");
}

which prints
b is definitely an Object
You can use the instanceof operator on interface types as well:

interface Foo { }
class Bar implements Foo { }
class TestBar {
public static void main (String [] args) {
Bar b = new Bar()
if (b instanceof Bar) {
System.out.println("b is a Bar");
}
if (b instanceof Foo) {
System.out.println("b is a Foo");

I 4 Chapter 3: Operators and Assignments

exam
Jatch

Running the TestBar class proves that the Bar object referenced by 4 is both a Bar
and a Foo:

b is a Bar
b is a Foo

Look for instanceof questions that test whether an object is an instance

of an interface, when the object’s class implements indirectly. An indirect
implementation occurs when one of an object’s superclasses implements
an interface, but the actual class of the instance does not—for example,

interface Foo { }
class A implements Foo { }
class B extends A { }

Using the definitions above, if we instantiate an A and a B as follows,
A a = new A();

B b = new B();

the following are true:

instanceof A
instanceof Foo
instanceof A
instanceof B

oo T o0

instanceof Foo // Even though class B doesn’t implement Foo
directly!

An object is said to be of a particular interface type (meaning it will pass the
instanceof test) if any of the object’s superclasses implement the interface.

In addition, it is legal to test whether a null object (or nul1l itself) is an
instance of a class. This will always result in false, of course. The following code
demonstrates this:

class InstanceTest {
public static void main(String [] args) {
String a = null;
boolean b null instanceof String;
boolean ¢ = a instanceof String;
System.out.println(b + " " + c);

}
When this code is run, we get the following output:

false false

exam
Jatch

Java Operators (Exam Objective 5.1) | §

So even though variable # was defined as a String, the underlying object is null;
therefore, instanceof returns a value of false when compared to the String class.

Remember that arrays are objects, even if the array is an array of primitives.
Look for questions that might look like this:
int [] nums = new int[3];

if (nums instanceof Object) { } // result is true

An array is always an instance of Object. Any array.

Table 3-2 shows results from several instanceof comparisons. For this table,
assume the following:

interface Face { }
class Bar implements Face{ }
class Foo extends Bar { }

Equality Operators

Equality can be tested with the operators equals and not equals:

B == cquals (also known as “equal t0”)

B ! = not equals (also known as “not equal t0”)

Equality operators compare two #hings and return a boolean value. Each individual

comparison can involve two numbers (including char), two boolean values, or two

TABLE 3-2 Operands and Results Using instanceof Operator

instanceof Operand

First Operand (Type We’re Comparing

(Reference Being Tested) the Reference Against) Result
null Any Class or Interface type false
Foo instance Foo, Bar, Face, Object true
Bar instance Bar, Face, Object true
Bar instance Foo false
Foo [] Foo, Bar, Face false
Foo [] Object true
Foo[1] Foo, Bar, Face, Object true

I & Chapter 3: Operators and Assignments

object reference variables. You can’t compare incompatible types, however. What
would it mean to ask if a boolean is equal to a char? Or if a Button is equal to a
String array? (Exactly, nonsense, which is why you can't do it.) There are four
different types of things that can be tested:

B Numbers

B Characters

B Boolean primitives

B Object reference variables

So what does == actually look at? The value in the variable—in other words, the
bit pattern.

Equality for Primitives
Most programmers are familiar with comparing primitive values. The following
code shows some equality tests on primitive variables:

class ComparePrimitives {

public static void main(String [] args) {
System.out.println("character 'a' == 'a'? " + ('a' == 'a'));
System.out.println("character 'a' == 'b'? " + ('a' == 'b'));
System.out.println("5 != 6?2 " + (5 != 6));
System.out.println("5.0 == 5L? " + (5.0 == 5L));
System.out.println("true == false? " + (true == false));
}
}
This program produces the following output:
%java ComparePrimitives
character 'a' == 'a'? true
character 'a' == 'b'? false
5 = 6? true
5.0 == 5L? true // Compare a floating point to an int
true == false? false

As we can see, if a floating-point number is compared with an integer and the
values are the same, the == operator returns #rue as expected.

exam

Jatch

Java Operators (Exam Objective 5.1) |7

Don’t mistake = for == in a boolean expression. The following is legal:

1. boolean b = false;

2. if (b = true) {

3. System.out.println(“b is true”);
4.} else {

5. System.out.println(“b is false”);
6.}

Look carefully! You might be tempted to think the output is “b is false,”
but look at the boolean test in line 2. The boolean variable b is not being
compared to true, it’s being set to true, so line 3 executes and we get “b is
true.” Keeping in mind that the result of any assignment expression is the
value of the variable following the assignment, you can see that in line 3, the
result of the expression will be true—the value of (b = true). This substitution
of = for == works only with boolean variables, since the if test can be done only
on boolean expressions. Thus, the following does not compile:

7. int x = 1;

8. if (x = 0) { }

Because x is an integer (and not a boolean), the result of (x = 0) is 0 (the result
of the assignment). Integers cannot be used where a boolean value is expected,
so the code in line 8 won’t work unless changed from an assignment (=) to an
equality test (==) as follows:

if (x == 0) { }

Equality for Reference Variables
As we saw earlier, two reference variables can refer to the same object, as the
following code snippet demonstrates:

Button a = new Button("Exit");
Button b = a;

After running this code, both variable # and variable & will refer to the same object
(a Button with the label Exiz). Reference variables can be tested to see if they refer to
the same object by using the == operator. Remember, the == operator is looking at the
bits in the variable, so for reference variables if the bits in both variables are identical,
then both refer to the same object. Look at the following code:

import java.awt.Button;
class CompareReference {
public static void main(String [] args) {

I 8 Chapter 3: Operators and Assignments

Button a = new Button ("Exit");
Button b = new Button ("Exit");

Button ¢ = a;
System.out.println("Is reference a == b? " + (a == b));
System.out.println("Is reference a == c? " + (a == ¢));

}

This code creates three reference variables. The first two, 2 and &, are separate
Button objects that happen to have the same label. The third reference variable, ¢, is
initialized to refer to the same object that « refers to. When this program runs, the
following output is produced:

Is reference a == b? false
Is reference a == c? true

This shows us that z and ¢ reference the same instance of a Button. We'll take
another look at the implications of testing object references for equality in Chapters
6 and 7, where we cover String comparison and the equals () method (as opposed
to the equals operator we're looking at here).

Arithmetic Operators

We're sure you’re familiar with the basic arithmetic operators.

B -+ addition

B —subtraction

B X multplication

B /division

These can be used in the standard way:

class MathTest {
public static void main (String [] args) {

int x = 5 * 3;
int v = x - 4;
System.out.println("x - 4 is " + vy); // Prints 11

}

(Warning: if you don’t know how to use the basic arithmetic operators, your
fourth-grade teacher, Mrs. Beasley, should be hunted down and forced to take

Java Operators (Exam Objective 5.1) | 9@

the programmer’s exam. That’s assuming you actually ever wenz to your fourth-
grade class.)

One operator you might not be as familiar with (and we won't hold Mrs. Beasley
responsible) is the remainder operator, %. The remainder operator divides the left
operand by the right operand, and the result is the remainder, as the following code
demonstrates:

class MathTest ({
public static void main (String [] args) {
int x = 15;
int y = x % 4;
System.out.println("The result of 15 % 4 is the remainder of
15 divided by 4. The remainder is " + vy);
}
}

Running class MathTest prints the following:
The result of 15 % 4 is the remainder of 15 divided by 4. The remainder is 3

You can also use a compound assignment operator (shown in Table 3-1) if the
operation is being done to a single variable. The following demonstrates using the
%= compound assignment operator:

class MathTest {
public static void main (String [] args) {

int x = 15;
X %= 4; // same as x = X % 4;
System.out.println("The remainder of 15 % 4 is " + x);

}

You're expected to know what happens when you divide by zero. With integers,
you'll get a runtime exception (ArithmeticException), but with floating-point
numbers you won'’t. Floating-point numbers divided by zero return either positive
infinity or negative infinity, depending on whether or not the zero is positive or
negative! That’s right, some floating-point operators can distinguish between
positive and negative zero. Rules to remember are these:

M Dividing an integer by zero will violate an important law of thermodynamics,
and cause an ArithmeticException (can’t divide by zero).

B Using the remainder operator (%) will result in an ArithmeticException if
the right operand is zero (can’t divide by zero).

20 Chapter 3: Operators and Assignments

B Dividing a floating-point number by zero will 7o# result in an
ArithmeticException, and the universe will remain intact.

B Using the remainder operator on floating-point numbers, where the right
operand is zero, will 7oz result in an ArithmeticException.

String Concatenation Operator
The plus sign can also be used to concatenate two strings together, as we saw earlier
(and we'll definitely see again):

String animal = "Grey " + "elephant";

String concatenation gets interesting when you combine numbers with Strings.

Check out the following:
String a = "String";
int b = 3;
int ¢ = 7;

System.out.println(a + b + c¢);

Will the + operator act as a plus sign when adding the 77z variables & + ¢ Or will
the + operator treat 3 and 7 as characters, and concatenate them individually? Will
the result be Stringl0 or String37? OK, you've had long enough to think
about it. The result is

String37

The int values were simply treated as characters and glued on to the right side of
the string. So we could read the previous code as:

“Start with String 4, “String”, and add the character 3 (the value of) to it, to
produce a new string “String3”, and then add the character 7 (the value of ¢) to
that, to produce a new string “String37”, then print it out.”

However, if you put parentheses around the two 7nz variables, as follows,
System.out.println(a + (b + c));

you'll get
StringlO

Using parentheses causes the (& + ¢) to evaluate first, so the + operator functions
as the addition operator, given that both operands are 77¢ values. The key point here

exam

Jatch

Java Operators (Exam Objective 5.1) 2. |

is that the left-hand operand is not a String. If it were, then the + operator would
perform String concatenation. The previous code can be read as:

“Add the values of & + ¢ together, then take the sum and convert it to a String and
concatenate it with the String from variable 2.”

The rule to remember is

If either operand is a String, the + operator becomes a String concatenation
operator. If both operands are numbers, the + operator is the addition operator.

You'll find that sometimes you might have trouble deciding whether, say, the left
hand operator is a String or not. On the exam, don’t expect it to always be obvious.
(Actually, now that we think about it, don't expect it ever to be obvious.) Look at the
following code:

System.out.println(x.foo() + 7);

You can’t know how the + operator is being used until you find out what the
foo () method returns! If foo () returns a String, then 7 is concatenated to the
returned String. But if fo0 () returns a number, then the + operator is used to add 7
to the return value of foo ().

If you don’t understand how String concatenation works, especially within a
print statement, you could actually fail the exam even if you know the rest
of the answer to the question! Because so many questions ask, “What is the
result?”’, you need to know not only the result of the code running, but also
how that result is printed. Although there will be at least a half-dozen questions
directly testing your String knowledge, String concatenation shows up in
other questions on virtually every objective, and if you get the concatenation
wrong, you’ll miss that question regardless of your ability to work out the rest
of the code. Experiment! For example, you might see a line such as

int b = 2;

int ¢ = 3;

System.out.println("" + b + c);

which prints

23

but if the print statement changes to

System.out.println(b + c);

then the result becomes
5.

272 Chapter 3:

Operators and Assignments

Increment and Decrement
Java has two operators that will increment or decrement a variable by exactly one.
These operators are composed of either two plus signs (++) or two minus signs (--):

B ++ increment (prefix and postfix)
B - decrement (prefix and postfix)
The operator is placed either before (prefix) or after (postfix) a variable to change

the value. Whether the operator comes before or after the operand can change the
outcome of an expression. Examine the following:

1 class MathTest {

2 static int players = 0;

3 public static void main (String [] args) {

4. System.out.println("players online: " + players++);

5 System.out.println("The value of players is " + players);

6 System.out.println("The value of players is now " + ++players);
7 }

8 }

Notice that in the fourth line of the program the increment operator is affer the
variable players. That means we're using the postfix increment operator, which causes
the variable players to be incremented by one bur only after the value of players is used
in the expression. When we run this program, it outputs the following:

%java MathTest

players online: 0

The value of players is 1
The value of players is now 2

Notice that when the variable is written to the screen, at first it says the value is 0.
Because we used the postfix increment operator, the increment doesn’t happen until
after the players variable is used in the print statement. Get it? The poszin postfix
means after. The next line, line 5, doesn’t increment players; it just outputs it to the
screen, so the newly incremented value displayed is 1. Line 6 applies the prefix
operator to players, which means the increment happens before the value of the
variable is used (pre means before). So the output is 2.

Expect to see questions mixing the increment and decrement operators with other
operators, as in the following example:

int x = 2;
int y 3;

exam

Jatch

Java Operators (Exam Objective 5.1) 2.3

if ((y == x++) | (x < ++y)) {
System.out.println("x = " + x + "y = " + vy);

}
The preceding code prints
x=3y=4
You can read the code as

“If3isequalto2 OR3 < 4...”

The first expression compares x and y, and the result is false, because the
increment on x doesn't happen until after the == test is made. Next, we increment x,
so now xis 3. Then we check to see if x is less than y, but we increment y before
comparing it with x! So the second logical test is (3 < 4). The result is #rue, so the
print statement runs.

Look out for questions that use the increment or decrement operators on a
final variable. Because final variables can’t be changed, the increment and
decrement operators can’t be used with them, and any attempt to do so will
result in a compiler error. The following code won’t compile,

final int x = 5;

int y = x++;

and produces the error

Test.java:4: cannot assign a value to final variable x

int y = x++;

You can expect a violation like this to be buried deep in a complex piece of
code. If you spot it, you know the code won’t compile and you can move on
without working through the rest of the code (unless, of course, you’re into
the sport of Extreme Test-Taking, and you want the running-out-of-time
challenge).

As with String concatenation, the increment and decrement operators are used
throughout the exam, even on questions that aren’t trying to test your knowledge of
how those operators work. You might see them in questions on forloops, exceptions,
even threads. Be ready.

24 Chapter 3: Operators and Assignments

Shift Operators

The following are shift operators:

B >> righe shift
B << left shift
B >>> unsigned right shift (also called zero-filled right shifi)

exam

Match The more obscure the topic, the more likely it will appear on the exam.

Operators such as +, -, ¥, and | aren’t likely to be tested for on the exam
because they’re so commonly used. Shift operators are rarely used by most
programmers; therefore, they will most definitely be on the exam.

The shift operators shift the bits of a number to the right or left, producing a
new number. Shift operators are used on integral numbers only (not floating-point
numbers). To determine the result of a shift, you have to convert the number into
binary. Let’s look at an example of a bit shift:

8 >> 1;
First, we must convert this number to a binary representation:
0000 0000 0000 0000 0000 0000 0000 1000

An intis a 32-bit integer, so all 32 bits must be displayed. If we apply a bit shift
of one to the right, using the >> operator, the new bit number is

0000 0000 0000 0000 0000 0000 0000 0100

Notice how the 1 bit moved over to the right, one place.
We can now convert this back to a decimal number (base 10) to get 4. The
following code shows the complete example:

class BitShift {
public static void main(String [] args) {
int x = 8;
System.out.println("Before shift x equals " + x);
x = x > 1;
System.out.println("After shift x equals " + x);

Java Operators (Exam Objective 5.1) 2§

When we compile and run this program we get the following output:

%java BitShift
Before shift x equals 8
After shift x equals 4

As you can see, the results are exactly what we expected them to be. Shift
operations can work on all integer numbers, regardless of the base they’re displayed
in (octal, decimal, or hexadecimal). The left shift works in exactly the same way,
except all bits are shifted in the opposite direction. The following code uses a
hexadecimal number to shift:

class BitShift {
public static void main(String [] args) {
int x = 0x80000000;
System.out.println("Before shift x equals " + Xx);
X = x << 1;
System.out.println("After shift x equals " + X);

}

To understand the preceding example, we'll convert the hexadecimal number to a
bit number. Fortunately, it’s pretty simple to convert from hexadecimal to bits. Each
hex digit converts to a four-bit representation, as we can see here:

8 0 0 0 0 0 0 0
1000 0000 0000 0000 0000 0000 0000 0OOGO

In the preceding example, the very leftmost bit represents the sign (positive or
negative). When the leftmost bit is 1, the number is negative; and when it is 0, the
number is positive. Running our program gives us the following:

%java BitShift
Before shift x equals -2147483648
After shift x equals 0

Shifting the bits one to the left moves the sign bit out where it simply drops off
the left edge (it doesn’t wrap around or anything like that) leaving us with 0 in the
leftmost bit. What about the right side? What gets filled in on the right side as the
previous rightmost bits move to the left? With the left shift operator, the right side is
always filled with zeroes.

26 Chapter 3:

Operators and Assignments

Then what about the left side of a right shift operation? When we shift to the
right, what gets filled in on the left as the previous leftmost bit moves to the right?
What takes its place? The answer depends on which of the two right shift operators
we're using.

When using the right shift operator (>>) to shift the bits of a negative number,
the sign bit gets shifted to the right, but the leftmost bits are filled in on the left
with whatever the sign bit was. So the bottom line is that with the right shift
operator (>>), a negative number stays negative. For example, let’s use the hex
number 0x80000000 again:

1000 0000 0000 0000 0000 0000 0000 0OOO
Now we'll shift the bits, using >>, one to the right:
1100 0000 0000 0000 0000 0000 0000 0O0O0O

As we can see, the sign bit is shifted to the right but (and this is important) the
leftmost bit is filled with the original sign bit. Let’s try some code that shifts it four
to the right rather than just one:

class BitShift {

public static void main(String [] args) {
int x = 0x80000000;
System.out.println("Before shift x equals " + X);

X = x >> 4;
System.out.println("After shift x equals " + x);

}

In line 5 of this program, the number will be bit shifted four to the right.
Running this program gives us the following output:

%java BitShift

Before shift x equals -2147483648

After shift x equals -134217728

The number now equals the following in bit representation:

1111 1000 0000 0000 0000 0000 0000 0000

Notice how the four new bits on the left have all been filled in with the original

sign bit.

Java Operators (Exam Objective 5.1) 27

We can use a special shift operator if we don’t want to keep the sign bit. This is the
unsigned right shift operator >>>. Let’s change the code slightly to use this operator:

class BitShift {

public static void main(String [] args) {
int x = 0x80000000;
System.out.println("Before shift x equals " + x);

x >>>= 4; //Assignment operator
System.out.println("After shift x equals " + X);

}
The output for this program is now the following:

%java BitShift
Before shift x equals -2147483648
After shift x equals 134217728

As we can see, the new number is positive because the negative bit wasn’t kept.

In bit representation, the old number is

1000 0000 0000 0000 0000 0000 0000 0O0O0O

and the new number is
0000 1000 0000 0000 0OOOO 0000 0000 0O0O0O

Notice how the leftmost bits are filled in with zeroes, even though the original sign bit
was a 1. That’s why the unsigned right shift operator is often referred to as the “zero
filled right shift operator.” One important implication of using >>> vs. >> is that zbe
result of an unsigned right shift is always positive, regardless of the original sign bit.

You also need to know that all operands in a bit shift are promoted to at least an
int (a long if the second operand is a long). And what happens if you try to shift by
more places than the number of bits in the number being shifted? For example, what
happens if you try to shift an inzby 33?2 The rule to remember is: the number of
bits shifted is always going to be the right operand modulus the total number of bits
for that primitive type. So for an inz, that means you'll shift by the right operand
modulus 32, and for a long, the right operand modulus 64. For example, if you try
to shift an int by, say, 34, it looks like this,

int x = 2;
int yv = x >> 34;

28 Chapter 3:

exam

Datch

Operators and Assignments

but because it's meaningless to shift by 34, since you don’t even have that many bits,
you actually end up shifting by 34 % 32 (we can use the remainder operator to
figure this out), which leaves us with a remainder of 2. So the result is actually

int vy = x >> 2;

You need to know what the bit shifts are actually doing in practical terms.

A right shift operator is actually causing the number being shifted to be divided
by 2 to the power of the number of bits to shift. For example, shifting x >> 4
is exactly the same as saying x / 2. And x >> 8 is exactly the same as x / 2°.
With the left shift operator, the result is exactly the same as multiplying the
number being shifted by 2 to the power of the number of bits to shift. So
shifting x << 3 is the same as saying x * 2°. One day, you will thank us for
pointing this out. (We accept checks and chocolate!)

EXERCISE 3-1

Using Shift Operators

I. Try writing a class that takes an integer of 1, shifts the bit 31 to the left,
then 31 to the right.

2. What number does this now represent?

3. What is the bit representation of the new number?

Bitwise Operators

The bitwise operators take two individual bit numbers, then use AND/OR to
determine the result on a bit-by-bit basis. There are three bitwise operators:
B & AND
B | inclusive OR
B A exclusive OR

The & operator compares corresponding bits between two numbers. If both
bits are 1, the final bit is also 1. If only one of the bits is 1, the resulting bit is 0.

Java Operators (Exam Objective 5.1) 29

Once again, for bitwise operations we must convert numbers to bit representations.
Table 3-3 displays the truth table for each of these operators. The left side of the
table displays the x and y values, and the right side shows the result of the operator
on these two values.

Let’s compare two numbers, 10 and 9, with the & operator:

1010 & 1001 = 1000

Try putting the second operand directly beneath the first, to make it easier to see
the result. For the preceding comparison (10 and 9), you can look at it as

1010
&

1001

1000

As we can see, only the first bit (8) is a 1 in both locations, hence the final
number is 1000 in bit representation (or 8 in decimal). Let’s see this in some code:

class Bitwise {
public static void main(String [] args) {
int x = 10 & 9; // 1010 and 1001
System.out.println("1010 & 1001 = " + x);
}

When we run this code, the following output is produced:

%java Bitwise
1010 & 1001 = 8

The | (OR) operator is different from the & (AND) operator when it compares
corresponding bits. Whereas the & operator will set a resulting bit to 1 only if bozh

&(AND) |(OR) A (XOR)

Y

Calculating 0 0 0 0
1
0

X

Values from 0 1 1
a Truth Table
0 1 1

— O | O

30 Chapter 3: Operators and Assignments

operand bits in the same position are 1, the | operator will set the resulting bit to 1 if
either (of both) of the bits is a 1. So, for the numbers 10 and 9, we get the following,

1010 | 1001 = 1011
which is easier to see as
1010
1001

1011

In this case because we have 1s in the 1, 2, and 8 bit slots, those bits are carried

in to the result. This expression produces the number 11 (in decimal). Let’s look
at this in code:

class Bitwise {
public static void main(String [] args) {
int x = 10 | 9; // 1010 and 1001
System.out.println("1010 & 1001 = " + x);

}

When we run the preceding code, we receive the following:

%$java Bitwise
1010 & 1001 = 11

The » (Exclusive OR, also known as XOR) operator compares two bits to see if
they are different. If they are different, the result is a 1. Look at the numbers 10
and 5 in bit representation:

1010 ~ 0101 = 1111

As we can see, the result is 15 in decimal form. To see it a little more clearly:
1010
0101
1111

Now let’s look at doing an XOR on 8 and13:

1000 ~ 1101 = 0101

Java Operators (Exam Objective 5.1) 3 ||

The result is 5 in decimal form.
1 000
1101

0101

Bitwise Complement Operator

The -~ operator is a flip-the-bits operator. It will change all 1s to Os and vice versa.
Look at the following code:

class Bitwise {
public static void main(String [] args) {

int x = 5;

System.out.println("x is initially " + x);
X = ~X;

System.out.println("~x is equal to " + x);

}

This program is changing every bit into its complement; thus, the output from
this program is the following:

%java Bitwise

x 1s initially 5

~X is equal to -6

In bit representation, the conversion looks like this,
~0000 0000 0000 0000 0000 0000 0000 O101

and converts to

1111 1111 1111 1111 1111 1111 1111 1010

Conditional Operator

The conditional operator is a ternary operator (it has three operands) and is used to
evaluate boolean expressions, much like an ifstatement except instead of executing
a block of code if the test is #7ue, a conditional operator will assign a value to a

variable. In other words, the goal of the conditional operator is to decide which of

32 Chapter 3: Operators and Assignments

two values to assign to a variable. A conditional operator is constructed using a ?
(question mark) and a : (colon). The parentheses are optional. Its structure is
as follows:

someVariable = (boolean expression) ? value to assign if true : value to assign if false

Let’s take a look at a conditional operator in code:

class Salary {
public static void main(String [] args) {
int numOfPets = 3;
String status = (numOfPets<4)?"Pet limit not exceeded":"too many pets";
System.out.println("This pet status is " + status);

}

You can read the preceding code as:

“Set numOfPets equal to 3. Next we’re going to assign a String to the
status variable. If numOfPets is less than 4, assign “Pet limit not exceeded” to
the szatus variable; otherwise, assign “too many pets” to the stazus variable.”

A conditional operator starts with a boolean operation, followed by two possible
values for the variable to the left of the conditional operator. The first value (the one
to the left of the colon) is assigned if the conditional (boolean) test is z7ue, and the
second value is assigned if the conditional test is fa/se. You can even nest conditional
operators into one statement.

class AssignmentOps {
public static void main(String [] args) {

int sizeOfYard = 10;

int numOfPets = 3;

String status = (numOfPets<4)?"Pet count OK"
: (sizeOfYard > 8)? "Pet limit on the edge"
:"too many pets";

System.out.println("Pet status is " + status);

Don’t expect many questions using conditional operators, but you need to be able
to spot them and respond correctly. Conditional operators are sometimes confused
with assertion statements, so be certain you can tell the difference. Chapter 4 covers
assertions in detail.

Java Operators (Exam Objective 5.1) 3 3

Primitive Casting

Casting lets you convert primitive values from one type to another. We looked at
primitive casting earlier in this chapter, in the assignments section, but now we’re
going to take a deeper look. Object casting is covered in Chapter 5.

Casts can be implicit or explicit. An implicit cast means you don't have to write
code for the cast; the conversion happens automatically. Typically, an implicit cast
happens when you're doing a widening conversion. In other words, putting a smaller
thing (say, a byte) into a bigger container (like an 777). Remember those “possible loss
of precision” compiler errors we saw in the assignments section? Those happened
when you tried to put a larger thing (say, a long) into a smaller container (like a
short). The large-value-into-small-container conversion is referred to as narrowing
and requires an explicit cast, where you tell the compiler that you're aware of the
danger and accept full responsibility. First we'll look at an implicit cast:

int a = 100;
long b = a; // Implicit cast, an int value always fits in a long

An explicit casts looks like this:

float a = 100.001;
int b = (int)a; // Explicit cast, a float can lose info as an int

Integer values may be assigned to a double variable without explicit casting, because
any integer value can fit in a 64-bit double. The following line demonstrates this:

double d = 100L; // Implicit cast

In the preceding statement, a double is initialized with a long value (as denoted by
the L after the numeric value). No cast is needed in this case because a double can
hold every piece of information that a long can store. If, however, we want to assign
a double value to an integer type, we're attempting a narrowing conversion and the
compiler knows it:

class Casting {
public static void main(String [] args) {
int x = 3957.229; // illegal

34 Chapter 3: Operators and Assignments

If we try to compile the preceding code, the following error is produced:

%$javac Casting.java

Casting.java:3: Incompatible type for declaration. Explicit cast
needed to convert double to int.

int x = 3957.229; // illegal
1 error

In the preceding code, a floating-point value is being assigned to an integer
variable. Because an integer is not capable of storing decimal places, an error occurs.
To make this work, we’ll cast the floating-point number into an integer:

class Casting {
public static void main(String [] args) {
int x = (int)3957.229; // legal cast
System.out.println("int x = " + x);

}

When you a cast a floating-point number to an integer type, the value loses
all the digits after the decimal. Running the preceding code will produce the
following output:

%$java Casting
int x = 3957

We can also cast a larger number type, such as a long, into a smaller number type,
such as a byre. Look at the following:

class Casting {
public static void main(String [] args) {
long 1 = 56L;
byte b = (byte)l;
System.out.println("The byte is " + Db);

}

The preceding code will compile and run fine. But what happens if the long value

is larger than 127 (the largest number a byte can store)? Let’s modify the code and
find out:

class Casting {
public static void main(String [] args) {
long 1 = 130L;
byte b = (byte)l;

Logical Operators (Exam Objective 5.3) 3 §

System.out.println("The byte is " + b);

}

The code compiles fine, and when we run it we get the following:

%java Casting

The byte is -126

You don't get a runtime error, even when the value being narrowed is too large for
the type. The bits to the left of the lower 8 just...go away. As we saw in the
assignments section, if the leftmost bit in the byte now happens to be a 1, the 1 is no
longer part of the value and instead becomes the sign bit for the new byte.

EXERCISE 3-2

Casting Primitives
Create a f1oat number type of any value, and assign it to a short using casting.

I. Declare a float variable: f1loat £ = 234 .56F;

2. Assign the float to a short: short s = (short) £;

CERTIFICATION OBJECTIVE

Logical Operators (Exam Objective 5.3)

In an expression involving the operators &, |, &¢5; and |, and variables of known
values, state which operands are evaluated and the value of the expression.

There are four logical operators. Two you've seen before; the & and | bitwise
operators can be used in boolean expressions. The other two we haven’t yet covered,
and are known as the short-circuit logical operators:

B && short-circuit AND

B |l short-circuit OR

36 Chapter 3: Operators and Assignments

Short-Circuit Logical Operators

The && operator is similar to the & operator, except it evaluates only boolean
values and can’t be used as a bitwise operator. Remember, for an AND expression
to be true, both operands must be true—for example,

if ((2 < 3) && (3 < 4)) {1}

The preceding expression evaluates to #7ue only because both operand one (2 < 3)
and operand two (3 < 4) evaluate to #rue.

The short-circuit feature of the && operator is that it doesn’t waste its time on
pointless evaluations. A short-circuit & & evaluates the left side of the operation first
(operand one), and if operand one resolves to false, the && operator doesn’t bother
looking at the right side of the equation (operand two). The operator already knows
that the complete expression can’t possibly be true, since one operand has already
proven to be false.

class Logical {
public static void main(String [] args) {
boolean b = true && false;
System.out.println("boolean b = " + Db);

}
When we run the preceding code, we get

C:\Java Projects\BookTest>java Logical
boolean b = false

The Il operator is similar to the && operator, except that it evaluates the left side
first, this time looking for #rue. If the first operand in an OR operation is #7ue, the
result will be #7ue, so the short-circuit Il doesn’t waste time looking at the right side
of the equation. If the first operand is false, however, the short-circuit || has to
evaluate the second operand to see if the result of the OR operation will be zrue or
false. Pay close attention to the following example; you'll see quite a few questions
like this on the exam:

1. class TestOR {

2. public static void main (String [] args) {
3 if ((isItSmall(3)) || (isItSmall(7))) {

4 System.out.println("Result is true");

0 3 o u

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Logical Operators (Exam Objective 5.3) 37

}
if ((isItSmall(6)) || (isItSmall(9))) {
System.out.println("Result is true");

public static boolean isItSmall (int i) {
if (1 < 5) {
System.out.println("i less than 5");
return true;
} else {
System.out.println("i greater than 5");
return false;

}

}

What is the result?

[localhost:~/javatests] kathy% java TestOR
i less than 5

Result is true

i greater than 5

i greater than 5

Here’s what happened when the main () method ran:

When we hit line 3, the first operand in the Il expression (in other words, the
left side of the Il operation) is evaluated.

The isItSmall (3) method is invoked and prints *1 less than 5”.

. The isItSmall (3) method returns true.

Because the first operand in the Il expression on line 3 is true, the I
operator doesn’t bother evaluating the second operand. So we never see the
“i greater than 5” that would have printed had the second operand
been evaluated (which would have invoked isItSmall (7)).

Line 6 is now evaluated, beginning with the first operand in the Il expression
on line 6.

The isTtSmall (6) method is invoked and prints “i greater than 5”.
The isItSmall (6) method returns false.

38 Chapter 3:

exam

Datch

Operators and Assignments

8. Because the first operand in the Il expression on line 6 is false, the |l operator
can’t skip the second operand; there’s still a chance the expression can be #rue,
if the second operand evaluates to zrue.

9. The isItSmall (9) method is invoked and prints *1 greater than 5”.

10. The isTtSmall (9) method returns false, so the expression on line 6 is false,
and thus line 7 never executes.

The || and && operators only work with boolean operands. The exam may try
to fool you by using integers with these operators, so be on guard for questions
such as,

if (5 && 6) { }

where it looks as though we’re trying to do a bitwise AND on the bits
representing the integers 5 and 6, but the code won’t even compile.

Logical Operators (not Short-Circuit)

exam

Match

The bitwise operators, & and |, can also be used in logical expressions. But because
they aren’t the short-circuit operators, they evaluate both sides of the expression,
always! They’re inefficient. For example, even if the first operand (left side) in an &
expression is false, the second operand will still be evaluated—even though it’s now
impossible for the result to be true! And the | is just as inefficient; if the first operand is
true, it still plows ahead and evaluates the second operand even when it knows the
expression will be true.

The rule to remember is

The short-circuit operators (¢ and ||) can be used only in logical (not bitwise)
expressions. The bitwise operators (& and 1) can be used in both logical and bitwise
expressions, but are rarely used in logical expressions because they’re not efficient.

You’ll find a lot of questions on the exam that use both the short-circuit and
non-short-circuit logical operators. You’ll have to know exactly which operands
are evaluated and which are not, since the result will vary depending on
whether the second operand in the expression is evaluated. The “Self Test”
at the end of this chapter includes several logical operator questions similar
to those on the exam.

Now that you have a better idea how operators work in Java, the following chart
shows some operators in action:

Passing Variables into Methods (Exam Objective 54) 39

SCENARIO & SOLUTION

What is the result of (1 & 3)? 1
What is the result of (1 | 3)? 3
What is the result of (1 << 2)? 4
What is the resulting value of (new String(“fred”) true
instanceof Object)?

CERTIFICATION OBJECTIVE

Passing Variables into Methods (Exam Objective 5.4)

Determine the effect upon objects and primitive values of passing variables into methods
and performing assignments or other modifying operations in that method.

Methods can be declared to take primitives and/or object references. You need

to know how (or if) the caller’s variable can be affected by the called method. The
difference between object reference and primitive variables, when passed into
methods, is huge and important. To understand this section, you’ll need to be
comfortable with the assignments section covered in the first part of this chapter.

Passing Object Reference Variables

When you pass an object variable into a method, you must keep in mind that you're
passing the object reference, and not the actual object itself. Remember that a reference
variable holds bits that represent (to the underlying VM) a way to get to a specific
object in memory (on the heap). More importantly, you must remember that you
aren’t even passing the actual reference variable, but rather a copy of the reference
variable. A copy of a variable means you get a copy of the bits in that variable, so
when you pass a reference variable, you're passing a copy of the bits representing
how to get to a specific object. In other words, both the caller and the called method
will now have identical copies of the reference, and thus both will refer to the same
exact (not a copy) object on the heap.

40 Chapter 3: Operators and Assignments

For this example, we'll use the Dimension class from the java.awt package:

1
2
3
4.
5
6
7
8

9.
10.
11.
12.
13.
14.

import java.awt.Dimension;
class ReferenceTest {
public static void main (String [] args) {

}

}
}

Dimension d = new Dimension(5,10);
ReferenceTest rt = new ReferenceTest () ;

System.out.println("Before modify () d.height = " + d.height);
rt.modify(d) ;
System.out.println("After modify() d.height = " + d.height);

void modify (Dimension dim) {

dim.height = dim.height + 1;
System.out.println("dim = " + dim.height);

When we run this class, we can see that the modify () method was indeed able
to modify the original (and only) Dimension object created on line 4.

C:\Java Projects\Reference>java ReferenceTest
Before modify () d.height = 10

dim

11

After modify () d.height = 11

Notice when the Dimension object on line 4 is passed to the modify ()
method, any changes to the object that occur inside the method are being made to
the object whose reference was passed. In the preceding example, reference variables
dand dim both point to the same object.

Does Java Use Pass-By-Value Semantics?

If Java passes objects by passing the reference variable instead, does that mean
Java uses pass-by-reference for objects? Not exactly, although you’ll often hear and
read that it does. Java is actually pass-by-value for all variables running within

a single VM. Pass-by-value means pass-by-variable-value. And that means,
pass-by-copy-of-the-variable !

It makes no difference if you're passing primitive or reference variables, you are
always passing a copy of the bits in the variable. So for a primitive variable, you're
passing a copy of the bits representing the value. For example, if you pass an int
variable with the value of 3, youre passing a copy of the bits representing 3. The
called method then gets its own copy of the value, to do with it what it likes.

Passing Variables into Methods (Exam Objective 54) 4 ||

And if you're passing an object reference variable, you're passing a copy of the bits
representing the reference to an object. The called method then gets its own copy of
the reference variable, to do with it what it likes. But because two identical reference
variables refer to the exact same object, if the called method modifies the object (by
invoking setter methods, for example), the caller will see that the object the caller’s
original variable refers to has also been changed. In the next section, we’ll look at
how the picture changes when we're talking about primitives.

The bottom line on pass-by-value: the called method can’t change the caller’s
variable, although for object reference variables, the called method can change the
object the variable referred to. What's the difference between changing the variable
and changing the object? For object references, it means the called method can't
reassign the caller’s original reference variable and make it refer to a different object,
or null. For example, in the following code,

void bar () {
Foo f = new Foo();
doStuff (f);

}

void doStuff (Foo g) {
g = new Foo();

}

reassigning ¢ does not reassign /! At the end of the bar () method, two Foo objects
have been created, one referenced by the local variable fand one referenced by the
local (argument variable) g. Because the doStuff () method has a copy of the
reference variable, it has a way to get to the original Foo object, but #he doStuff ()
method does not have a way to get to the f reference variable. So doStuff () can
change what frefers to, but can’t change the actual contents (bit pattern) of £

Passing Primitive Variables

Let’s look at what happens when a primitive variable is passed to a method:

class ReferenceTest {
public static void main (String [] args) {
int a = 1;
ReferenceTest rt = new ReferenceTest (
System.out.println("Before modify () a
rt.modify(a);

) .

;
="+ a);

472 Chapter 3: Operators and Assignments

System.out.println("After modify() a = " + a);
}
void modify (int number) {

number = number + 1;

System.out.println ("number = " + number) ;

}

In this simple program, the variable « is passed to a method called modify (),
which increments the variable by 1. The resulting output looks like this:

C:\Java Projects\Reference>java ReferenceTest
Before modify() a =1

number = 2

After modify() a =1

Notice that # did not change after it was passed to the method. Remember, it
was only a copy of a that was passed to the method. When a primitive variable is
passed to a method, it is passed by value, which means pass-by-copy-of-the-bits-in-
the-variable.

FROM THE CLASSROOM

The Shadowy World of Variables

Just when you think you’ve got it all figured ~ The effect of shadowing is to hide the

out, you see a piece of code with variables previously declared variable in such a way
not behaving the way you think they should. that it may /ook as though you’re using the
You might have stumbled into code with a hidden variable, but you’re actually using the
shadowed variable. You can shadow a variable ~ shadowing variable. You might find reasons
in several ways; we’ll look just at the one most to shadow a variable intentionally, but

likely to trip you up—hiding an instance typically it happens by accident and causes
variable by shadowing it with a local variable. hard-to-find bugs. On the exam, you can
Shadowing involves redeclaring a variable ~ expect to see questions where shadowing

that’s already been declared somewhere else. plays a role.

Passing Variables into Methods (Exam Objective 54) 43

FROM THE CLASSROOM

You can shadow an instance variable by either directly or as part of an argument
declaring a local variable of the same name, as follows:

class Foo {

int size = 7;
static void changelt (int size) {
size = size + 200;
System.out.println("size in changelIt is " + size);

}
public static void main (String [] args) {
Foo f = new Fool();

System.out.println("size = " + size);
changelIt (size) ;
System.out.println("size after changelIt is " + size);
}
}
The preceding code appears to change the parameter named size, the local size variable is
size instance variable in the changeIt () modified while the instance variable size is
method, but because changeIt () hasa untouched. Running class Foo prints

%java Foo

size = 7

size in changelIt is 207
size after changeIt is 7

Things become more interesting when the rather than a primitive:
shadowed variable is an object reference,

class Bar {
int barNum = 28;
}
class Foo {
Bar myBar = new Bar () ;
void changelt (Bar myBar) {
myBar.barNum = 99;

44 Chapter 3: Operators and Assignments

FROM THE CLASSROOM

System.out.println ("myBar.barNum in changeIt is " + barNum) ;
myBar = new Bar () ;
myBar.barNum = 420;
System.out.println ("myBar.barNum in changelIt is now " + barNum) ;
}
public static void main (String [] args) {

Foo f = new Fool();
System.out.println("f.myBar.barNum is " + f.myBar.barNum) ;

changelt (f.myBar) ;
System.out.println ("myBar.barNum after changeIt is " + f.myBar.barNum) ;

}
The preceding code prints out this:

f.myBar.barNum is 28

myBar.barNum in changeIt is 99
myBar.barNum in changeIt is now 420
f.myBar.barNum after changeIt is 99

You can see that the shadowing variable the local myBar is reassigned a new Bar object,
(the local parameter myBarin changeIt ()) which we then modify by changing its barNum
can still affect the 7yBar instance variable, value, Foo’s original 72yBar instance variable is
because the myBar parameter receives a untouched.

reference to the same Bar object. But when

CERTIFICATION SUMMARY ‘

If you’ve studied this chapter diligently, and thought of nothing else except this
chapter for the last 72 hours, you should have a firm grasp on Java operators. You
should understand what equality means when tested with the == operator, and you
know how primitives and objects behave when passed to a method. Let’s review the

highlights of what you’ve learned in this chapter.

Passing Variables into Methods (Exam Objective 54) 45§

To understand what a bit-shift operation is doing, you need to look at the
number being shifted in its binary form. The left shift (<<) shifts all bits to the left,
filling the right side with zeroes, and the right shift (>>) shifts all bits right, filling in
the left side with whatever the sign bit was. The unsigned right shift (>>>) moves all
bits to the right, but fills the left side with zeroes, regardless of the original sign bit.
Thus, the result of an unsigned right shift is always a positive number.

The logical operators (&& and Il) can be used only to evaluate two boolean
expressions. The bitwise operators (& and |) can be used on integral numbers to
produce a resulting numeric value, or on boolean values to produce a resulting
boolean value. The difference between && and & is that the && operator won't
bother testing the right operand if the left evaluates to false, because the result of
the && expression can never be z7ue. The difference between Il and | is that the I
operator won't bother testing the right operand if the left evaluates to #7ue, because
the result is already known to be #rue at that point.

The == operator can be used to compare values of primitives, but it can also be
used to determine whether two reference variables refer to the same object.

Although both objects and primitives are passed by value into a method, key
differences exist between how they behave once passed. Objects are passed by 2
copy of the reference value, while primitives are passed by a copy of the variable value.
This means that if an object is modified within a method, other code referring to
that object will notice the change. Both the caller and called methods have identical
copies of reference variables; therefore, they both refer to the exact same object
in memory.

Be prepared for a lot of exam questions involving the topics from this chapter.
Even within questions testing your knowledge of another objective, the code will
frequently use operators, assignments, object and primitive passing, etc., so be on
your toes for this topic, and take the “Self Test” seriously.

46 Chapter 3: Operators and Assignments

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in Chapter 3.

Java Operators (Sun Objective 5.1)

a

U EREE O

EEEEE

The result of performing most operations is either a boolean or a
numeric value.

Variables are just bit holders with a designated type.
A reference variable’s bits represent a way to get to an object.
An unassigned reference variable’s bits represent 7ull.

There are 12 assignment operators: =, *=, /=, %=, +=, -=, <<=, >>=, >>>=,
L AL
b k) e

Numeric expressions always result in at least an 7n#-sized result—never
smaller.

Floating-point numbers are implicitly doubles (64 bits).
Narrowing a primitive truncates the high-order bits.
Two’s complement means: flip all the bits, then add 1.

Compound assignments (e.g. +=) perform an automatic cast.

Reference Variables

a

a

When creating a new object, e.g., Button b = new Button();, three things
happen:

U Make a reference variable named &, of type Button
U Create a new Button object
U Refer the reference variable b to the Button object

Reference variables can refer to subclasses of the declared type but not
superclasses.

String Objects and References

a

String objects are immutable, cannot be changed.

Two-Minute Drill 47

d When you use a String reference variable to modify a String:
O A new string is created (the old string is immutable).

Q' The reference variable refers to the new string.

Comparison Operators
O Comparison operators always result in a boolean value (true or false).
O There are four comparison operators: >, >=, <, <=.

O When comparing characters, Java uses the ASCII or Unicode value of the
number as the numerical value.

instanceof Operator

U instanceof is for reference variables only, and checks for whether this
object is of a particular type.

O The instanceof operator can be used only to test objects (or null)
against class types that are in the same class hierarchy.

U For interfaces, an object is “of a type” if any of its superclasses implement the
interface in question.

Equality Operators

O Four types of things can be tested: numbers, characters, booleans, reference

variables.

O There are two equality operators: == and !=.

Arithmetic Operators
O There are four primary operators: add, subtract, multiply, and divide.
O The remainder operator returns the remainder of a division.

O When floating-point numbers are divided by zero, they return positive or
negative infinity.

O When the remainder operator performs a floating-point divide by zero, it will
not cause a runtime exception.

48 Chapter 3: Operators and Assignments

O When integers are divided by zero, a runtime ArithmeticException is thrown.

O When the remainder operator performs an integer divide by zero, a runtime
ArithmeticException is thrown.

String Concatenation Operator
QO If either operand is a String, the + operator concatenates the operands.

O If both operands are numeric, the + operator adds the operands.

Increment/Decrement Operators
U Prefix operator runs before the value is used in the expression.
U Postfix operator runs after the value is used in the expression.

O In any expression, both operands are fully evaluated before the operator is

applied.

U Final variables cannot be incremented or decremented.

Shift Operators

Q' There are three shift operators: >>, <<, >>>; the first two are signed, the last
is unsigned.

Q) Shift operators can only be used on integer types.

U Shift operators can work on all bases of integers (octal, decimal, or
hexadecimal).

U Bics are filled as follows:
O << fills the right bits with zeros.

O >> fills the left bits with whatever value the original sign bit (leftmost

bit) held.
O >>> fills the left bits with zeros (negative numbers will become positive).
() All bit shift operands are promoted to at least an int.

QO For int shifts > 32 or long shifts > 64, the actual shift value is the remainder
of the right operand / divided by 32 or 64, respectively.

Two-Minute Drill 4.9

Bitwise Operators

O There are three bitwise operators—&, A, |—and a bitwise complement,
operator ~.

The & operator sets a bit to 1 if both operand’s bits are set to 1.
The ~ operator sets a bit to 1 if exactly one operand’s bit is set to 1.

The | operator sets a bit to 1 if at least one operand’s bit is set to 1.

I Ny I

The ~ operator reverses the value of every bit in the single operand.

Ternary (Conditional Operator)

O Returns one of two values based on whether a boolean expression is true

or false.
U The value after the ? is the ‘if #7ue return’.

O The value after the : is the ‘if false return’.

Casting

O Implicit casting (you write no code) happens when a widening conversion
occurs.

O Explicit casting (you write the cast) happens when a narrowing conversion
occurs.

O Casting a floating point to an integer type causes all digits to the right of the
decimal point to be lost (truncated).

O Narrowing conversions can cause loss of data—the most significant bits
(leftmost) can be lost.

Logical Operators (Sun Objective 5.3)
O There are four logical operators: &, |, &&, II.

O Logical operators work with two expressions that must resolve to boolean
values.

U The && and & operators return true only if both operands are #rue.

 The Il and | operators return true if either or both operands are zrue.

B O Chapter 3: Operators and Assignments

U The && and |l operators are known as short-circuit operators.

O The && operator does not evaluate the right operand if the left operand
is false.

O The Il does not evaluate the right operand if the left operand is #rue.

O The & and | operators always evaluate both operands.

Passing Variables into Methods (Sun Objective 5.4)
U Methods can take primitives and/or object references as arguments.

U Method arguments are always copies—of either primitive variables or
reference variables.

O Method arguments are never actual objects (they can be references to
objects).

QO In practice, a primitive argument is a completely detached copy of the
original primitive.

O In practice, a reference argument is another copy of a reference to the
original object.

Self Test § ||

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question.

Java Operators (Sun Objective 5.1)

I. Which two are equal? (Choose two.)

A. 32/ 4;

B. (8>>2) <<4;

C. 275;

D. 128 >>> 2;

E. (2<<1) * (32>>3);
F. 2>>5;

2. Given the following,

1. import java.awt.*;
class Ticker extends Component {
public static void main (String [] args) {
Ticker t = new Ticker();

~N o Ul W N

}

which two of the following statements, inserted independently, could legally be inserted into
line 5 of this code? (Choose two.)

boolean test = (Component instanceof t) ;
boolean test = (t instanceof Ticker) ;
boolean test = t.instanceof (Ticker) ;
boolean test = (t instanceof Component) ;

boolean test = t.instanceof (Object) ;

mmogON®w>»

boolean test = (t instanceof String) ;

B2 Chapter 3: Operators and Assignments

3. Given the following,

1. <class Equals {

public static void main(String [] args)
int x = 100;
double y = 100.1;
boolean b = (x = vy);
System.out.println (b) ;

o J o Ul W N

}

what is the result?

A. true

B. false

C. Compilation fails

D. An exception is thrown at runtime

4. Given the following,

1. import java.awt.Button;

2 class CompareReference {

3 public static void main(String [] args)
4. float £ = 42.0f;

5. float [] f1 = new float[2];
6 float [] f2 = new float[2];
7 float [] £3 = f1;

8. long x = 42;

9. £f1[0] = 42.0f;
10. }
11. 3}

which three statements are true? (Choose three.)

A fl==1£2
B. f1==1£3
C. f2==£1[1]
D. x==£1[0]

E. £==£1[0]

5. Given the following,

1. class BitShift {
2. public static void main(String [] args)

Self Test §3

int x = 0x80000000;
System.out.print(x + " and ");
x = x >>> 31;

System.out.println (x) ;

0 J o Ul W

}

what is the output from this program?
-2147483648 and 1
0x80000000 and 0x00000001
-2147483648 and -1

1land -2147483648

None of the above

mo N w >

6. Given the following,

1. class Bitwise {

2. public static void main(String [] args) {
3. int x = 11 & 9;

4. int vy = x © 3;

5. System.out.println(y | 12);

6. }

7.}

what is the result?

A 0
B. 7
C. 8
D. 14
E. 15

7. Which of the following are legal lines of code? (Choose all that apply.)
A. intw= (int)888.8;
B. bytex= (byte)1000L;
C. longy = (byte)100;
D. bytez = (byte)100L;

B4 Chapter 3: Operators and Assignments

Logical Operators (Sun Objective 5.3)
8. Given the following,

1. class Test {

2. public static void main(String [] args)
3. int x= 0;

4. int y= 0;

5. for (int z = 0; z < 5; z++) {

6. if ((++x > 2) || (++y > 2)) {
7. X++;

8. }

9. }

10. System.out.println(x + " " + vy);
11. }

12. }

what is the result?
53

82

83

85

103

105

mmognN®w >

9. Given the following,

1. class Test {
2. public static void main(String [] args)
3. int x= 0;
4. int y= 0;
5. for (int z = 0; z < 5; z++) {
6. if ((++x > 2) && (++y > 2)) |
7. X++;
8. }
9. }
10. System.out.println(x + " " + y);
11. }
12. }
What is the result?
A 52
B. 53

C. 63

D. 64
E. 75
F. 85

10. Given the following,

class SSBool {

boolean bl =
boolean b2 =
boolean b3 =
if (bl & b2

System.out
if (bl & b2

System.out

PP WO Jo Ul W

0. }
1. 3

what is the result?

mmQgQMOhw>»

ok

dokey

ok dokey

No output is produced

Compilation error

public static void main(String [] args) {

true;
false;
true;
| b2 & b3 | b2)

.print("ok ");

| b2 & b3 | b2 | bl)

.println ("dokey") ;

An exception is thrown at runtime

Given the following,

1. <class Test {

int x=20;
String sup

~N o Ul W N

}

public static void main(String [] args) {

= (x<15)?"small": (x<22)?"tiny"

System.out.println (sup) ;

what is the result of compiling and running this code?

A

B
C.
D

small
tiny
huge

Compilation fails

: "huge";

Self Test

55

B @ Chapter 3: Operators and Assignments

12. Given the following,

1. class BoolArray {

2. boolean [] b = new boolean[3];

3. int count = 0;

4.

5. void set (boolean [] x, int 1) {
6. x[1] = true;

7. ++count;

8. }

9.

10. public static void main(String [] args) {
11. BoolArray ba = new BoolArray () ;
12. ba.set(ba.b, 0);

13. ba.set(ba.b, 2);

14. ba.test () ;

15. }

16.

17. void test() {

18. if (b[0] && b[1l] | b[2])

19. count++;

20. if (b[l] && b[(++count - 2)])
21. count += 7;

22. System.out.println("count = " + count);
23. }

24. }

what is the result?

A. count =0
B. count =2
C. count =3
D. count =14
E. count =10
F. count =11

Passing Variables into Methods (Sun Objective 5.4)
13. Given the following,

1. class Test {
2. static int s;
3.

Self Test B7

4 public static void main(String [] args) {
5. Test p = new Test();

6. p.start();

7 System.out.println(s) ;

8

10. void start () {

11. int x = 7;

12. twice (x) ;

13. System.out.print(x + " ");
14. }

15.

16. void twice (int x) {
17. X = X*2;

18. s = X;

19. }

20. }

what is the result?
77

714

140

14 14

Compilation fails

moN® >

o

An exception is thrown at runtime

14. Given the following,

1. class Test {

2. public static void main(String [] args) {
3. Test p = new Test();

4. p.start();

5. }

6.

7. void start() {

8. boolean bl = false;

9. boolean b2 = fix(bl);

10. System.out.println(bl + " " + b2);
11. }

12

13 boolean fix(boolean bl) {

i
I

bl = true;

B8 Chapter 3: Operators and Assignments

15. return bl;
16. }
17. }

what is the result?
true true

false true
true false

false false

moUO® >

Compilation fails

o

An exception is thrown at runtime

I15. Given the following,

1. class PassS {

2. public static void main(String [] args)
3. PassS p = new PassS();

4. p.start () ;

5. }

6.

7. void start() {

8. String sl = "slip";

9. String s2 = fix(sl);

10. System.out.println(sl + " " + s2);
11. }

12.

13. String fix(String sl) {

14. sl = sl + "stream";

15. System.out.print (sl + " ");

16. return "stream";

17. }

18. }

what is the result?
slip stream

slipstream stream

slipstreamslip stream

A
B
C. streamslip stream
D
E. Compilation fails

F.

An exception is thrown at runtime

16. Given the following,

1 class SC2 {

2 public static void main(String [] args) {
3 SC2 s = new SC2();

4. s.start () ;

5 }

6

7 void start () {

8. int a = 3;

9. int b = 4;

10. System.out.print (" " + 7 + 2 + " ");
11. System.out.print(a + b);

12. System.out.print(" " + a + b + " ");
13. System.out.print(foo() + a + b + " ");
14. System.out.println(a + b + foo());

15. }

16.

17. String foo() {

18. return "foo";

19. }

20. 1}

what is the result?

A.

B.

C.
D.

E.

977 foo7 7foo

72 34 34 foo34 34foo
977 foo34 34foo
727 34 foo34 7foo
93434 foo34 34foo0

17. Given the following,

1. class PassA {

2. public static void main(String [] args) {

3. PassA p = new PassA();

4. p.start () ;

5. }

6.

7. void start() {

8. long [] al = {3,4,5};

9. long [] a2 = fix(al);

10. System.out.print (al[0] + al[l] + al[2] + "
11. System.out.println(a2[0] + a2[1l] + a2([2]);

Self Test

59

60 Chapter 3: Operators and Assignments

12. }

13.

14. long [] fix(long [] a3) {
15. a3[l] = 7;

16. return a3;

17. }

18. 1}

what is the result?
1215
1515
345375
375375

Compilation fails

moO® >

M

An exception is thrown at runtime

18. Given the following,

1. class Two {

2. byte x;

3. }

4.

5. class PassO {

6. public static void main(String [] args)
7. PassO p = new PassO();

8. p.start();

9. }

10.

11. void start() {

12. Two t = new Two () ;

13. System.out.print(t.x + " ");
14. Two t2 = fix(t);

15. System.out.println(t.x + " " + t2.X);
16. }

17.

18. Two fix(Two tt) {

19. tt.x = 42;

20. return tt;

21. }

N
[\S]
-

what is the result?

Compilation fails

A. nullnull 42
B. 0042

C. 042142

D. 000

E.

F.

An exception is thrown at runtime

Self Test @ |l

62 Chapter 3: Operators and Assignments

SELF TEST ANSWERS

Java Operators (Sun Objective 5.1)

M B and D. B and D both evaluate to 32. B is shifting bits right then left using the signed
bit shifters >> and <<. D is shifting bits using the unsigned operator >>>, but since the
beginning number is positive the sign is maintained.

B A evaluates to 8, C looks like 2 to the 5" power, but A is the Exclusive OR operator so C
evaluates to 7. E evaluates to 16, and F evaluates to 0 (2 >> 5 is not 2 to the 5%).

M B and D. B is correct because class type Ticker is part of the class hierarchy of # therefore
it is a legal use of the instanceof operator. D is also correct because Component is part of the
hierarchy of # because Ticker extends Component in line 2.

X A is incorrect because the syntax is wrong. A variable (or null) always appears before the
instanceof operator, and a type appears after it. C and E are incorrect because the statement is
used as a method, which is illegal. F is incorrect because the String class is not in the hierarchy
of the robject.

M C. The code will not compile because in line 5, the line will work only if we use (x ==y)
in the line. The == operator compares values to produce a boolean, whereas the = operator
assigns a value to variables.

Xl A, B, and D are incorrect because the code does not get as far as compiling. If we corrected
this code, the output would be false.

M B, D, and E. B is correct because the reference variables f7 and 3 refer to the same array
object. D is correct because it is legal to compare integer and floating-point types. E is correct
because it is legal to compare a variable with an array element.

[Cis incorrect because f2 is an array object and f7/1]is an array element.

M A. The >>> operator moves all bits to the right, zero filling the left bits. The bit
transformation looks like this:

Before: 27000 0000 0000 0000 0000 0000 0000 0000
After: 0000 0000 0000 0000 0000 0000 0000 0001

C is incorrect because the >>> operator zero fills the left bits, which in this case changes
the sign of x, as shown. B is incorrect because the output method print () always displays
integers in base 10. D is incorrect because this is the reverse order of the two output numbers.
E is incorrect because there was a correct answer.

6.

Self Test Answers @3

M D. The & operator produces a 1 bit when both bits are 1. The result of the & operation
is 9. The » operator produces a 1 bit when exactly one bit is 1; the result of this operation is 10.
The | operator produces a 1 bit when at least one bit is 1; the result of this operation is 14.
A, B, C, and E, are incorrect based on the program logic described above.

M A, B, C, and D. A is correct because when a floating-point number (a double in this case)
is cast to an 7z, it simply loses the digits after the decimal. B and D are correct because a long
can be cast into a byre. If the long is over 127, it loses its most significant (leftmost) bits. C
actually works, even though a cast is not necessary, because a long can store a byze.

There are no incorrect answer choices.

Logical Operators (Sun Objective 5.3)

8.

M B. The first two iterations of the for loop both x and yare incremented. On the third
iteration x is incremented, and for the first time becomes greater than 2. The short circuit or
operator || keeps y from ever being incremented again and x is incremented twice on each of
the last three iterations.

A, C, D, E, and F are incorrect based on the program logic described above.

M C. In the first two iterations x is incremented once and y is not because of the short circuit
&& operator. In the third and forth iterations x and y are each incremented, and in the fifth
iteration x is doubly incremented and y is incremented.

& A, B, D, E, and F are incorrect based on the program logic described above.

M B. The & operator has a higher precedence than the | operator so that on line 6 47 and 62
are evaluated together as are 62 & 63. The final 41 in line 8 is what causes that iftest to be zrue.
A, C, and D are incorrect based on the program logic described above.

M B. This is an example of a nested ternary operator. The second evaluation (x < 22) is
true, so the “tiny” value is assigned to sup.
B A, C, and D are incorrect based on the program logic described above.

M C. The reference variables 4 and x both refer to the same boolean array. Count is
incremented for each call to the set () method, and once again when the first 7ftest is true.
Because of the && short circuit operator, count is not incremented during the second #f test.
A, B, D, E, and F are incorrect based on the program logic described above.

64 Chapter 3: Operators and Assignments

Passing Variables into Methods (Sun Objective 5.4)

13.

M B.The int xin the twice () method is not the same int xas in the start ()
method. Start () ’ s xis not affected by the twice () method. The instance variable s is
updated by twice ()’s x, which is 14.

& A, C, and D are incorrect based on the program logic described above.

M B. The boolean 41 in the £ix () method is a different boolean than the 41 in the
start () method. The 41 in the start () method is not updated by the £ix () method.
A, C, D, E, and F are incorrect based on the program logic described above.

M D. When the £ix () method is first entered, start ()’s s/ and £ix () ’s sI reference
variables both refer to the same String object (with a value of “slip”). Fix ()’s s/ is reassigned
to a new object that is created when the concatenation occurs (this second String object has a
value of “slipstream”). When the program returns to start (), another String object is
created, referred to by s2 and with a value of “stream”.

A, B, C, and E are incorrect based on the program logic described above.

M D. Because all of these expressions use the + operator, there is no precedence to worry

about and all of the expressions will be evaluated from left to right. If either operand being

evaluated is a String, the + operator will concatenate the two operands; if both operands are
numeric, the + operator will add the two operands.

A, B, C, and E are incorrect based on the program logic described above.

M B. The reference variables 27 and 43 refer to the same 1ong array object. When the [1]
element is updated in the £ix () method, it is updating the array referred to by 1. The
reference variable 42 refers to the same array object.

® A, C, D, E, and F are incorrect based on the program logic described above.

M C.Inthe £ix () method, the reference variable # refers to the same object (class Two) as
the #reference variable. Updating #z.x in the £ix () method updates zx (they are one in the
same object). Remember also that the instance variable x in the Two class is initialized to 0.

X A, B, D, E, and F are incorrect based on the program logic described above.

Exercise Answers @5

EXERCISE ANSWERS

Exercise 3-1: Using Shift Operators
The program should look something like the following:

class BitShift {
public static void main(String [] args) {
int x = 0x00000001; // or simply 1
x <<= 31;
x >>= 31;
System.out.println("After shift x equals " + x);

}

The number should now equal -1. In bits, this number is

1111 1111 1111 1111 1111 1111 1111 1111

Exercise 3-2: Casting Primitives
The program should look something like the following:

class Cast {
public static void main(String [] args) {

float £ = 234.56F;
short s = (short)f;

SUN™ CERTIFIED PROGRAMMER & DEVELOPER

Flow Control,
Exceptions, and
Assertions

CERTIFICATION OBJECTIVES

° Writing Code Using if and switch
Statements

° Writing Code Using Loops
° Handling Exceptions
° Working with the Assertion Mechanism
\/ Two-Minute Drill
Q&A Self Test

2 Chapter 4: Flow Control, Exceptions, and Assertions

an you imagine trying to write code using a language that didn’t give you a way to

execute statements conditionally? In other words, a language that didn’t let you say,

“If this thing over here is true, then | want this thing to happen; otherwise, do this other
thing instead.” Flow control is a key part of most any useful programming language, and Java offers
several ways to do it. Some, like if statements and for loops, are common to most languages.
But Java also throws in a couple flow control features you might not have used before—exceptions
and assertions.

The #fstatement and the switch statement are types of conditional/decision controls
that allow your program to perform differently at a “fork in the road,” depending on
the result of a logical test. Java also provides three different looping constructs—for,
while, and do-while—so you can execute the same code over and over again
depending on some condition being #rue. Exceptions give you a clean, simple way to
organize code that deals with problems that might crop up at runtime. Finally, the
assertion mechanism, added to the language with version 1.4, gives you a way to do
debugging checks on conditions you expect to smoke out while developing, when
you don’t necessarily need or want the runtime overhead associated with exception
handling.

With these tools, you can build a robust program that can handle any logical
situation with grace. Expect to see a wide range of questions on the exam that include
flow control as part of the question code, even on questions that aren’t testing your
knowledge of flow control.

CERTIFICATION OBJECTIVE

Writing Code Using if and switch Statements
(Exam Objective 2.1)

Write code using if and switch statements and identify legal argument types for
these statements.

The ifand swirch statements are commonly referred to as decision statements. When
you use decision statements in your program, you're asking the program to evaluate
a given expression to determine which course of action to take. We'll look at the #f°
statement first.

Writing Code Using if and switch Statements (Exam Objective 2.1) 3

if-else Branching

The basic format of an i £ statement is as follows:

if (booleanExpression) {
System.out.println("Inside if statement") ;

}

The expression in parentheses 7ust evaluate to a boolean true or false result.
Typically youre testing something to see if it’s z7ue, and then running a code block
(one or more statements) if it is true, and (optionally) another block of code if it
isn’t. We consider it good practice to enclose the blocks within curly braces, even if
there’s only one statement in the block. The following code demonstrates a legal if
statement:

if (x > 3) |
System.out.println("x is greater than 3");
} else {
System.out.println("x is not greater than 3");

}
The else block is optional, so you can also use the following:

if (x > 3) {

The preceding code will assign 2 to y if the test succeeds (meaning x really is greater
than 3), but the other two lines will execute regardless.

Even the curly braces are optional if you have only one statement to execute within
the body of the conditional block. The following code example is legal (although not

recommended for readability):

Be careful with code like this, because you might think it should read as, “Ifxis
greater than 3, then set yto 2, zto z+ 8, and a to y + x.” But the last two lines are

4 Chapter 4. Flow Control, Exceptions, and Assertions

going to execute no matter what! They aren’t part of the conditional flow. You might
find it even more misleading if the code were indented as follows:
g

(
y = 2;
z += 8;

a =y + x;
You might have a need to nest if-else statements (although, again, not recommended
for readability, so nested iftests should be kept to a minimum). You can set up an
if-else statement to test for multiple conditions. The following example uses two
conditions so that ifthe first test succeeds, we want to perform a second test before
deciding what to do:

if (price < 300) {
buyProduct () ;
}
else
if (price < 400) {
getApproval () ;
}
else {
dontBuyProduct () ;

}

Sometimes you can have a problem figuring out which 7fyour else goes to, as
follows:

if (exam.done())

if (exam.getScore() < 0.61)

System.out.println("Try again.");

else System.out.println("Java master!"); // Which if does this belong to?

We intentionally left out the indenting in this piece of code so it doesn’t give clues
as to which 7f'statement the else belongs to. Did you figure it out? Java law decrees
that an else clause belongs to the innermost 7fstatement to which it might possibly
belong (in other words, the closest preceding i f that doesn’t have an else). In the
case of the preceding example, the else belongs to the second 1 £ statement in
the listing. With proper indenting, it would look like this:

if (exam.done())
if (exam.getScore() < 0.61)
System.out.println("Try again.");

else

Writing Code Using if and switch Statements (Exam Objective 2.1) §

System.out.println("Java master!"); // Which if does this belong to?

Following our coding conventions by using curly braces, it would be even easier
to read:

if (exam.done()) {
if (exam.getScore() < 0.61) {
System.out.println("Try again.");

} else {

System.out.println("Java master!"); // Which if does this belong to?

exam

Jatch

Don't be getting your hopes up about the exam questions being all nice and
indented properly, however. Some exam takers even have a slogan for the way
questions are presented on the exam: anything that can be made more confusing,

will be.

Be prepared for questions that not only fail to indent nicely, but intentionally
indent in a misleading way: Pay close attention for misdirection like the
following example:
if (exam.done())

if (exam.getScore() < 0.61)

System.out.println(“"Try again.”);

else

System.out.println("“Java master!”); // Hmmmmm.. now where does it belong?
Of course, the preceding code is exactly the same as the previous two examples,
except for the way it looks.

Legal Arguments for if Statements
if statements can test against only a boolean. Any expression that resolves down to
a boolean is fine, but some of the expressions can be complex, like the following,

int yv = 5;
int x = 2;
if ((((x > 3) && (y < 2)) | doStuff()))

System.out.print ("true") ;
}

6 Chapter 4

exam
Match

Flow Control, Exceptions, and Assertions

which prints
true

You can read the preceding code as, “If both (x> 3) and (y < 2) are zrue, or if the
result of doStuff () is #rue, then print “true.” So basically, if just doStuff ()
alone is zrue, we'll still get “true.” If doStuff () is false, though, then both (x> 3)
and (y < 2) will have to be #rue in order to print “true.”

The preceding code is even more complex if you leave off one set of parentheses
as follows,

int y = 5;

int x = 2;

if (((x > 3) && (y < 2) | doStuff()))
System.out.print ("true") ;

}

which now prints...nothing! Because the preceding code (with one less set of
parentheses) evaluates as though you were saying, “If (x> 3) is #rue, and either (y < 2)
or the result of doStuff () is rue, then print “true.” So if (x > 3) is not true, no
point in looking at the rest of the expression.” Because of the short-circuit && and
the fact that at runtime the expression is evaluated as though there were parentheses
around ((y< 2) | doStuff()), it reads as though both the test before the
&& (x> 3) and then the rest of the expression afferthe && (y<2 | doStuff())
must be true.

Remember that the only legal argument to an 7ftest is a boolean. Table 4-1 lists
illegal arguments that might look tempting, compared with a modification to make
each argument legal.

One common mistake programmers make (and that can be difficult to spot),
is assigning a boolean variable when you meant to test a boolean variable.
Look out for code like the following:

boolean boo = false;
if (boo = true) { }

You might think one of three things:
I. The code compiles and runs fine, and the if test fails because boo is false.
2. The code won’t compile because you’re using an assignment (=) rather
than an equality test (==).
3. The code compiles and runs fine and the if test succeeds because boo is
set to true (rather than tested for true) in the if argument!

Writing Code Using if and switch Statements (Exam Objective 2.1) 7

Well, number 3 is correct. Pointless, but correct. Given that the result of
any assignment is the value of the variable after the assignment, the
expression (boo = true) has a result of true. Hence, the if test
succeeds. But the only variable that can be assigned (rather than tested
against something else) is a boolean; all other assignments will result in
something nonboolean, so they’re not legal, as in the following:

int x = 3;

if (x =5) { } // Won’t compile because x is not a boolean!

Because 7ftests require boolean expressions, you need to be really solid on both
logical operators and 7ftest syntax and semantics.

switch Statements

Another way to simulate the use of multiple 7fstatements is with the switch statement.
Take a look at the following #f-else code, and notice how confusing it can be to have
nested 7ftests, even just a few levels deep:

int x = 3;
if(x == 1) {

System.out.println("x equals 1");
}
else if(x == 2) {

System.out.println("x equals 2");
}
else if(x == 3) {
System.out.println("x equals 3");

}
else {
System.out.println("No idea what x is");

}

lllegal Arguments to if Legal Arguments to if

lllegal and Legal
Arguments to if

int x = 1; int x = 1;
if (x) {1} if (x == 1) { }
{3

if (0) if (false)
if (x = 6) if (x == 6)

8 Chapter 4 Flow Control, Exceptions, and Assertions

Now let’s see the same functionality represented in a switch construct:

int x = 3;
switch (x) {
case 1:
System.out.println("x is equal to 1");
break;
case 2:
System.out.println("x is equal to 2");
break;
case 3:
System.out.println("x is equal to 3");
break;
default:
System.out.println("Still no idea what x is");

}

Legal Arguments to switch and case

The only type that a switch can evaluate is the primitive int! That means only
variables and valuables that can be automatically promoted (in other words, implicitly
cast) to an int are acceptable. So you can switch on any of the following, but
nothing else:

byte
short
char
int

You won't be able to compile if you use anything else, including the remaining
numeric types of long, £loat, and double.

The only argument a case can evaluate is one of the same type as switch can use,
with one additional—and big—constraint: the case argument must be final! The case
argument has to be resolved at compile time, so that means you can use only a literal
or final variable. Also, the switch can only check for equalizy. This means that the
other relational operators such as greater than are rendered unusable in a case. The
following is an example of a valid expression using a method invocation in a switch
statement. Note that for this code to be legal, the method being invoked on the
object reference must return a value compatible with an int.

String s = "xyz";
switch (s.length()) {
case 1:

Writing Code Using if and switch Statements (Exam Objective 2.1) Q@

System.out.println("length is one");
break;

case 2:
System.out.println("length is two");
break;

case 3:
System.out.println("length is three");
break;

default:
System.out.println("no match");

}

The following example uses final variables in a case statement. Note that if the
final keyword is omitted, this code will not compile.

final int one = 1;
final int two = 2;

int x = 1;
switch (x) {
case one: System.out.println("one") ;
break;
case two: System.out.println("two") ;
break;

}

One other rule you might not expect involves the question, “What happens if 1
switch on a variable smaller than an int?” Look at the following switch example:

byte g = 2;
switch(g) {
case 23:
case 128:

}

This code won’t compile. Although the swizch argument is legal—a by te is
implicitly cast to an int—the second case argument (128) is too large for a byte,
and the compiler knows it! Attempting to compile the preceding example gives you
an error:

Test.java:6: possible loss of precision
found : int
required: byte

case 129:

A

I O Chapter4: Flow Control, Exceptions, and Assertions

I¢’s also illegal to have more than one case label using the same value. For example,
the following block of code won’t compile because it uses two cases with the same
value of 80:

int temp = 90;
switch(temp) {
case 80
System.out.println("80") ;
break;
case 80
System.out.println("80") ;
break;
case 90:
System.out.println("90") ;
break;
default:
System.out.println("default") ;

exam

Match Look for any violation of the rules for switch and case arguments. For example,

you might find illegal examples like the following three snippets:

Integer in = new Integer (4);
switch (in) { }

switch(x) {
case 0 {

y =7;

switch(x) {

0: {1}

1: {7}
}
In the first example, you can’t switch on an Integer object, only an int
primitive. In the second example, the case uses a curly brace and omits
the colon. The third example omits the keyword case.

Writing Code Using if and switch Statements (Exam Objective 2.1) | ||

Default, Break, and Fall-Through in switch Blocks

When the program encounters the keyword break during the execution of a switch
statement, execution will immediately move out of the switch block to the next
statement affer the switch. If break is omitted, the program just keeps executing
the different case blocks until either a break is found or the switch statement ends.
Examine the following code:

int x = 1;

switch(x) {
case 1: System.out.println("x is one");
case 2: System.out.println("x is two");
case 3: System.out.println("x is three");

}
System.out.println("out of the switch");

The code will print the following:

x 1s one

x 1s two

x 1is three

out of the switch

This combination occurs because the code didn't hit a break statement; thus,
execution just kept dropping down through each case until the end. This dropping
down is actually called “fall through,” because of the way execution falls from one
case to the next. Think of the matching case as simply your entry point into the
switch block!In other words, you must 7ot think of it as, “Find the matching case,
execute just that code, and get out.” That’s not how it works. If you do want that
“just the matching code” behavior, you'll insert a break into each case as follows:

int x = 1;
switch (x) {
case 1: {
System.out.println("x is one");
break;
}
case 2: {
System.out.println("x is two");
break;
}
case 3: {
System.out.println("x is two");

I 2 Chapter 4. Flow Control, Exceptions, and Assertions

break;

}
System.out.println("out of the switch");

Running the preceding code, now that we’ve added the break statements, will print

x is one
out of the switch

and that’s it. We entered into the swizch block at case 1. Because it matched the
switch () argument, we got the println statement, then hit the break and
jumped to the end of the switch.

Another way to think of this fall-through logic is shown in the following code:

int x = someNumberBetweenOneAndTen;

switch (x) {

case 2:

case 4:

case 6:

case 8:

case 10: {
System.out.println("x is an even number") ;
break;

}

This switch statement will print “x is an even number” or nothing, depending on
whether the number is between one and ten and is odd or even. For example, if x is 4,
execution will begin at case 4, but then fall down through 6, 8, and 10, where it
prints and then breaks. The break at case 10, by the way, is not needed; we're
already at the end of the switch anyway.

The Default Case

What if, using the preceding code, you wanted to print “x is an odd number” if
none of the cases (the even numbers) matched? You couldn’t put it after the switch
statement, or even as the last case in the switch, because in both of those situations
it would always print “x is an odd number.” To get this behavior, you’ll use the
default keyword. (By the way, if you've wondered why there is a default
keyword even though we don’t use a modifier for default access control, now you’ll

Writing Code Using if and switch Statements (Exam Objective 2.1) | 3

see that the default keyword is used for a completely different purpose.) The
only change we need to make is to add the default case to the preceding code:

int x = someNumberBetweenOneAndTen;

) |

switch (x
case 2:
case 4:
case 6:

case 8:

case 10: {

System.out.println("x is an even number") ;
break;

}
default: System.out.println("x is an odd number") ;

}
exam

py The default case doesn’t have to come at the end of the switch. Look for it in
atch

strange places such as the following:

int x = 2;

switch (x) {
case 2: System.out.println(“2”);
default: System.out.println(“default”);
case 3: System.out.println(“3”);
case 4: System.out.println(“4”);

}

Running the preceding code prints

2
default
3
4

and if we modify it so that the only match is the default case:
int x = 7;
switch (x) {

case 2: System.out.println(“2”);

default: System.out.println(“default”);

case 3: System.out.println(“3”);

case 4: System.out.println(“4”);

I 4 Chapter 4. Flow Control, Exceptions, and Assertions

Running the preceding code prints
default

3

4

The rule to remember is default works just like any other case for fall-through!

EXERCISE 4-1

Creating a switch-case Statement
Try creating a switch-case statement using a char value as the case. Include a default
behavior if none of the char values match.

|. Make sure a char variable is declared before the switch statement.
2. Each case statement should be followed by a break.

3. The default value can be located at the end, middle, or top.

CERTIFICATION OBJECTIVE

Writing Code Using Loops (Exam Objective 2.2)

Write code using all forms of loops including labeled and unlabeled, use of break
and continue, and state the values taken by loop counter variables during and after

loop execution.

Java loops come in three flavors: while, do-while, and for. All three let you repeat a
block of code as long as some condition is zrue, or for a specific number of iterations.
You're probably familiar with loops from other languages, so even if you’re somewhat
new to Java, these won’t be a problem to learn.

Writing Code Using Loops (Exam Objective 2.2) | §

Using while Loops

The while loop is good for scenarios where you don’t know how many times block
or statement should repeat, but you want it to continue as long as some condition is
true. A while statement looks like this:

int x = 2;

while(x == 2) {
System.out.println(x);
++X;

}

In this case, as in all loops, the expression (test) must evaluate to a boolean result.
Any variables used in the expression of a while loop must be declared before the
expression is evaluated. In other words, you can’t say

while (int x = 2) { }

Then again, why would you? Instead of testing the variable, you’d be declaring and
initializing it, so it would always have the exact same value. Not much of a test
condition!

The body of the while loop will only execute if the condition results in a zrue
value. Once inside the loop, the loop body will repeat until the condition is no
longer met and evaluates to false. In the previous example, program control will
enter the loop body because x is equal to 2. However, x is incremented in the loop,
so when the condition is checked again it will evaluate to false and exit the loop.

The key point to remember about a while loop is that it might not ever run. If
the test expression is false the first time the while expression is checked, the loop
body will be skipped and the program will begin executing at the first statement
after the while loop. Look at the following example:

int x = 8;

while (x > 8) {
System.out.println("in the loop");
x = 10;

}

System.out.println("past the loop");

Running this code produces

past the loop

I & Chapter 4. Flow Control, Exceptions, and Assertions

Although the test variable x is incremented within the whileloop body, the program
will never see it. This is in contrast to the do-while loop that executes the loop body
once, and zhen does the first test.

Using do-while Loops
The following shows a do-while statement in action:

do {
System.out.println("Inside loop");
} while(false) ;

The System.out.println() statement will print once, even though the
expression evaluates to false. The do-whileloop will always run the code in the loop
body at least once. Be sure to note the use of the semicolon at the end of the while
expression.

exam

Datch As with if tests, look for while loops (and the while test in a do-while loop) with

an expression that does not resolve to a boolean. Take a look at the following
examples of legal and illegal while expressions:

int x = 1;

while (x) { } // Won’t compile; x is not a boolean

while (x = 5) { } // Won’t compile; resolves to 5 (result of assignment)
while (x == 5) { } // Legal, equality test

while (true) { } // Legal

Using for Loops

The forloop is especially useful for flow control when you already know how many
times you need to execute the statements in the loop’s block. The forloop declaration
has three main parts, besides the body of the loop:

B Declaration and initialization of variables

B The boolean expression (conditional test)

B The iteration expression

Writing Code Using Loops (Exam Objective 2.2) | 7

Each of the three for declaration parts is separated by a semicolon. The following
two examples demonstrate the forloop. The first example shows the parts of a for
loop in a pseudocode form, and the second shows typical syntax of the loop.

for (/*Initialization*/ ; /*Condition*/ ; /* Iteration */) {
/* loop body */

for (int i = 0; 1i<10; i++) {
System.out.println("i is " + 1i);

}

Declaration and Initialization

The first part of the for statement lets you declare and initialize zero, one, or multiple
variables of the same type inside the parentheses after the for keyword. If you declare
more than one variable of the same type, then you’ll need to separate them with
commas as follows:

for (int x = 10, yv = 3; yv > 3; y++) { }

The declaration and initialization happens before anything else in a for loop. And whereas
the other two parts—the boolean test and the iteration expression—will run with
each iteration of the loop, the declaration and initialization happens just once, at the
very beginning. You also must know that zhe scope of variables declared in the for loop
ends with the for loop! The following demonstrates this:

for (int x = 1; x < 2; x++) {
System.out.println(x); // Legal
}
System.out.println(x); // Not Legal! x is now out of scope and

can't be accessed.
If you try to compile this, you'll get

Test.java:19: cannot resolve symbol

symbol : variable x

location: class Test
System.out.println(x) ;

A

I 8 Chapter4: Flow Control, Exceptions, and Assertions

Conditional (boolean) Expression

The next section that executes is the conditional expression, which (like all other
conditional tests) must evaluate to a boolean value. You can have only one logical
expression, but it can be very complex. Look out for code that uses logical expressions

like this:
for (int x = 0; ((((x < 10) && (y-- > 2)) | x == 3)); x++) { }
The preceding code is legal, but the following is 7oz

for (int x = 0; (x > 5), (y < 2); x++) { } // too many
//expressions

The compiler will let you know the problem:

TestLong.java:20: ';' expected
for (int x = 0; (x > 5), (y < 2); x++) { }

~

The rule to remember is this: You can have only one test expression. In other words,
you can’t use multiple tests separated by commas, even though the ozber two parts
of a for statement can have multiple parts.

Iteration Expression

After each execution of the body of the for loop, the iteration expression is executed.
This part is where you get to say what you want to happen with each iteration of
the loop. Remember that it always happens affer the loop body runs! Look at the
following;

for (int x = 0; x < 1; x++) {
// body code here
}

The preceding loop executes just once. The first time into the loop x is set to 0, then
xis tested to see if it’s less than 1 (which it is), and then the body of the loop executes.
After the body of the loop runs, the iteration expression runs, incrementing x by 1.
Next, the conditional test is checked, and since the result is now false, execution
jumps to below the for loop and continues on. Keep in mind that this zeration
expression is always the last thing that happens! So although the body may never execute
again, the iteration expression a/ways runs at the end of the loop block, as long as no

Writing Code Using Loops (Exam Objective 2.2) | Q@

other code within the loop causes execution to leave the loop. For example, a break,
return, exception, or System.exit () will all cause a loop to terminate
abruptly, without running the iteration expression. Look at the following code:

static boolean doStuff () {
for (int x = 0; x < 3; x++) {
System.out.println("in for loop");
return true;

}

return true;

}
Running this code produces
in for loop

The statement only prints once, because a return causes execution to leave
not just the current iteration of a loop, but the entire method. So the iteration
expression never runs in that case. Table 4-2 lists the causes and results of abrupt
loop termination.

for Loop Issues
None of the three sections of the for declaration are required! The following
example is perfectly legal (although not necessarily good practice):

for(; ;) {
System.out.println("Inside an endless loop");
}

In the preceding example, all the declaration parts are left out so it will act like
an endless loop. For the exam, it’s important to know that with the absence of the

TABLE 4-2 Causes of Early Loop Termination

Code in Loop What Happens

break

Execution jumps immediately to the first statement after the for loop.

return

Execution immediately jumps back to the calling method.

System.exit () All program execution stops; the VM shuts down.

20 Chapter 4. Flow Control, Exceptions, and Assertions

initialization and increment sections, the loop will act like a while loop. The following
example demonstrates how this is accomplished:

int 1 = 0;

for (;1<10;) {
1++;
//do some other work

}

The next example demonstrates a for loop with multiple variables in play. A comma
separates the variables, and they must be of the same type. Remember that the
variables declared in the for statement are all local to the forloop, and can't be used
outside the scope of the loop.

for (int 1 = 0,3 = 0; (i<10) && (j<10); i++, J++) {
System.out.println("i is " + i + "j is " +3);
}
exam

Tatch Variable scope plays a large role in the exam. You need to know that a variable

declared in the for loop can’t be used beyond the for loop. But a variable only
initialized in the for statement (but declared earlier) can be used beyond the loop.
For example, the following is legal,

int x = 3;

for (x = 12; x < 20, x++) { }

System.out.println(x);

while this is not,

for (int x = 3; x < 20; x++) { }System.out.println(x);

The last thing to note is that a/l three sections of the for loop are independent of each
other. The three expressions in the for statement don’t need to operate on the same
variables, although they typically do. But even the iterator expression, which many
mistakenly call the “increment expression,” doesn’t need to increment or set anything;
you can put in virtually any arbitrary code statements that you want to happen with
each iteration of the loop. Look at the following:

int b = 3;
for (int a = 1; b != 1; System.out.println("iterate")) {
b =Db - a;

exam

Jatch

Writing Code Using Loops (Exam Objective 2.2) 2 ||

The preceding code prints

iterate
iterate

Most questions in the new (1.4) exam list “Compilation fails’’ and “An exception
occurs at runtime” as possible answers. This makes it more difficult because
you can’t simply work through the behavior of the code. You must first make
sure the code isn’t violating any fundamental rules that will lead to compiler
error, and then look for possible exceptions, and only after you’ve satisfied
those two should you dig into the logic and flow of the code in the question.

Using break and continue in for Loops

exam

Jatch

The break and continue keywords are used to stop either the entire loop (break)
or just the current iteration (continue). Typically if you're using break or continue,
you’ll do an #ftest within the loop, and if some condition becomes #rue (or false
depending on the program), you want to get out immediately. The difference between
them is whether or not you continue with a new iteration or jump to the first statement
below the loop and continue from there.

continue statements must be inside a loop; otherwise, you’ll get a compiler
error. break statements must be used inside either a loop or switch statement.

The break statement causes the program to stop execution of the innermost
looping and start processing the next line of code after the block.

The continue statement causes only the current izeration of the innermost loop
to cease and the next iteration of the same loop to start if the condition of the loop is
met. When using a continue statement with a for loop, you need to consider the
effects that continue has on the loop iteration. Examine the following code, which
will be explained afterward.

for (int 1 = 0; 1 < 10; 1i++) {
System.out.println("Inside loop");
continue;

272 Chapter 4. Flow Control, Exceptions, and Assertions

The question is, is this an endless loop? The answer is no. When the continue
statement is hit, the iteration expression still runs! It runs just as though the current
iteration ended “in the natural way.” So in the preceding example, 7 will still increment
before the condition (7 < 10) is checked again. Most of the time, a continue is
used within an 1 f test as follows:

for (int 1 = 0; 1 < 10; 1i++) {
System.out.println("Inside loop");
if (foo.doStuff() == 5) {
continue;

}

// more loop code, that won't be reached when the above if
//test 1s true

Unlabeled Statements

Both the break statement and the continue statement can be unlabeled or
labeled. Although it’s far more common to use break and continue unlabeled,
the exam expects you to know how labeled break and continue work. As stated
before, a break statement (unlabeled) will exit out of the innermost looping construct
and proceed with the next line of code beyond the loop block. The following example
demonstrates a break statement:

boolean problem = true;
while (true) {
if (problem) {
System.out.println("There was a problem") ;
break;

}

//next line of code

In the previous example, the break statement is unlabeled. The following is
another example of an unlabeled continue statement:

while (!EOF) {
//read a field from a file
if (there was a problem) {
//move to the next field in the file
continue;

Writing Code Using Loops (Exam Objective 2.2) 2.3

In this example, there is a file being read from one field at a time. When an error
is encountered, the program moves to the next field in the file and uses the continue
statement to go back into the loop (if it is not at the end of the file) and keeps reading
the various fields. If the break command were used instead, the code would stop
reading the file once the error occurred and move on to the next line of code. The
continue statement gives you a way to say, “This particular iteration of the loop
needs to stop, but not the whole loop itself. I just don’t want the rest of the code in
this iteration to finish, so do the iteration expression and then start over with the
test, and don’t worry about what was below the continue statement.”

Labeled Statements

You need to understand the difference between labeled and unlabeled break and
continue. The labeled varieties are needed only in situations where you have a
nested loop, and need to indicate which of the nested loops you want to break from,
or from which of the nested loops you want to cont inue with the next iteration.
A break statement will exit out of the labeled loop, as opposed to the innermost
loop, if the break keyword is combined with a label. An example of what a label
looks like is in the following code:

foo:
for (int x = 3; x < 20; x++) {
while(y > 7) {
Y-——

}
}

The label must adhere to the rules for a valid variable name and should adhere to
the Java naming convention. The syntax for the use of a label name in conjunction
with a break statement is the break keyword, then the label name, followed by a
semicolon. A more complete example of the use of a labeled break statement is as
follows:

outer:
for(int i=0; 1i<10; i++) {
while (y > 7) {
System.out.println("Hello") ;
break outer;
} // end of inner for loop
System.out.println("Outer loop."); // Won't print

24 Chapter 4. Flow Control, Exceptions, and Assertions

} // end of outer for loop
System.out.println("Good-Bye") ;

Running this code produces

Hello
Good-Bye

In this example the word Hello will be printed one time. Then, the labeled break
statement will be executed, and the flow will exit out of the loop labeled ouzer. The
next line of code will then print out Good-Bye. Let’s see what will happen if the
continue statement is used instead of the break statement. The following code
example is the same as the preceding one, with the exception of substituting
continue for break:

outer:
for (int 1=0; 1<10; 1i++) {
for (int j=0; 3j<5; j++) {
System.out.println("Hello") ;
continue outer;
} // end of inner loop
System.out.println("outer"); // Never prints
}
System.out.println("Good-Bye") ;

Running this code produces

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Good-Bye

In this example, Hello will be printed ten times. After the continue statement
is executed, the flow continues with the next iteration of the loop identified with the

label. Finally, when the condition in the outer loop evaluates to false, the 7loop
will finish and Good-Bye will be printed.

Handling Exceptions (Exam Objectives 2.3 and 2.4) 2§

EXERCISE 4-2

Creating a Labeled while Loop
Try creating a labeled while loop. Make the label ouzer and provide a condition to
check whether a variable age is less than or equal to 21. Within the loop, it should
increment the age by one. Every time it goes through the loop, it checks whether
the age is 16. If it is, it will print a message to get your driver’s license and continue

to the outer loop. If not, it just prints “Another year.”

I. The outer label should appear just before the while loop begins. It does not
matter if it is on the same line or not.

2. Make sure age is declared outside of the while loop.

exam

- Labeled continue and break statements must be inside the loop that has
Qdatch

the same label name; otherwise, the code will not compile.

CERTIFICATION OBJECTIVE

Handling Exceptions (Exam Objectives 2.3 and 2.4)

Write code that makes proper use of exceptions and exception handling clauses (try,
catch, finally) and declares methods and overriding methods that throw exceptions.

Recognize the effect of an exception arising at a specified point in a code fragment.
Note that the exception may be a runtime exception, a checked exception, or an error
(the code may include try, catch, or finally clauses in any legitimate combination).

An old maxim in software development says that 80 percent of the work is used

20 percent of the time. The 80 percent refers to the effort required to check and
handle errors. In many languages, writing program code that checks for and deals
with errors is tedious and bloats the application source into confusing spaghetti.
Still, error detection and handling may be the most important ingredient of any
robust application. Java arms developers with an elegant mechanism for handling
errors that produces efficient and organized error-handling code: exception handling.

26 Chapter 4. Flow Control, Exceptions, and Assertions

Exception handling allows developers to detect errors easily without writing
special code to test return values. Even better, it lets us keep exception-handling code
cleanly separated from the exception-generating code. It also lets us use the same
exception-handling code to deal with a range of possible exceptions.

The exam has two objectives covering exception handling, but because they’re
covering the same topic we're covering both objectives with the content in this section.

Catching an Exception Using try and catch

Before we begin, let’s introduce some terminology. The term exception means
“exceptional condition” and is an occurrence that alters the normal program flow.
A bunch of things can lead to exceptions, including hardware failures, resource
exhaustion, and good old bugs. When an exceptional event occurs in Java, an
exception is said to be thrown. The code that’s responsible for doing something
about the exception is called an exception handler, and it catches the thrown exception.
Exception handling works by transferring the execution of a program to an
appropriate exception handler when an exception occurs. For example, if you call
a method that opens a file but the file cannot be opened, execution of that method
will stop, and code that you wrote to deal with this situation will be run. Therefore,
we need a way to tell the JVM what code to execute when a certain exception happens.
To do this, we use the try and catch keywords. The try is used to define a
block of code in which exceptions may occur. This block of code is called a guarded
region (which really means “risky code goes here”). One or more catch clauses
match a specific exception (or class of exceptions—more on that later) to a block
of code that handles it. Here’s how it looks in pseudocode:

1. try {

2 // This is the first line of the "guarded region"

3 // that is governed by the try keyword.

4. // Put code here that might cause some kind of exception.
5 // We may have many code lines here or just one.

6

7

8

}
catch (MyFirstException) {
// Put code here that handles this Exception.

9. // This is the next line of the exception handler.
10. // This is the last line of the exception handler.
11. 1}

12. catch(MySecondException) {
13. // Put code here that handles this exception

14. 3}

Handling Exceptions (Exam Objectives 2.3 and 2.4) 27

15.
16. // Some other unguarded (normal, non-risky) code begins here

In this pseudocode example, lines 2 through 5 constitute the guarded region that
is governed by the try clause. Line seven is an exception handler for an exception
of type MyFirstException. Line 12 is an exception handler for an exception of type
MySecondException. Notice that the catch blocks immediately follow the try
block. This is a requirement; if you have one or more catch blocks, they must
immediately follow the try block. Additionally, the catch blocks must all follow
each other, without any other statements or blocks in between. Also, the order in which
the catch blocks appear matters, as we'll see a little later.

Execution starts at line 2. If the program executes all the way to line 5 with no
exceptions being thrown, execution will transfer to line 15 and continue downward.
However, if at any time in lines 2 through 5 (the try block) an exception is thrown
of type MyFirstException, execution will immediately transfer to line 8. Lines 8
through 10 will then be executed so that the entire catch block runs, and then
execution will transfer to line 15 and continue.

Note that if an exception occurred on, say, line 3 of the try block, the rest of the
lines in the try block (3 through 5) would never be executed. Once control jumps
to the catch block, it never returns to complete the balance of the try block.
This is exactly what you want, though. Imagine your code looks something like this
pseudocode:

try {
getTheFileFromOverNetwork
readFromTheFileAndPopulateTable

}
catch (CantGetFileFromNetwork) {
useLocalFileInstead

}

The preceding pseudocode demonstrates how you typically work with exceptions.
Code that’s dependent on a risky operation (as populating a table with file data is
dependent on getting the file from the network) is grouped into a try block in such
a way that if; say, the first operation fails, you won’t continue trying to run other code
that’s guaranteed to also fail. In the pseudocode example, you won’t be able to read
from the file if you cant get the file off the network in the first place.

One of the benefits of using exception handling is that code to handle any
particular exception that may occur in the governed region needs to be written only

28 Chapter 4. Flow Control, Exceptions, and Assertions

once. Returning to our earlier code example, there may be three different places in
our try block that can generate a MyFirstException, but wherever it occurs it will
be handled by the same catch block (on line 7). We'll discuss more benefits of
exception handling near the end of this chapter.

Using finally

Try and catch provide a terrific mechanism for trapping and handling exceptions,
but we are left with the problem of how to clean up after ourselves. Because execution
transfers out of the try block as soon as an exception is thrown, we can’t put our
cleanup code at the bottom of the try block and expect it to be executed if an
exception occurs. Almost as bad an idea would be placing our cleanup code in the
catch blocks.

Exception handlers are a poor place to clean up after the code in the try block
because each handler then requires its own copy of the cleanup code. If; for example,
you allocated a network socket or opened a file somewhere in the guarded region,
each exception handler would have to close the file or release the socket. That would
make it too easy to forget to do cleanup, and also lead to a lot of redundant code. To
address this problem, Java offers the £inally block.

A finally block encloses code that is a/ways executed at some point after the
try block, whether an exception was thrown or not. Even if there is a return statement
in the try block, the finally block executes right after the rezurn statement! This
is the right place to close your files, release your network sockets, and perform any
other cleanup your code requires. If the try block executes with no exceptions, the
finally block is executed immediately after the try block completes. If there
was an exception thrown, the finally block executes immediately after the proper
catch block completes.

Let’s look at another pseudocode example:

1: try {

2 // This is the first line of the "guarded region".
3: %}

4: catch(MyFirstException) {

5 // Put code here that handles this error.

6

7

8

}
catch (MySecondException) {
: // Put code here that handles this error.
9: }
10: finally {
11: // Put code here to release any resource we

12: // allocated in the try clause.

Handling Exceptions (Exam Objectives 2.3 and 2.4) 2.9

13: }
14:
15: // More code here

As before, execution starts at the first line of the try block, line 2. If there are no
exceptions thrown in the try block, execution transfers to line 11, the first line of
the £inally block. On the other hand, if a MySecondException is thrown while
the code in the try block is executing, execution transfers to the first line of that
exception handler, line 8 in the catch clause. After all the code in the catch
clause is executed, the program moves to line 11, the first line of the finally clause.
Repeat after me: finally always runs! OK, we'll have to refine that a little, but for now,
start burning in the idea that finally always runs. If an exception is thrown, finally runs.
If an exception is noz thrown, finally runs. If the exception is caught, finally runs. If
the exception is 7ot caught, finally runs. Later we'll look at the few scenarios in which
finally might not run or complete.

finally clauses are not required. If you don’t write one, your code will compile
and run just fine. In fact, if you have no resources to clean up after your try block
completes, you probably don’t need a finally clause. Also, because the compiler
doesn't even require catch clauses, sometimes you’'ll run across code that has a
try block immediately followed by a £inally block. Such code is useful when
the exception is going to be passed back to the calling method, as explained in the
next section. Using a £inally block allows the cleanup code to execute even when
there isn't a catch clause.

The following legal code demonstrates a #7y with a finally but no catch:

try {
// do stuff
} finally {
//clean up

}
The following legal code demonstrates a #7y, catch, and finally.

try {
// do stuff

} catch (SomeException ex) {
// do exception handling

} finally {
// clean up

}

30 Chapter 4. Flow Control, Exceptions, and Assertions

The following illegal code demonstrates a ry without cazch or finally.

try {
// do stuff
}
System.out.println("out of try block"); // need a catch or finally here

The following illegal code demonstrates a misplaced catch block:

try {
// do stuff
}
System.out.println("out of try block"); // can't have code between try/catch
catch (Exception ex) { }

exa : It is illegal to use a try clause without either a catch clause ora finally
Watch clause. A try clause by itself will result in a compiler error. Any catch
clauses must immediately follow the try block. Any finally clauses must
immediately follow the last catch clause. It is legal to omit either the catch
clause or the finally clause, but not both.
ex a\;ja ¢ch You can’t sneak any code in between the try and catch (or try and

finally) blocks. The following won’t compile:
try {
// do stuff
}
System.out.print (“below the try”); //Illegal!
catch (Exception ex) { }

Propagating Uncaught Exceptions

Why aren’t catch clauses required? What happens to an exception that’s thrown
in a try block when there is no catch clause waiting for it? Actually, there’s no
requirement that you code a catch clause for every possible exception that could
be thrown from the corresponding try block. In fact, it’s doubtful that you could
accomplish such a feat! If a method doesn’t provide a catch clause for a particular
exception, that method is said to be “ducking” the exception (or “passing the buck”).

The Java method
call stack

Handling Exceptions (Exam Objectives 2.3 and 2.4) 3 ||

So what happens to a ducked exception? Before we discuss that, we need to briefly
review the concept of the call stack. Most languages have the concept of a method
stack or a call stack. Simply put, the call stack is the chain of methods that your
program executes to get to the current method. If your program starts in method
main () andmain () calls method a (), which calls method b () that in turn
calls method c (), the call stack consists of the following:

c
b
a
main

A stack can be represented as growing upward (although it can also be visualized
as growing downward). As you can see, the last method called is at the top of the
stack, while the first calling method is at the bottom. If you could print out the state
of the stack at any given time, you would produce a szack trace. The method at the
very top of the stack trace would be the method you were currently executing. If
we move back down the call stack, we're moving from the current method to the
previously called method. Figure 4-1 illustrates a way to think about how the call
stack in Java works.

Now let’s examine what happens to ducked exceptions. Imagine a building, say,
five stories high, and at each floor there is a deck or balcony. Now imagine that on
each deck, one person is standing holding a baseball mitt. Exceptions are like balls
dropped from person to person, starting from the roof. An exception is first thrown

1) The call stack while method3() is running.

4 method3() method?2 invokes method3
3 method2() method| invokes method2
2 method | () main invokes method|

| main() main begins

The order in which methods are put on the call stack

2) The call stack after method3() completes
Execution returns to method2()

| method2() method2() will complete
2 method | () method | () will complete
3 main() main() will complete and the VM will exit

The order in which methods complete

32 Chapter 4 Flow Control, Exceptions, and Assertions

exam
Datch

from the top of the stack (in other words, the person on the roof), and if it isn’t
caught by the same person who threw it (the person on the roof), it drops down
the call stack to the previous method, which is the person standing on the deck one
floor down. If not caught there, by the person one floor down, the exception/ball
again drops down to the previous method (person on the next floor down), and so
on until they are caught or until they reach the very bottom of the call stack. This is
called exception propagation.

If they reach the bottom of the call stack, it’s like reaching the bottom of a very
long drop; the ball explodes, and so does your program. An exception that’s never
caught will cause your application to stop running. A description (if one is available)
of the exception will be displayed, and the call stack will be “dumped.” This helps
you debug your application by telling you what exception was thrown, from what
method it was thrown, and what the stack looked like at the time.

You can keep throwing an exception down through the methods on the stack.
But what about when you get to the main () method at the bottom? You can
throw the exception out of main () as well. This results in the Java virtual
machine (JVM) halting, and the stack trace will be printed to the output.

The following code throws an exception,

class TestEx {
public static void main (String [] args) {
doStuff();
}
static void doStuff() {
doMoreStuff();
}
static void doMoreStuff() {
int x = 5/0; // Can’t divide by zero! ArithmeticException is thrown here
}
}

which prints out the stack trace,

$java TestEx
Exception in thread “main” java.lang.ArithmeticException: / by zero
at TestEx.doMoreStuff (TestEx.java:10)
at TestEx.doStuff (TestEx.java:7)

at TestEx.main (TestEx.java:3)

Handling Exceptions (Exam Objectives 2.3 and 2.4) 3 3

EXERCISE 4-3

Propagating and Catching an Exception

So far you have only seen exceptions displayed in this chapter with pseudocode. In
this exercise we attempt to create two methods that deal with exceptions. One of the
methods is the main () method, which will call another method. If an exception is
thrown in the other method, it must deal with it. A finally statement will be
included to indicate it is all done. The method it will call will be named reverse (),
and it will reverse the order of the characters in the string. If the string contains no
characters, it will propagate an exception up to the main () method.

I. Create an enclosing class called Propagate and amain () method, which will
remain empty for now.

2. Create a method called reverse (). It takes an argument of a string and
returns a String,.

3. Check if the String has a length of 0 by using the 1length () method. If the
length is 0, it will throw a new exception.

4. Now let’s include the code to reverse the order of the String. Because this
isn’t the main topic of this chapter, the reversal code has been provided, but
feel free to try it on your own.

String reverseStr = "";
for (int i=s.length()-1;i>=0;--1) {

reverseStr += s.charAt(i);

}

return reverseStr;

5. Now in themain () method we will attempt to call this method and deal
with any potential exceptions. Additionally, we will include a finally
statement that tells us it has finished.

Defining Exceptions

We have been discussing exceptions as a concept. We know that they are thrown
when a problem of some type happens, and we know what effect they have on the

34 Chapter 4. Flow Control, Exceptions, and Assertions

flow of our program. In this section we will develop the concepts further and use
exceptions in functional Java code. Earlier we said that an exception is an occurrence
that alters the normal program flow. But because this is Java, anything that’s not a
primitive must be...an object. Exceptions are no, well, exception to this rule. Every
exception is as an instance of a class that has class Exception in its inheritance hierarchy.
In other words, exceptions are always some subclass of java . lang.Exception.

When an exception is thrown, an object of a particular Exception subtype is
instantiated and handed to the exception handler as an argument to the catch clause.
An actual catch clause looks like this:

try {
// some code here

}

catch (ArrayIndexOutOfBoundsException e) {
e.printStackTrace () ;

}

In this example, ¢is an instance of a class with the tersely named
ArrayIndexOutOfBoundsException. As with any other object, you
can call its methods.

Exception Hierarchy

All exception classes are subtypes of class Exception. This class derives from the class
Throwable (which derives from the class Object). Figure 4-2 shows the hierarchy for
the exception classes.

As you can see, there are two subclasses that derive from Throwable: Exception
and Error. Classes that derive from Error represent unusual situations that are not
caused by program errors or by anything that would normally happen during program
execution, such as the JVM running out of memory. Generally, your application
won’t be able to recover from an Error, so you're not required to handle them. If
your code does 7ot handle them (and it usually won't), it will still compile with no
trouble. Although often thought of as exceptional conditions, Errors are technically
not exceptions because they do not derive from class Exception.

In general, an exception represents something that happens not as a result of a
programming error, but rather because some resource is not available or some other
condition required for correct execution is not present. For example, if your application
is supposed to communicate with another application or computer that is not

Exception class
hierarchy

Handling Exceptions (Exam Objectives 2.3and 24) 3 §

Object
Throwable
/ \
Error Exception
/ .
RuntimeException

—

answering, this is an exception that is not caused by a bug. Figure 4-2 also shows a

subtype of Exception called RuntimeException. These exceptions are a special case
because they actually do indicate program errors. They can also represent rare, difficult
to handle exceptional conditions. Runtime exceptions are discussed in greater detail
later in this chapter.

Java provides many exception classes, most of which have quite descriptive names.
There are two ways to get information about an exception. The first is from the type
of the exception itself. The next is from information that you can get from the
exception object. Class Throwable (at the top of the inheritance tree for exceptions)
provides its descendants with some methods that are useful in exception handlers.
One of these is printStackTrace (). As expected, if you call an exception
object’s printStackTrace () method, as in the earlier example, a stack trace
from where the exception occurred will be printed.

We discussed that a call stack builds upward with the most recently called method
at the top. You will notice that the printStackTrace () method prints the most
recently entered method first and continues down, printing the name of each method
as it works its way down the call stack (this is called unwinding the stack) from the top.

36 Chapter 4

exam

Datch

Flow Control, Exceptions, and Assertions

For the exam, it is not necessary to know any of the methods contained in the
Throwable classes, including Exception and Error. You are expected to know
that Exception, Error, RuntimeException, and Throwable types can all be
thrown using the throws keyword, and can all be caught (although you rarely
will catch anything other than Exception subtypes).

Handling an Entire Class Hierarchy of Exceptions

on the

()ob

We've discussed that the catch keyword allows you to specify a particular type of
exception to catch. You can actually catch 7ore than one type of exception in a single
catch clause. If the exception class that you specify in the catch clause has no
subclasses, then only the specified class of exception will be caught. However, if the
class specified in the catch clause does have subclasses, any exception object thar
subclasses the specified class will be caught as well.

For example, class IndexOutOfBoundsException has two subclasses,
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.
You may want to write one exception handler that deals with exceptions produced
by either type of boundary error, but you might not be concerned with which
exception you actually have. In this case, you could write a catch clause like
the following:

try {
// Some code here that can throw a boundary exception
}
catch (IndexOutOfBoundsException e) {
e.printStackTrace() ;

}

If any code in the try block throws ArraylndexOutOfBoundsException or
StringIndexOutOfBoundsException, the exception will be caught and handled. This
can be convenient, but it should be used sparingly. By specifying an exception class’
superclass in your catch clause, you're discarding valuable information about the
exception. You can, of course, find out exactly what exception class you have, but if
youre going to do that, you're better off writing a separate catch clause for each
exception type of interest.

Resist the temptation to write a single catchall exception handler such as the
following:

try {
// some code

Handling Exceptions (Exam Objectives 2.3 and 24) 37

}
catch (Exception e) {

e.printStackTrace() ;
7
This code will catch every exception generated. Of course, no single exception
handler can properly handle every exception, and programming in this way
defeats the design objective. Exception handlers that trap many errors at
once will probably reduce the reliability of your program because it’s likely
that an exception will be caught that the handler does not know how to handle.

Exception Matching

If you have an exception hierarchy composed of a superclass exception and a number
of subtypes, and you’re interested in handling one of the subtypes in a special way
but want to handle all the rest together, you need write only two catch clauses.

When an exception is thrown, Java will try to find a catch clause for the
exception type. If it doesn’t find one, it will search for a handler for a supertype of
the exception. If it does 7oz find a catch clause that matches a supertype for the
exception, then the exception is propagated down the call stack. This process is
called exception matching.

Let’s look at an example:

1: import java.io.*;

2: public class ReadData {

3: public static void main(String args([]) {

4: try |

5: RandomAccessFile raf =

6: new RandomAccessFile("myfile.txt", "r");
7: byte b[] = new byte[1000];

8: raf.readFully (b, 0, 1000);

9: }
10: catch (FileNotFoundException e) {

11 System.err.println("File not found");
12 System.err.println(e.getMessage()) ;
13: e.printStackTrace() ;

14: }

15: catch (IOException e) {

16: System.err.println("IO Error");

17: System.err.println(e.toString()) ;

18: e.printStackTrace () ;

19: }

38 Chapter 4 Flow Control, Exceptions, and Assertions

20: }
21: }

This short program attempts to open a file and to read some data from it. Opening
and reading files can generate many exceptions, most of which are some type of
IOException. Imagine that in this program we're interested in knowing only whether
the exact exception is a FileNotFoundException. Otherwise, we don’t care exactly
what the problem is.

FileNotFoundException is a subclass of IOException. Therefore, we could handle
itin the catch clause that catches all subtypes of IOException, but then we would
have to test the exception to determine whether it was a FileNotFoundException.
Instead, we coded a special exception handler for the FileNotFoundException and
a separate exception handler for all other IOException subtypes.

If this code generates a FileNotFoundException, it will be handled by the
catch clause that begins at line 10. If it generates another IOException—perhaps
EOFException, which is a subclass of IOException—it will be handled by the catch
clause that begins at line 15. If some other exception is generated, such as a runtime
exception of some type, neither catch clause will be executed and the exception
will be propagated down the call stack.

Notice that the catch clause for the FileNotFoundException was placed above
the handler for the IOException. 7his is really important! If we do it the opposite
way, the program will not compile. The handlers for the most specific exceptions must
always be placed above those for more general exceptions. The following will not compile:

try {
// do risky IO things
} catch (IOException e) {
// handle general IOExceptions
} catch (FileNotFoundException ex) {
// handle just FileNotFoundException
}

You'll get the following compiler error:

TestEx.java:15: exception java.io.FileNotFoundException has
already been caught
} catch (FileNotFoundException ex) {

A

If you think of the people with baseball mitts, imagine that the most general mitts
are the largest, and can thus catch many different kinds of balls. An IOException

Handling Exceptions (Exam Objectives 2.3 and 2.4) 39

mitt is large enough and flexible enough to catch any type of IOException. So if the
person on the fifth floor (say, Fred) has a big ‘ol IOException mitt, he cant help but
catch a FileNotFoundException ball with it. And if the guy (say, Jimmy) on the
second floor is holding a FileNotFoundException mitt, that FileNotFoundException
ball will never get to him, since it will always be stopped by Fred on the fifth floor,
standing there with his big-enough-for-any-IOException mitt.

So what do you do with exceptions that are siblings in the class hierarchy? If one
Exception class is not a subtype or supertype of the other, then the order in which
the catch clauses are placed doesn’t matter.

Exception Declaration and the Public Interface

So, how do we know that some method throws an exception that we have to catch?
Just as a method must specify what type and how many arguments it accepts and
what is returned, the exceptions that a method can throw must be declared (unless the
exceptions are subclasses of Runt imeException). The list of thrown exceptions
is part of a method’s public interface. The throws keyword is used as follows to
list the exceptions that a method can throw:

void myFunction() throws MyExceptionl, MyException2 {
// code for the method here
}

This method has a void return type, accepts no arguments, and declares that it
throws two exceptions of type MyExceptionl and MyException2. (Just because
the method declares that it throws an exception doesn’t mean it always will. It just
tells the world that it might.)

Suppose your method doesn’t directly throw an exception, but calls a method that
does. You can choose not to handle the exception yourself and instead just declare it,
as though it were your method that actually throws the exception. If you do declare
the exception that your method might get from another method, and you don't
provide a try/catch for it, then the method will propagate back to the method
that called your method, and either be caught there or continue on to be handled by
a method further down the stack.

Any method that might #row an exception (unless it’s a subclass of RuntimeException)
must declare the exception. That includes methods that aren’t actually throwing it
directly, but are “ducking” and letting the exception pass down to the next method
in the stack. If you “duck” an exception, it is just as if you were the one actually

40 Chapter 4

exam

Datch

Flow Control, Exceptions, and Assertions

throwing the exception. RuntimeException subclasses are exempt, so the compiler
won't check to see if you've declared them. But all non-RuntimeExceptions are
considered “checked” exceptions, because the compiler checks to be certain you've
acknowledged that “bad things could happen here.”

Remember this: Each method must either handle 2// checked exceptions by
supplying a catch clause orlist each unhandled checked exception as a thrown
exception. This rule is referred to as Java’s handle or declare requirement. (Sometimes
called catch or declare.)

Look for code that invokes a method declaring an exception, where the calling
method doesn’t handle or declare the checked exception. The following code
has two big problems that the compiler will prevent:

void doStuff() {
doMore () ;
}
void doMore() {
throw new IOException();

}

First, the doMore () method throws a checked exception, but does not declare
it! But suppose we fix the doMore () method as follows:

void doMore() throws IOException { .. }

The dostuff () method is still in trouble because it, too, must declare the
IOException, unless it handles it by providing a tryl/catch, with a catch
clause that can take an IOException.

Again, some exceptions are exempt from this rule. An object of type
RuntimeException may be thrown from any method without being specified as
part of the method’s public interface (and a handler need not be present). And
even if a method does declare a RuntimeException, the calling method is under
no obligation to handle or declare it. RuntimeException, Error, and all of their
subtypes are unchecked exceptions and unchecked exceptions do not have ro be

specified or handled.

Here is an example:

import java.io.*;
class Test {
public int myMethodl () throws EOFException {
return myMethod2 () ;
}
public int myMethod2 () throws EOFException {

Handling Exceptions (Exam Objectives 2.3 and 2.4) 4 ||

// Some code that actually throws the exception goes here
return 1;

}

Let’s look at myMethodl (). Because EOFException subclasses IOException
and IOException subclasses Exception, it is a checked exception and must be declared
as an exception that may be thrown by this method. But where will the exception
actually come from? The public interface for method myMethod2 () called here
declares that an exception of this type can be thrown. Whether that method actually
throws the exception itself or calls another method that throws it is unimportant to
us; we simply know that we have to either catch the exception or declare that we
throw it. The method myMethodl () does not catch the exception, so it declares
that it throws it.

Now let’s look at another legal example, myMethod3 ().

public void myMethod3 () {
// Some code that throws a NullPointerException goes here

}

According to the comment, this method can throw a NullPointerException.
Because RuntimeException is the immediate superclass of NullPointerException, it
is an unchecked exception and need not be declared. We can see that myMethod3 ()
does not declare any exceptions.

Runtime exceptions are referred to as unchecked exceptions. All other exceptions,
meaning all those that do not derive from java.lang. RuntimeException, are checked
exceptions. A checked exception must be caught somewhere in your code. If you invoke
a method that throws a checked exception but you don't catch the checked exception
somewhere, your code will not compile. That’s why they’re called checked exceptions;
the compiler checks to make sure that they’re handled or declared. A number of the
methods in the Java 2 Standard Edition libraries throw checked exceptions, so you
will often write exception handlers to cope with exceptions generated by methods
you didn’t write.

You can also throw an exception yourself, and that exception can be either an
existing exception from the Java API or one of your own. To create your own
exception, you simply subclass Exception (or one of its subclasses) as follows:

class MyException extends Exception { }

42

exam

$atch

Chapter 4: Flow Control, Exceptions, and Assertions

And if you throw the exception, the compiler will guarantee that you declare it
as follows:

class TestEx {
void doStuff () {
throw new MyException(); // Throw a checked exception

}
The preceding code upsets the compiler:

TestEx.java:6: unreported exception MyException; must be caught or
declared to be thrown
throw new MyException() ;

~

When an object of a subtype of Exception is thrown, it must be handled

or declared. These objects are called checked exceptions, and include all
exceptions except those that are subtypes of RuntimeException, which are
unchecked exceptions. Be ready to spot methods that don’t follow the handle
or declare rule, such as

class MyException extends Exception {
void someMethod () {

doStuff();
}
void doStuff() throws MyException {
try {
throw new MyException();
}
catch (MyException me) {
throw me;
}
}

You need to recognize that this code won’t compile. If you try, you’ll get

TestEx.java:8: unreported exception MyException; must be caught or
declared to be thrown
doStuff();

A

exam

Jatch

Handling Exceptions (Exam Objectives 2.3 and 2.4) 4.3

The exam objectives specifically state that you need to know how an Error
compares with checked and unchecked exceptions. Objects of type Error are
not Exception objects, although they do represent exceptional conditions.
Both Exception and Error share a common superclass, Throwable, thus both
can be thrown using the throws keyword. When an Error or a subclass of
Error is thrown, it’s unchecked. You are not required to catch Error objects or Error
subtypes. You can also throw an Error yourself (although you probably won’t
ever want to) and you can catch one, but again, you probably won’t. What, for
example, would you actually do if you got an OutOfMemoryError? It’s not
like you can tell the garbage collector to run; you can bet the JVM fought
desperately to save itself (and reclaimed all the memory it could) by the time
you got the error. In other words, don’t expect the JVM at that point to say,
“Run the garbage collector? Oh, thanks so much for telling me. That just never
occurred to me. Sure, I’ll get right on it...” Even better, what would you do if
a VirtualMachineError arose? Your program is toast by the time you’d catch
the Error, so there’s really no point in trying to catch one of these babies. Just
remember, though, that you can! The following compiles just fine:

class TestEx |

public static void main (String [] args) {

badMethod () ;

}

static void badMethod() { // No need to declare an Error
doStuff()

}

static void doStuff() { //No need to declare an Error
try {
throw new Error();
}
catch (Error me) {

throw me; // We catch it, but then rethrow it

}

If we were throwing a checked exception rather than Error, then the
doStuff () method would need to declare the exception. But remember,
since Error is not a subtype of Exception, it doesn’t need to be declared.
You’re free to declare it if you like, but the compiler just doesn’t care one
way or another when or how the Error is thrown, or by whom.

44 Chapter 4: Flow Control, Exceptions, and Assertions

on th?

Qob

Because Java has checked exceptions, it’s commonly said that Java forces
developers to handle errors. Yes, Java forces us to write exception handlers
for each exception that can occur during normal operation, but it’s up to us to
make the exception handlers actually do something useful. We know software
managers who melt down when they see a programmer write
try {

callBadMethod() ;
} catch (Exception ex) { }
Notice anything missing? Don’t “eat” the exception by catching it without
actually handling it. You won’t even be able to tell that the exception occurred,
because you’ll never see the stack trace.

Rethrowing the Same Exception

Just as you can throw a new exception from a catch clause, you can also throw the
same exception you just caught. Here’s a catch clause that does this:

catch (IOException e) {
// Do things, then if you decide you can't handle it..
throw e;
}

All other catch clauses associated with the same try are ignored, and the exception
is thrown back to the calling method (the next method down the call stack). If you
throw a checked exception from a catch clause, you must also declare that exception!
In other words, you must handle and declare, as opposed to handle or declare. The
following example is illegal:

public void doStuff () {
try {
// risky IO things
} catch(IOException ex) {
// can't handle it
throw ex; // Can't throw it unless you declare it

}

In the preceding code, the doStuff () method is clearly able to throw a checked
exception—in this case an IOException—so the compiler says, “Well, that’s just

Handling Exceptions (Exam Objectives 2.3 and 2.4) 45§

peachy that you have a try/catch in there, but it’s not good enough. If you might
rethrow the IOException you catch, then you must declare it!”

EXERCISE 4-4

Creating an Exception

In this exercise we attempt to create a custom exception. We won’t put in any new

methods (it will have only those inherited from Exception), and because it extends

Exception, the compiler considers it a checked exception. The goal of the program

is to check to see if a command-line argument, representing a particular food (as

a string), is considered bad or OK.

Let’s first create our exception. We will call it BadFoodException. This
exception will be thrown when a bad food is encountered.

Create an enclosing class called MyException and amain () method,
which will remain empty for now.

. Create a method called checkFood (). It takes a String argument and

throws our exception if it doesn’t like the food it was given. Otherwise, it
tells us it likes the food. You can add any foods you aren’t particularly fond
of to the list.

Now in themain () method, you’ll get the command-line argument out of
the String array, and then pass that String on to the checkFood () method.
Because it’s a checked exception, the checkFood () method must declare
it, and the main () method must handle it (using a try/catch). Do not
havemain () declare the method, because if main () ducks the exception,
who else is back there to catch it?

As useful as exception handling is, it’s still up to the developer to make proper use
of it. Exception handling makes organizing our code and signaling problems easy,
but the exception handlers still have to be written. You'll find that even the most
complex situations can be handled, and keep your code reusable, readable, and

maintainable.

46 Chapter 4. Flow Control, Exceptions, and Assertions

CERTIFICATION OBJECTIVE

Working with the Assertion Mechanism
(Exam Objectives 2.4 and 2.5)

Write code that makes proper use of assertions, and distinguish appropriate from
inappropriate uses of assertions.
Identify correct statements about the assertion mechanism.

You know you’re not supposed to make assumptions, but you can’t help it when
you’re writing code. You put them in comments:

if (x> 2 && v) {
// do something

} else if (x < 2 || v) {
// do something
} else {

// x must be 2
// do something else

}
You write print statements with them:

while (true) {
if (x > 2) {
break;
}

System.out.print (“If we got here something went horribly
wrong”) ;

}

Added to the Java language beginning with version 1.4, assertions let you test your
assumptions during development, without the expense (in both your time and
program overhead) of writing exception handlers for exceptions that you assume
will never happen once the program is out of development and fully deployed.

Starting with exam 310-035 (version 1.4 of the Sun Certified Java Programmer
exam), you're expected to know the basics of how assertions (in Java) work, including
how to enable them, how to use them, and how 7oz to use them. Because both
objectives test the same concepts, the things you need to know for both are covered
together in this section.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 47

Assertions Overview

Suppose you assume that a number passed into a method (say, methodaA ()) will
never be negative. While testing and debugging, you want to validate your assumption,
but you don’t want to have to strip out print statements, runtime exception handlers,
or iffelse tests when you’re done with development. But leaving any of those in is,
at the least, a performance hit. Assertions to the rescue! Check out the following
preassertions code:

private void methodA (int num) {
if (num >= 0) {
// do stuff
} else { // num must be < 0
// This code will never be reached!
System.out.println("Yikes! num is a negative number! " + num);

}

useNum (num + x) ;

}

Because you're so certain of your assumption, you don’t want to take the time (or
program performance hit) to write exception-handling code. And at runtime, you
don’t want the 7felse in there either because if you do reach the else condition, it
means your earlier logic (whatever was running prior to this method being called) is
flawed. Assertions let you test your assumptions during development, but the assertion
code—in effect—evaporates when the program is deployed, leaving behind no
overhead or debugging code to track down and remove. Let’s rewrite methodA ()
to validate that the argument was not negative:

private void methodA (int num) {
assert (num>=0); // throws an AssertionError
// if this test isn't true
useNum (num + x);

}

Not only do assertions let your code stay cleaner and smaller, but because assertions
are inactive unless specifically “turned on” (enabled), the code will run as though it
were written like this:

private void methodA (int num) {
useNum (num + x); // we've tested this;
// we now know we're good here

48 Chapter 4. Flow Control, Exceptions, and Assertions

on the

Qob

Assertions work quite simply. You always assert that something is true. If it is, no

problem. Code keeps running. But if your assertion turns out to be wrong (fa/se),

then a stop-the-world AssertionError is thrown (that you should never, ever handle!)

right then and there, so you can fix whatever logic flaw led to the problem.
Assertions come in two flavors: simple and really simple, as follows:

Really Simple

private void doStuff () {
assert (y > x);
// more code assuming y is greater than x

Simple

private void doStuff () {
assert (y > xX): "yvis " + y " " x is " + x;
// more code assuming y is greater than x

}

The difference between them is that the simple version adds a second expression,
separated from the first (boolean expression) by a colon, that adds a little more
information to the stack trace. Both versions throw an immediate AssertionError,
but the simple version gives you a little more debugging help while the simple
version simply tells you that your assumption was false.

Assertions are typically enabled when an application is being tested and
debugged, but disabled when the application is deployed. The assertions are
still in the code, although ignored by the JVM, so if you do have a deployed
application that starts misbehaving, you can always choose to enable
assertions in the field for additional testing.

Assertion Expression Rules

Assertions can have either one or two expressions, depending on whether you’re
using the simple or really simple flavor. The first expression must always result in a
boolean value! Follow the same rules you use for ifand while tests. The whole
point is to assert @7 est, which means you’re asserting that a7estis true. 1f it is true,
no problem. If it’s 7ot true, however, then your assumption was wrong and you get
an AssertionError.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 49

The second expression, used only with the simple version of an assert statement,
can be anything that results in a value. Remember, the second expression is used to
generate a String message that displays in the stack trace to give you a little more
debugging information. It works much like System. out.println() in thatyou
can pass it a primitive or an object, and it will convert it into a String representation.
It must resolve to a value!

Table 4-3 lists legal and illegal expressions for both parts of an assert statement.
Remember, expression2 is used only with the simple assert statement, where the
second expression exists solely to give you a little more debugging detail.

exam

Tatch If you see the word “expression” in a question about assertions, and the

question doesn’t specify whether it means expression| (the boolean test)

or expression2 (the value to print in the stack trace), then always assume the
word expression refers to expressionl, the boolean test. For example, if we asked
you the following question,

”An assert expression must result in a boolean value, true or false?”,
assume that the word expression refers to expression! of an assert, so the
question statement is correct. If the statement were referring to expression2,
however, the statement would not be correct, since expression2 can have
a result of any value, not just a boolean.

Enabling Assertions

If you want to use assertions, you have to think first about how to compile with
assertions in your code, and then about how to run with assertions turned on. Both
require version 1.4 or greater, and that brings us to the first issue: how to compile
with assertions in your code.

TABLE 4-3 Legal and lllegal assert Expressions

Expression| Expression2
lllegal lllegal
assert (x ==2) assert (x = 2) : "x is MY+ x : void
boolean z = true; int z = 0; public int go() { return 1; public void go() { }
assert (z) assert (z) : go(); : go();

assert false assert 1 : new Fool(); : Foo f;

B0O Chapter 4. Flow Control, Exceptions, and Assertions

Compiling with Assertions
Prior to version 1.4, you might very well have written code like this:

int assert = getInitialValue();

if (assert == getActualResult()) {
// do something

}

Notice that in the preceding code, assert is used as an identifier. No problem
prior to 1.4. But remember that you cannot use a keyword/reserved word as an
identifier, and beginning with version 1.4, assert is now a keyword! The bottom
line is

You can use “assert” as a keyword or as an identifier, but not both.

You get a choice whenever you compile with version 1.4, as to whether you're
compiling ‘“assertion aware” code or code written in the old way, where assert is
not a reserved word. Let’s look at both. You must know this: in version 1.4, assertions
are disabled by default! If you don't specifically “turn them on” at compile time, then assert
will not be recognized as a keyword, because the compiler will act as a version 1.3
compiler, with respect to the word “assert” (in which case your code can happily use
assert as an identifier).

Compiling Assertion-Aware Code Ifyou’re using assert as a keyword
(in other words, you’re actually trying to assert something in your code), then you
must explicitly enable assertion-awareness at compile time, as follows:

javac -source 1.4 com/geeksanonymous/TestClass
You can read that as “compile the class TestClass, in the directory com/geeksanonymous,

and do it in the 1.4 way, where assert is a recognized keyword.”

Compiling with Code That Uses Assert as an Identifier If you don’t use
the -source 1.4 flag, then the default behavior is as though you said to the
compiler, “Compile this code as if you didn’t known anything about assert asa
keyword, so that I may use the word assert as an identifier for a method or variable.”
The following is what you get by default:

javac -source 1.3 com/geeksanonymous/TestClass

But since that’s the default behavior, it’s redundant to actually type ~source 1.3.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) § ||

Running with Assertions

Here’s where it gets cool. Once you've written your assertion-aware code (in other
words, code that uses assert as a keyword, to actually perform assertions at runtime),
you can choose to enable or disable them! Remember, assertions are disabled by defaulr.

Enabling Assertions at Runtime You enable assertions at runtime with
java -ea com.geeksanonymous.TestClass
or
java -enableassertions com.geeksanonymous.TestClass
The preceding command-line switches tell the JVM to run with assertions enabled.
Disabling Assertions at Runtime You must also know the command-line
switches for disabling assertions,
java -da com.geeksanonymous.TestClass
or
java -disableassertions com.geeksanonymous.TestClass

Because assertions are disabled by default, using the disable switches might seem
unnecessary. Indeed, using the switches the way we do in the preceding example just
gives you the default behavior (in other words, you get the same result regardless of
whether you use the disabling switches). But...you can also selectively enable and
disable assertions in such a way that they’re enabled for some classes and/or packages,
and disabled for others, while a particular program is running,.

Selective Enabling and Disabling The command-line switches to enable and
disable assertions can be used in various ways:

B With no arguments (as in the preceding examples) Enables or disables
assertions in all classes, except for the system classes.

M With a package name Enables or disables assertions in the package specified,
and any packages below this package in the same directory hierarchy (more
on that in a moment).

B With a class name Enables or disables assertions in the class specified.

B2 Chapter 4 Flow Control, Exceptions, and Assertions

You can combine switches to, say, disable assertions in a single class, but keep
them enabled for all others, as follows:

java -ea -da:com.geeksanonymous.Foo

The preceding command line tells the JVM to enable assertions in general, but
disable them in the class com. geeksanonymous . Foo. You can do the same
selectivity for a package as follows:

java -ea -da:com.geeksanonymous

The preceding command line tells the JVM to enable assertions in general, but disable
them in the package com.geeksanonymous, and all of its subpackages! You may not be

familiar with the term subpackages, since there wasn’t much use of that term prior to
assertions. A subpackage is any package in a subdirectory of the named package. For

example, look at the following directory tree:

com
| _geeksanonymous
| _Foo
| _Bar
| _twelvesteps
| _StepOne
| _StepTwo

This tree lists three directories,

com
geeksanonymous
twelvesteps

and four classes:

com.geeksanonymous . Foo
com.geeksanonymous.Bar
com.geeksanonymous . twelvesteps.StepOne
com.geeksanonymous . twelvesteps.StepTwo

The subpackage of com.geeksanonymous is the rwelvesteps package. Remember that
in Java, the com.geeksanonymous.twelvesteps package is treated as a completely distinct
package that has no relationship with the packages above it (in this example, the
com.geeksanonymous package), except they just happen to share a couple of directories.
Table 4-4 lists examples of command-line switches for enabling and disabling assertions.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) §3

TABLE 4-4 Assertion Command-Line Switches

Command-Line Example What It Means

java -ea Enable assertions
java -enableassertions

java -da Disable assertions (the default behavior of version 1.4)

java -disableassertions

java -ea:com.foo.Bar Enable assertions in class com.foo.Bar

java -ea:com.foo Enable assertions in package com.foo, and any of its subpackages
java -ea -dsa Enable assertions in general, but disable assertions in system classes
java -ea -da:com.foo Enable assertions in general, but disable assertions in package

com.foo and any of its subpackages

Using Assertions Appropriately

Not all legal uses of assertions are considered appropriate. As with so much of Java, you
can abuse the intended use for assertions, despite the best efforts of Sun’s Java engineers
to discourage you. For example, you're never supposed to handle an assertion failure.
That means don’t catch it with a catch clause and attempt to recover. Legally,
however, AssertionError is a subclass of Throwable, so it can be caught. But just
don’t do it! If you're going to try to recover from something, it should be an exception.
To discourage you from trying to substitute an assertion for an exception, the
AssertionError doesn’t provide access to the object that generated it. All you get is
the String message.

So who gets to decide what is and is not appropriate? Sun. Both the exam and this
section use Sun’s “official” assertion documentation to determine appropriate and
inappropriate uses.

exam

Match If you see the word “appropriate” on the exam, do not mistake that for
Wi

“legal.” Appropriate always refers to the way in which something is supposed

to be used, according to either the developers of the mechanism or best
practices officially embraced by Sun. If you see the word “correct” in the
context of assertions, as in, “Line 3 is a correct use of assertions,” you should
also assume that correct is referring to how assertions should be used rather
than how they legally could be used.

B4 Chapter 4. Flow Control, Exceptions, and Assertions

Do not use assertions to validate arguments to a public method.
The following is an inappropriate use of assertions:

public void doStuff (int x) {
assert (x > 0);
// do things with x

}

A public method might be called from code that you don’t control (or have ever
seen). Because public methods are part of your exposed interface to the outside
world, you’re supposed to guarantee that any constraints on the arguments will
be enforced by the method itself. But since assertions aren’t guaranteed to actually
run (they’re typically disabled in a deployed application), the enforcement won’t
happen if assertions aren’t enabled. You don’t want publicly accessible code that
works only conditionally, depending on whether assertions are enabled or disabled.
If you need to validate public method arguments, you'll probably use exceptions
to throw, say, an IllegalArgumentException if the values passed to the public method
are invalid.

Do use assertions to validate arguments to a private method.
If you write a private method, you almost certainly wrote (or control) any code that
calls it. When you assume that the logic in code calling your private method is
correct, you can test that assumption with an assert as follows:

private void doMore (int x) {
assert (x > 0);
// do things with x

}

The only difference that matters between the preceding example and the one before
it is the access modifier. So, do enforce constraints on private arguments, but do not
enforce constraints on public methods. You're certainly free to compile assertion
code with an inappropriate validation of public arguments, but for the exam (and
real life) you need to know that you shouldn’t do it.

Do not use assertions to validate command-line arguments.
This is really just a special case of the “Do not use assertions to validate arguments to
a public method” rule. If your program requires command-line arguments, you’ll
probably use the exception mechanism to enforce them.

Working with the Assertion Mechanism (Exam Objectives 24and 2.5) §§

Do use assertions, even in public methods, to check for

cases that you know are never, ever supposed to happen.

This can include code blocks that should never be reached, including the default of a
switch statement as follows:

switch(x) {
case 2: y = 3;
case 3: y = 17;
case 4: y = 27;
default: assert false; // We're never supposed to get here!

}

If you assume that a particular code block won’t be reached, as in the preceding
example where you assert that x must be either 2, 3, or 4, then you can use assert
false to cause an AssertionError to be thrown immediately if you ever do reach
that code. So in the swirch example, we're not performing a boolean test—we’ve
already asserted that we should never be there, so just gezting to that point is an
automatic failure of our assertion/assumption.

Do not use assert expressions that can cause side effects!
The following would be a very bad idea:

public void doStuff () {
assert (modifyThings());
// continues on
}
public boolean modifyThings () {
X++ = vy;
return true;

}

The rule is: An assert expression should leave the program in the same state it was in
before the expression! Think about it. Assert expressions aren’t guaranteed to always
run, so you don’t want your code to behave differently depending on whether
assertions are enabled. Assertions must not cause any side effects. If assertions are
enabled, the only change to the way your program runs is that an AssertionError
can be thrown if one of your assertions (think: assumptions) turns out to be false.

B 6 Chapter 4. Flow Control, Exceptions, and Assertions

CERTIFICATION SUMMARY ‘

This chapter covered a lot of ground, all of which involves ways of controlling your

program flow, based on a conditional test. First you learned about ifand swirch
statements. The 1 £ statement evaluates one or more expressions to a boolean result.
If the result is #7ue, the program will execute the code in the block that is encompassed
by the 7#f If an else statement is used and the expression evaluates to false, then the
code following the else will be performed. If the else is not used, then none of the
code associated with the ifstatement will execute.

You also learned that the switch statement is used to replace multiple 7f-else
statements. The switch statement can evaluate only integer primitive types that can
be implicitly cast to an int. Those types are byte, short, int, and char.
At runtime, the JVM will try to find a match between the argument to the swizch
statement and an argument in a corresponding case statement. If a match is found,
execution will begin at the matching case, and continue on from there until a break
statement is found or the end of the swi tch statement occurs. If there is no match,
then the default case will execute, if there is one.

You've learned about the three looping constructs available in the Java language.
These constructs are the for loop, the whileloop, and the do-while loop. In general,
the forloop is used when you know how many times you need to go through the
loop. The while loop is used when you do not know how many times you want to
go through, whereas the do-while is used when you need to go through at least once.
In the forloop and the while loop, the expression will have to evaluate to true to
get inside the block and will check after every iteration of the loop. The do-while
loop does not check the condition until after it has gone through the loop once.
The major benefit of the forloop is the ability to initialize one or more variables
and increment or decrement those variables in the forloop definition.

The break and continue statements can be used in either a labeled or
unlabeled fashion. When unlabeled, the break statement will force the program
to stop processing the innermost looping construct and start with the line of code
following the loop. Using an unlabeled continue command will cause the program
to stop execution of the current iteration of the innermost loop and proceed with
the next iteration. When a break or a continue statement is used in a labeled
manner, it will perform in the same way, with one exception. The statement will not
apply to the innermost loop; instead, it will apply to the loop with the label. The
break statement is used most often in conjunction with the switch statement.

Certification Summary §7

When there is a match between the switch expression and the case value, the code
following the case value will be performed. To stop the execution of the code, the
break statement is needed.

You've seen how Java provides an elegant mechanism in exception handling.
Exception handling allows you to isolate your error-correction code into separate blocks
so that the main code doesn’t become cluttered by error-checking code. Another
elegant feature allows you to handle similar errors with a single error-handling block,
without code duplication. Also, the error handling can be deferred to methods further
back on the call stack.

You learned that Javas try keyword is used to specify a guarded region—a block
of code in which problems might be detected. An exception handler is the code that
is executed when an exception occurs. The handler is defined by using Java’s catch
keyword. All catch clauses must immediately follow the related try block. Java
also provides the £inally keyword. This is used to define a block of code that is
always executed, either immediately after a catch clause completes or immediately
after the associated try block in the case that no exception was thrown (or there
was a #ry but no catch). Use £inally blocks to release system resources and to
perform any cleanup required by the code in the try block. A finally block is
not required, but if there is one it must follow the cazch. It is guaranteed to be called
except in the special cases where the #7y or catch code raises an uncaught exception or
issues a System.exit ().

An exception object is an instance of class Exception or one of its subclasses. The
catch clause takes, as a parameter, an instance of an object of a type derived from
the Exception class. Java requires that each method either cazch any checked exception
it can throw or else declare that it throws the exception. The exception declaration is
part of the method’s public interface. To declare an exception may be thrown, the
throws keyword is used in a method definition, along with a list of all checked
exceptions that might be thrown.

Runtime exceptions are of type RuntimeException (or one of its subclasses). These
exceptions are a special case because they do 7o# need to be handled or declared, and
thus are known as “unchecked” exceptions. Errors are of type java.lang.Error or its
subclasses, and like runtime exceptions, they do 707 need to be handled or declared.
Checked exceptions include any exception types that are not of type RuntimeException
or Error. If your code fails to either handle a checked exception or declare that it is
thrown, your code won't compile. But with unchecked exceptions or objects of type
Error, it doesn’t matter to the compiler whether you declare them, or handle them,

B8 Chapter 4

Flow Control, Exceptions, and Assertions

do nothing about them, or do some combination of declaring and handling. In
other words, you're free to declare them and handle them, but the compiler won’t
care one way or the other. It is not good practice to handle an Error, though, because
rarely can you do anything to recover from one.

Assertions, added to the language in version 1.4, are a useful new debugging tool.
You learned how you can use them for testing, by enabling them, but keep them
disabled when the application is deployed. If you have older Java code that uses
the word assert an identifier, then you won't be able to use assertions, and you must
recompile your older code using the default ~source 1.3 flag. If you do want to
enable assertions in your code, then you must use the —~source 1.4 flag, causing
the compiler to see assert as a keyword rather than an identifier.

You learned how assert statements always include a boolean expression, and if the
expression is true the code continues on, but if the expression is false, an AssertionError
is thrown. If you use the two-expression assert statement, then the second expression
is evaluated, converted to a String representation and inserted into the stack trace to
give you a little more debugging info. Finally, you saw why assertions should not be
used to enforce arguments to publ ic methods, and why assert expressions must
not contain side effects!

Two-Minute Drill §9Q

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in Chapter 4.
You might want to /ogp through them several times, but only 7fyou’re interested in
passing the exam.

Writing Code Using if and switch Statements

Q

Q

IhC if statement must have all expressions CDClOSﬁd b at least one pair Of
W
parentheses.

The only legal argument to an ifstatement is a boolean, so the iftest can be
only on an expression that resolves to a boolean or a boolean variable.

Watch out for boolean assignments (=) that can be mistaken for boolean
equality (==) tests:
boolean x = false;

if (x = true) { } // an assignment, so x will always be true!

Curly braces are optional for 7/ blocks that have only one conditional
statement. But watch out for misleading indentations.

Switch statements can evaluate only the byte, short, int, and char
data types. You can’t say

long s = 30;

switch(s) { }

The case argument must be a literal or final variable! You cannot have
a case that includes a non-final variable, or a range of values.

If the condition in a switch statement matches a case value, execution will run
through all code in the switch following the matching case statement until
a break or the end of the switch statement is encountered. In other words, the
matching case is just the entry point into the case block, but unless there’s a
break statement, the matching case is not the only case code that runs.

The default keyword should be used in a switch statement if you want
to execute some code when none of the case values match the conditional value.

The default block can be located anywhere in the switch block, so if no case
matches, the default block will be entered, and if the default does not
contain a break, then code will continue to execute (fall-through) to the end
of the switch or until the break statement is encountered.

60 Chapter 4:

Flow Control, Exceptions, and Assertions

Writing Code Using Loops

O A for statement does not require any arguments in the declaration, but has

three parts: declaration and/or initialization, boolean evaluation, and the
iteration expression.

If a variable is incremented or evaluated within a for loop, it must be declared
before the loop, or within forloop declaration.

A variable declared (not just initialized) within the forloop declaration cannot
be accessed outside the forloop (in other words, code below the forloop won’t

be able to use the variable).

U You can initialize more than one variable in the first part of the for loop
declaration; each variable initialization must be separated by a comma.

U You cannot use a number (old C-style language construct) or anything that
does not evaluate to a boolean value as a condition for an 7fstatement or
looping construct. You can’t, for example, say:

g (%)
unless x is a boolean variable.

U The do-whileloop will enter the body of the loop at least once, even if the
test condition is not met.

Using break and continue

U An unlabeled break statement will cause the current iteration of the
innermost looping construct to stop and the next line of code following the
loop to be executed.

U An unlabeled continue statement will cause the current iteration of the
innermost loop to stop, and the condition of that loop to be checked, and if
the condition is met, perform the loop again.

QU If the break statement or the continue statement is labeled, it will
cause similar action to occur on the labeled loop, not the innermost loop.

U Ifa continue statement is used in a for loop, the iteration statement is
executed, and the condition is checked again.

Catching an Exception Using try and catch

Q) Exceptions come in two flavors: checked and unchecked.

Two-Minute Drill @ ||

Checked exceptions include all subtypes of Exception, excluding classes that
extend RuntimeException.

Checked exceptions are subject to the handle or declare rule; any method that
might throw a checked exception (including methods that invoke methods
that can throw a checked exception) must either declare the exception using
the throws keyword, or handle the exception with an appropriate zry/catch.

Subtypes of Error or RuntimeException are unchecked, so the compiler
doesn’t enforce the handle or declare rule. You're free to handle them, and
you're free to declare them, but the compiler doesn’t care one way or the other.

If you use an optional £inally block, it will always be invoked, regardless
of whether an exception in the corresponding #y is thrown or not, and
regardless of whether a thrown exception is caught or not.

The only exception to the finally-will-always-be-called rule is that a finally
will not be invoked if the JVM shuts down. That could happen if code from
the try or catch blocks calls System.exit (), in which case the JVM
will not start your £inally block.

Just because £inally is invoked does not mean it will complete.
Code in the f£inally block could itself raise an exception or issue a
System.exit ().

Uncaught exceptions propagate back through the call stack, starting from

the method where the exception is thrown and ending with either the first
method that has a corresponding catch for that exception type or a JVM
shutdown (which happens if the exception gets to main (), and main ()
is “ducking” the exception by declaring it).

You can create your own exceptions, normally by extending Exception or one
of its subtypes. Your exception will then be considered a checked exception, and
the compiler will enforce the handle or declare rule for that exception.

All catch blocks must be ordered from most specific to most general.

For example, if you have a catch clause for both IOException and
Exception, you must put the catch for IOException first (in order, top
to bottom in your code). Otherwise, the IOException would be caught by
catch (Exception e), because a catch argument can catch the
specified exception or any of its subtypes! The compiler will stop you from
defining catch clauses that can never be reached (because it sees that the
more specific exception will be caught first by the more general cazch).

62 Chapter 4. Flow Control, Exceptions, and Assertions

Working with the Assertion Mechanism

a

a

Assertions give you a way to test your assumptions during development and

debugging.
Assertions are typically enabled during testing but disabled during deployment.

You can use assert as a keyword (as of version 1.4) or an identifier, but
not both together. To compile older code that uses asserz as an identifier
(for example, a method name), use the -source 1.3 command-line flag
to javac.

Assertions are disabled at runtime by default. To enable them, use
a command-line flag ~ea or ~enableassertions.

You can selectively disable assertions using the -da or
-disableassertions flag.

If you enable or disable assertions using the flag without any arguments,
you’re enabling or disabling assertions in general. You can combine enabling
and disabling switches to have assertions enabled for some classes and/or
packages, but not others.

You can enable or disable assertions in the system classes with the —~esa or
-dsa flags.

You can enable and disable assertions on a class-by-class basis, using the
following syntax:
java -ea -da:MyClass TestClass

You can enable and disable assertions on a package basis, and any package
you specify also includes any subpackages (packages further down the
directory hierarchy).

Do 7ot use assertions to validate arguments to public methods.

Do not use assert expressions that cause side effects. Assertions aren’t
guaranteed to always run, so you don’t want behavior that changes
depending on whether assertions are enabled.

Do use assertions—even in public methods—to validate that a particular
code block will never be reached. You can use

assert false;

for code that should never be reached, so that an assertion error is thrown
immediately if the assert statement is executed.

Do not use assert expressions that can cause side effects.

Self Test @3

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. You've heard this before, and this time we really mean it: this chapter’s material is crucial
for the exam! Regardless of what the exam question is really testing, there’s a good chance that flow
control code will be part of the question. Expect to see loops and #ftests used in questions throughout
the entire range of exam objectives.

Flow Control (if and switch) (Sun Objective 2.1)

I. Given the following,

1 public class Switch2 {

2 final static short x = 2;

3 public static int yv = 0;

4. public static void main(String [] args) {
5. for (int z=0; z < 3; z++) {

6 switch (z) {

7 case y: System.out.print ("0 ");

8 case x-1: System.out.print ("1l ");
9. case x: System.out.print("2 ");
10. }

11. }

12. }

13. 1}

what is the resule?

012

012122

Compilation fails at line 7.

Compilation fails at line 8.

m o w >

Compilation fails at line 9.

o

An exception is thrown at runtime.

2. Given the following,

1 public class Switch2 {

2 final static short x = 2;

3 public static int y = 0;

4. public static void main(String [] args) {
5 for (int z=0; z < 3; z++) {

6 switch (z) {

64 Chapter 4. Flow Control, Exceptions, and Assertions

7. case x: System.out.print("0 ");
8. case x-1: System.out.print ("1l ");
9. case x-2: System.out.print ("2 ");
10. }

11. }

12. }

13. 1}

what is the result?
012
012122
210100
212012

Compilation fails at line 8.

mmogNw >

Compilation fails at line 9.

3. Given the following,

1 public class Ifl {

2 static boolean b;

3 public static void main(String [] args)
4. short hand = 42;

5. if (hand < 50 & !b) hand++;
6 if (hand > 50) ;

7 else if (hand > 40) {

8. hand += 7;

9. hand++; }

10. else

11. --hand;

12. System.out.println (hand) ;

13. }

14. 3}

what is the result?
41
42
50
51

Compiler fails at line 5.

mmoN® >

Compiler fails at line 6.

4. Given the following,

1
2
3.
4.
5
6
7
8

9.

10.
11.
12.
13.
14.

public class Switch2 {
final static short x = 2;
public static int y = 0;
public static void main(String [] args)
for (int z=0; z < 4; z++) {
switch (z) {

}

what is the result?
def 1

0 def 1

0 def def

def 0 def 1

2 0 def 1 2

0 def 1 def 1

0

moN® >

2
2
2
2
2

o

1
1
1
1

1

5. Given the following,

1
2
3
4.
5
6
7
8

9

10.
11.
12.
13.
14.
15.
16.

case x: System.out.print ("0 ");

default: System.out.print("def ");

case x-1: System.out.print ("1l ");
case x-2: System.out.print ("2 ");

public class If2 {
static boolean bl, b2;
public static void main(String [] args)
int x = 0;

if

(
if

bl) {
(b2) {
bl = true;
X++;
if (5 > 6) {
X++;
}
if ('bl) x = x + 10;
else if (b2 = true) x = x + 100;
else if (bl | b2) x = x + 1000;

{

break;

Self Test

65

66 Chapter 4. Flow Control, Exceptions, and Assertions

17. System.out.println (x) ;
18. }
19. 1}

what is the result?
0

1

101

111

1001

1101

mmoN® >

Flow Control (loops) (Sun Objective 2.2)
6. Given the following,

1. public class While {

2 public void loop () {

3. int x= 0;

4. while (1) {

5 System.out.print ("x plus one is " + (x + 1));
6 }

7 }

8. 1}

Which statement is true?

There is a syntax error on line 1.

There are syntax errors on lines 1 and 4.
There are syntax errors on lines 1, 4, and 5.

There is a syntax error on line 4.

moOo® >

There are syntax errors on lines 4 and 5.

m

There is a syntax error on line 5.

7. Given the following,

1 class For {

2 public void test() {

3.

4 System.out.println("x = "+ X);

Self Test @7

5. }
6. }
7. %

and the following output,

x =0
x =1

which two lines of code (inserted independently) will cause this output? (Choose two.)

A. for (int x = -1; x < 2; ++x) {
B. for (int x = 1; x < 3; ++x) {
C. for (int x = 0; x > 2; ++x) {
D. for (int x = 0; x < 2; x++) {
E. for (int x = 0; x < 2; ++x) {
8. Given the following,
1 public class Test {
2 public static void main(String [] args) {
3. int I = 1;
4. do while (I < 1)
5 System.out.print ("I is " + I);
6 while (I > 1) ;
7 }
8 }

what is the result?

A T is 1

B. I is 1 I is 1

C. No output is produced.
D. Compilation error

E. I is 1 I is 1 I is 1 inan infiniteloop.

9. Given the following,

11. int I = 0;

12. outer:

13. while (true) {
14. I++;

15. inner:

16. for (int j = 0; j < 10; J++) {

68 Chapter 4. Flow Control, Exceptions, and Assertions

1
1
1
2
2
2
2
2
2
2

7.
8.
9.
0.
1.
2.
3.
4.
5.
6.

I += 3;
if (3 == 3)
continue inner;

break outer;

}

continue outer;

}
System.out.println(I);

what is the result?

A

B.

C.
D.

1
2
3
4

10. Given the following,

1
2
3
4.
5
6
7

int I = 0;
label:
if (I < 2) {
System.out.print ("I is " + I);
I++;
continue label;

}

what is the result?

A.

B
C.
D

I is O
I is 0 I is 1

Compilation fails.

None of the above

Exceptions (Sun Objectives 2.3 and 2.4)

I'l. Given the following,

1
2
3.
4

System.out.print ("Start ");

try {
System.out.print ("Hello world") ;
throw new FileNotFoundException() ;

Self Test @9

5. 1}
6. System.out.print (" Catch Here ");
7. catch(EOFException e) {
8. System.out.print ("End of file exception");
9. 1}
10. catch(FileNotFoundException e) {
11. System.out.print ("File not found");
12. 3}

and given that EOFException and FileNotFoundException are both subclasses of
IOException, and further assuming this block of code is placed into a class, which statement is
most true concerning this code?

A.

B.

C.
D.

The code will not compile.

Code output: Start Hello world File Not Found.

Code output: Start Hello world End of file exception.
Code output: Start Hello world Catch Here File not found.

12. Given the following,

1 public class MyProgram ({

2 public static void main(String args|[]) {

3 try {

4. System.out.print ("Hello world ");

5. }

6 finally {

7 System.out.println("Finally executing ");
8 }

9 }
10 }

what is the result?

A

B.

C.
D.

Nothing. The program will not compile because no exceptions are specified.
Nothing. The program will not compile because no catch clauses are specified.
Hello world.

Hello world Finally executing

13. Given the following,

import java.io.*;
public class MyProgram ({
public static void main(String args|[]) {
FileOutputStream out = null;

B W N R

70 Chapter 40 Flow Control, Exceptions, and Assertions

5. try {

6. out = new FileOutputStream("test.txt");
7. out.write(122);

8. }

9. catch (IOException io) {
10. System.out.println("IO Error.");
11. }
12. finally {
13. out.close();
14. }
15. }
16. 1}

and given that all methods of class FileOutputStream, including close () , throw an
IOException, which of these is true? (Choose one.)

This program will compile successfully.
This program fails to compile due to an error at line 4.

This program fails to compile due to an error at line 6.

onw®>

This program fails to compile due to an error at line 9.

E. This program fails to compile due to an error at line 13.

14. Given the following,

1 public class MyProgram {

2 public static void throwit () {

3 throw new RuntimeException() ;

4. }

5 public static void main(String argsl[]) {

6 try {

7 System.out.println("Hello world ");

8. throwit () ;

9. System.out.println("Done with try block ");
10. }
11. finally {
12. System.out.println("Finally executing ") ;
13. }
14. }

15. 3}
which answer most closely indicates the behavior of the program?

A. The program will not compile.

Self Test 71

B. The program will print Hello world, then will print that a RuntimeException has
occurred, then will print Done with try block, and then will print Finally
executing.

C. The program will print Hello world, then will print that a RuntimeException has
occurred, and then will print Finally executing.

D. The program will print Hello world, then will print Finally executing, then
will print that a Runt imeException has occurred.

15. Given the following,

19. 1}

public class RTExcept {

public static void throwit () {
System.out.print ("throwit ") ;
throw new RuntimeException() ;

}

public static void main(String [] args) {

try {

System.out.print ("hello ");
throwit () ;

}

catch (Exception re) {
System.out.print ("caught ") ;

}

finally {
System.out.print ("finally ");

}

System.out.println("after ");

what is the result?

A. hello
B.

C. hello
D. hello
E. hello
F. hello

throwit

Compilation fails

throwit
throwit
throwit

throwit

caught

RuntimeException caught after
RuntimeException
caught finally after

caught finally after RuntimeException

72 Chapter 40 Flow Control, Exceptions, and Assertions

Assertions (Sun Objectives 2.5 and 2.6)

16. Which of the following statements is true?

B.
C.

D.

In an assert statement, the expression after the colon (:) can be any Java expression.
If a switch block has no default, adding an asserz default is considered appropriate.

In an assert statement, if the expression after the colon (:) does not have a value, the
assert’s error message will be empty.

It is appropriate to handle assertion failures using a catch clause.

17. Which two of the following statements are true? (Choose two.)

w

It is sometimes good practice to throw an AssertionError explicitly.
It is good practice to place assertions where you think execution should never reach.

Private getter () and setter () methods should not use assertions to verify
arguments.

If an AssertionError is thrown in a try-catch block, the finally block will be
bypassed.

It is proper to handle assertion statement failures using a cazch (AssertionException

ae) block.

18. Given the following,

1 public class Test {

2 public static int y;

3 public static void foo(int x) {
4. System.out.print ("foo ");

5 Yy = X;

6 }

7 public static int bar(int z) {
8 System.out.print ("bar ");

9. return y = z;

10. }

11. public static void main(String [] args) {
12. int t = 0;

13. assert t > 0 : bar(7);

14. assert t > 1 : foo(8);

15. System.out.println("done ") ;
16. }

17. }

what is the result?

A. bar

Self Test 73

bar done
foo done
bar foo done

Compilation fails

mmog O W

An error is thrown at runtime.

19. Which two of the following statements are true? (Choose two.)

A. If assertions are compiled into a source file, and if no flags are included at runtime,
assertions will execute by default.

B. As ofJava version 1.4, assertion statements are compiled by default.

C. With the proper use of runtime arguments, it is possible to instruct the VM to disable
assertions for a certain class, and to enable assertions for a certain package, at the same time.
D. The following are all valid runtime assertion flags:
-ea, —esa, -dsa, —enableassertions,
-disablesystemassertions

E. When evaluating command-line arguments, the VM gives —ea flags precedence over —da

flags.
20. Given the following,

1. public class Test2 {

2. public static int x;

3. public static int foo(int y) {

4. return y * 2;

5. }

6. public static void main(String [] args) {
7. int z = 5;

8. assert z > 0;

9. assert z > 2: foo(z);

10. if ((z < 7))

11 assert z > 4;

12 switch (z) {

13. case 4: System.out.println("4 ");
14. case 5: System.out.println("5 ");
15 default: assert z < 10;

16. }

17. if (z < 10)

18. assert z > 4: z++;

19. System.out.println(z) ;

20. }

[\S]
=
-

74 Chapter 40 Flow Control, Exceptions, and Assertions

which line is an example of an inappropriate use of assertions?

A. Line 8
B. Line9
C. Linell
D. Line 15
E. Line18

Self Test Answers 7§

SELF TEST ANSWERS

Flow Control (if and switch) (Sun Objective 2.1)

I. M C. Case expressions must be constant expressions. Since x is marked £inal, lines 8 and 9
are legal; however yis nota £inal so the compiler will fail at line 7.
A, B, D, E, and F, are incorrect based on the program logic described above.

2. M D. The case expressions are all legal because x is marked £inal, which means the
expressions can be evaluated at compile time. In the first iteration of the forloop case x-2
matches, so 2 is printed. In the second iteration, x-1 is matched so 1 and 2 are printed
(remember, once a match is found all remaining statements are executed until a break
statement is encountered). In the third iteration, x is matched so 0 1 and 2 are printed.

X A, B, G, E, and F are incorrect based on the program logic described above.

3. M D.InJava, boolean instance variables are initialized to false, so the iftest on line 5 is
true and hand is incremented. Line 6 is legal syntax, a do nothing statement. The else-ifis
true so hand has 7 added to it and is then incremented.

A, B, G, E, and F are incorrect based on the program logic described above.

4, M F.Whenz == 0 , case x-2ismatched. Whenz == 1, case x-1is
matched and then the break occurs. When z == 2, case x,thendefault, then
x-1 are all matched. When z == 3, default, then x-1 are matched. The rules for
default are that it will fall through from above like any other case (for instance when z
== 2), and that it will match when no other cases match (for instance when z == 3).
A, B, C, D, and E are incorrect based on the program logic described above.

5. M C. Asinstance variables, b1l and b2 are initialized to false. The iftests on lines 5 and 6
are successful so b1 is set to true and x is incremented. The next 7ftest to succeed is on line 13
(note that the code is not testing to see if b2 is true, it is setting b2 to be true). Since line 13
was successful, subsequent else-7f’s (line 14) will be skipped.

A, B, D, E, and F are incorrect based on the program logic described above.

Flow Control (loops) (Sun Objective 2.2)

6. M D. Using the integer 1 in the while statement, or any other looping or conditional
construct for that matter, will result in a compiler error. This is old C syntax, not valid Java.
Xl A, B, C, E, and F are incorrect because line 1 is valid (Java is case sensitive so While is a
valid class name). Line 5 is also valid because an equation may be placed in a String operation
as shown.

76 Chapter 40 Flow Control, Exceptions, and Assertions

7. M D and E. It doesn’t matter whether you preincrement or postincrement the variable in a
forloops it is always incremented after the loop executes and before the iteration expression is
evaluated.

A and B are incorrect because the first iteration of the loop must be zero. C is incorrect
because the test will fail immediately and the for loop will not be entered.

8. M C. There are two different looping constructs in this problem. The first is a do-while loop
and the second is a while loop, nested inside the do-while. The body of the do-while is only a
single statement—brackets are not needed. You are assured that the while expression will be
evaluated at least once, followed by an evaluation of the do-while expression. Both expressions
are false and no output is produced.

A, B, D, and E are incorrect based on the program logic described above.

9. M A. The program flows as follows: I will be incremented after the while loop is entered,
then I will be incremented (by zero) when the for loop is entered. The if statement evaluates
to false, and the continue statement is never reached. The break statement tells the
JVM to break out of the outer loop, at which point I is printed and the fragment is done.

B, C, and D are incorrect based on the program logic described above.

10. M C. The code will not compile because a cont inue statement can only occur in a
looping construct. If this syntax were legal, the combination of the continue and the 7f'
statements would create a kludgey kind of loop, but the compiler will force you to write
cleaner code than this.

& A, B, and D are incorrect based on the program logic described above.

Exceptions (Sun Objectives 2.3 and 2.4)

Il. M A Line 6 will cause a compiler error. The only legal statements after try blocks are either
catch or finally statements.
& B, C, and D are incorrect based on the program logic described above. If line 6 was
removed, the code would compile and the correct answer would be B.

12 M D. Finally clauses are always executed. The program will first execute the try block,
printing Hello world, and will then execute the £inally block, printing Finally
executing.

& A, B, and C are incorrect based on the program logic described above. Remember that
either a catch ora finally statement must follow a try. Since the finally is present,
the catch is not required.

Self Test Answers 7

13. M E. Any method (in this case, the main () method) that throws a checked exception (in
this case, out .close ()) must be called within a try clause, or the method must declare
that it throws the exception. Either main () must declare that it throws an exception, or the
call to out.close () in the £inally block must fall inside a (in this case nested)
try-catch block.

& A, B, C, and D are incorrect based on the program logic described above.

14. M D. Once the program throws a RuntimeException (in the throwit () method) that
is not caught, the finally block will be executed and the program will be terminated. If a
method does not handle an exception, the £inally block is executed before the exception
is propagated.

& A, B, and C are incorrect based on the program logic described above.

I15. M E.Themain () method properly catches and handles the RuntimeException in the
catch block, finally runs (as it always does), and then the code returns to normal.
A, B, C, D, and F are incorrect based on the program logic described above. Remember
that properly handled exceptions do not cause the program to stop executing.

Assertions (Sun Objectives 2.5 and 2.6)

16. M B. Adding an assertion statement to a switch statement that previously had no default
case is considered an excellent use of the assert mechanism.
X A is incorrect because only Java expressions that return a value can be used. For instance, a
method that returns void is illegal. C is incorrect because the expression after the colon must
have a value. D is incorrect because assertions throw errors and not exceptions, and assertion
errors do cause program termination and should not be handled.

17. M A and B. A is correct because it is sometimes advisable to thrown an assertion error even
if assertions have been disabled. B is correct. One of the most common uses of assert
statements in debugging is to verify that locations in code that have been designed to be
unreachable are in fact never reached.

C is incorrect because it is considered appropriate to check argument values in private
methods using assertions. D is incorrect; finally is never bypassed. E is incorrect because
AssertionErrors should never be handled.

18. M E.The foo () method returns void. It is a perfectly acceptable method, but because it
returns void it cannot be used in an assert statement, so line 14 will not compile.
A, B, C, D, and F are incorrect based on the program logic described above.

78 Chapter 40 Flow Control, Exceptions, and Assertions

19. M CandD. Cis true because multiple VM flags can be used on a single invocation of a Java
program. D is true, these are all valid flags for the VM.
A is incorrect because at runtime assertions are ignored by default. B is incorrect because as
of Java 1.4 you must add the argument —source 1.4 to the command line if you want the
compiler to compile assertion statements. E is incorrect because the VM evaluates all assertion

flags left to right.

20. M E. Assert statements should not cause side effects. Line 18 changes the value of z if the
assert statement is false.
A is fine; a second expression in an assert statement is not required. B is fine because it is
perfectly acceptable to call a method with the second expression of an assert statement. C is fine
because it is proper to call an assert statement conditionally. D is fine because it is considered
good form to add a default assers statement to swizch blocks that have no default case.

EXERCISE ANSWERS

Exercise 4.1: Creating a switch-case Statement
The code should look something like this:

char temp = 'c';
switch (temp) {
case 'a': {
System.out.println("A") ;
break;

}

case 'b': {
System.out.println("B");
break;

}

case 'c':
System.out.println("C");
break;

default:
System.out.println("default") ;

Exercise Answers 79

Exercise 4-2: Creating a Labeled while Loop
The code should look something like this:

class LoopTest {

public static void main(String [] args) {
int age = 12;
outer:
while(age < 21) {
age += 1;
if (age == 16) {

System.out.println("Obtain driver's license");
continue outer;

}

System.out.println("Another year.");

}

Exercise 4-3: Propagating and Catching an Exception
The code should look something like this:

class Propagate {

public static void main(String [] args) {
try {
System.out.println(reverse("Hello")) ;
}
catch (Exception e) {
System.out.println("The string was blank");
}
finally {
System.out.println("All done!");
}
}
public static String reverse(String s) throws Exception ({
if (s.length() ==) {
throw new Exception();
}
String reverseStr = "";
for(int i=s.length()-1;1>=0;--1i) {
reverseStr += s.charAt(i);
}
return reverseStr;
}

80 Chapter 4. Flow Control, Exceptions, and Assertions

Exercise 4-4: Creating an Exception
The code should look something like this:

class BadFoodException extends Exception {}
class MyException {
public static void main(String [] args) {
try {
checkFood (args[01]) ;
} catch(BadFoodException e) {
e. printStackTrace() ;

}
public static void checkWord (String s) {
String [] badFoods = {"broccoli", "brussel
sprouts", "sardines"};
for(int i=0;i<badFoods.length;++i) {
if (s.equals (badFoods[i]))
throw new BadWFoodException() ;
}
System.out.println(s + " is ok with me.");

SUN™ CERTIFIED PROGRAMMER & DEVELOPER

Object Orientation,
Overloading

and Overriding,
Constructors,

and Return Types

CERTIFICATION OBJECTIVES

° Benefits of Encapsulation

o Overridden and Overloaded Methods

° Constructors and Instantiation
° Legal Return Types
\/ Two-Minute Drill

Q&A Self Test

2 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

he objectives in this section revolve (mostly) around object-oriented (OO) programming

including encapsulation, inheritance, and polymorphism. For the exam, you need to

know whether a code fragment is correctly or incorrectly implementing some of
the key OO features supported in Java. You also need to recognize the difference between
overloaded and overridden methods, and be able to spot correct and incorrect implementations
of both.

Because this book focuses on your passing the programmer’s exam, only the critical
exam-specific aspects of OO software will be covered here. If you're not already well
versed in OO concepts, you could (and should) study a dozen books on the subject
of OO development to get a broader and deeper understanding of both the benefits
and the techniques for analysis, design, and implementation. But for passing the
exam, the relevant concepts and rules you need to know are covered here. (That’s
a disclaimer, because we can’t say you'll be a “complete OO being” by reading this
chapter.) (We can say, however, that your golf swing will improve.)

We think you'll find this chapter a nice treat after slogging your way through the
technical (and picky) details of the previous chapters. Object-oriented programming is
a festive topic, so may we suggest you don the appropriate clothing—say, a Hawaiian
shirt and a party hat. Grab a margarita (if youre new to OO, maybe nonalcoholic is
best) and let’s have some fun!

(OK so maybe we exaggerated a /ittle about the whole party aspect. Still, you'll
find this section both smaller and less detailed than the previous four.) (And this

time we really mean it.)

CERTIFICATION OBJECTIVE

Benefits of Encapsulation (Exam Objective 6.1)

State the benefits of encapsulation in object-oriented design and write code that implements
tightly encapsulated classes and the relationships 1S-A and HAS-A.

Imagine you wrote the code for a class, and another dozen programmers from your
company all wrote programs that used your class. Now imagine that you didn’t like
the way the class behaved, because some of its instance variables were being set (by

Benefits of Encapsulation (Exam Objective 6.1) 3

the other programmers from within their code) to values you hadn’t anticipated.
Their code brought out errors in your code. (Relax, this is just hypothetical...) Well,
it Zsa Java program, so you should be able just to ship out a newer version of the
class, which they could replace in their programs without changing any of their
own code.

This scenario highlights two of the promises/benefits of OO: flexibility and
maintainability. But those benefits don't come automatically. You have to do something.
You have to write your classes and code in a way that supports flexibility and
maintainability. So what if Java supports OO? It can’t design your code for you. For
example, imagine if you (not the realyou, but the hypothetical-not-as-good-a-programmer
you) made your class with public instance variables, and those other programmers
were setting the instance variables directly, as the following code demonstrates:

public class BadOO {
public int size;
public int weight;

}
public class ExploitBadOO {
public static void main (String [] args) {
BadOO b = new BadOO() ;
b.size = -5; // Legal but bad!!

}

And now you're in trouble. How are you going to change the class in a way that
lets you handle the issues that come up when somebody changes the size variable to
a value that causes problems? Your only choice is to go back in and write method
code for adjusting size (a setSize (int a) method, for example), and then
protect the size variable with, say, a private access modifier. But as soon as you
make that change to your code, you break everyone elses!

The ability to make changes in your implementation code withour breaking the
code of others who use your code is a key benefit of encapsulation. You want to hide
implementation details behind a public programming interface. By interface, we
mean the set of accessible methods your code makes available for other code to call—in
other words, your codes API. By hiding implementation details, you can rework your
method code (perhaps also altering the way variables are used by your class) without
forcing a change in the code that calls your changed method.

4 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

If you want maintainability, flexibility, and extensibility (and of course, you do),
your design must include encapsulation. How do you do that?

B Keep your instance variables protected (with an access modifier, often
private).

B Make public accessor methods, and force calling code to use those methods.

B For the methods, use the JavaBeans naming convention of

set<someProperty> and get<someProperty>.

Figure 5-1 illustrates the idea that encapsulation forces callers of our code to go
through methods rather than accessing variables directly.

We call the access methods gezters and setters although some prefer the fancier
terms (more impressive at dinner parties) accessors and mutators. Personally, we dont

m The nature of encapsulation

Class A Class B

B b = new B();

int x = b.getSize(); »getSize()

b.setSize(34); psetSize() \
String s = b.getName() ; » getName () -
b.setName ("Fred") ; » setName ()

Color ¢ = b.getColor(); » getColor () /

b.setColor (blue) ; » setColor ()

private

public

Class A cannot access Class B instance variable data
without going through getter and setter methods. Data is
marked private; only the accessor methods are public.

exam
Datch

Benefits of Encapsulation (Exam Objective 6.1) §

like the word mutate. Regardless of what you call them, they’re methods that others
must go through in order to access your instance variables. They look simple, and
you've probably been using them forever:

public class Box {
// protect the instance variable; only an instance
// of Box can access it
private int size;
// Provide public getters and setters
public int getSize() {
return size;

}
public void setSize(int newSize)
size = newSize;

}

Wait a minute...how useful is the previous code? It doesn’t even do any validation
or processing. What benefit can there be from having getters and setters that add no
additional functionality? The point is, you can change your mind later, and add more
code to your methods without breaking your API. Even if you don't think you really
need validation or processing of the data, good OO design dictates that you plan for
the future. To be safe, force calling code to go through your methods rather than going
directly to instance variables. Always. Then you're free to rework your method
implementations later, without risking the wrath of those dozen programmers who
know where you live. And have been doing Tae-bo. And drink way too much
Mountain Dew.

Look out for code that appears to be asking about the behavior of a method,
when the problem is actually a lack of encapsulation. Look at the following
example, and see if you can figure out what’s going on:

class Foo {
public int left = 9;
public int right = 3;
public void setLeft(int leftNum) {
left = leftNum;
right = leftNum/3;
}

// lots of complex test code here

}

6 Chapter5:

Object Orientation, Overloading and Overriding, Constructors, and Return Types

Now consider this question: Is the value of right always going to be one-third the value
of left? It looks like it will, until you realize that users of the Foo class don’t
need to use the setLeft () method! They can simply go straight to the
instance variables and change them to any arbitrary int value.

IS-A and HAS-A Relationships

For the exam you need to be able to look at code and determine whether the code
demonstrates an IS-A or HAS-A relationship. The rules are simple, so this should be
one of the few areas where answering the questions correctly is almost a no-brainer.
(Well, at least it would have been a no-brainer if we (exam creators) hadn’t tried our
best to obfuscate the real problem.) (If you don’t know the word “obfuscate”, stop
and look it up, then write and tell us what it means.)

IS-A

In OO, the concept of IS-A is based on inheritance. IS-A is a way of saying, “this
thing 7s a type of that thing.” For example, a Mustang is a type of horse, so in OO
terms we can say, ‘Mustang IS-A Horse.” Subaru IS-A Car. Broccoli IS-A Vegetable
(not a very fun one, but it still counts). You express the IS-A relationship in Java
through the keyword extends:

public class Car {
// Cool Car code goes here

}

public class Subaru extends Car {
// Important Subaru-specific stuff goes here
// Don't forget Subaru inherits accessible Car members

}

A Car is a type of Vehicle, so the inheritance tree might start from the Vehicle class
as follows:

public class Vehicle { .. }
public class Car extends Vehicle { .. }

public class Subaru extends Car { .. }

In OO terms, you can say the following:

B Vehicle is the superclass of Car.
B Car is the subclass of Vehicle.

Benefits of Encapsulation (Exam Objective 6.1) 7F

Car is the superclass of Subaru.
Subaru is the subclass of Vehicle.
Car inherits from Vehicle.
Subaru inherits from Car.
Subaru inherits from Vehicle.
Subaru is derived from Car.

Car is derived from Vehicle.
Subaru is derived from Vehicle.

Subaru is a subtype of Car.

Subaru is a subtype of Vehicle.

Returning to our IS-A relationship, the following statements are true:

“Car extends Vehicle” means “Car IS-A Vebicle.”
“Subaru extends Car” means “Subaru IS-A Car.”

And we can also say:

“Subaru IS-A Vehicle” because a class is said to be “a type of” anything further up
in its inheritance tree. If Foo instanceof Bar, then class Foo IS-A Bar, even if
Foo doesn’t directly extend Bar, but instead extends some other class that is a subclass
of Bar. Figure 5-2 illustrates the inheritance tree for Vehicle, Car, and Subaru. The
arrows move from the subclass to the superclass. In other words, a class” arrow
points toward the class it extends from.

| FIGURE 52| Ve

Inheritance tree
for Vehicle, Car,
and Subaru

Car extends Vehicle

A

Subaru extends Car

8 Chapter5:

HAS-A
relationship
between Horse
and Halter

Object Orientation, Overloading and Overriding, Constructors, and Return Types

HAS-A

HAS-A relationships are based on usage, rather than inheritance. In other words,
class A HAS-A B if code in class A'has a reference to an instance of class B. For example,
you can say the following,

A Horse IS-A Animal. A Horse HAS-A Halter.

and the code looks like this:

public class Animal { }
public class Horse extends Animal {
private Halter myHalter;

}

In the preceding code, the Horse class has an instance variable of type Halter, so
you can say that “Horse HAS-A Halter.” In other words, Horse has a reference to a
Halter. Horse code can use that Halter reference to invoke methods on the Halter,
and get Halter behavior without having Halter-related code (methods) in the Horse
class itself. Figure 5-3 illustrates the HAS-A relationship between Horse and Halter.

HAS-A relationships allow you to design classes that follow good OO practices by
not having monolithic classes that do a gazillion different things. Classes (and thus the
objects instantiated from those classes) should be specialists. The more specialized
the class, the more likely it is that you can reuse the class in other applications. If
you put all the Halter-related code directly into the Horse class, you'll end up
duplicating code in the Cow class, Sheep class, Unpaidlntern class, and any other
class that might need Halter behavior. By keeping the Halter code in a separate,
specialized Halter class, you have the chance to reuse the Halter class in multiple
applications.

Horse
Halter halt Halter
tie(Rope r) e N tie(Rope r)

Horse class has a Halter, because Horse

declares an instance variable of type Halter.
When code invokes tie () on a Horse instance,
the Horse invokes tie () on the Horse

object’s Halter instance variable.

Benefits of Encapsulation (Exam Objective 6.1) @

Users of the Horse class (that is, code that calls methods on a Horse instance),
think that the Horse class has Halter behavior. The Horse class might have a
tie(LeadRope rope) method, for example. Users of the Horse class should
never have to know that when they invoke the tie () method, the Horse object turns
around and delegates the call to its Halter class by invokingmyHalter. tie (rope) .
The scenario just described might look like this:

public class Horse extends Animal
private Halter myHalter;
public void tie(LeadRope rope) {
myHalter.tie(rope); // Delegate tie behavior to the
// Halter object
}
}
public class Halter {
public void tie(LeadRope aRope) {
// Do the actual tie work here
}
}

In OO, we don't want callers to worry about which class or which object is actually
doing the real work. To make that happen, the Horse class hides implementation
details from Horse users. Horse users ask the Horse object to do things (in this case,
tie itself up), and the Horse will either do it or, as in this example, ask something else
to do it. To the caller, though, it always appears that the Horse object takes care of itself.
Users of a Horse should not even need to know that there s such a thing as a Halter class.

Now that we've looked at some of the OO characteristics, here are some possible
scenario questions and their solutions.

SCENARIO & SOLUTION

What benefits do you gain from encapsulation? Ease of code maintenance, extensibility,
and code clarity.

What is the object-oriented relationship between An IS-A relationship: Oak IS-A Tree.
a tree and an oak?
What is the object-oriented relationship between A HAS-A relationship: City HAS-A Road.

a city and a road?

1 O Chapter5:

Object Orientation, Overloading and Overriding, Constructors, and Return Types

FROM THE CLASSROOM

Object-Oriented Design

IS-A and HAS-A relationships and
encapsulation are just the tip of the iceberg
when it comes to object-oriented design.
Many books and graduate theses have been
dedicated to this topic. The reason for the
empbhasis on proper design is simple: money.
The cost to deliver a software application has
been estimated to be as much as 10 times
more expensive for poorly designed programs.
Having seen the ramifications of poor designs,
I can assure you that this estimate is not
far-fetched.

Even the best object-oriented designers
make mistakes. It is difficult to visualize the
relationships between hundreds, or even
thousands, of classes. When mistakes are
discovered during the implementation (code
writing) phase of a project, the amount of
code that has to be rewritten can sometimes
cause programming teams to start over
from scratch.

The software industry has evolved to aid

the designer. Visual object modeling languages,
such as the Unified Modeling Language (UML),

allow designers to design and easily modify
classes without having to write code first,
because object-oriented components are
represented graphically. This allows the designer
to create a map of the class relationships and
helps them recognize errors before coding
begins. Another recent innovation in object-
oriented design is design patterns. Designers
noticed that many object-oriented designs
apply consistently from project to project, and
that it was useful to apply the same designs
because it reduced the potential to introduce
new design errors. Object-oriented designers
then started to share these designs with each
other. Now, there are many catalogs of these
design patterns both on the Internet and in
book form.

Although passing the Java certification
exam does not require you to understand
object-oriented design this thoroughly,
hopefully this background information will
help you better appreciate why the test writers
chose to include encapsulation and is 2 and
has a relationships on the exam.

—Jonathan Meeks, Sun Certified Java Programmer

Overridden and Overloaded Methods (Exam Objective 6.2) | |l

CERTIFICATION OBJECTIVE

Overridden and Overloaded Methods
(Exam Objective 6.2)

Write code to invoke overridden or overloaded methods and parental or overloaded
constructors, and describe the effect of invoking these methods.

Methods can be overloaded or overridden, but constructors can be only overloaded.
Overloaded methods and constructors let you use the same method name (or
constructor) but with different argument lists. Overridinglets you redefine a method
in a subclass, when you need new subclass-specific behavior.

Overridden Methods

Anytime you have a class that inherits a method from a superclass, you have the
opportunity to override the method (unless, as you learned earlier, the method is
marked final). The key benefit of overriding is the ability to define behavior
that’s specific to a particular subclass type. The following example demonstrates a
Horse subclass of Animal overriding the Animal version of the eat () method:

public class Animal {
public void eat () {
System.out.println("Generic Animal Eating Generically") ;

}
}
class Horse extends Animal ({
public void eat () {
System.out.println("Horse eating hay, oats, and horse treats");

}
}

For abstract methods you inherit from a superclass, you have no choice. You must
implement the method in the subclass unless the subclass is a/so abstract. Abstract
methods are said to be implemented by the concrete subclass, but this is virtually the
same as saying that the concrete subclass overrides the abstract methods of the superclass.
So you should think of abstract methods as methods you're forced to override.

The Animal class creator might have decided that for the purposes of polymorphism,
all Animal subtypes should have an eat () method defined in a unique, specific
way. Polymorphically, when someone has an Animal reference that refers not to an

I 2 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

Animal instance, but to an Animal subclass instance, the caller should be able to
invoke eat () on the Animal reference, but the actual runtime object (say, a Horse
instance) will run its own specific eat () method. Marking the eat () method
abstract is the Animal programmer’s way of saying to all subclass developers, “It
doesn’t make any sense for your new subtype to use a generic eat () method, so
you have to come up with your own eat () method implementation!” An example
of using polymorphism looks like this:

public class TestAnimals {
public static void main (String [] args) {
Animal a = new Animal () ;

Animal b = new Horse(); //Animal ref, but a Horse object
a.eat(); // Runs the Animal version of eat()
b.eat(); // Runs the Horse version of eat()

}
class Animal {
public void eat () {
System.out.println("Generic Animal Eating Generically");

}
class Horse extends Animal {
public void eat () {
System.out.println("Horse eating hay, oats, and horse treats");
}
public void buck() { }
}

In the preceding code, the test class uses an Animal reference to invoke a method
on a Horse object. Remember, the compiler will allow only methods in class Animal
to be invoked when using a reference to an Animal. The following would not be legal
given the preceding code:

Animal ¢ = new Horse();
c.buck(); // Can't invoke buck() ;
// Animal class doesn't have that method

The compiler looks only at the reference type, not the instance type. Polymorphism
lets you use a more abstract supertype (including an interface) reference to refer to
one of its subtypes (including interface implementers).

The overriding method cannot have a more restrictive access modifier than the method
being overridden (for example, you can’t override a method marked public and
make it protected). Think about it: if the Animal class advertises a public eat ()

Overridden and Overloaded Methods (Exam Objective 6.2) | 3

method and someone has an Animal reference (in other words, a reference declared
as type Animal), that someone will assume it’s safe to call eat () on the Animal
reference regardless of the actual instance that the Animal reference is referring to.
If a subclass were allowed to sneak in and change the access modifier on the
overriding method, then suddenly at runtime—when the JVM invokes the true
objects (Horse) version of the method rather than the reference types (Animal)
version—the program would die a horrible death. (Not to mention the emotional
distress for the one who was betrayed by the rogue subclass.) Let’s modify the
polymorphic example we saw earlier:

public class TestAnimals {
public static void main (String [] args) {

Animal a = new Animal () ;

Animal b = new Horse(); //Animal ref, but a Horse object
a.eat(); // Runs the Animal version of eat()

b.eat(); // Runs the Horse version of eat()

}
class Animal {
public void eat() {
System.out.println("Generic Animal Eating Generically");

}
class Horse extends Animal {
private void eat () {
System.out.println("Horse eating hay, oats,
and horse treats");

}

If this code were allowed to compile (which it’s not, by the way—the compiler
wants you to know that it didn’t just fall off the turnip truck), the following would
fail at runtime:

Animal b = new Horse(); // Animal ref, but a Horse
// object , so far so good
b.eat(); // Meltdown!

The variable & is of type Animal, which hasa public eat () method. But
remember that at runtime, Java uses virtual method invocation to dynamically select
the actual version of the method that will run, based on the actualinstance. An Animal
reference can always refer to a Horse instance, because Horse IS-A(n) Animal. What

I 4 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

makes that superclass reference to a subclass instance possible is that the subclass is

guaranteed to be able to do everything the superclass can do. Whether the Horse instance

overrides the inherited methods of Animal or simply inherits them, anyone with an

Animal reference to a Horse instance is free to call all accessible Animal methods.

For that reason, an overriding method must fulfill the contract of the superclass.

The rules for overriding a method are as follows:

The argument list must exactly match that of the overridden method.

The return type must exactly match that of the overridden method.

The access level must not be more restrictive than that of the overridden method.
The access level can be less restrictive than that of the overridden method.

The overriding method must not throw new or broader checked exceptions
than those declared by the overridden method. For example, a method that
declares a FileNotFoundException cannot be overridden by a method
that declares a SQLException, Exception, or any other non-runtime
exception unless it’s a subclass of FileNotFoundException.

The overriding method can throw narrower or fewer exceptions. Just because
an overridden method “takes risks” doesn’t mean that the overriding subclass’
exception takes the same risks. Bottom line: An overriding method doesn’t
have to declare any exceptions that it will never throw, regardless of what

the overridden method declares.

You cannot override a method marked final.

If a method can’t be inherited, you cannot override it. For example, the
following code is not legal:

public class TestAnimals {
public static void main (String [] args) {
Horse h = new Horse();
h.eat(); // Not legal because Horse didn't inherit eat()

}
class Animal {
private void eat () {
System.out.println("Generic Animal Eating Generically");

}

class Horse extends Animal { }

Overridden and Overloaded Methods (Exam Objective 6.2) | §

Invoking a Superclass Version of an Overridden Method

Often, you’ll want to take advantage of some of the code in the superclass version of
a method, yet still override it to provide some additional specific behavior. I¢’s like
saying, “Run the superclass version of the method, then come back down here and
finish with my subclass additional method code.” (Note that there’s no requirement
that the superclass version run before the subclass code.) It’s easy to do in code using

the keyword super as follows:
public class Animal {

public void eat() { }
public void printYourself () {
// Useful printing code goes here
}
}

class Horse extends Animal {

public void printYourself () {
// Take advantage of Animal code, then add some more
super.printYourself(); // Invoke the superclass

// (Animal) code

// Then come back and do

// additional Horse-specific
// print work here

}

Examples of Legal and lllegal Method Overrides
Let’s take a look at overriding the eat () method of Animal:

public class Animal {
public void eat() { }
}

Table 5-1 lists examples of illegal overrides of the Animal eat () method, given
the preceding version of the Animal class.

Overloaded Methods

Overloaded methods let you reuse the same method name in a class, but with different
arguments (and optionally, a different return type). Overloading a method often
means you're being a little nicer to those who call your methods, because your code

I & Chapter5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

TABLE 5-1 Examples of lllegal Overrides

lllegal Override Code Problem with the Code

private void eat () { } Access modifier is more restrictive

public void eat() throws Declares a checked exception not declared by
IOException { } superclass version

public void eat (String food) { } A legal overload, not an override, because the

argument list changed

public String eat() { } Not an override because of the return type, but
not an overload either because there’s no change
in the argument list

takes on the burden of coping with different argument types rather than forcing the caller
to do conversions prior to invoking your method. The rules are simple:
B Overloaded methods must change the argument list.
Overloaded methods can change the return type.
Overloaded methods can change the access modifier.

Overloaded methods can declare new or broader checked exceptions.

A method can be overloaded in the same class or in a subclass.

Legal Overloads

Let’s look at a method we want to overload:
public void changeSize(int size, String name, float pattern) { }
The following methods are legal overloads of the changeSize () method:

public void changeSize(int size, String name) { }

public int changeSize(int size, float pattern) { }

public void changeSize(float pattern, String name)
throws IOException { }

exam

.y Be careful to recognize when a method is overloaded rather than overridden.
Wwatch

You might see a method that appears to be violating a rule for overriding, but
which is actually a legal overload, as follows:

Overridden and Overloaded Methods (Exam Objective 6.2) |7

public class Foo {
public void doStuff(int y, String s) { }
public void moreThings (int x) { }
}
class Bar extends Foo {
public void doStuff(int y, float s) throws IOException { }
}

You might be tempted to see the IOException as the problem, seeing that

the overridden dostutf () method doesn’t declare an exception, and knowing
that IOException is checked by the compiler. But the doStuff () method is
not overridden at all! Subclass Bar overloads the dostuff () method, by varying
the argument list, so the IOException is fine.

Invoking Overloaded Methods
When a method is invoked, more than one method of the same name might exist
for the object type you're invoking a method on. For example, the Horse class might
have three methods with the same name but with different argument lists, which
means the method is overloaded.

Deciding which of the matching methods to invoke is based on the arguments.
If you invoke the method with a String argument, the overloaded version that takes
a String is called. If you invoke a method of the same name but pass it a floaz, the
overloaded version that takes a float will run. If you invoke the method of the same
name but pass it a Foo object, and there isn’t an overloaded version that takes a Foo,
then the compiler will complain that it can’t find a match. The following are examples
of invoking overloaded methods:

class Adder {
public int addThem(int x, int v) {
return x + y;

// Overload the addThem method to add doubles instead of ints
public double addThem(double x, double y) {
return x + vy;

}
// From another class, invoke the addThem() method
public class TestAdder {

public static void main (String [] args) {

I 8 Chapter5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

Adder add = new Adder () ;

int b = 27;

int ¢ = 3;

int result = a.addThem(b,c); // Which addThem is invoked?
double doubleResult = a.addThem(22.5,89.36);

// Which addThem?

}

In the preceding TestAdder code, the first call to a.addThem (b, c¢) passes two
ints to the method, so the first version of addThem () —the overloaded version that
takes two 7nt arguments—is called. The second call to a.addThem (22.5, 89.36)
passes two doubles to the method, so the second version of addThem () —the
overloaded version that takes two double arguments—is called.

Invoking overloaded methods that take object references rather than primitives
is a little more interesting. Say you have an overloaded method such that one version
takes an Animal and one takes a Horse (subclass of Animal). If you pass a Horse object
in the method invocation, you'll invoke the overloaded version that takes a Horse.
Or so it looks at first glance:

class Animal { }
class Horse extends Animal { }
class UseAnimals {
public void doStuff (Animal a) {
System.out.println("In the Animal version");
}
public void doStuff (Horse h) {
System.out.println("In the Horse version") ;
}
public static void main (String [] args) {
UseAnimals ua = new UseAnimals () ;
Animal animalObj = new Animal () ;
Horse horseObj = new Horse();
ua.doStuff (animalObj) ;
ua.doStuff (horseObj) ;

}

The output is what you expect:

Overridden and Overloaded Methods (Exam Objective 6.2) | Q@

in the Animal version
in the Horse version

But what if you use an Animal reference to a Horse object?

Animal animalRefToHorse = new Horse();
ua.doStuff (animalRefToHorse) ;

Which of the overloaded versions is invoked? You might want to say, “The one that

takes a Horse, since it’s a Horse object at runtime that’s being passed to the method.
But that’s not how it works. The preceding code would actually print

in the Animal version

Even though the actual object at runtime is a Horse and not an Animal, the choice
of which overloaded method to call is not dynamically decided at runtime. Just
remember, the reference type (not the object type) determines which overloaded method is
invoked! To summarize, which overridden method to call (in other words, from which
class in the inheritance tree) is decided at runtime based on object type, but which
overloaded version of the method to call is based on the reference type passed at
compile time.

Polymorphism in Overloaded and Overridden Methods How does
polymorphism work with overloaded methods? From what we just looked at, it
doesn’t appear that polymorphism matters when a method is overloaded. If you pass
an Animal reference, the overloaded method that takes an Animal will be invoked,
even if the actual object passed is a Horse. Once the Horse masquerading as Animal
gets 77 to the method, however, the Horse object is still a Horse despite being passed
into a method expecting an Animal. So it’s true that polymorphism doesn’t determine
which overloaded version is called; polymorphism does come into play when the
decision is about which overridden version of a method is called. But sometimes, a
method is both overloaded and overridden. Imagine the Animal and Horse classes

look like this:

public class Animal {
public void eat() {
System.out.println("Generic Animal Eating Generically");

20 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

}

public class Horse extends Animal {
public void eat() {

System.out.println("Horse eating hay ");
}
public void eat(String s) {
System.out.println("Horse eating " + s);

}

}

Notice that the Horse class has both overloaded and overridden the eat () method.
Table 5-2 shows which version of the three eat () methods will run depending on
how they are invoked.

TABLE 5-2 Overloaded and Overridden Method Invocations

Method Invocation Code Result

Animal a = new Animal () ; Generic Animal Eating Generically
a.eat();
Horse h = new Horse(); Horse eating hay
h.eat();
Animal ah = new Horse() ; Horse eating hay
ah.eat () ; Polymorphism works—the actual object type (Horse), not the
reference type (Animal), is used to determine which eat ()
is called.
Horse he = new Horse(); Horse eating Apples
he.eat ("Apples") ; The overloaded eat (String s) method is invoked.
Animal a2 = new Animal () ; Compiler error! Compiler sees that Animal class doesn’t have an
a2.eat ("treats"); eat () method that takes a String.
Animal ah2 = new Horse(); Compiler error! Compiler szi//looks only at the reference type,
ah2.eat ("Carrots") ; and sees that Animal doesn’t have an eat () method that takes
a string. Compiler doesn’t care that the actual object might
be a Horse at runtime.

Overridden and Overloaded Methods (Exam Objective 6.2) 2 ||

exam

-~ Don’t be fooled by a method that’s overloaded but not overridden by a subclass.
Qatch

It’s perfectly legal to do the following:

public class Foo {
void doStuff() { }
}
class Bar extends Foo {
void doStuff (String s) { }
}

The Bar class has two dostuff () methods: the no-arg version it inherits
from Foo (and does not override), and the overloaded doStuff (String s)
defined in the Bar class. Code with a reference to a Foo can invoke only
the no-arg version, but code with a reference to a Bar can invoke either

of the overloaded versions.

Table 5-3 summarizes the difference between overloaded and overridden methods.

Difference Between Overloaded and Overridden Methods

Overloaded Method Overridden Method

argument list Must change Must not change
return type Can change Must not change
exceptions Can change Can reduce or eliminate.

Must not throw new or
broader checked exceptions

access Can change Must not make more
restrictive (can be less
restrictive)
invocation Reference type determines which overloaded version Object type (in other
(based on declared argument types) is selected. Happens ~ words, the type of the
at compile time. The actual method that’s invoked is still actual instance on the heap)
a virtual method invocation that happens at runtime, determines which method
but the compiler will already know the signature of the is selected. Happens at
method to be invoked. So at runtime, the argument runtime.

match will already have been nailed down, just not
the actual c/ass in which the method lives.

272 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

m Overriding Overloading

Tree Tree
Overloaded and
overridden showLeaves () setFeatures (String name)
methods in class
relationships
Oak Oak
showLeaves () setFeatures (String name, int leafSize)
setFeatures (int leafSize)

The current objective (5.2) covers both method and constructor overloading, but
we'll cover constructor overloading in the next section, where we'll also cover the
other constructor-related topics that are on the exam. Figure 5-4 illustrates the way
overloaded and overridden methods appear in class relationships.

CERTIFICATION OBJECTIVE

Constructors and Instantiation
(Exam Objectives 1.3, 6.3, 6.2)

For a given class, determine if a default constructor will be created, and if so, state the
prototype of that constructor.

Write code to construct instances of any concrete class, including normal top-level
classes and nested classes.

Write code to invoke parental or overloaded constructor, and describe the effect of
those invocations.

Objects are constructed. You can't make a new object without invoking a constructor.
In fact, you can’t make a new object without invoking not just the constructor of the
object’s actual class type, but also the constructor of each of its superclasses! Constructors
are the code that runs whenever you use the keyword new. We've got plenty to talk
about here—we’ll look at how constructors are coded, who codes them, and how
they work at runtime. So grab your hardhat and a hammer, and let’s do some object
building. (Don't forget your lunch box and thermos.)

Constructors and Instantiation (Exam Objectives 1.3, 6.3,6.2) 2.3

Constructor Basics

Foo £

Foo £

Every class, including abstract classes, must have a constructor. Burn that into your
brain. But just because a class must have one, doesn’t mean the programmer has to
type it. A constructor looks like this:

class Foo {
Foo() { } // The constructor for the Foo class

}

Notice what's missing? 7Theres no return type! Remember from Chapter 2 that a
constructor has no return type and its name must exactly match the class name.
Typically, constructors are used to initialize instance variable state, as follows:

class Foo {
int size;
String name;
Foo (String name, int size) {
this.name = name;
this.size = size;

}

In the preceding code example, the Foo class does not have a no-arg constructor.
That means the following will fzi/ to compile,

new Foo(); // Won't compile, no matching constructor

but the following will compile,

new Foo ("Fred", 43); // No problem. Arguments match Foo constructor.

So it’s very common (and desirable) for a class to have a no-arg constructor, regardless
of how many other overloaded constructors are in the class (yes, constructors can be
overloaded). You can’t always make that work for your classes; occasionally you have
a class where it makes no sense to create an instance without supplying information
to the constructor. A java.awt.Color object, for example, can’t be created by calling a
no-arg constructor, because that would be like saying to the JVM, “Make me a new
Color object, and I really don’t care what color it is. .. you pick.” (Imagine if the JVM
were allowed to make aesthetic decisions. What if it’s favorite color is mauve?)

24 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

Constructors on
the call stack

Constructor Chaining
We know that constructors are invoked at runtime when you say new on some class

type as follows:

Horse h = new Horse();

But what really happens when you say new Horse() ?

l.
2.

¥ © N o U o»

Horse constructor is invoked.

Animal constructor is invoked (Animal is the superclass of Horse).

. Object constructor is invoked (Object is the ultimate superclass of a// classes,

so class Animal extends Object even though you don’t actually type "extends
Object" in to the Animal class declaration. It'’s
implicit.) At this point we’re on the top of the stack.

Object instance variables are given their explicit values (if any).
Object constructor completes.

Animal instance variables are given their explicit values (if any).
Animal constructor completes.

Horse instance variables are given their explicit values (if any).

Horse constructor completes.

Figure 5-5 shows how constructors work on the call stack.

4. Object ()

3. Animal () calls super ()

2. Horse () calls super ()

I. main () callsnew Horse ()

Constructors and Instantiation (Exam Objectives 1.3, 6.3,6.2) 2§

Rules for Constructors
The following list summarizes the rules you’ll need to know for the exam (and to

understand the rest of this section):

Constructors can use any access modifier, including private. (A private
constructor means only code within the class itself can instantiate an object of
that type, so if the private-constructor class wants to allow an instance of the
class to be used, the class must provide a static method or variable that allows
access to an instance created from within the class.)

The constructor name must match the name of the class.
Constructors must not have a return type.

I¢’s legal (but stupid) to have a method with the same name as the class, but
that doesn’t make it a constructor. If you see a return type, it’s a method rather
than a constructor.

If you don’t type a constructor into your class code, a default constructor will
be automatically generated by the compiler.

The default constructor is a/ways a no-arg constructor.

If you want a no-arg constructor and you’ve typed any other constructor(s)
into your class code, the compiler won’t provide the no-arg constructor (or
any other constructor) for you. In other words, if you ve typed in a constructor
with arguments, you won't have a no-arg constructor unless you type it in yourself

Every constructor must have as its first statement either a call to an overloaded
constructor (this ()) or a call to the superclass constructor (super ()).

If you do type in a constructor (as opposed to relying on the compiler-generated
default constructor), and you do 7oz type in the call to super (), the compiler
will insert a no-arg call to super () for you.

A call to super () can be either a no-arg call or can include arguments
passed to the super constructor.

A no-arg constructor is not necessarily the default constructor, although the
default constructor is always a no-arg constructor. The default constructor is
the one the compiler provides! \While the default constructor is @/ways a no-arg
constructor, you're free to put in your own no-arg constructor.

26 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

B You cannot make a call to an instance method, or access an instance variable,
until affer the super constructor runs.

B You can access static variables and methods, although you can use
them only as part of the call to super () or this (). (Example:
super (Animal.DoThings ()))

B Abstract classes have constructors, and those constructors are a/ways called
when a concrete subclass is instantiated.

B Interfaces do nor have constructors. Interfaces are not part of an object’s
inheritance tree.

B The only way a constructor can be invoked is from within another
constructor. In other words, you can’t write code that actually calls
a constructor as follows:
class Horse {
Horse() { } // constructor

void doStuff () {
Horse(); // calling the constructor - illegal!

Determine if a Default Constructor Will Be Created

The following example shows a Horse class with two constructors:

class Horse {
Horse() { }
Horse (String name) { }

}

Will the compiler put in a default constructor for the class above? No!
How about for the following variation of the class?
class Horse {
Horse (String name) { }

}

Now will the compiler insert a default constructor? No!
What about this class?

class Horse { }

Constructors and Instantiation (Exam Objectives 1.3, 6.3,6.2) 27

Now we’re talking. The compiler will generate a default constructor for the
preceding class, because the class doesn’t have any constructors defined.
OK, what about #is class?

class Horse {
void Horse() { }

}

It might ook like the compiler won’t create one, since there already is a constructor
in the Horse class. Or is there? Take another look at the preceding Horse class.
What’s wrong with the Horse () constructor? It isn’t a constructor at all! It’s
simply a method that happens to have the same name as the class. Remember, the
return type is a dead giveaway that we're looking at a method, and not a constructor.

How do you know for sure whether a default constructor will be
created? Because you didn’t write any constructors in your class.

How do you know what the default constructor will look like?
Because...

B The default constructor has the same access modifier as the class.

B The default constructor has no arguments.

B The default constructor includes a no-arg call to the super constructor

(super ()).

The Table 5-4 shows what the compiler will (or won't) generate for your class.

TABLE 5-4 Compiler-Generated Constructor Code

Class Code (What You Type) Compiler-Generated Constructor Code (In Bold Type)

class Foo {} class Foo {
Foo() {
super();

}

28 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

TABLE 5-4 Compiler-Generated Constructor Code (continued)

Class Code (What You Type) Compiler-Generated Constructor Code (In Bold Type)

class Foo { class Foo {
Foo() { } Foo() {
} super () ;
}
}
public class Foo {} class Foo {
public Foo() {
super () ;
}
}
class Foo { class Foo {
Foo(String s) { } Foo (String s) {
} super () ;
}
}
class Foo { Nothing—compiler doesn’t need to insert anything.
Foo (String s) {
super () ;
}
}
class Foo { class Foo {
void Foo() {1} void Foo () {}
} Foo() {
super () ;
}
}
(void Foo () isa method, not a constructor)

What happens if the super constructor has arguments? Constructors
can have arguments just as methods can, and if you try to invoke a method that takes,
say, an int, but you don’t pass anything to the method, the compiler will complain
as follows:

class Bar {
void takelInt (int x) { }
}

class UseBar {

Constructors and Instantiation (Exam Objectives 1.3, 6.3,6.2) 29

public static void main (String [] args) {
Bar b = new Bar();
b.takeInt(); // Try to invoke a no-arg takeInt () method

}

The compiler will complain that you can’t invoke takeInt () without passing
an int. Of course, the compiler enjoys the occasional riddle, so the message it spits
out on some versions of the JVM (your mileage may vary) is less than obvious:

UseBar.java:7: takeInt(int) in Bar cannot be applied to ()
b.takeInt () ;

A

But you get the idea. The bottom line is that there must be a match for the method.
And by match, we mean that the argument types must be able to accept the values
or variables youre passing, and in the order you're passing them. Which brings us
back to constructors (and here you were thinking we'd never get there), which work
exactly the same way.

So if your super constructor (that is, the constructor of your immediate
superclass/parent) has arguments, you must type in the call to super (), supplying
the appropriate arguments. Crucial point: if your superclass does 7oz have a no-arg
constructor, you must type a constructor in your class (the subclass) because you need a
place to put in the call to super with the appropriate arguments.

The following is an example of the problem:

class Animal {
Animal (String name) { }

class Horse extends Animal {
Horse () {
super(); // Problem!

}
And once again the compiler treats us with the stunningly lucid:

Horse.java:7: cannot resolve symbol
symbol : constructor Animal ()
location: class Animal

super () ; // Problem!

A

30 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

If you’re lucky (and eat all your vegetables, including broccoli), your compiler might be a
little more explicit. But again, the problem is that there just isn’t a match for what
we're trying to invoke with super () —an Animal constructor with no arguments.

Another way to put this—and you can bet your favorite Grateful Dead t-shirt it’ll
be on the exam—is if your superclass does not have a no-arg constructor, then in your
subclass you will not be able to use the default constructor supplied by the compiler. It's
that simple. Because the compiler can only put in a call to a no-arg super (), you
won't even be able to compile something like the following:

class Clothing {
Clothing (String s) { }
}
class TShirt extends Clothing { }

Trying to compile this code gives us exactly the same error we got when we put
a constructor in the subclass with a call to the no-arg version of super ():

Clothing.java:4: cannot resolve symbol
symbol : constructor Clothing ()
location: class Clothing

class TShirt extends Clothing { }

A

In fact, the preceding Clothing and TShirt code is implicitly the same as the following
code, where we've supplied a constructor for TShirt that’s identical to the default
constructor supplied by the compiler:

class Clothing {
Clothing(String s) { }
}
class TShirt extends Clothing {
// Constructor identical to compiler-supplied default constructor
TShirt () {
super () ;

}

One last point on the whole default constructor thing (and it’s probably very
obvious, but we have to say it or we'll feel guilty for years), constructors are never
inherited. They aren’t methods. They can’t be overridden (because they aren’t
methods and only methods can be overridden). So the type of constructor(s) your
superclass has in no way determines the type of default constructor you'll get. Some
folks mistakenly believe that the default constructor somehow matches the super

Constructors and Instantiation (Exam Objectives 1.3, 6.3,6.2) 3 |

constructor, either by the arguments the default constructor will have (remember,
the default constructor is always a no-arg), or by the arguments used in the compiler-
supplied call to super ().

But although constructors can't be overridden, you've already seen that they can
be overloaded, and typically are.

Overloaded Constructors

Overloading a constructor means typing in multiple versions of the constructor,
each having a different argument lists, like the following examples:

class Foo {
Foo() { 1}
Foo(String s) { }
}

The preceding Foo class has two overloaded constructors, one that takes a string, and
one with no arguments. Because there’s no code in the no-arg version, it’s actually
identical to the default constructor the compiler supplies, but remember—since
there’s already a constructor in this class (the one that takes a string), the compiler
won’t supply a default constructor. If you want a no-arg constructor to overload the
with-args version you already have, you’re going to have to type it yourself, just as in
the Foo example.

Overloading a constructor is used typically to provide alternate ways for clients
to instantiate objects of your class. For example, if a client knows the animal name,
they can pass that to an Animal constructor that takes a string. But if they don’t know
the name, the client can call the no-arg constructor and that constructor can supply
a default name. Here’s what it looks like:

1. public class Animal {

2 String name;

3 Animal (String name) {

4 this.name = name;

5. 1}

6.

7 Animal () {

8 this (makeRandomName ()) ;
9 }

10

11 static String makeRandomName () {

32 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

12. int x = (int) (Math.random() * 5);

13. String name = new String[] {"Fluffy", "Fido",
"Rover", "Spike",
"Gigi"}[x];

14. return name;

15. }

16.

17. public static void main (String [] args) {

18. Animal a = new Animal () ;

19. System.out.println(a.name) ;

20. Animal b = new Animal ("Zeus") ;

21. System.out.println (b.name) ;

22. }

23. }

Running this code four times produces the output:

% java Animal
Gigi
Zeus

% java Animal
Fluffy
Zeus

% java Animal
Rover
Zeus

% java Animal
Fluffy
Zeus

There’s a lot going on in the preceding code. Figure 5-6 shows the call stack for
constructor invocations when a constructor is overloaded. Take a look at the call
stack, and then let’s walk through the code straight from the top.

B Line2 Declare a String instance variable name.

B Lines 3-5 Constructor that takes a String, and assigns it to instance
variable name.

B Line7 Here’s where it gets fun. Assume every animal needs a name, but
the client (calling code) might not always know what the name should be,
so you'll assign a random name. The no-arg constructor generates a name
by invoking the makeRandomName () method.

Overloaded
constructors on
the call stack

Constructors and Instantiation (Exam Objectives 1.3,6.3,6.2) 33

4. Object ()

3. Animal (String s) calls super ()

2. Animal () calls this (randomlyChosenNameString)

I. main () callsnew Animal ()

Line 8 The no-arg constructor invokes its own overloaded constructor that
takes a string, in effect calling it the same way it would be called if client code
were doing a new to instantiate an object, passing it a string for the name.
The overloaded invocation uses the keyword this, but uses it as though it
were a method name, this (). So line 8 is simply calling the constructor
on line 3, passing it a randomly selected string rather than a client-code
chosen name.

Line 11 Notice that the makeRandomName () method is marked static!
That’s because you cannot invoke an instance (in other words, nonstatic) method
(or access an instance variable) until affer the super constructor has run. And
since the super constructor will be invoked from the constructor on line 3, rather
than from the one on line 7, line 8 can use only a szatic method to generate
the name. If we wanted all animals not specifically named by the caller to have
the same default name, say, “Fred,” then line 8 could have read

this("Fred") ;

rather than calling a method that returns a string with the randomly chosen
name.

Line 12 Line 12 doesn’t have anything to do with constructors, but since
we're all here to learn...it generates a random number between 0 and 5.

Line 13 Weird syntax, we know. We’'re creating a new String object (just a
single String instance), but we want the string to be selected randomly from a
list. Except we don’t have the list, so we need to make it. So in that one line
of code we

I. Declare a String variable, name.

2. Create a String array (anonymously—we don’t assign the array itself to
anything).

3. Retrieve the string at index [x] (x being the random number generated
on line 12) of the newly created String array.

34 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

exam

Match

4. Assign the string retrieved from the array to the declared instance variable
name. We could have made it much easier to read if we’d just written
String[] nameList = {"Fluffy", "Fido", "Rover",
"Spike", "Gigi"};

String name = nameList[x];

But where’s the fun in that? Throwing in unusual syntax (especially for code
wholly unrelated to the real question) is in the spirit of the exam. Don’t be
startled! (OK, be startled, but then just say to yourself, “Whoa” and get on
with it.)

B Line 18 We're invoking the no-arg version of the constructor (causing a
random name from the list to be selected and passed to the ozher constructor).

B Line 20 We're invoking the overloaded constructor that takes a string
representing the name.

The key point to get from this code example is in line 8. Rather than calling
super (), were calling this (), and this () always means a call to another
constructor in the same class. OK, fine, but what happens affer the call to this ()?
Sooner or later the super () constructor gets called, right? Yes indeed. A call to
this () just means youre delaying the inevitable. Some constructor, somewhere,
must make the call to super ().

Key Rule: The first line in a constructor must be a call to super () or a call
to this ().

No exceptions. If you have neither of those calls in your constructor, the compiler
will insert the no-arg call to super () . In other words, if constructor A () hasa
call to this (), the compiler knows that constructor A () will 7oz be the one to
invoke super ().

The preceding rule means a constructor can never have both a call to super ()
and a call to this (). Because each of those calls must be the very first
statement in a constructor, you can’t legally use both in the same constructor.
That also means the compiler will not put a call to super () in any
constructor that has a call to this ().

Thought Question: What do you think will happen if you try to compile the
following code?

class A {
A() {

Constructors and Instantiation (Exam Objectives 1.3,6.3,6.2) 3 §

this("foo");
}
A(String s) {
this();

}

Your compiler may not actually catch the problem (it varies depending on your
compiler, but most won’t catch the problem). It assumes you know what you’re doing.
Can you spot the flaw? Given that a super constructor must always be called, where
would the call to super () go? Remember, the compiler won’t put in a default
constructor if you've already got one or more constructors in your class. And when
the compiler doesn’t put in a default constructor, it sz/l inserts a call to super ()
in any constructor that doesn’t explicitly have a call to the super constructor—unless,
that is, the constructor already has a call to this (). So in the preceding code,
where can super () go? The only two constructors in the class both have calls to
this (), and in fact you'll get exactly what you’d get if you typed the following
method code:

public void go() {
doStuff();

public void doStuff () {
go();
}

Now can you see the problem? Of course you can. The stack explodes! It gets higher
and higher and higher until it just bursts open and method code goes spilling out,
oozing out of the JVM right onto the floor. Two overloaded constructors both calling
this () are two constructors calling each other. Over and over and over, resulting in

% java A
Exception in thread "main" java.lang.StackOverflowError

The benefit of having overloaded constructors is that you offer flexible ways to
instantiate objects from your class. The benefit of having one constructor invoke
another overloaded constructor is to avoid code duplication. In the Animal example,
there wasn't any code other than setting the name, but imagine if after line 4 there
was still more work to be done in the constructor. By putting all the other
constructor work in just one constructor, and then having the other constructors
invoke it, you don’t have to write and maintain multiple versions of that other

36 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

important constructor code. Basically, each of the other not-the-real-one overloaded
constructors will call another overloaded constructor, passing it whatever data it
needs (data the client code didn’t supply).

Constructors and instantiation become even more exciting (just when you
thought it was safe) when you get to inner classes, but we know you can only stand
to have so much fun in one chapter, so were holding the rest of the discussion on
instantiating inner classes until Chapter 8.

CERTIFICATION OBJECTIVE

Legal Return Types (Exam Objective 1.4)

Identify legal return types for any method given the declarations of all related methods in
this or parent classes.

This objective covers two aspects of return types: What you can declare as a return
type, and what you can actually rezurn as a value. What you can and cannot declare
is pretty straightforward, but it all depends on whether you're overriding an inherited
method or simply declaring a new method (which includes overloaded methods). We'll
take just a quick look at the difference between return type rules for overloaded and
overriding methods, because we’ve already covered that in this chapter. We'll cover a
small bit of new ground, though, when we look at polymorphic return types and the
rules for what is and is not legal to actually rezurn.

Return Type Declarations

This section looks at what you're allowed to declare as a return type, which depends
primarily on whether you are overriding, overloading, or declaring a new method.

Return Types on Overloaded Methods

Remember that method overloading is not much more than name reuse. The
overloaded method is a completely different method from any other method of

the same name. So if you inherit a method but overload it in a subclass, you’re not
subject to the restrictions of overriding, which means you can declare any return
type you like. What you cant do is change just the return type. To overload a method,
remember, you must change the argument list. The following code shows an overloaded
method:

Legal Return Types (Exam Objective 1.4) 37

public class Foof{
void go() { }
}
public class Bar extends Foo {
String go(int x) {
return null;

}

Notice that the Bar version of the method uses a different return type. That’s
perfectly fine. As long as you've changed the argument list, you're overloading the
method, so the return type doesn’t have to match that of the superclass version.
What you're not allowed to do is this:

public class Foo{
void go() { }
}
public class Bar extends Foo {
String go() { // Not legal! Can't change only the return type
return null;

}

Overriding and Return Types
When a subclass wants to change the method implementation of an inherited method,
the subclass must define a method that matches the inherited version exactly. As we
saw earlier in this chapter, an exact match means the arguments and return types
must be identical. Other rules apply to overriding, including those for access modifiers
and declared exceptions, but those rules aren’t relevant to the return type discussion.
For the exam, be sure you know that overloaded methods can change the return
type, but overriding methods cannot. Just that knowledge alone will help you through

a wide range of exam questions.

Returning a Value
You have to remember only six rules for returning a value:

I. You can return null in a method that has an object reference return type.

public Button doStuff() {
return null;

38 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

2. An array is a perfectly legal return type.

public String [] go() {
return new String[] {"Fred", "Barney", "Wilma"};

}

3. Ina method with a primitive return type, you can return any value or variable
that can be implicitly converted to the declared return type.
public int foo() {
char ¢ = '¢';

return c; // char is compatible with int

}

4. In a method with a primitive return type, you can return any value or variable
that can be explicitly cast to the declared return type.
public int foo () {
float £ = 32.5f;

return (int) £f;

}
5. You must 7oz return anything from a method with a void return type.

public void bar() {
return "this is it"; // Not legal!!
}

6. In a method with an object reference return type, you can return any object
type that can be implicitly cast to the declared return type.

public Animal getAnimal () {
return new Horse(); // Assume Horse extends Animal

public Object getObject () {
int[] nums = {1,2,3};
return nums; // Return an int array, which is still an object

public interface Chewable { }
public class Gum implements Chewable { }
public class TestChewable {

// Method with an interface return type
public Chewable getChewable {

exam
Jatch

exam
Datch

Legal Return Types (Exam Objective 1.4) 39

return new Gum(); // Return interface implementer

Watch for methods that declare an abstract class or interface return type,
and know that any object that passes the IS-A test (in other words, would test
true using the instanceof operator) can be returned from that method—
for example:

public abstract class Animal { }
public class Bear extends Animal { }
public class Test {
public Animal go() {
return new Bear(); // OK, Bear "is-a" Animal

Be sure you understand the rules for casting primitives. Take a look at the
following:

public short s = (short) (90 + 900000);

The preceding code compiles fine. But look at this variation:

public short s = (short) 90 + 900000; // Illegall!

By leaving off the parentheses around the arithmetic expression, the cast
(short) applies only to the first number! So the compiler gives us
Test.java:4: possible loss of precision

found : int

required: short
short s = (short) 90 + 900000;

A

Casting rules matter when returning values, so the following code would
not compile,

public short foo() {
return (short) 90 + 900000;
}

but with parentheses around (90 + 900000), it compiles fine.

40 Chapter5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CERTIFICATION SUMMARY ‘

Let’s take a stroll through Chapter 5 and see where we’ve been. You looked at how
encapsulation can save you from being ripped to shreds by programmers whose code

you could break if you change the way client code accesses your data. Protecting the
instance variables (often by marking them private) and providing more accessible
getter and setter methods represent the good OO practice of encapsulation, and
support flexibility and maintainability by hiding your implementation details from
other code.

You learned that inheritance relationships are described using IS-A, as in “Car
IS-A Vehicle,” and that the keyword extends is used to define IS-A relationships
in Java:

class Car extends Vehicle

You also learned that reference relationships are described using HAS-A, as in
“Car HAS-A Engine.” HAS-A relationships in Java often are defined by giving one

class a reference to another, usually through instance variable declarations:

class Car extends Vehicle {
private Engine eng; // Now Car has-a Engine,
// and can thus invoke
methods on it.

}

We looked at the difference between overridden and overloaded methods, learning
that an overridden method occurs when a subclass inherits a method from a superclass,
but the subclass redefines it to add more specialized behavior. We learned that at
runtime, the JVM will invoke the subclass version on an instance of a subclass, and
the superclass version on an instance of the superclass. Remember that abstract
methods must be overridden (zechnically abstract methods must be implemented, as
opposed to overridden, since there really isn’t anything 7o override in an abstract
method, but who’s counting?).

We saw that overriding methods must keep the same argument list and return
type as the overridden method, and that the access modifier can’t be more restrictive.
The overriding method also cant throw any new or broader checked exceptions that
weren'’t declared in the overridden method. You also learned that the overridden
method can be invoked using the syntax super . doSomething () ;.

Legal Return Types (Exam Objective 1.4) 4 ||

Overloaded methods let you reuse the same method name in a class, but with
different arguments (and optionally, a different return type). Whereas overriding
methods must 7or change the argument list, overloaded methods must. But unlike
overriding methods, overloaded methods are free to vary the return type, access
modifier, and declared exceptions any way they like.

We covered constructors in detail, learning that even if you don’t provide a
constructor for your class, the compiler will always insert one. The compiler-generated
constructor is called the default constructor, and it is a/ways a no-arg constructor
with a no-arg call to super () . The default constructor will never be generated
if there is even a single constructor in your class (and regardless of the arguments
of that constructor), so if you need more than one constructor in your class and
you want a no-arg constructor, you'll have to write it yourself. We also saw that
constructors are not inherited, and that you can be confused by a method that has
the same name as the class (which is legal). The return type is the giveaway that
a method is not a constructor, since constructors do not have return types.

We saw how all of the constructors in an object’s inheritance tree will always be
invoked when the object is instantiated using new. We also saw that constructors
can be overloaded, which means defining constructors with different argument lists.
A constructor can invoke another constructor of the same class using the keyword
this (), as though the constructor were a method named this (). We saw that
every constructor must have either this () or super () as the first statement.

We also looked at method return types, and saw that you can declare any return
type you like (assuming you have access to a class for an object reference return type),
unless you're overriding a method. An overriding method must have the same return
type as the overridden method of the superclass. We saw that while overriding methods
must 7ot change the return type, overloaded methods ca (as long as they a/so change
the argument list).

Finally, you learned that it is legal to return any value or variable that can be
implicitly converted to the declared return type. So, for example, a short can
be returned when the return type is declared as an inz. And a Horse reference
can be returned when the return type is declared an Animal (assuming Horse
extends Animal).

And once again, you learned that the exam includes tricky questions designed
largely to test your ability to recognize just how tricky the questions can be. If you
took our advice about the margarita, you might want to review the following
Two-Minute Drill again after you're sober.

472 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in Chapter 5.

Encapsulation, IS-A, HAS-A (Sun Objective 6.1)

a

a

U

The goal of encapsulation is to hide implementation behind an interface

(or API).
Encapsulated code has two features:

U Instance variables are kept protected (usually with the private
modifier).

O Getter and setter methods provide access to instance variables.
IS-A refers to inheritance.
IS-A is expressed with the keyword extends.

“IS-A,” “inherits from,” “is derived from,” and “is a subtype of” are all
equivalent expressions.

HAS-A means an instance of one class “has a” reference to an instance of
another class.

Overriding and Overloading (Sun Objective 6.2)

a

Methods can be overridden or overloaded; constructors can be overloaded
but not overridden.

U Abstract methods must be overridden by the first concrete (nonabstract)

a

subclass.

With respect to the method it overrides, the overriding method
O Must have the same argument list

Must have the same return type

Must not have a more restrictive access modifier

May have a less restrictive access modifier

Must not throw new or broader checked exceptions

IR e Y]

May throw fewer or narrower checked exceptions, or any unchecked
exception

U

I I I I

Two-Minute Drill 43

Final methods cannot be overridden.
Only inherited methods may be overridden.

A subclass uses super . overriddenMethodName to call the superclass
version of an overridden method.

Overloading means reusing the same method name, but with different
arguments.

Overloaded methods
O Must have different argument lists

U May have different return types, as long as the argument lists are
also different

U May have different access modifiers

U May throw different exceptions

Methods from a superclass can be overloaded in a subclass.
Polymorphism applies to overriding, not to overloading

Object type determines which overridden method is used at runtime.

Reference type determines which overloaded method will be used at
compile time.

Instantiation and Constructors (Sun Objectives 6.3 and 1.3)

Q

U

Objects are constructed:

W You cannot create a new object without invoking a constructor.

U Each superclass in an object’s inheritance tree will have a constructor called.
Every class, even abstract classes, has at least one constructor.

Constructors must have the same name as the class.

Constructors do not have a return type. If there isa return type, then it is
simply a method with the same name as the class, and not a constructor.

Constructor execution occurs as follows:

O The constructor calls its superclass constructor, which calls its superclass
constructor, and so on all the way up to the Object constructor.

44 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

W The Object constructor executes and then returns to the calling
constructor, which runs to completion and then returns to 7zs
calling constructor, and so on back down to the completion of
the constructor of the actual instance being created.

1 Constructors can use any access modifier (even private!).

U The compiler will create a default constructor if you don’t create any
constructors in your class.

O The default constructor is a no-arg constructor with a no-arg call to
super () .

U The first statement of every constructor must be a call to either this ()
(an overloaded constructor) or super ().

U The compiler will add a call to super () if you do not, unless you
have already putina call to this ().

U Instance methods and variables are only accessible affer the super
constructor runs.

1 Abstract classes have constructors that are called when a concrete
subclass is instantiated.

U Interfaces do not have constructors.

O If your superclass does not have a no-arg constructor, you must create a
constructor and insert a call to super () with arguments matching those
of the superclass constructor.

O Constructors are never inherited, thus they cannot be overridden.

U A constructor can be directly invoked only by another constructor (using
acall to super () or this()).

O Issues with calls to this ():
U May appear only as the first statement in a constructor.
O The argument list determines which overloaded constructor is called.

U Constructors can call constructors can call constructors, and so on, but
sooner or later o7¢ of them better call super () or the stack will explode.

QO this () and super () cannotbe in the same constructor. You can
have one or the other, but never both.

Two-Minute Drill 4.8

Return Types (Sun Objectives 1.4)

Q

Q
Q
Q

U

Overloaded methods can change return types; overridden methods cannot.
Object reference return types can accept null as a return value.
An array is a legal return type, both to declare and return as a value.

For methods with primitive return types, any value that can be implicitly
converted to the return type can be returned.

Nothing can be returned from a void, but you can return nothing. You're
allowed to simply say return, in any method with a void return type, to
bust out of a method early. But you can’t return nothing from a method with
a non-void return type.

For methods with an object reference return type, a subclass of that type can
be returned.

For methods with an interface return type, any implementer of that interface
can be returned.

46 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Don’t even #hink about skipping this test. You really need to see what the questions on the
exam can be like, and check your grasp and memorization of this chapter’s topics.

Encapsulation, IS-A, HAS-A (Sun Objective 6.1)
I. Given the following,

1 public class Barbell {

2 public int getWeight () {

3 return weight;

4. }

5. public void setWeight (int w) {
6 weight = w;

7 }

8 public int weight;

9 }

which is true about the class described above?
Class Barbell is tightly encapsulated.
Line 2 is in conflict with encapsulation.
Line 5 is in conflict with encapsulation.

Line 8 is in conflict with encapsulation.

moOo®»

Lines 5 and 8 are in conflict with encapsulation.

o

Lines 2, 5, and 8 are in conflict with encapsulation.

2. Given the following,

1 public class B extends A {

2 private int bar;

3 public void setBar (int b) {
4. bar = b;

5. }

6 }

7 class A {

8 public int foo;

9 }

which is true about the classes described above?

A. Class A is tightly encapsulated.

B.

C.
D.

Class B is tightly encapsulated.
Classes A and B are both tightly encapsulated.

Neither class A nor class B is tightly encapsulated.

3. Which is true?

A

moQo w

Tightly encapsulated classes are typically easier to reuse.

Self Test 47

Tightly encapsulated classes typically use inheritance more than unencapsulated classes.

Methods in tightly encapsulated classes cannot be overridden.
Methods in tightly encapsulated classes cannot be overloaded.

Tightly encapsulated classes typically do not use HAS-A relationships.

4. Which two are not benefits of encapsulation? (Choose two.)

moONw >

Clarity of code

Code efficiency

The ability to add functionality later on
Modifications require fewer coding changes

Access modifiers become optional

5. Given the following,

1. class B extends A {
2. int getID() {

3. return id;

4. }

5. }

6. class C {

7. public int name;
8. }

9. class A {

10. C c = new C();
11. public int id;
12. }

which two are true about instances of the classes listed above? (Choose two.)

A

moQo w

A is-a B
is-a A
has-a C
has-a A

w W A

has-a C

48 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

Overriding and Overloading (Sun Objective 6.2)
6. Given the following,

class A {
public void baz () {
System.out.println("A");
}
}
public class B extends A {
public static void main(String [] args) {
A a = new B();
a.baz();
}
public void baz () {
System.out.println("B");
}
}

what is the result?

A A

B. B

C. Compilation fails.

D. An exception is thrown at runtime.

7. Given the following,

class Foo {
String doStuff (int x) { return "hello"; }
}

which method would not be legal in a subclass of Foo?

String doStuff (int x) { return "hello"; }

int doStuff (int x) { return 42; }

public String doStuff (int x) { return "Hello"; }
protected String doStuff (int x) { return "Hello"; }
String doStuff (String s) { return "Hello"; }

int doStuff (String s) { return 42; }

mmo N>

8. Given the following,

1. class ParentClass {
2. public int doStuff (int x) {
3. return x * 2;

Self Test 49

4. }
5. }
6.
7. public class ChildClass extends ParentClass {
8. public static void main(String [] args) {
9. ChildClass cc = new ChildClass();
10. long x = cc.doStuff(7);
11. System.out.println("x = " + x);
12. }
13
14. public long doStuff (int x) {
15. return x * 3;
16. }
17. }
What is the result?
x = 14
x = 21

Compilation fails at line 2.
Compilation fails at line 11.

Compilation fails at line 14.

mmQgOQOwp»

An exception is thrown at runtime.

Given the following,

class Over {
int doStuff(int a, float b) {
return 7;
}
}

class Over2 extends Over {
// insert code here

W 00 ~Jo Ui W

}

which two methods, if inserted independently at line 8, will not compile? (Choose two.)
public int doStuff(int x, float y) { return 4; }
protected int doStuff(int x, float y) {return 4; }
private int doStuff (int x, float y) {return 4; }
private int doStuff (int x, double y) { return 4; }
long doStuff (int x, float y) { return 4; }

mmQgQOw>»

int doStuff(float x, int y) { return 4; }

B QO Chapter5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

Instantiation and Constructors (Sun Objectives 6.3 and 1.3)

10. Given the following,

1. public class TestPoly {

2. public static void main(String [] args) {

3. Parent p = new Child();

4. }

5. }

6.

7. class Parent {

8. public Parent () {

9. super () ;

10. System.out.println("instantiate a parent");
11. }

12. }

13.

14. class Child extends Parent {

15. public Child() {

16. System.out.println("instantiate a child");
17. }

18. 1}

what is the result?

A. instantiate a child
B. instantiate a parent
C. instantiate a child
instantiate a parent
D. instantiate a parent
instantiate a child

E. Compilation fails.

F. An exception is thrown at runtime.

I'l. Given the following,

public class TestPoly {
public static void main(String [] args){
Parent p = new Child();

class Parent {
public Parent () {
super () ;

O 00 ~Jo Ui WN B
—

Self Test § ||

10. System.out.println("instantiate a parent");
11. }

12. 3}

13.

14. class Child extends Parent {

15. public Child() {

16. System.out.println("instantiate a child");
17. super () ;

18. }

19. 1}

what is the result?

A. instantiate a child
B. instantiate a parent
C. instantiate a child
instantiate a parent
D. instantiate a parent
instantiate a child

E. Compilation fails.

F. An exception is thrown at runtime.

12. Given the following,

1. class MySuper {

2. public MySuper (int i) {

3. System.out.println("super " + 1);
4. }

5. }

6.

7. public class MySub extends MySuper {
8. public MySub() {

9. super (2) ;

10. System.out.println("sub") ;

11. }

12.

13. public static void main(String [] args) {
14. MySuper sup = new MySub();

15. }

16. 3}

what is the result?

A. sub
super 2

B2 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

B. super 2

sub
C. Compilation fails at line 2.
D. Compilation fails at line 8.
E. Compilation fails at line 9.
F. Compilation fails at line 14.

13. Given the following,

1. public class ThreeConst {

2. public static void main(String [] args) {
3. new ThreeConst (4L) ;

4. }

5. public ThreeConst (int x) {

6. this();

7. System.out.print (" " + (x * 2));
8. }

9. public ThreeConst (long x) {

10. this((int) x);

11. System.out.print (" " + X);

12. }

13.

14. public ThreeConst () {

15. System.out.print ("no-arg ") ;

16. }

17. 3}

what is the result?
4

4 8

8 4

8 4 no-arg

moOo®»

no-arg 8 4

o

Compilation fails.

14. Given the following,

1 public class ThreeConst {

2 public static void main(String [] args) {
3. new ThreeConst () ;

4 }

Self Test §3

5. public void ThreeConst (int x) {
6. System.out.print (" " + (x * 2));
7. }

8. public void ThreeConst (long x) {
9. System.out.print (" " + X);

10. }

11.

12. public void ThreeConst () {

13. System.out.print ("no-arg ");
14. }

15. 3}

what is the result?
no-arg

8 4 no-arg
no-arg 8 4
Compilation fails.

No output is produced.

mmQgQONw>»

An exception is thrown at runtime.

15. Given the following,

1. class Dog {
2. Dog (String name) { }
3. }

if class Beagle extends Dog, and class Beagle has only one constructor, which of the following
could be the legal constructor for class Beagle?

A. Beagle() { }
B. Beagle() { super(); }
C. Beagle() { super("fido"); }

D. No constructor, allow the default constructor

16. Which two of these statements are true about constructors? (Choose two.)

A. Constructors must not have arguments if the superclass constructor does not have
arguments.

B. Constructors are not inherited.

0

Constructors cannot be overloaded.

D. The first statement of every constructor is a legal call to the super () or this () method.

B4 Chapter5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

Return Types (Sun Objective |.4)
17. Given the following,

13. int x;

14. X = n.test();
18. int test() {
19.

20. return vy;
21. }

which line of code, inserted at line 19, will not compile?
short v = 7;

int y = (int) 7.2d;

Byte v = 7;

char vy = 's';

moOo®»

int vy = Oxface;

18. Given the following,

14. long test(int x, float y) {
15.
16. }

which two of the following lines, inserted independently, at line 15 would not compile?
(Choose two.)

A. return x;

B. return (long) x / vy
C. return (long) vy;

D. return (int) 3.144d;
E. return (y / x);

F. return x / 7;

19. Given the following,

1 import java.util.*;

2 class Ro {

3 public static void main(String [] args) {
4. Ro r = new Ro();

5 Object o = r.test();

6

Self Test 5§

7.

8. Object test() {
9.

10.

11. }

12. 3}

which two of the following code fragments inserted at lines 9/10 will not compile?
(Choose two.)
A. return null;

B. Object t = new Object();
return t;

C. int [] a = new int [2];
return a;

D. char [] [] ¢ = new char [2][2];
return c[0] [1];

E. char [] [] ¢ = new char [2][2];
return c([1l];

F. return 7;

Given the following,

1. import java.util.*;

2. class Ro {

3. public static void main(String [] args) {
4. Ro r = new Ro();

5. Object o = r.test();
6. }

7.

8. Object test() {

9.

10.

11. }

12. }

which two of the following code fragments inserted at lines 9/10 will not compile?
(Choose two.)

A. char [] [] ¢ = new char [2][2];
return c;

B. return (Object) 7;

B @ Chapter5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

0

return (Object) (new int [] {1,2,3});

D. ArrayList a = new ArrayList();
return a;

E. return (Object) "test";
F. return (Float) 4.3;

21. Given the following,

1. class Test {

2. public static Foo f = new Fool();

3. public static Foo f2;

4. public static Bar b = new Bar();

5.

6. public static void main(String [] args) {
7. for (int x=0; x<6; x++) {

8. f2 = getFoo (x);

9. f2.react () ;

10. }

11. }

12. static Foo getFoo (int vy) {

13. if (0 ==y % 2) {

14. return f;

15. } else {

16. return b;

17. }

18. }

19. 1}

20.

21. class Bar extends Foo {

22. void react() { System.out.print("Bar "); }
23. }

24 .

25. class Foo {

26. void react() { System.out.print("Foo "); }
27. %}

what is the result?

A. Bar Bar Bar Bar Bar Bar
Foo Bar Foo Bar Foo Bar
Foo Foo Foo Foo Foo Foo

Compilation fails.

mooOw

An exception is thrown at runtime.

Self Test Answers §7

SELF TEST ANSWERS

Encapsulation, IS-A, HAS-A (Sun Objective 6.1)

I. M D.Ifa class has an instance variable that is marked pub1lic, the class cannot be said to
be encapsulated.
A, B, G, E, and F are incorrect based on the program logic described above. Public
getter and setter methods are compatible with the concept of encapsulation.

2. M D. Class A is clearly not encapsulated because it has a public instance variable. At first
glance class B appears to be encapsulated, however because it extends from class A it inherits
the public instance variable foo, which is not encapsulated.

A, B, and C are incorrect based on the program logic described above.

3. M A. One of the main benefits of encapsulation is that encapsulated code is much easier to
reuse than unencapsulated code.
& B, C, D, and E are incorrect. B is incorrect because inheritance is a concept that is
independent of encapsulation. C and D are incorrect because encapsulation does not restrict the
use of overloading or overriding. E is incorrect because HAS-A relationships are independent of
encapsulation.

4. M B and E. Encapsulation tends to make code more maintainable, extensible, and debuggable,
but not necessarily any more efficient at runtime. Encapsulation is a design approach and in no
way affects any Java language rules such as the use of access modifiers.

A, C, and D are well-known benefits of encapsulation.

5. M CandE. Cis correct because class A has an instance variable, ¢, that is a reference to an
object of class C. E is correct because class B extends from class A, which HAS-A class C
reference, so class B, through inheritance, HAS-A class C.

Xl A, B, and D are incorrect based on the program logic described. A is incorrect because
class B extends from class A, not the other way around. B is incorrect because class C is not in
class A’s inheritance tree. D is incorrect because class B IS-A class A; HAS-A is not used to
describe inheritance relationships.

Overriding and Overloading (Sun Objective 6.2)

6. M B. Reference variable ‘4 is of type A, but it refers to an object of type B. Line 9 is a
polymorphic call, and the VM will use the version of the baz () method that is in the class
that the reference variable refers to at that point.

A, C, and D are incorrect because of the logic described above.

B8 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

7.

9.

M B. B is neither a legal override (the return type has been changed) nor a legal overload (the
arguments have not changed).
A, C, and D are legal overrides of the doStuff () method, and E and F are legal overloads
of the doStuff () method.

M E. Line 14 is an illegal override of the doStuf £ () method in ParentClass. When you
override a method, you must leave both the arguments and the return types the same.

A, B, C, D, and F are incorrect based on the program logic described above. If line 14 had
returned an znz then B would be correct.

M CandE. Cisan illegal override because the private modifier is more restrictive than
doStuff ()’s default modifier in class Over. E is an illegal override because you can’t change
an overridden method’s return type, or E is an illegal overload because you must change an
overloaded method’s arguments.

& A and B are simple overrides (protected is less restrictive than default). D and F are
simple overloads (swapping arguments of different types creates an overload).

Instantiation and Constructors (Sun Objectives 6.3 and 1.3)

10.

12.

13.

M D. The class Child constructor calls the class Parent constructor implicitly before any code
in the Child constructor runs. When the class Parent constructor’s code runs, it prints the first
line of output, finishes, and returns control to the Child constructor, which prints out its line
of output and finishes. The call to super () is redundant.

A, B, C, E, and F are incorrect based on the program logic described above.

M E. Line 17 will cause the compiler to fail. The call to super () must be the first statement
in a constructor.

X A, B, C, D, and F are incorrect based on the program logic described above. If line 17 were
removed, D would be correct.

M B. Class MySuper does not need a no-args constructor because MySub explicitly calls the
MySuper constructor with an argument.

A is incorrect because other than the implicit calls to super (), constructors run in order
from base class to extended class, so MySuper’s output will print first. C, D, E, and F are incorrect
based on the program logic described above.

M E. Themain () method calls the Jong constructor which calls the inz constructor, which
calls the no-arg constructor, which runs, then returns to the 7nz constructor, which runs, then
returns to the /ong constructor, which runs last.

X A, B, C, D, and F are incorrect based on the program logic described above.

Self Test Answers §9Q

14. M E. The class elements declared in lines 5, 8, and 12 are badly named methods, not
constructors. The default constructor runs with no output, and these methods are never called.
A, B, C, D, and F are incorrect because of the logic described above.

I5. M C. Only C is correct because the Dog class does not have a no-arg constructor; therefore,
you must explicitly make the call to super (), passing in a string.
X A, B, and D are incorrect based on the program logic described above.

16. M B and D are simply stating two rules about constructors.
[A is wrong because subclass constructors do not have to match the arguments of the
superclass constructor. Only the call to super () must match. C is incorrect because
constructors can be and are frequently overloaded.

Return Types (Sun Objective 1.4)

17. M C. Byte is a wrapper object, not a primitive.
A and D are primitives that are shorter than inz so they are cast implicitly. B is a double
explicitly cast to an inz. E is a valid integer initialized with a hexadecimal value.

18. M B andE. B won’t compile because the long cast only applies to x, not to the expression
x/ y. (We know it’s tricky, but so is the test.) E won’t compile because the result of (y/ x)
is a float.

A, C, D, and F all return either Jongs or ints (which are automatically cast to longs).

19. @M D andF. D is a reference to a char primitive that happens to be in an array. F returns a
primitive, not an object.
& A, B, C, and E all return objects. For A, null is always a valid object return. For C, an
array is an object that holds other things (either objects or primitives). For E, we are returning
an array held in an array, and it’s still an object!

20. M B and F are both attempting to cast a primitive to an object—can’t do it.
A, C, D, and E all return objects. A is an array object that holds other arrays. C is an array
object. D is an ArrayList object. E is a string cast to an object.

21. M B. Line 8 is an example of a polymorphic return type. The VM will determine on a case-
by-case basis what class of object £2 refers to, Bar or Foo. This is only possible because the
classes Foo and Bar are in the same inheritance tree.

A, C, D, and E, are incorrect based on the logic described above.

SUN™ CERTIFIED PROGRAMMER & DEVELOPER

Java.lang—The
Math Class,
Strings, and
Wrappers

CERTIFICATION OBJECTIVES

° Using the java.lang.String Class
° Using the java.lang.Math Class
° Using Wrapper Classes

° Using the equals () Method with
Strings and Wrappers and Objects

\/ Two-Minute Drill
Q&A Self Test

2 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

his chapter focuses on the aspects of the java.lang package that you'll need to understand

for the exam. The java.lang package contains many of the most fundamental and

often-used classes in the Java APl. The exam will test your knowledge of String and
StringBuffer basics, including the infamous immutability of String objects, and how the more
common String and StringBuffer methods work. You will be tested on many of the basic
methods included in the Math class (extremely interesting), and you will need to know all about
wrappers—those methods that allow you to encapsulate your favorite primitives into objects,
so that you can do object-like stuff with them (like put them in collections). Finally, we’ll reveal
more than you've ever wanted to know about how the equals () method and == operator
work when dealing with String objects and wrappers.

As always, our focus will be on the knowledge you'll really need to pass the
exam. Undoubtedly some very wonderful methods will be overlooked in our tour
of java.lang, but we're dedicated to helping you pass this test.

CERTIFICATION OBJECTIVE

Using the String Class (Exam Objective 8.2)

Describe the significance of the immutability of String objects.

This section covers the String and StringBuffer classes. The key concepts we’ll
cover will help you understand that once a String object is created, it can never be
changed—so what 7s happening when a String object seems to be changing? We'll
find out. We'll also cover the differences between the String and StringBuffer classes
and when to use which.

Strings Are Immutable Objects

Let’s start with a little background information about strings. Strictly speaking you
may not need this information for the test, but a little context will help you learn
what you do have to know. Handling “strings” of characters is a fundamental aspect
of most programming languages. In Java, each character in a string is a 16-bit

Using the String Class (Exam Objective 8.2) 3

Unicode character. Because Unicode characters are 16 bits (not the skimpy 7 or 8
bits that ASCII provides), a rich, international set of characters is easily represented
in Unicode.

In Java, strings are objects. Just like other objects, you can create an instance of a
String with the new keyword, as follows:

String s = new String();

This line of code creates a new object of class String, and assigns the reference
variable s to it. So far String objects seem just like other objects. Now, let’s give the
String a value:

s = "abcdef";

As you might expect the String class has about a zillion constructors, so you can
use a more efficient shortcut:

String s = new String("abcdef");
And just because you'll use strings all the time, you can even say this:
String s = "abcdef";

There are some subtle differences between these options that we’ll discuss later,
but what they have in common is that they all create a new String object, with a
value of “abedef”, and assign it to a reference variable 5. Now let’s say that you want
a second reference to the String object referred to by s

String s2 = s; // refer s2 to the same String as s

So far so good. String objects seem to be behaving just like other objects, so
what’s all the fuss about? The certification objective states: “describe the significance
of the immutability of String objects.” Ah-ha! Immutability! (What the heck is
immutability?) Once you have assigned a String a value, that value can never change—
it’s immutable, frozen solid, won't budge, fini, done. (We'll also talk about why later,
don’t let us forget.) The good news is that while the String object is immutable, its
reference variable is not, so to continue with our previous example:

s = s.concat (" more stuff"); // the concat() method 'appends
// a literal to the end

4 Chapter 6:

Java.lang—The Math Class, Strings, and Wrappers

Now wait just a minute, didn’t we just say that Strings were immutable? So
what’s all this “appending to the end of the string” talk? Excellent question; let’s
look at what really happened...

The VM took the value of String s (which was “abcdef”), and tacked * more
stuff” onto the end, giving us the value “abcdef more stuff”. Since
Strings are immutable, the VM couldn’t stuff this new String into the old String
referenced by s, so it created a new String object, gave it the value *abcdef more
stuff”, and made srefer to iz. At this point in our example, we have two String
objects: the first one we created, with the value *abcdef”, and the second one
with the value “abcdef more stuff”. Technically there are now #hree String
objects, because the literal argument to concat * more stuff” is itselfa new
String object. But we have references only to “abcdef” (referenced by s2) and
“abcdef more stuff” (referenced by).

What if we didn’t have the foresight or luck to create a second reference variable
for the “abcdef” String before we called: s = s.concat (“ more stuff”) ;?
In that case the original, unchanged String containing “abcdef” would still exist
in memory, but it would be considered “lost.” No code in our program has any way
to reference it—it is lost to us. Note, however, that the original “abcdef” String
didn’t change (it can’t, remember, it’s immutable); only the reference variable s was
changed, so that it would refer to a different String. Figure 6-1 shows what happens
on the heap when you reassign a reference variable. Note that the dashed line
indicates a deleted reference.

To review our first example:

String s = "abcdef"; // create a new String object, with value "abcdef",
// refer s to it
String s2 = s; // create a 2nd reference variable referring to

// the same String

s = s.concat (" more stuff"); // create a new String object, with value
// "abcdef more stuff", refer s to it.
// (change s's reference from the old
// String to the new String. (Remember
// s2 is still referring to the original
// "abcdef" String.

String objects
and their
reference
variables

Using the String Class (Exam Objective 8.2)

Step I: String s = “abc”;

=]

String reference
variable

Step2: String s2 = s;

»
»

(=)

String reference
variable

String reference
variable

Step 3: s.concat (”def”);

s =

s2 >

String reference -
variable "

String reference
variable

Let’s look at another example:

String x = "Java";
x.concat (" Rules!");

System.out.println("x = " + X);

“abc”

String objects

“abc”

String objects

String objects

The heap

The heap

The heap

String object

@ Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

The output will be x = Java.

The first line is straightforward: create a new String object, give it the value
“Java”, and refer x to it. What happens next? The VM creates a second String
object with the value *Java Rules!” but nothing refers to it!!! The second
String object is instantly lost; no one can ever get to it. The reference variable x still
refers to the original String with the value “*Java”. Figure 6-2 shows creating a
String object without assigning to a reference.

Let’s expand this current example. We started with

String x = "Java";
x.concat (" Rules!");
System.out.println("x = " + x); // the output is: x = Java

A String object Step I: String x = “Java”;
is abandoned

upon creation x

String reference
variable

The heap

t@

String object

Step2: x.concat (”Rules!”); The heap

String object

String reference
variable

]

String reference
variable

“Java Rules!”

String object

Notice that no reference
variable is created to access
the “Java Rules!” String.

Using the String Class (Exam Objective 8.2) 7

Now let’s add

x.toUpperCase () ;
System.out.println("x = " + X); // the output is still: x = Java

(We actually did just create a new String object with the value *JAVA
RULES ! ”, but it was lost, and x szill refers to the original, unchanged String
“Java”.)

How about adding

x.replace('a', 'X');
System.out.println("x = " + X); // the output is still: x = Java

Can you determine what happened? The VM created yet another new String
object, with the value *JXvX”, (replacing the s with Xs), but once again this new
String was lost, leaving x to refer to the original unchanged and wnchangeable String
object, with the value “Java”. In all of these cases we called various String
methods to create a new String by altering an existing String, but we never assigned
the newly created String to a reference variable.

But we can put a small spin on the previous example:

String x = "Java";
x = xX.concat (" Rules!"); // Now we're assigning x to the new String
System.out.println("x = " + x); // the output will be:

// x = Java Rules!

This time, when the VM runs the second line, a new String object is created
with the value of “Java Rules!”, and xis set to reference it. But wait, there’s
more—now the original String object, *Java”, has been lost, and no one is
referring to it. So in both examples we created 7wo String objects and only one
reference variable, so one of the two String objects was left out in the cold. See
Figure 6-3 for a graphic depiction of this sad story. The dashed line indicates a
deleted reference.

Let’s take this example a little further:

String x = "Java";

x = x.concat (" Rules!");

System.out.println("x = " + x); // the output is: x = Java Rules!
x.toLowerCase () ; // no assignment, create a new, abandoned String
System.out.println("x = " + X); // no assignment, the output is

// still: x = Java Rules!x =

8 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

x.toLowerCase () ; // create a new String, assigned to x
System.out.println("x = " + X); // the assignment causes the output:
// x = java rules!

The previous discussion contains the keys to understanding Java String
immutability. If you really, really ger the examples and diagrams, backwards and
forwards, you should get 80 percent of the String questions on the exam correct.

We will cover more details about Strings next, but make no mistake—in terms of
bang for your buck, what we've already covered is by far the most important part
of understanding how String objects work in Java.

We'll finish this section by presenting an example of the kind of devilish String
question you might expect to see on the exam. Take the time to work it out on paper
(as a hint, try to keep track of how many objects and reference variables there are,
and which ones refer to which).

An old String

object being
abandoned *
String reference
variable

The heap

Step I: String x = “Java”;

»(“Java”

String object

Step2: x = x.concat (”"Rules!”);

String object

“Java Rules!”

String object

The heap

String reference
variable

Notice in step 2 that there is no
valid reference to the “Java” String;
that object has been “abandoned,”
and a new object created.

Using the String Class (Exam Objective 8.2) ©

String sl "spring ";

String s2 = sl + "summer ";
sl.concat ("fall ");

s2.concat(sl);

sl += "winter ";
System.out.println(sl + " " + s2);

What is the output?
For extra credit, how many String objects and how many reference variables were
created prior to the println statement? Answer:

The result of this code fragment is “spring winter spring summer”.
There are two reference variables, s/ and s2. There were a total of eight String
objects created as follows: “spring”, “summer ” (lost), “spring summer”, “fall”
(lost), “spring fall” (lost), “spring summer spring” (lost), “winter” (lost), “spring
winter” (at this point “spring” is lost). Only two of the eight String objects are
not lost in this process.

Important Facts About Strings and Memory

In this section we’ll discuss how Java handles string objects in memory, and some of
the reasons behind these behaviors.

One of the key goals of any good programming language is to make efficient use
of memory. As applications grow, it’s very common that String literals occupy large
amounts of a program’s memory, and that there is often a lot of redundancy within
the universe of String literals for a program. To make Java more memory efficient,
the JVM sets aside a special area of memory called the “String constant pool.” When
the compiler encounters a String literal, it checks the pool to see if an identical String
already exists. If a match is found, the reference to the new literal is directed to the
existing String, and no new String literal object is created. (The existing String
simply has an additional reference.) Now we can start to see why making String
objects immutable is such a good idea. If several reference variables refer to the same
String without even knowing it, it would be very bad if any of them could change
the String’s value.

You might say, “Well that’s all well and good, but what if someone overrides the
String class functionality; couldn’t that cause problems in the pool?” That’s one of
the main reasons that the String class is marked £inal. Nobody can override the
behaviors of any of the String methods, so you can rest assured that the String objects
you are counting on to be immutable will, in fact, be immutable.

I O Chapter 6: Javalang—The Math Class, Strings, and Wrappers

Creating New Strings

Earlier we promised to talk more about the subtle differences between the various
methods of creating a String. Let’s look at a couple of examples of how a String might
be created, and let’s further assume that no other String objects exist in the pool:

1 - String s = "abc"; // creates one String object and one reference
// variable

In this simple case, “abc” will go in the pool and s will refer to it.

2 - String s = new String("abc"); // creates two objects, and one
// reference variable

In this case, because we used the new keyword, Java will create a new String
object in normal (nonpool) memory, and s will refer to it. In addition, the literal
“abc” will be placed in the pool.

Important Methods in the String Class

The following methods are some of the more commonly used methods in the String
class, and also the ones that you’re most likely to encounter on the exam.

public char charAt (int index)

This method returns the character located at the String’s specified index.
Remember that String indexes are zero-based—for example,

String x = "airplane";
System.out.println(x.charAt(2)); // output is 'r'

public String concat(String s)

This method returns a String with the value of the String passed in to the method
appended to the end of the String used to invoke the method—for example,

String x = "taxi";
System.out.println(x.concat (" cab")); // output is "taxi cab"

The overloaded + and += operators perform functions similar to the concat ()
method—for example,

String x = "library";
System.out.println(x + " card"); // output is "library card"

exam

Jatch

Using the String Class (Exam Objective 8.2) | ||

1. String x = "Atlantic";
2. X += " ocean"
3. System.out.println(x); // output is "Atlantic ocean"

In the preceding “Atlantic Ocean” example, notice that the value of x really did
change! Remember that the += operator is an assignment operator, so line 2 is really
creating a new String, “Atlantic Ocean”, and assigning it to the x variable. After
line 2 executes, the original String x was referring to, “Atlantic”, is abandoned.

public Boolean equalsIgnoreCase(String s)

This method returns a boolean value (true or false) depending on whether
the value of the String in the argument is the same as the value of the String wused to
invoke the method. This method will return true even when characters in the String
objects being compared have differing cases—for example,

String x = "Exit";
System.out.println(x.equalsIgnoreCase ("EXIT")) ; // returns "true"
System.out.println(x.equalsIgnoreCase("tixe")) ; // returns "false"

public int length()

This method returns the length of the String used to invoke the method—for
example,

String x = "01234567";
System.out.println(x.length()); // returns "8"

Arrays have an attribute (not a method), called 1ength. You may encounter
questions in the exam that attempt to use the length () method on an array,
or that attempt to use the Iength attribute on a String. Both cause compiler
errors—for example,

String x = “test”;

System.out.println(x.length); // compiler error

or

String [] x =new String[3];
System.out.println(x.length());

I 2 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

public String replace(char old, char new)

This method returns a String whose value is that of the String used to invoke the
method, updated so that any occurrence of the charin the first argument is replaced
by the charin the second argument—for example,

String x = "OXOXOXOX";
System.out.println(x.replace('x', 'X')); // output is "oXoXoXoX"

public String substring(int begin)
public String substring(int begin, int end)

The substring () method is used to return a part (or substring) of the String
used to invoke the method. The first argument represents the starting location
(zero-based) of the substring. If the call has only oze argument, the substring
returned will include the characters to the end of the original String. If the call has
trwo arguments, the substring returned will end with the character located in the 7th
position of the original String where 7 is the second argument. Unfortunately, the
ending argument is not zero-based, so if the second argument is 7, the last character
in the returned String will be in the original String’s 7 position, which is index 6
(ouch). Let’s look at some examples:

String x = "0123456789"; // as 1f by magic, the value of each char
// is the same as its index!

System.out.println(x.substring(5)); // output is "56789"

System.out.println(x.substring(5, 8)); // output is "567"

The first example should be easy: start at index 5 and return the rest of the
String. The second example should be read as follows: start at index 5 and return
the characters up to and including the 8" position (index 7).

public String toLowerCase()

This method returns a String whose value is the String used to invoke the method,
but with any uppercase characters converted to lowercase—for example,

String x = "A New Moon";
System.out.println(x.toLowerCase()); // output is "a new moon"

public String toString()

This method returns the value of the String used to invoke the method. What? Why
would you need such a seemingly “do nothing” method? All objects in Java must

Using the String Class (Exam Objective 82) | 3

have a toString () method, which typically returns a String that in some
meaningful way describes the object in question. In the case of a String object, what
more meaningful way than the String’s value? For the sake of consistency, here’s an

example:
String x = "big surprise";
System.out.println(x.toString()); // output - reader's exercise

public String toUpperCase()

This method returns a String whose value is the String used to invoke the method,
but with any lowercase characters converted to uppercase—for example,

String x = "A New Moon";
System.out.println(x.toUpperCase()); // output is "A NEW MOON"

public String trim()

This method returns a String whose value is the String used to invoke the method,
but with any leading or trailing blank spaces removed—for example,

String x = " hi ",
System.out.println(x + "x"); // result is " hi x"
System.out.println(x.trim() + "x"); // result is "hix"

The StringBuffer Class

on the

Qob

The StringBuffer class should be used when you have to make a lot of modifications
to strings of characters. As we discussed in the previous section, String objects are
immutable, so if you choose to do a lot of manipulations with String objects, you
will end up with a lot of abandoned String objects in the String pool. On the other
hand, objects of type StringBuffer can be modified over and over again without
leaving behind a great effluence of discarded String objects.

A common use for StringBuffers is file /O when large, ever-changing streams
of input are being handled by the program. In these cases, large blocks of
characters are handled as units, and StringBuffer objects are the ideal way
to handle a block of data, pass it on, and then reuse the same memory to
handle the next block of data.

I 4 Chapter 6:

exam

$atch

Java.lang—The Math Class, Strings, and Wrappers

In the previous section, we saw how the exam might test your understanding of
String immutability with code fragments like this:

String x = "abc";
x.concat ("def") ;
System.out.println("x = " + x); // output is "x = abc"

Because no new assignment was made, the new String object created with the
concat () method was abandoned instantly. We also saw examples like this:

String x = "abc";
x = x.concat("def");
System.out.println("x = " + x); // output is "x = abcdef"

We got a nice new String out of the deal, but the downside is that the old String
“abc” has been lost in the String pool, thus wasting memory. If we were using a
StringBuffer instead of a String, the code would look like this:

StringBuffer sb = new StringBuffer ("abc");
sb.append ("def") ;
System.out.println("sb = " + sb); // output is "sb = abcdef"

All of the StringBuffer methods we will discuss operate on the value of the
StringBuffer object invoking the method. So a call to sb.append (“def”) ;
is actually appending “def” ro itself (StringBuffer sb). In fact, these method
calls can be chained to each other—for example,

StringBuffer sb = new StringBuffer ("abc") ;
sb.append("def") .reverse() .insert (3, "---");
System.out.println(sb); // output is "fed---cba"

The exam will probably test your knowledge of the difference between String
and StringBuffer objects. Because StringBuffer objects are changeable, the
following code fragment will behave differently than a similar code fragment
that uses String objects:

StringBuffer sb = new StringBuffer ("abc") ;

sb.append("def") ;

System.out.println(sb);

In this case, the output will be

“abcdef”

Using the String Class (Exam Objective 82) | §

Important Methods in the StringBuffer Class

The following method returns a StringBuffer object with the argument’s value
appended to the value of the object that invoked the method:

public synchronized StringBuffer append(String s)

As we've seen earlier, this method will update the value of the object that invoked
the method, whether or not the return is assigned to a variable. This method will
take many different arguments, boolean, char, double, float, int, long, and others,
but the most likely use on the exam will be a String argument—for example,

StringBuffer sb = new StringBuffer("set ");
sb.append ("point") ;
System.out.println(sb); // output is "set point"

or

StringBuffer sb = new StringBuffer("pi = ");
sb.append (3.14159f) ;
System.out.println(sb); // output is "pi = 3.14159"

public synchronized StringBuffer insert(int offset, String s)

This method returns a StringBuffer object and updates the value of the StringBuffer
object that invoked the method call. In both cases, the String passed in to the second
argument is inserted into the original StringBuffer starting at the offset location
represented by the first argument (the offset is zero-based). Again, other types of
data can be passed in through the second argument (boolean, char, double, floar, int,
long, etc.), but the String argument is the one you’re most likely o see:

StringBuffer sb = new StringBuffer ("01234567");
sb.insert (4, "---");
System.out.println(sb); // output is "0123---4567"

public synchronized StringBuffer reverse()

This method returns a StringBuffer object and updates the value of the StringBuffer
object that invoked the method call. In both cases, the characters in the StringBuffer

I & Chapter 6: Javalang—The Math Class, Strings, and Wrappers

exam

Jatch

are reversed, the first character becoming the last, the second becoming the second
to the last, and so on:

StringBuffer sb = new StringBuffer ("A man a plan a canal Panama") ;
System.out.println(sb); // output is "amanaP lanac a nalp a nam A"

public String toString()

This method returns the value of the StringBuffer object that invoked the method
call as a String:

StringBuffer sb = new StringBuffer("test string");
System.out.println(sb.toString()); // output is "test string"

That’s it for StringBuffers. If you take only one thing away from this section, it’s
that unlike Strings, StringBuffer objects can be changed.

Many of the exam questions covering this chapter’s topics use a tricky bit of
Java syntax known as chained methods. A statement with chained methods has
the general form:

result =methodl () .method2 () .method3 () ;

In theory, any number of methods can be chained in this fashion, although
typically you won’t see more than three. Here’s how to decipher these
“handy Java shortcuts” when you encounter them:

I. Determine what the leftmost method call will return (let’s call it x).

2. Use x as the object invoking the second (from the left) method. If there
are only two chained methods, the result of the second method call is the
expression’s result.

3. If there is a third method, the result of the second method call is used
to invoke the third method, whose result is the expression’s result—
for example,

String x = "abc";
Stringy = x.concat ("def") . toUpperCase().replace('C', 'x"'); //chained methods
System.out.println("y ="+y); // result is "ABxDEF"

Let’s look at what happened. The literal “def” was concatenated to “abc”,
creating a temporary, intermediate String (soon to be lost), with the value
“abcdef”. The toUpperCase () method created a new (soon to be lost)
temporary String with the value “"ABCDEF”. The replace () method created
a final String with the value “ABxDEF”, and referred y to it.

Using the Math Class (Exam Objective 8.1) |7

CERTIFICATION OBJECTIVE

Using the Math Class (Exam Objective 8.1)

Write code using the following methods of the java.lang. Math class: abs, ceil, floor, max,

min, random, round, sin, cos, tan, sqrt.

The java.lang package defines classes that are fundamental to the Java language.
For this reason, all classes in the java.lang package are imported automatically, so
there is no reason to write an import statement for them. The package defines
object wrappers for all primitive types. The class names are Boolean, Byte, Character,
Double, Float, Integer, Long, Short, and Void as well as Object, the class from
which all other Java classes inherit.

The java.lang package also contains the Math class, which is used to perform
basic mathematical operations. The Math class defines approximations for the
mathematical constants pi and e. Their signatures are as follows:

public final static double Math.PI
public final static double Math.E

Because all methods of the Math class are defined as static, you don’t need to
create an instance to use them. In fact, it’s not possible to create an instance of the
Math class because the constructor is private. You can't extend the Math class
either, because it’s marked final.

Methods of the java.lang.Math Class

The methods of the Math class are static and are accessed like any static
method—through the class name. For these method calls the general form is

result = Math.aStaticMathMethod() ;

The following sections describe the Math methods and include examples of how
to use them.

I 8 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

abs()

The abs () method returns the absolute value of the argument—for example,
x = Math.abs (99); // output is 99
x = Math.abs (-99) // output is 99

The method is overloaded to take an 7z, a long, a float, or a double argument. In
all but two cases, the returned value is non-negative. The signatures of the abs ()
method are as follows:

public static int abs(int a)
public static long abs(long a)
public static float abs(float a)
public static double abs (double a)

ceil()
The ceil () method returns the smallest integer, as a double, that is greater than
or equal to the argument and equal to the nearest integer value. In other words, the
argument is rounded up to the nearest integer equivalent.

Let’s look at some examples of this in action, just to make sure you are familiar
with the concept. All the following calls to Math.ceil () return the double

value 9.0:
Math.ceil (9.0) // result is 9.0
Math.ceil (8.8) // rises to 9.0

Math.ceil (8.02) // still rises to 9.0

Negative numbers are similar, but just remember that -9 is greater than —10.
All the following calls to Math.ceil () return the double value -9.0:

Math.ceil (-9.0) // result is -9.0
Math.ceil(-9.4) // rises to -9.0
Math.ceil (-9.8) // still rises to -9.0

There is only one ceil () method and it has the following signature:

public static double ceil (double a)

floor()

The f1loor () method returns the largest double that is less than or equal to the
argument and equal to the nearest integer value. This method is the antithesis of
the ceil () method.

exam
Jatch

Using the Math Class (Exam Objective 8.1) | Q@

All the following calls to Math. floor () return the double value 9.0:

Math.floor (9.0) // result is 9.0
Math.floor (9.4) // drops to 9.0
Math.floor (9.8) // still drops to 9.0

As before, keep in mind that with negative numbers, -9 is less than —8! All the
following calls to Math. floox () return the double value —9.0:

Math.floor(-9.0) // result is -9.0
Math.floor (-8.8) // drops to -9.0
Math.floor (-8.1) // still drops to -9.0

The signature of the £1oox () method is as follows:
public static double floor (double a)

The fioor () and ceil () methods take only doubles. There are no
overloaded methods for integral numbers, because the methods would just
end up returning the integral numbers they were passed. The whole point
of floor () and ceil () is to convert floating-point numbers (doubles),
to integers, based on the rules of the methods. It may seem strange (it does
to us) that the integer values are returned in a double sized container, but
don’t let that throw you.

max()
The max () method takes two numeric arguments and returns the greater of the
two—for example,

x = Math.max (1024, -5000); // output is 1024.

This method is overloaded to handle 7nz, long, float, or double arguments. If the
input parameters are the same, max () returns a value equal to the two arguments.
The signatures of the max () method are as follows:

public static int max(int a, int b)

public static long max(long a, long b)
public static float max(float a, float b)
public static double max(double a, double b)

20 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

min()
Themin () method is the antithesis of the max () method; it takes two numeric
arguments and returns the lesser of the two—for example,

x = Math.min(0.5, 0.0); // output is 0.0

This method is overloaded to handle inz, long, float, or double arguments. If the
input parameters are the same, min () returns a value equal to the two arguments.
The signatures of the min () method are as follows:

public static int min(int a, int b)

public static long min(long a, long b)

public static float min(float a, float b)

public static double min(double a, double b)

And for the record, we're pretty impressed with our use of the word “antithesis”.

EXERCISE 6-1

Using the Math Class
In this exercise we will examine some numbers using the abs (), ceil (), and
floor () methods of the Math class. Find the absolute, ceiling, and floor values
of the following numbers: 10.5, =10.5, Math.P], and 0.
B Create a class and amain () method to perform the calculations.
B Store these numbers in an array of double values.

B Use a forloop to go through the array and perform the tests on each of these
numbers.

B Try to determine what the results of your program will be before running it.

B An example solution is provided at the end of the chapter.

random()

The random () method returns a random double that is greater than or equal to
0.0 and less than 1.0. The random () method does not take any parameters—
for example,

Using the Math Class (Exam Objective 8.1) 2.

public class RandomTest
public static void main(String [] args) {
for (int x=0; x < 15; x++)
System.out.print((int) (Math.random()*10) + " ");

}

The println () method multiplies the result of the call to Math.random ()
by 10, and then casts the resulting double (whose value will be between 0.0 and
9.99999999...), to an integer. Here are some sample results:

6 3312059356460 335

493 668113032534
The signature of the random () method is as follows:

public static double random()

round()

The round () method returns the integer closest to the argument. The algorithm
is to add 0.5 to the argument and truncate to the nearest integer equivalent. This
method is overloaded to handle a float or a double argument.

The methods ceil (), flooxr (), and round () all take floating-point
arguments and return integer equivalents (although again, delivered in a double
variable). If the number after the decimal point is less #han 0.5, Math . round ()
is equal to Math. floor () . If the number after the decimal point is greater than
or equal t0 0.5, Math.round () is equal to Math.ceil (). Keep in mind that
with negative numbers, a number at the .5 mark will round up to the /zrger number—
for example,

Math.round(-10.5) ; // result is -10
The signatures of the round () method are as follows:

public static int round(float a)
public static long round(double a)

sin()

The sin () method returns the sine of an angle. The argument is a double
representing an angle iz radians. Degrees can be converted to radians by using
Math.toRadians () —for example,

Math.sin (Math.toRadians (90.0)) // returns 1.0

272 Chapter 6:

exam

$atch

Java.lang—The Math Class, Strings, and Wrappers

The signature of the sin () method is as follows:
public static double sin(double a)

cos()
The cos () method returns the cosine of an angle. The argument is a double
representing an angle 7z radians—for example,

Math.cos (Math.toRadians (0.0)) // returns 1.0
The signature of the cos () method is as follows:

public static double cos(double a)

tan()

The tan () method returns the tangent of an angle. The argument is a double
representing an angle 7z radians—for example,

Math.tan (Math.toRadians (45.0)) // returns 1.0
The signature of the tan () method is as follows:
public static double tan(double a)

Sun does not expect you to be a human calculator. The certification exam
will not contain questions that require you to verify the result of calling
methods such as Math.cos (0.623). (Although we thought it would be
fun to include questions like that...)

sqrt()

The sgrt () method returns the square root of a double—for example,
Math.sqgrt(9.0) // returns 3.0

What if you try to determine the square root of a negative number? After all, the
actual mathematical square root function returns a complex number (comprised of
real and imaginary parts) when the operand is negative. The Java Math.sqgrt ()
method returns NaN instead of an object representing a complex number. NaN is
a bit pattern that denotes “not a number.” The signature of the sgrt () method
is as follows:

public static double sqgrt (double a)

Using the Math Class (Exam Objective 8.1) 2.3

EXERCISE 6-2

Rounding Random Numbers

In this exercise we will round a series of random numbers. The program will
generate ten random numbers from 0 through 100. Round each one of them,
then print the results to the screen. Try to do this with as little code as possible.

I. Create a class and amain () method to perform the calculations.
2. Use a forloop to go through ten iterations.

3. Each iteration should generate a random number using Math . random () .
To get a number from 0 through 100 simply multiply the random number
by 100. Print this number to the screen. Without rounding it, though, you
can’t ever get to 100 (the random () method always returns something /ess
than 1.0).

4. Round the number using the Math.round () method. Print the rounded
number to the screen.

5. A sample solution is listed at the end of the chapter.

As a bonus, note whether the numbers look random. Is there an equal number
of even and odd numbers? Are they grouped more towards the top half of 100 or
the bottom half? What happens to the distribution as you generate more random
numbers?

toDegrees()
The toDegrees () method takes an argument representing an angle in radians
and returns the equivalent angle in degrees—for example,

Math.toDegrees (Math.PI * 2.0) // returns 360.0
The signature of the toDegrees () method is as follows:

public static double toDegrees (double a)

24 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

toRadians()

The toRadians () method takes an argument representing an angle in degrees
and returns the equivalent angle in radians—for example,

Math.toRadians (360.0) // returns 6.283185, which is 2 * Math.PI

This method is useful for converting an angle in degrees to an argument suitable
for use with the trigonometric methods (cos (), sin(), tan(), acos (),
asin(), and atan()). For example, to determine the sin of 60 degrees:

double d = Math.toRadians (60) ;
System.out.println("sin 60 = " + Math.sin(d)); // "sin 60 = 0.866.."

The signature of the toRadians () method is as follows:
public static double toRadians (double a)

Table 6-1 summarizes the key static methods of the Math class.

Static Math Methods

Important Static double ceil (double a)
Math Class double floor (double a)
Method

double random ()
double abs (double a)
float abs (floata)

int abs (inta)

Signatures

long abs (long a)
double max (double a, double b)

float max (float a, float b)

int max (inta, intb)

long max (long a, long b)
double min (double a, double b))
float min (float a, float b)double sqrt (double a)

int min (inta, intb)

long min (long a, long b)

double toDegrees (double angleInRadians)

double toRadians (double angleInDegrees)
double tan (double a)

Using the Math Class (Exam Objective 8.1) 2.8

Static Math Methods

Important Static double sin (double a)

Math Class double cos (double a)

Method

Signatures double sqrt (double a)

(continued) int round (floata)
long round (double a)

Miscellaneous Math Class Facts

The following program demonstrates some of the unusual results that can occur
when pushing some of the limits of the Math class or performing mathematical
functions that are “on the edge” (such as dividing floating-point numbers by 0).
These are some of the basic special cases. There are many more, but if you know
these you will be in good shape for the exam.

exam . . .
Match If you want to live dangerously, or you’re running out of study time before

the big day, just focus on the examples below with the **,
double d;
float p i = Float.POSITIVE INFINITY; // The floating point classes have
double n i1 = Double.NEGATIVE_INFINITY; // these three special fields.
double notanum = Double.NaN; // They can be Float or Double
if (notanum != notanum) // ** NaN isn't == to anything, not

// even itself!
System.out.println("NaNs not equal"); // result is "NaNs not equal"

if (Double.isNaN (notanum)) // Float and Double have isNan()
// methods to test for NaNs
System.out.println("got a NaN"); // result is "got a NaN"
d = Math.sqrt(n_1i); // square root of negative infinity?

if (Double.isNaN(d))
System.out.println("got sqrt NaN"); // result is "got sqgrt NaN"

System.out.println(Math.sqgrt(-16d)); // result is "NaN"
System.out.println(16d / 0.0); // ** result is (positive) "Infinity"
System.out.println(16d / -0.0); // ** result is (negative) "-Infinity"

// divide by 0 only works for floating point numbers
// divide by 0 with integer numbers results in ArithmeticException

System.out.println("abs(-0) = "+ Math.abs(-0)); // result is "abs(-0) = 0"

26 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

exam

Datch The exam will test your knowledge of implicit casting. For the numeric

primitives, remember that from narrowest to widest the numeric primitives
types are byte, short, int, long, float, double. Any numeric primitive can be
implicitly cast to any numeric primitive type that is wider than itself. For
instance, a byte can be implicitly cast to any other numeric primitive, but
a float can only be implicitly cast to a double. Remembering implicit casting,
and the method signatures in Table 6-1, will help you answer many of the
exam questions.

CERTIFICATION OBJECTIVE

Using Wrapper Classes (Exam Objective 8.3)

Describe the significance of wrapper classes, including making appropriate selections in
the wrapper classes to suit specified behavior requirements, stating the result of executing
a fragment of code that includes an instance of one of the wrapper classes, and writing
code using the following methods of the wrapper classes (e.g., Integer, Double, etc.):
doubleValue, floarValue, intValue, longValue, parseXxx, getXxx, toString, toHexString.

The wrapper classes in the Java API serve two primary purposes:

B To provide a mechanism to “wrap” primitive values in an object so that the
primitives can be included in activities reserved for objects, like as being
added to Collections, or returned from a method with an object return value.

B To provide an assortment of utility functions for primitives. Most of these
functions are related to various conversions: converting primitives to and
from String objects, and converting primitives and String objects to and
from different bases (or radix), such as binary, octal, and hexadecimal.

An Overview of the Wrapper Classes

There is a wrapper class for every primitive in Java. For instance the wrapper class
for intis Integer, for float is Float, and so on. Remember that the primitive name is

Using Wrapper Classes (Exam Objective 8.3) 27

simply the lowercase name of the wrapper except for char, which maps to Character,
and int, which maps ro Integer. Table 6-2 lists the wrapper classes in the Java API.

Creating Wrapper Objects

For the exam you need to understand the three most common approaches for creating
wrapper objects. Some approaches take a String representation of a primitive as an
argument. Those that take a String throw NumberFormatException if the String
provided cannot be parsed into the appropriate primitive. For example “two” can’t
be parsed into “2”. Like another class previously discussed in this chapter, wrapper
objects are immutable. Once they have been given a value, that value cannot be
changed. (Can you guess which other class we’re talking about?)

The Wrapper Constructors

All of the wrapper classes except Character provide two constructors: one that takes
a primitive of the type being constructed, and one that takes a String representation
of the type being constructed—for example,

Integer il = new Integer(42);
Integer 12 = new Integer("42");

or

Float fl1 = new Float(3.14f);
Float f2 = new Float("3.14f");

Primitive Wrapper Class Constructor Arguments
Wrapper Classes | boolean Boolean boolean or String
?:n;rt:ttor byte Byte byte or String
Arguments char Character char

double Double double or String

float Float float or String

int Integer int or String

long Long long or String

short Short short or String

28 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

exam

$atch

The Character class provides only one constructor, which takes a char as an
argument—for example,

Character cl = new Character('c');

The constructors for the Boolean wrapper take either a boolean value true or
false, or a case-insensitive String with the value “true” or “false”. But a Boolean
object can’t be used as an expression in a boolean test—for instance,

Boolean b = new Boolean ("false") ;
if (b) // won't compile, expecting a boolean not a Boolean

The valueOf() Methods

The static valueOf () methods provided in most of the wrapper classes give

you another approach to creating wrapper objects. Both methods take a String
representation of the appropriate type of primitive as their first argument, the
second method (when provided) takes an additional argument, int radix, which
indicates in what base (for example binary, octal, or hexadecimal) the first argument
is represented—for example,

Integer i2 = Integer.valueOf ("101011", 2); // converts 101011 to 43 and
// assigns the value 43 to the
// Integer object 12

or

Float f2 = Float.valueOf ("3.14f"); // assigns 3.14 to the Float object f2

Using Wrapper Conversion Utilities

As we said earlier, a wrapper’s second big function is converting stuff. The following
methods are the most commonly used, and are the ones you’re most likely to see on
the test.

xxxValue()

When you need to convert the value of a wrapped numeric to a primitive, use one
of the many xxxValue () methods. All of the methods in this family are no-arg
methods. As you can see by referring to Table 6-3, there are 36 xxxValue ()
methods. Each of the six numeric wrapper classes has six methods, so that any
numeric wrapper can be converted to any primitive numeric type—for example,

Using Wrapper Classes (Exam Objective 8.3) 29

Integer i2 = new Integer(42); // make a new wrapper object

byte b = i2.byteValue() ; // convert i2's value to a byte
// primitive

short s = i2.shortValue(); // another of Integer's xxxValue
// methods

double d = i2.doubleValue() ; // vyet another of Integer's

// xxxValue methods

or
Float f2 = new Float(3.14f); // make a new wrapper object
short s = f2.shortValuel() ; // convert f2's value to a short
// primitive
System.out.println(s); // result is 3 (truncated, not
// rounded)

TABLE 6-3 Common Wrapper Conversion Methods

Method

s = static

n = NFE exception Boolean Byte Character Double Float Integer Short
byteValue X X X X x x
doubleValue X X b'e X X X
floatValue X X b'e X b'e X
intValue X X b'e X X X
longValue X X X X p'e b'e
shortValue X X p'e X b'e X
parseXxx 57 X X X X X X
parseXxx 57 X X X X
(with radix)

valueOf s# X X X X X X X
valueOf 57 X X X X
(with radix)

30 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

TABLE 6-3 Common Wrapper Conversion Methods (continued)

Method

s = static

n = NFE exception = Boolean Character Double Float Integer Long Short
toString X X X X X X X X
toString s X X X X X X
(primitive)

toString s X X

(primitive, radix)

toBinaryString s X p'e
toHexString s X p'e
toOctalString s X X

In summary, the essential method signatures for Wrapper conversion methods are
* primitive xxxValue()
* primitive parseXxx(String)
* Wrapper valueOf(String)

parseXxx() and valueOf()

The six parseXxx () methods (one for each numeric wrapper type) are closely

related to the valueOf () method that exists in all of the numeric wrapper

classes (plus Boolean). Both parseXxx () and valueOf () take a String as

an argument, throw a NumberFormatException if the String argument is not

properly formed, and can convert String objects from different bases (radix), when

the underlying primitive type is any of the four integer types. (See Table 6-3.)
The difference between the two methods is

B parseXxx () returns the named primitive.

B valueOf () returns a newly created wrapped object of the type that invoked
the method.

Some examples of these methods in action:

double d4 = Double.parseDouble("3.14"); // convert a String to a primitive
System.out.println("d4d = " + d4); // result is "d4 = 3.14"
Double d5 = Double.valueOf ("3.14"); // create a Double object

System.out.println(d5 instanceof Double); // result is "true"

Using Wrapper Classes (Exam Objective 8.3) 3 ||

The next examples involve using the radix argument, (in this case binary):

long L2 = Long.parseLong("101010", 2); // binary String to a primitive

System.out.println("L2 = " + L2); // result is "L2 = 42"

Long L3 = Long.valueOf ("101010", 2); // binary String to Long object

System.out.println("L3 value = " + L3); // result is "L2 value = 42"
toString()

The class Object, the alpha class, the top dog, hasa toString () method. Since
we know that all other Java classes inherit from class Object, we also know (stay
with me here) that all other Java classes have a toString () method. The idea

of the toString () method is to allow you to get some meaningful representation
of a given object. For instance, if you have a Collection of various types of objects,
you can loop through the Collection and print out some sort of meaningful
representation of each object using the toString () method, which is guaranteed
to be in every class. We'll talk more about the toString () method in the Collections
chapter, but for now let’s focus on how the toString () method relates to the
wrapper classes which, as we know, are marked £inal. All of the wrapper classes
have a no-arg, nonstatic, instance version of toString (). This method returns a
String with the value of the primitive wrapped in the object—for instance,

Double d = new Double("3.14");
System.out.println("d = " + d.toString()); // result is "d = 3.14"

All of the numeric wrapper classes provide an overloaded, static
toString () method that takes a primitive numeric of the appropriate type
(Double.toString () takesa double, Long.toString () takes a long, etc.),
and, of course, returns a String with that primitive’s value—for example,

System.out.println("d = " + Double.toString(3.14); // result is "d = 3.14"

Finally, Integer and Long provide a third toString () method. Itis static,
its first argument is the appropriate primitive, and its second argument is a radix.
The radix argument tells the method to take the first argument (which is radix 10
or base 10 by default), and convert it to the radix provided, then return the result
as a String—for instance,

System.out.println("hex = " + Long.toString(254,16); // result is "hex = fe"

32 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

toXxxString() (Binary, Hexadecimal, Octal)

The Integer and Long wrapper classes let you convert numbers in base 10 to other
bases. These conversion methods, toXxxString (), take an int or long, and
return a String representation of the converted number, for example,

String s3 = Integer.toHexString(254) ; // convert 254 to hex
System.out.println("254 in hex = " + s3); // result is "254 in hex = fe"
String s4 = Long.toOctalString(254); // convert 254 to octal
System.out.println("254 in octal = "+ s4); // result is "254 in octal = 376"

Studying Table 6-3 is the single best way to prepare for this section of the test.
If you can keep the differences between xxxValue (), parseXxx (), and
valueOf () straight, you should do well on this part of the exam.

CERTIFICATION OBJECTIVE

Using equals()(Exam Objective 5.2)

Determine the result of applying the boolean equals (Object) method to objects of
any combination of the classes java.lang.String, java.lang. Boolean, and java.lang. Object.

In this chapter we begin our discussion of == and the equals () method, and
in the Collections chapter we'll dive deeper into these two mysterious comrades.
For now, we’ll limit our discussion to how == and the equals () method relate
to String, and the wrapper classes, and an overview of other object classes.

An Overview of == and the equals() Method

There are three kinds of entities in Java that we might want to compare to determine
if they’re equivalent: primitive variables, reference variables, and objects. Part of this
discussion looks at a critical question: What exactly does “equivalent” mean?

Comparing Variables
Let’s start with primitive and reference variables. You always compare primitive
variables using ==; the equals () method obviously can’t be used on primitives.

exam

Jatch

Using equals()(Exam Objective 5.2) 3 3

The == operator returns a boolean value: true if the variables are equivalent,
false if they’re not. Primitive variables are stored in memory as some absolute
number of bits, depending on the type of primitive being handled (short is 16 bits,
int is 32 bits, longis 64 bits, etc.). On the other hand, we can’t know from one Java
implementation to the next how big a reference variable is—it might be 64 bits, it
might be 97 bits (probably not!)—but the key thing to remember is that wherever

a Java program might run, all of the reference variables running on a single VM will
be the same size (in bits) and format. When we use the == operator to compare two
reference variables, we're really testing to see if the two reference variables refer to the
same object! So remember that when you compare variables (of either type, primitive
or reference), you are really comparing two sets of bit patterns.

Either bit patterns are the same, or they’re not. If primitive « holds a 5, and primitive
b holds a 5, then the bits in zand & are the same and 2 == 6 will be true. If a reference
variable ¢ refers to object X017432 and reference variable & also refers to object
X017432, then the bits in cand 4 are the same, and ¢ == 4 will be true.

When comparing reference variables with the == operator, you can only compare
reference variables that refer to objects that are in the same class or class hierarchy.
Attempting to use == to compare reference variables for objects in different class
hierarchies will result in a compiler error.

Key facts to remember about comparing variables:

I. The rule is the same for reference variables and primitive variables:
== returns true if the two bit patterns are identical.
2. Primitive variables must use ==; they cannot use the equals () method.
3. For reference variables, == means that both reference variables are
referring to the same object.

Comparing Objects

We saw what it means to compare reference variables (to see if they refer to the same
object), but what does it mean to compare the objects themselves? For an object as
simple as a String, it’s fairly intuitive to say that if two String objects have the same
value (in other words the same characters), we consider them equal. When you want
to determine if two objects are meaningfully equivalent, use the equals () method.
Like ==, the equals () method returns a boolean true if the objects are considered
equivalent; otherwise, it returns fa/se. (Remember, if we want to know whether two
String reference variables refer to the same String, we must use ==.) Given the
following code sample,

34 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

String x1 = "abc";
String x2 = "ab";
X2 = X2 + "c";

we might want to know, much later on in our code, whether the contents of the two
different String objects x/ and x2 are in fact the same. This is where the equals ()
method comes in:

if ((x1 '= x2) { // comparing reference vars
System.out.println("different objects");

}

if (xl.equals(x2)) { // comparing values
System.out.println("same values") ;

}
In the example above we could also have written this:
if (x2.equals(xl)) { // same result

In a similar vein, it’s a pretty safe bet that when we want to compare two wrapper
objects, we're really interested in the primitive values that they’re wrapping. However,
it’s important to know that all of the wrapper class’ equals () methods only
return true if borh the primitive values and the wrapper’s classes are the same.

Double dl = new Double("3.0");
(3)

Integer il = new Integer(3); // create a couple of wrappers

if (dl.equals(il)) { // are the values equal ?
System.out.println("wraps are equal"); // no output, different classes

}

Double d2 = dl.valueOf ("3.0d"); // create a third wrapper

if (dl.equals(d2)) { // are the Doubles equal ?
System.out.println("Doubles are equal"); // result is "Doubles are equal"

The equals() Method Revealed (or at Least a Little

Bit Revealed)

We'll be diving in to the equals () method much more deeply in the Collections
chapter, but for now let’s just cover a few key points. The class Object, the granddaddy
of all classes (and from which all classes extend), has an equals () method. That
means every other Java class (including those in the API or those that you create)
inherits an equals () method. In java. lang, the String and wrapper classes

exam

Jatch

Using equals()(Exam Objective 5.2) 3 §

have overridden the equals () method to behave as we just discussed. And
remember, the String and wrapper classes are all marked £inal, so you can’t
override any of their methods, including the equals () method.

When you create your own classes, you'll have to decide what it means for two
distinct objects to be meaningfully equivalent. Your class may have reference
variables that collectively represent the value of an instance. If you want to compare
instances of a class to one another, it will be up to you to override the equals ()
method to define what it means for two different instances to be meaningfully equal.

Remember the following key points about the equals () method:

I. equals () is used only to compare objects.

2. equals () returns a boolean, true or false.

3. The StringBuffer class has not overridden equals ().

4. The String and wrapper classes are final and have overridden equals ().

CERTIFICATION SUMMARY ‘

Strings
At the risk of being pedantic, remember that String objects are immutable, references
to Strings are not! You learned that you can make a new String by using an existing
String as a starting point, but if you don’t assign a reference variable to a new String
it will be lost to your program—you will have no way to access your new String.
Review the important methods in the String class. They’re all fairly intuitive except
for substring (), which needs a little extra brainpower. (And did we mention
how annoying—possibly evil—it is that the developers of the substring ()
method didn’t follow the Java naming convention? It should have been
subString()!)

StringBuffers are not immutable—you can change them over and over again. The
StringBuffer methods are fairly intuitive, but remember that unlike String methods,
they do modify the StringBuffer object, even if you don't assign the result to anything.

Math

As the Math class relates to the certification exam, you won’t be expected to
reproduce complicated mathematical algorithms in your head or know the cosine
of an angle. But remember that you wi// need to know how to calculate the result
of calling abs (), ceil (), floor(),max (), min (), and round () with

36 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

any given values. Know the method signatures in Table 6-1. The exam will test
your ability to remember method signatures and follow simple algorithms. Most
questions on the Math class are quite simple as long as you’ve spent the time to
commit to memory the Math class methods and their calling signatures. Table 6-1
will really help.

While you're at it, spend some time studying Table 6-1. It’s important to know
which methods are overridden and which are not. And just in case we're not making
ourselves clear, we really want you to study Table 6-1.

Wrappers

Remember that wrappers have two main functions: to wrap primitives so they
can be treated like objects, and to provide utility methods for primitives (typically
conversions). All the wrapper classes have the same name, capitalized, as their
primitive counterparts except for Character and Integer. Remember that Boolean
objects can’t be used like boolean primitives. In terms of return on investment for
your studying time, make sure that you know the details of the xxxValue ()
methods, the parseXxx () methods, the valueOf () methods, and the
toString () methods. Pay attention to which methods are static and which
throw NumberFormatException. Study Table 6-3. Copy it by hand, and then
place it under your pillow. Frame it and hang it on your wall.

Equals()
Compare primitives with ==. To determine if two reference variables refer to the
same object, use ==. To determine if two objects are meaningfully equivalent, use

equals (). When using == to compare reference variables, the compiler will
verify that the classes are the same or in the same inheritance hierarchy. Remember
that the StringBuffer class does not override the equals () method, which means
that there is no built-in method to determine if the contents of one StringBuffer
object are the same as the contents of another StringBuffer object.

Two-Minute Drill 37

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Using the java.lang.String Class (Exam Objective 8.2)

Q
Q

Q

Q
Q

String objects are immutable, and String reference variables are not.

If you create a new String without assigning it, it will be lost to your
program.

If you redirect a String reference to a new String, the old String can be lost.

String methods use zero-based indexes, except for the second argument of
substring ().

The String class is final—its methods can’t be overridden.
When a String literal is encountered by the VM, it is added to the pool.

Strings have a method named 1ength (), arrays have an attribute named

length.
StringBuffers are mutable—they can change without creating a new object.

StringBuffer methods act on the invoking object, but objects can change
without an explicit assignment in the statement.

StringBuffer equals () is not overridden; it doesn’t compare values.

In all sections, remember that chained methods are evaluated from left to right.

Using the java.lang.Math Class (Exam Objective 8.1)

Q
Q

The abs () method is overloaded to take an ins, a long a float, or a double.

The abs () method can return a negative if the argument is the minimum
int or long value equal to the value of Integer. MIN_VALUE or
Long.MIN_VALUE, respectively.

The max () method is overloaded to take ins, long, float, or double arguments.
The min () method is overloaded to take ins, long, float, or double arguments.

The random () method returns a double greater than or equal to 0.0 and
less than 1.0.

38 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

(]

a

The random () does not take any arguments.

The methods ceil (), floor (), and round () all return integer
equivalent floating-point numbers, ceil () and £loox () return doubles,
round () returns a float if it was passed an int, or it returns a double if it was
passed a long.

The round () method is overloaded to take a float or a double.
The methods sin (), cos (), and tan () take a double angle in radians.

The method sgrt () can return NaN if the argument is NaN or less
than zero.

Floating-point numbers can be divided by 0.0 without error; the result is
either positive or negative infinity.

NaN is not equal to anything, not even itself.

Using Wrappers (Exam Objective 8.3)

a
a

The wrapper classes correlate to the primitive types.

Wrappers have two main functions:

U To wrap primitives so that they can be handled like objects

O To provide utility methods for primitives (usually conversions)

Other than Character and Integer, wrapper class names are the primitive’s
name, capitalized.

Wrapper constructors can take a String or a primitive, except for Character,
which can only take a char.

A Boolean object can’t be used like a boolean primitive.

The three most important method families are

U xxxValue() Takes no arguments, returns a primitive

U parsexxx () Takes a String, returns a primitive, is static, throws NFE

U valueOf () Takes a String, returns a wrapped object, is static,
throws NFE

Radix refers to bases (typically) other than 10; binary is radix 2, octal = 8,
lE= 16.

Two-Minute Drill 39

Using equals() (Exam Objective 5.2)

Q

(I I I B

U

Use == to compare primitive variables.

Use == to determine if two reference variables refer to the same object.
== compares bit patterns, either primitive bits or reference bits.

Use equals () to determine if two objects are meaningfully equivalent.
The String and Wrapper classes override equals () to check for values.

The StringBulffer class equals () is nor overridden; it uses == under
the covers.

The compiler will not allow == if the classes are not in the same hierarchy.

Wrappers won’t pass equals () if they are in different classes.

40 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question.

Using the java.lang.String Class (Exam Objective 8.2)

I. Given the following,

1 public class StringRef ({

2 public static void main(String [] args) {
3 String sl = "abc";

4. String s2 = "def";

5. String s3 = s2;

6 s2 = "ghi";

7 System.out.println(sl + s2 + s3);

8 }

9 }

what is the result?
abcdefghi
abcdefdef
abcghidef
abcghighi

Compilation fails.

mmogNn®w >

An exception is thrown at runtime.

2. Given the following,

11. String x = "xyz";

12. x.toUpperCase() ;

13. String y = X.replace('Y', 'yv');
14. v =y + "abc";

15. System.out.println(y);

what is the result?
A. abcXyZ
B. abcxyz
C. xyzabc

Self Test 4]

D. Xyzabc

E. Compilation fails.

F. An exception is thrown at runtime.
3. Given the following,

13. String X = new String("xyz");
14. vy = "abc";
15. x = x + vy;

how many String objects have been created?

A 2
B. 3
C. 4
D. 5

4. Given the following,

14. String a = "newspaper";
15. a = a.substring(5,7);
16. char b = a.charaAt(1l);
17. a =a + b;

18. System.out.println(a);

what is the result?
apa

app

apea
apep
papp

papa

mmQgOQOwp»

5. Given the following,

String d = "bookkeeper";
d.substring(1,7);

d = "w" + d;

d.append ("woo") ;
System.out.println(d) ;

0 ~J o Ul

what is the result?

472 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

wookkeewoo
wbookkeeper
wbookkeewoo
wbookkeeperwoo

Compilation fails.

mmogNnw >

An exception is thrown at runtime.

Using the java.lang.Math Class (Exam Objective 8.1)
6. Given the following,

1 public class Example {

2 public static void main(String [] args) {

3 double values[] = {-2.3, -1.0, 0.25, 43%;

4. int cnt = 0;

5. for (int x=0; x < values.length; x++) {

6 if (Math.round(values([x] + .5) == Math.ceil(values[x])) {
7 ++cnt;

8. }

9. }

10. System.out.println("same results " + cnt + " time(s)");
11. }

12. }

what is the result?
same results 0 time(s)
same results 2 time(s)

same results 4 time(s)

oow® >

Compilation fails.
E. An exception is thrown at runtime.
7. Which of the following are valid calls to Math.max? (Choose all that apply.) (Yeah, yeah, we

know that on the rea/ exam you’d know how many were correct, but we just want you to work
a little harder here.)

A. Math.max(1,4)
B. Math.max (2.3, 5)

8.

Self Test 43

C. Math.max(1, 3,5, 7)

D. Math.max(-1.5, -2.8f)

What two statements are true about the result obtained from calling Math.random()?
(Choose two.)

A. The result is less than 0.0.

The result is greater than or equal to 0.0..

The result is less than 1.0.

The result is greater than 1.0.

The result is greater than or equal to 1.0.

mmo O W

The result is less than or equal to 1.0.

Given the following,

1 public class SgrtExample ({

2 public static void main(String [] args) {
3 double value = -9.0;

4. System.out.println(Math.sqgrt (value)) ;
5

6

}
what is the result?
3.0
-3.0
NalN

Compilation fails.

monNnw>»

An exception is thrown at runtime.

Given the following,

1 public class Degrees {

2 public static void main(String [] args) {

3. System.out.println(Math.sin(75));

4. System.out.println(Math.toDegrees (Math.sin(75)));
5 System.out.println(Math.sin(Math.toRadians (75)));
6 System.out.println(Math.toRadians (Math.sin(75)));
7. }

8. }

at what line will the sine of 75 degrees be output?

44 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

Line 3
Line 4
Line 5
Line 6
Line 3 and either line 4, 5, or 6

None of the above

mmogNnw >

Using Wrapper Classes (Exam Objective 8.3)

I'l. Given the following,

1 public class WrapTest2 {

2 public static void main(String [] args) {

3 Long b = new Long(42) ;

4 int x = Integer.valueOf ("345");

5. int x2 = (int) Integer.parselnt("345", 8);
6. int x3 = Integer.parselnt (42);

7 int x4 = Integer.parselnt("42");

8 int x5 = b.intValue() ;

9. }

10. 1}

which two lines will cause compiler errors? (Choose two.)
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8

moUO® >

m

12. Given the following,

1 public class NFE {

2 public static void main(String [] args) {

3 String s = "42";

4 try {

5. s = s.concat(".5");

6 double d = Double.parseDouble(s) ;

7 s = Double.toString(d) ;

8 int x = (int) Math.ceil (Double.valueOf (s) .doublevalue()) ;
9 System.out.println (x) ;

Self Test 4.8

10. }

11. catch (NumberFormatException e) {
12. System.out.println("bad number") ;
13. }

14. }

15. 1}

what is the result?
42

42.5

43

bad number

Compilation fails.

moON® >

o

An uncaught exception is thrown at runtime.

13. Given the following,

1 public class BoolTest {

2 public static void main(String [] args) {
3 Boolean bl = new Boolean("false");
4. boolean b2;

5 b2 = bl.booleanvValue() ;

6 if (1b2) {

7 b2 = true;

8. System.out.print ("x ");

9. }

10. if (bl & b2) {

11. System.out.print("y ");

12. }

13. System.out.println("z");

14. }

15. 1}

what is the result?
z

Xz

vz

XYy Z

Compilation fails.

mmQgON®w>»

An exception is thrown at runtime.

46 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

14. Given the following,

1 public class WrapTest3 {

2 public static void main(String [] args) {
3 String s = "98.6";

4. // insert code here

5 }

6 }

which three lines inserted independently at line 4 will cause compiler errors? (Choose three.)
float f1 =Float.floatValue(s) ;

float £2 =Float.valueOf (s) ;

float £3 =newFloat (3.14f) .floatValue() ;

float f4 =Float.parseFloat (1.23f);

float £f5 =Float.valueOf (s) .floatvalue() ;

float £6 = (float) Double.parseDouble ("3.14") ;

mmogNnw >

15. Given the following,

11. try {

12. Float fl1 = new Float("3.0");

13. int x = fl.intValue();

14. byte b = fl.bytevValue();

15. double d = fl.doublevalue() ;

16. System.out.println(x + b + d);
17. }

18. catch (NumberFormatException e) {
19. System.out.println("bad number") ;
20. }

what is the resule?

9.0

bad number

Compilation fails on line 13.
Compilation fails on line 14.

Compilation fails on lines 13 and 14.

mmogN®w >

An uncaught exception is thrown at runtime.

Self Test 47

Using equals() (Exam Objective 5.2)
16. Given the following,

1 public class WrapTest {

2 public static void main(String [] args) {
3. int result = 0;

4. short s = 42;

5 Long x = new Long("42");

6 Long y = new Long(42);

7 Short z = new Short("42");

8. Short x2 = new Short(s);

9. Integer y2 = new Integer("42");

10. Integer z2 = new Integer(42);

11

12. if (x == y) result = 1;

13. if (x.equals(y)) result = result + 10;
14. if (x.equals(z)) result = result + 100;
15. if (x.equals(x2)) result = result + 1000;
16. if (x.equals(z2)) result = result + 10000;
17.

18. System.out.println("result = " + result);
19. }

20. }

what is the result?
A. result=1

B. result =10

C. result=11

D. result =11010
E. result=11011
F. result=11111

17. Given the following,

public class BoolTest {
public static void main(String [] args) {
int result = 0;

Boolean bl new Boolean ("TRUE") ;

1
2
3.
4.
5
6 Boolean b2 = new Boolean("true");

48 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

7. Boolean b3 = new Boolean("tRuE") ;

8. Boolean b4 = new Boolean("false");

9.

10. if (bl == b2) result = 1;

11. if (bl.equals(b2)) result = result + 10;
12. if (b2 == b4) result = result + 100;

13. if (b2.equals(b4)) result = result + 1000;
14. if (b2.equals(b3)) result = result + 10000;
15.

16. System.out.println("result = " + result);
17. }

18. 1}

what is the result?
0

1

10

1100
10001
10010

moOo® >

o

18. Given the following,

1 public class ObjComp {

2 public static void main(String [] args) {

3 int result = 0;

4. ObjComp oc = new ObjComp () ;

5. Object o = oc;

6

7 if (o == oc) result = 1;

8. if (o != oc) result = result + 10;

9. if (o.equals(oc)) result = result + 100;
10. if (oc.equals(o)) result = result + 1000;
11.

12. System.out.println("result = " + result);
13. }

14. 3}

what is the result?
A 1
B. 10

C.
D.

E.

Self Test 49

101
1001
1101

19. Which two statements are true about wrapper or String classes? (Choose two.)

A

0

If xand y refer to instances of different wrapper classes, then the fragment x . equals (y)
will cause a compiler failure.

If xand y refer to instances of different wrapper classes, then x == y can sometimes be
true.

If xand yare String references and if x. equals (y) is true, then x== yis true.

If x, , and z refer to instances of wrapper classes and x . equals (y) is true, and
y.equals(z) is true, then z.equals (x) will always be true.

If xand y are String references and x == yis true, then y.equals (x) will be true.

BQO Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

SELF TEST ANSWERS

Strings (Exam Objective 8.2)

M C. After line 5 executes, both 52 and 53 refer to a String object that contains the value
“def”. When line 6 executes, a new String object is created with the value “ghi”, to which s2
refers. The reference variable s3 still refers to the (immutable) String object with the value
“def”.

& A, B, D, E, and F are incorrect based on the logic described above.

M C. Line 12 creates a new String object with the value “XYZ”, but this new object is
immediately lost because there is no reference to it. Line 13 creates a new String object
referenced by y. This new String object has the value “xyz” because there was no “Y” in the
String object referred to by x. Line 14 creates a new String object, appends “abc” to the value
“xyz”, and refers y to the result.

A, B, D, E, and F are incorrect based on the logic described above.

M C. Line 13 creates two, one referred to by x and the lost String “xyz”. Line 14 creates one
(for a total of three). Line 15 creates one more (for a total of four), the concatenated String
referred to by x with a value of “xyzabc”.

A, B, and D are incorrect based on the logic described above.

M B. Both substring () and charAt () methods are indexed with a zero-base, and
substring () returns a String of length arg2 — argl.
A, C, D, E, and F are incorrect based on the logic described above.

M E. Inline 7 the code calls a StringBuffer method, append () on a String object.
A, B, C, D, and F are incorrect based on the logic described above.

Math (Exam Objective 8.1)

6.

M B.Math.round() adds.5 to the argument then performs a £1ooxr (). Since the code
adds an additional .5 before round () is called, it’s as if we are adding 1 then doing a
floor (). The values that start out as integer values will in effect be incremented by 1 on the
round () side but not on the ceil () side, and the noninteger values will end up equal.

A, C, D, and E are incorrect based on the logic described above.

Self Test Answers § ||

M A, B,and D. Themax () method is overloaded to take two arguments of type int, long,
float, or double.

C is incorrect because the max () method only takes two arguments.

M B and C. The result range for random () is 0.0 to < 1.0; 1.0 is not in range.

A, D, E, and F are incorrect based on the logic above.

M C. The sgrt () method returns NaN (not a number) when it’s argument is less than zero.
A, B, D, and E are incorrect based on the logic described above.

M C. The Math class’ trigonometry methods expect their arguments to be in radians, not

degrees. Line 5 can be decoded: “Convert 75 (degrees) into radians, then find the sine of
that result.”
A, B, D, E, and F are incorrect based on the logic described above.

Worappers (Exam Objective 8.3)

M B and D. B is incorrect because the valueOf () method returns an Integer object. D is
incorrect because the parseInt () method takes a String.

& A, G E, and F all represent valid syntax. Line 5 takes the String “345” to be octal number,
and converts it to an integer value 229.

M C. All of this code is legal, and line 5 creates a new String with a value of “42.5”. Lines 6
and 7 convert the String to a double and then back again. Line 8 is fun—Math.ceil ()’s
argument expression is evaluated first. We invoke the valueOf () method that returns an
anonymous Double object (with a value of 42.5). Then the doublevValue () method is
called (invoked on the newly created Double object), and returns a double primitive (there and
back again), with a value of (you guessed it) 42.5. The ceil () method converts this to 43.0,
which is cast to an 7zzand assigned to x. We know, we know, but stuff like this is on the exam.
A, B, D, E, and F are incorrect based on the logic described above.

M E. The compiler fails at line 10 because &1 is a reference variable to a Boolean wrapper
object, not a boolean primitive. Logical boolean tests can’t be made on Boolean objects.
& A, B, C, D, and F are incorrect based on the logic described above.

M A, B, and D. A won’t compile because the £1loatValue () method is an instance
method that takes no arguments. B won’t compile because the valueOf () method returns
a wrapper object. D won’t compile because the parseFloat () method takes a String.

C, E, and F are all legal (if not terribly useful) ways to return a primitive floar.

B2 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

I15. M Aiscorrect. The xxxValue () methods convert any numeric wrapper object’s value to
any primitive type. When narrowing is necessary, significant bits are dropped and the results
are difficult to calculate.

B, C, D, E, and F are incorrect based on the logic described above.

Equals() (Exam Objective 5.2)

16. M B. Line 12 fails because == compares reference values, not object values. Line 13 succeeds
because both String and primitive wrapper constructors resolve to the same value (except for
the Character wrapper). Lines 14, 15, and 16 fail because the equals () method fails if the
object classes being compared are different and not in the same tree hierarchy.

A, C, D, E, and F are incorrect based on the logic described above.

17. M F. Line 10 fails because 47 and 42 are two different objects. Lines 11 and 14 succeed
because the Boolean String constructors are case insensitive. Lines 12 and 13 fail because
true is not equal to false.

& A, B, C, D, and E are incorrect based on the logic described above.

18. M E. Even though oand ocare reference variables of different types, they are both referring
to the same object. This means that == will resolve to true and that the default equals ()
method will also resolve to true.

& A, B, C, and D are incorrect based on the logic described above.

19. M D and E. D describes an example of the equals () method behaving transitively. By
the way, x, y, and z will all be the same type of wrapper. E is true because x and y are referring
to the same String object.

A is incorrect—the fragment will compile. B is incorrect because x == y means that the
two reference variables are referring to the same object. C will only be true if x and y refer
to the same String. It is possible for x and y to refer to two different String objects with the
same value.

Exercise Answers §3

EXERCISE ANSWERS

Exercise 6-1: Using the Math Class

The following code listing is an example of how you might have written code to
complete the exercise:

class NumberInterrogation ({
public static void main(String [] argh) {
double [] num = {10.5, -10.5, Math.PI, 0};
for (int i=0;i<num.length;++1i) {

System.out.println("abs ("+num[i]+")="+Math.abs (num[i])) ;

System.out.println("ceil ("+num[i]+")="+Math.ceil (num[i]));

System.out.println("floor ("+num[i]+")="+Math.floor (num[i])) ;
(

System.out.println() ;

Exercise 6-2: Rounding Random Numbers

The following code listing is an example of how you might have written code to
complete the exercise:

class RandomRound {
public static void main(String [] argh) {
for (int 1=0;1<10;++1) {
double num = Math.random() * 100;
System.out.print ("The number " + num) ;
System.out.println(" rounds to " + Math.round (num)) ;

SUN™ CERTIFIED PROGRAMMER & DEVELOPER

Obijects and
Collections

CERTIFICATION OBJECTIVES

° Overriding hashCode() and equals()
° Collections
° Garbage Collection
\/ Two-Minute Drill
Q&A Self Test

2 Chapter 7: Objects and Collections

CERTIFICATION OBJECTIVE

Overriding hashCode() and equals()
(Exam Objective 9.2)

Distinguish between correct and incorrect implementations of hashcode methods.

You’re an object. Get used to it. You have state, you have behavior, you have a job.
(Or at least your chances of getting one will go up after passing the exam.) If you
exclude primitives, everything in Java is an object. Not just object, but Object with
a capital ‘O’. Every exception, every event, every array extends from java.lang.Object.
We’ve already talked about it in Chapter 6 when we looked at overriding equals (),
but there’s more to the story, and that more is what we’ll look at now.

For the exam, you don't need to know every method in Object, but you wil/ need
to know about the methods listed in Table 7-1.

Chapter 9 coverswait (), notify(),andnotifyAll (). The finalize()
method is covered later in this chapter. So in this section we’ll look at just the
hashCode () and equals () methods. Oh, that leaves out toString (),
doesn’t it. OK, we'll cover that right now because it takes two seconds.

Methods of Class Object Covered on the Exam

Method Description

boolean equals (Object obj) Decides whether two objects are meaningfully equivalent.

void finalize () Called by the garbage collector when the garbage collector
sees that the object cannot be referenced.

int hashCode () Returns a hashcode 77z value for an object, so that the object
can be used in Collection classes that use hashing, including

Hashtable, HashMap, and HashSet.

final void notify() Wakes up a thread that is waiting for this object’s lock.
final void notifyaAll() Wakes up «// threads that are waiting for this object’s lock.
final void wait () Causes the current thread to wait until another thread calls

notify ornotifyAll on this object.

String toString/() Returns a “text representation” of the object.

Overriding hashCode() and equals() (Exam Objective 9.2) 3

The toString() Method Override toString () when you want a mere mortal
to be able to read something meaningful about the objects of your class. Code can
call toString() on your object when it wants to read useful details about your object.
For example, when you pass an object reference to the System.out.println()
method, the object’s toString () method is called, and the return of toString ()
is what you see displayed as follows:

public class HardToRead {
public static void main (String [] args) {
HardToRead h = new HardToRead() ;
System.out.println (h);

}

Running the HardToRead class gives us the lovely and meaningful,

% java HardToRead
HardToRead@a4d7e0

The preceding output is what you get when you don t override the toString ()
method of class Object. It gives you the class name (at least #hat’s meaningful)
followed by the @ symbol, followed by the unsigned hexadecimal representation
of the object’s hashcode.

Seeing this perhaps motivates you to override the toString () method in your
classes, for example,

public class BobTest ({
public static void main (String[] args) {
Bob f = new Bob("GoBobGo", 19);
System.out.println(f);

class Bob {
int shoeSize;
String nickName;
Bob (String nickName, int shoeSize) {
this.shoeSize = shoeSize;
this.nickName = nickName;
}
public String toString() {
return ("I am a Bob, but you can call me " + nickName +
". My shoe size is " + shoeSize);

4 Chapter 7. Objects and Collections

This ought to be a bit more readable:

% java BobTest
I am a Bob, but you can call me GoBobGo. My shoe size is 19

Some people affectionately refer to toString () as “the spill-your-guts method,”
because the most common implementations of toString () simply spit out the
object’s state (in other words, the current values of the important instance variables).

So that’s it for toString (). Now we'll tackle equals () and hashCode ().

Overriding equals()

You learned about the equals () method in Chapter 6, where we looked at the
wrapper classes. We discussed how comparing two object references using the ==
operator evaluates true only when both references refer to the same object (because
== simply looks at the bits in the variable, and they’re either identical or they’re not).
You saw that the String class and the wrapper classes have overridden the equals ()
method (inherited from class Object), so that you could compare two different objects
(of the same type) to see if their contents are meaningfully equivalent. If two different
Integer instances both hold the 7z¢ value 5, as far as you’re concerned they are equal.
The fact that the value 5 lives in two separate objects doesn’t matter.

When you really need to know if two references are identical, use ==. But when
you need to know if the objects themselves (not the references) are equal, use the
equals () method. For each class you write, you must decide if it makes sense to
consider two different instances equal. For some classes, you might decide that two
objects can never be equal. For example, imagine a class Car that has instance
variables for things like make, model, year, configuration—you certainly dont want
your car suddenly to be treated as the very same car as someone with a car that has
identical attributes. Your car is your car and you don’t want your neighbor Billy driving
off in it just because, “hey, it’s really the same car; the equals () method said so.”
So no two cars should ever be considered exactly equal. 1f two references refer to one car,
then you know that both are talking about o7e car, not two cars that have the same
attributes. So in the case of a Car you might not ever need, or want, to override the
equals () method. Of course, you know that can’t be the end of the story.

Overriding hashCode() and equals() (Exam Objective 9.2) §

What It Means if You Don’t Override equals()

There’s a potential limitation lurking here: if you don’t override the

equals () method, you won't be able to use the object as a key in a hashtable.
The equals () method in Object uses only the == operator for comparisons,
so unless you override equals (), two objects are considered equal only if the
two references refer to the same object.

Let’s look at what it means to not be able to use an object as a hashtable key.
Imagine you have a car, a very specific car (say, John’s red Subaru Outback as opposed
to Moe and Mary’s purple Mini) that you want to put in a HashMap (a type of
hashtable we’ll look at later in this chapter), so that you can search on a particular
car and retrieve the corresponding Person object that represents the owner. So you
add the car instance as the key to the HashMap (along with a corresponding Person
object as the value). But now what happens when you want to do a search? You want
to say to the HashMap collection, “Here’s the car, now give me the Person object
that goes with this car.” But now you're in trouble unless you still have a reference to
the exact object you used as the key when you added it to the Collection. In other words,
you can’t make an identical Car object and use 7z for the search.

The bottom line is this: if you want objects of your class to be used as keys for a
hashtable (or as elements in any data structure that uses equivalency for searching
for—and/or retrieving—an object), then you must override equals () so that two
different instances can be considered the same. So how would we fix the car? You
might override the equals () method so that it compares the unique VIN (Vehicle
Identification Number) as the basis of comparison. That way, you can use one instance
when you add it to a Collection, and essentially re-create an identical instance when
you want to do a search based on that object as the key. Of course, overriding the
equals () method for Car also allows the potential that more than one object
representing a single unique car can exist, which might not be safe in your design.
Fortunately, the String and wrapper classes work well as keys in hashtables—they
override the equals () method. So rather than using the actual car instance as the
key into the car/owner pair, you could simply use a String that represents the unique
identifier for the car. That way, you'll never have more than one instance representing a
specific car, but you can still use the car—or rather, one of the car’s attributes—as the
search key.

@ Chapter 7: Objects and Collections

Implementing an equals() Method

So let’s say you decide to override equals () in your class. It might look something
like this:

public class EqualsTest {
public static void main (
Moof one = new Moof (8);
Moof two = new Moof (8);
if (one.equals(two)) {
System.out.println("one and two are equal");

String [] args) {

}
class Moof {
private int moofValue;
Moof (int wval) {
moofValue = val;
}
public int getMoofValue() {
return moofVvalue;
}
public boolean equals (Object o) {
if ((o instanceof Moof) && (((Moof)o).getMoofValue ()
== this.moofValue)) {
return true;
} else {
return false;

}

Let’s look at this code in detail. In the main method of EqualsTest, we create two
Moof instances, passing the same value (8) to the Moof constructor. Now look at the
Moof class and let’s see what it does with that constructor argument—it assigns the
value to the moofValue instance variable. Now imagine that you've decided two Moof
objects are the same if their moofValue is identical. So you override the equals ()
method and compare the two moofValues. It is that simple. But let’s break down what’s
happening in the equals () method:

1. public boolean equals (Object o) {

2. if ((o instanceof Moof) && (((Moof)o).getMoofValue/()
== this.moofValue)) {

3. return true;

Overriding hashCode() and equals() (Exam Objective 9.2) 7

} else {
return false;

}

~ o Ul

}

First of all, you must observe all the rules of overriding, and in line 1 we are indeed
declaring a valid override of the equals () method we inherited from Object.

Line 2 is where all the action is. Logically, we have to do zwo things in order to
make a valid equality comparison:

| Be sure that the object being tested is of the correct type! It comes in polymorphically
as type Object, so you need to do an instanceof test on it. Having two
objects of different class types be considered equal is usually 7oz a good idea,
but that’s a design issue we won’t go into here. Besides, you'd s#// have to do
the instanceof test just to be sure that you could cast the object argument
to the correct type so that you can access its methods or variables in order to actually
do the comparison. Remember, if the object doesn’t pass the instanceof
test, then you’ll get a runtime ClassCastException if you try to do,
for example, this:
public boolean equals (Object o) {
if (((Moof)o).getMoofValue() == this.moofValue) {
// the preceding line compiles, but it's BAD!
return true;
} else {
return false;

}
}

The (Moof) o cast will fail if 0 doesn’t refer to something that IS-A Moof.

2. Compare the attributes we care about (in this case, just moofValue). Only the
developers can decide what makes two instances equal. (For performance
you're going to want to check the fewest number of attributes.)

By the way, in case you were a little surprised by the whole
((Moof) o) .getMoofValue () syntax, were simply casting the object
reference, o, just-in-time as we try to call a method that’s in the Moof class but
not in Object. Remember without the cast, you can’t compile because the compiler
would see the object referenced by o as simply, well, an Object. And since the Object
class doesn’t have amoofvalue () method, the compiler would squawk (technical

8 Chapter7:

exam

$atch

Objects and Collections

term). But then as we said earlier, even with the cast the code fails at runtime if the
object referenced by o isn't something that’s castable to a Moof. So don’t ever forget
to use the instanceof test first. Here’s another reason to appreciate the short
circuit && operator—if the instanceof test fails, we'll never ger to the code
that does the cast, so we're always safe at runtime with the following:

if ((o instanceof Moof) && (((Moof)o).getMoofValue ()
== this.moofValue)) {
return true;
} else {

return false;

}

Remember that the equals (), hashCode (), and toString () methods are all
public. The following would not be a valid override of the equals () method,
although it might appear to be if you don’t look closely enough during the exam:

class Foo {
boolean equals (Object o) { }
}

}

And watch out for the argument types as well. The following method is an
overload, but not an override of the equals() method:

class Boo {

public boolean equals(Boo b) { }
}
Be sure you’re very comfortable with the rules of overriding so that you can
identify whether a method from Object is being overridden, overloaded, or
illegally redeclared in a class. The equals () method in class Boo changes the
argument from Object to Boo, so it becomes an overloaded method and won’t
be called unless it’s from your own code that knows about this new, different
method that happens to also be named equals.

So that takes care of equals ().

Whoa... not so fast. If you look at the Object class in the Java API documentation,
you'll find what we call a conract specified in the equals () method. A Java contract
is a set of rules that should be followed, or rather must be followed if you want to provide
a “correct” implementation as others will expect it to be. Or to put it another way, if you

Overriding hashCode() and equals() (Exam Objective 9.2) @

don’t follow the contract, you may still compile and run, but your code (or someone
else’s) may break at runtime in some unexpected way.

The equals() Contract
Pulled straight from the Java docs, the equals () contract says:

W [z is reflexive: For any reference value %, x . equals (x) should return true.

W [t is symmetric: For any reference values x and y, x. equals (y) should
return true if and only if y. equals (x) returns true.

B [t is transitive: For any reference values %, v, and z, if x. equals (y) returns
trueandy.equals (z) returns true, then x.equals (z) should
return true.

W [t is consistent: For any reference values x and y, multiple invocations of
x.equals (y) consistently return true or consistently return false,
provided no information used in equals comparisons on the object is

modified.

B For any nonnull reference value x, x. equals (null) should return false.

And you're so not off the hook yet. We haven't looked at the hashCode () method,
but equals () and hashCode () are bound together by a joint contract that
specifies if two objects are considered equal using the equals () method, then they
must have identical hashcode values. So to be truly safe, your rule of thumb should be
if you override equals (), override hashCode () as well. So let’s switch over to
hashCode () and see how that method ties in to equals ().

Overriding hashCode()

The hashcode value of an object is used by some collection classes (we’ll look at the
collections later in this chapter). Although you can think of it as kind of an object
ID number, it isn’t necessarily unique. Collections such as HashMap and HashSet
use the hashcode value of an object to determine where the object should be szored
in the collection, and the hashcode is used again to help locate the object in the
collection. For the exam you do 7oz need to understand the deep details of how
the collection classes that use hashing are implemented, but you do need to know which
collections use them (but, um, they all have Aash in the name so you should be good

I O Chapter7: Objects and Collections

FIGURE 7-1

A simplified
hashcode
example

there). You must also be able to recognize an appropriate or correct implementation
of hashCode (). This does not mean /ega/and does not even mean efficient. It’s
perfectly legal to have a terribly inefficient hashcode method in your class, as long
as it doesn’t violate the contract specified in the Object class documentation (we’ll
look at that contract in a moment). So for the exam, if you’re asked to pick out an
appropriate or correct use of hashcode, don’t mistake appropriate for legal or efficient.

Understanding Hashcodes
In order to understand what’s appropriate and correct, we have to look at how some
of the collections use hashcodes.

Imagine a set of buckets lined up on the floor. Someone hands you a piece of paper
with a name on it. You take the name and calculate an integer code from it by using
Ais 1, Bis2, etc., and adding the numeric values of all the letters in the name together.
A specific name will always result in the same code; for example, see Figure 7-1.

We don't introduce anything random, we simply have an algorithm that will always
run the same way given a specific input, so the output will always be identical for
any two identical inputs. So far so good? Now the way you use that code (and we’ll
call it a hashcode now) is to determine which bucket to place the piece of paper into
(imagine that each bucket represents a different code number you might get). Now
imagine that someone comes up and shows you a name and says, “Please retrieve the
piece of paper that matches this name.” So you look at the name they show you, and
run the same hashcode-generating algorithm. The hashcode tells you in which bucket
you should look to find the name.

You might have noticed a little flaw in our system, though. Zwo different names
might result in the same value. For example, the names Amy and May have the same

Key Hashcode Algorithm Hashcode
Alex A(l) +L(12) + E(5) + X(24) =42
Bob B(2) + O(15) + B(2) =19
Dirk D(4) +I(9) + R(18) + K(I1) =42
Fred F(6) + R(18) + E(5) + (D) =33

HashMap Collection

Hashcode Buckets]]]]

“Bob” “Fred” “Alex”
“Dirk”

on the

Qob

Overriding hashCode() and equals() (Exam Objective 9.2) | |

letters, so the hashcode will be identical for both names. That’s acceptable, but it
does mean that when someone asks you (the bucket-clerk) for the Amy piece of paper,
you'll still have to search through the target bucket reading each name until we find
Amy rather than May. The code tells you only which bucket to go into, but not how
to locate the name once we're iz that bucket.

In real-life hashing, it’s not uncommon to have more than one entry in a bucket.
Good hashing retrieval is typically a two-step process:

I. Find the right bucket.
2. Search the bucket for the right element.

So for efficiency, your goal is to have the papers distributed as evenly as possible
across all buckets. Ideally, you might have just one name per bucket so that when
someone asked for a paper you could simply calculate the hashcode and just grab the
one paper from the correct bucket (without having to go flipping through different
papers in that bucket until you locate the exact one you're looking for). The least
efficient (but still functional) hashcode generator would return the same hashcode
(say, 42) regardless of the name, so that #// the papers landed in the same bucket while
the others stood empty. The bucket-clerk would have to keep going to that one bucket
and flipping painfully through each one of the names in the bucket until the right
one was found. And if #hats how it works, they might as well not use the hashcodes
at all but just go to the one big bucket and start from one end and look through each
paper until they find the one they want.

This distributed-across-the-buckets example is similar to the way hashcodes are
used in collections. When you put an object in a collection that uses hashcodes, the
collection uses the hashcode of the object to decide in which bucket/slot the object
should land. Then when you want to fézch that object (or, for a hashtable, retrieve
the associated value for that object), you have to give the collection a reference to an
object which the collection compares to the objects it holds in the collection. As long as
the object (stored in the collection, like a paper in the bucket) you're trying to search
for has the same hashcode as the object you're using for the search (the name you show
to the person working the buckets), then the object will be found. But...and this is a
Big One, imagine what would happen if, going back to our name example, you showed
the bucket-worker a name and they calculated the code based on only Aalfthe letters
in the name instead of @// of them. They'd never find the name in the bucket because
they wouldn’t be looking in the correct bucket!

I 2 Chapter 7. Objects and Collections

Now can you see why if two objects are considered equal, their hashcodes must
also be equal? Otherwise, you'd never be able to find the object since the default
hashcode method in class Object virtually always comes up with a unique number
for each object, even if the equals method is overridden in such a way that two or more
objects are considered equal. It doesn’t matter how equal the objects are if their
hashcodes don't reflect that. So one more time: If two objects are equal, their hashcodes
must be equal as well.

Implementing hashCode()

What the heck does a rea/ hashcode algorithm look like? People get their PhDs on
hashing algorithms, so from a computer science viewpoint, it’s beyond the scope of
the exam. The part we care about here is the issue of whether you follow the contract.
And to follow the contract, think about what you do in the equals () method.
You compare attributes. Because that comparison almost always involves instance
variable values (remember when we looked at two Moof objects and considered them
equal if their 7nz moofValues were the same?). Your hashCode () implementation
should use the same instance variables. Here’s an example:

class HasHash {
public int x;
HasHash (int xVal) {
x = xVal;
}
public boolean equals (Object o) {
HasHash h = (HasHash) o; // Don't try at home without
// instanceof test
if (h.x == this.x) {
return true;
} else {
return false;

}
public int hashCode () {
return (x * 17);

}

Because the equals () method considers two objects equal if they have the same
x value, we have to be sure that objects with the same x value will return identical

hashcodes.

exam

Jatch

Overriding hashCode() and equals() (Exam Objective 9.2) | 3

A hashCode () that returns the same value for all instances whether they’re
equal or not is still a legal—even appropriate—hashCode () method! For example,

public int hashCode() {
return 1492;
}

would not violate the contract. Two objects with an x value of 8 will have
the same hashcode. But then again, so will two unequal objects, one with an
x value of 12 and the other a value of -920. This hashCode () method is
horribly inefficient, remember, because it makes all objects land in the same
bucket, but even so, the object can still be found as the collection cranks
through the one and only bucket—using equals ()—trying desperately to
finally, painstakingly, locate the correct object. In other words, the hashcode
was really no help at all in speeding up the search, even though search speed
is hashcode’s intended purpose! Nonetheless, this one-hash-fits-all method
would be considered appropriate and even correct because it doesn’t violate
the contract. Once more, correct does not necessarily mean good.

Typically, you'll see hashCode () methods that do some combination of -ing
(XOR-ing) the instance variables, along with perhaps multiplying them by a prime
number. In any case, while the goal is to get a wide and random distribution of objects
across buckets, the contract (and whether or not an object can be found) requires
only that two equal objects have equal hashcodes. The exam does 7ot expect you to
rate the efficiency of a hashCode () method, but you must be able to recognize
which ones will and will not work (work meaning “will cause the object to be found
in the collection”).

Now that we know that two equal objects must have identical hashcodes, is the
reverse true? Do two objects with identical hashcodes have to be considered equal?
Think about it—you might have lots of objects land in the same bucket because
their hashcodes are identical, but unless they also pass the equals () test, they won't
come up as a match in a search through the collection. This is exactly what you'd get
with our very inefficient everybody-gets-the-same-hashcode method. It’s legal and
correct, just slooooow.

So in order for an object to be located, the search object and the object in the
collection must have bozh identical hashcode values and return true for the
equals () method. So there’s just no way out of overriding both methods 70 be
absolutely certain that your objects can be used in Collections that use hashing.

I 4 Chapter 7. Objects and Collections

The hashCode() Contract

Now coming to you straight from the fabulous Java API documentation for class
Object, may we present (drum roll) the hashCode () contract:

B Whenever it is invoked on the same object more than once during an execution
of a Java application, the hashCode () method must consistently return
the same integer, provided no information used in equals () comparisons
on the object is modified. This integer need not remain consistent from one
execution of an application to another execution of the same application.

B If two objects are equal according to the equals (Object) method, then
calling the hashCode () method on each of the two objects must produce
the same integer result.

B It is not required that if two objects are unequal according to the
equals (java.lang.Object) method, then calling the hashCode ()
method on each of the two objects must produce distinct integer results.
However, the programmer should be aware that producing distinct integer
results for unequal objects may improve the performance of hashtables.

And what this means to you is...

Condition Required Not Required (But Allowed)
x.equals (y) == true x.hashCode () ==
v .hashCode ()
x.hashCode () == x.equals(y) == true
v .hashCode ()
x.equals(y) == false No hashCode ()
requirements
x.hashCode () != x.equals(y)== false
v .hashCode ()

So let’s look at what e/se might cause a hashCode () method to fail. What
happens if you include a transient variable in your hashCode () method?
While that’s legal (compiler won't complain), under some circumstances an object
you put in a collection won’t be found. The exam doesn't cover object serialization,
so we won't go into any details here. Just keep in mind that serialization saves an
object so that it can be reanimated later by deserializing it back to full objectness.

Overriding hashCode() and equals() (Exam Objective 9.2) | §

But danger Will Robinson—remember that transient variables are not saved when an
object is serialized. A bad scenario might look like this:

class SaveMe implements Serializable{
transient int x;

int vy;

SaveMe (int xVal, int yVal) {
X = xXVal;
y = yval;

}
public int hashCode() {
return (x ~ y); //Legal, but not correct to
// use a transient variable

}
public boolean equals (Object o) {

SaveMe test = (SaveMe)o;

if (test.y ==y && test.x == x) { // Legal, not correct
return true;

} else {

return false;

}

Here’s what could happen using code like the preceding example:

B Give an object some state (assign values to its instance variables).
Put the object in a HashMap, using the object as a key.
Save the object to a file using object serialization without altering any of its state.

Retrieve the object from the file through deserialization.

Use the deserialized (brought back to life on the heap) object to get the object
out of the HashMap.

Oops. The object in the collection and the supposedly same object brought back
to life are no longer identical. The object’s transient variable will come back with a
default value rather than the value the variable had at the time it was saved (or put
into the HashMap). So using the preceding SaveMe code, if the value of xis 9 when
the instance is put in the HashMap, then since x is used in the calculation of the
hashcode, when the value of x changes the hashcode changes too. And when that
same instance of SaveMe is brought back from deserialization, x == 0, regardless

I & Chapter7: Objects and Collections

of the value of x at the time the object was serialized. So the new hashcode calculation
will give a different hashcode, and the equals () method fails as well since x is
used as one of the indicators of object equality.

Bottom line: transient variables can really mess with your equals and hashcode
implementations. Either keep the variable nontransient or, if it 7usz be marked
transient, then don’t use it in determining an object’s hashcode or equality.

CERTIFICATION OBJECTIVE

Collections (Exam Objective 9.1)

Make appropriate selection of collection classes/interfaces to suit specific behavior
requirements.

Can you imagine trying to write object-oriented applications without using data
structures like hashtables or linked lists? What would you do when you needed to
maintain a sorted list of, say, all the members in your Simpsons fan club? Obviously
you can do it yourself; Amazon.com must have thousands of algorithm books you
can buy. But with the kind of schedules programmers are under today (“Here’s a spec.
Can you have it all built by tomorrow morning?”), it’s almost too painful to consider.

The Collections Framework in Java, which took shape with the release of JDk1.2
(the first Java 2 version) and expanded in 1.4, gives you lists, sets, and maps to satisfy
most of your coding needs. They've been tried, tested, and tweaked. Pick the best
one for your job and you’ll get—at the least—reasonably good performance. And
when you need something a little more custom, the Collections Framework in the
java.util package is loaded with interfaces and utilities.

So What Do You Do with a Collection?

There are a few basic operations you’ll normally use with collections:

B Add objects to the collection.
B Remove objects from the collection.

B Find out if an object (or group of objects) is in the collection.

Collections (Exam Objective 9.1) |7

W Retrieve an object from the collection (without removing it).

M [rerate through the collection, looking at each element (object) one after
another.

Key Interfaces and Classes of the Collections Framework

For the exam, you won’t need to know much detail about the collections, but you
will need to know the purpose of the each of the key interfaces, and you’ll need to
know which collection to choose based on a stated requirement. The collections API
begins with a group of interfaces, but also gives you a truckload of concrete classes.
The core interfaces you need to know for the exam (and life in general) are the
following six:

Collection Set Sorted Set

List Map Sorted Map

Figure 7-2 shows the interface and class hierarchy for collections.
The core concrete implementation classes you need to know for the exam are the
following ten (there are others, but the exam doesn’t specifically cover them):

Map Implementations Set Implementations List Implementations
HashMap HashSet ArrayList

Hashtable LinkedHashSet Vector

TreeMap TreeSet LinkedList
LinkedHashMap

Not all collections in the Collections Framework actually implement the Collection
interface. In other words, nor all collections pass the IS-A test for Collection. Specifically,
none of the Map-related classes and interfaces extend from Collection. So while
SortedMap, Hashtable, HashMap, TreeMap, and LinkedHashMap are all thought
of as collections, none are actually extended from Collection-with-a-capital-C. To
make things a little more confusing, there are really #hree overloaded uses of the word
“collection”

B collection (lowercase ‘c’), which represents any of the data structures in which
objects are stored and iterated over.

I 8 Chapter 7: Objects and Collections

FIGURE 7-2 The collections class and interface hierarchy

Collection
Set List
4 \ S RS
SortedSet
HashSet LinkedHashSet TreeSet LinkdList Vector ArrayList
Map
SortedMap
Hashtable LinkedHashMap HashMap TreeMap
fffff » —>

Indicates Implementation Indicates Inheritance

B Collection (capital ‘C’), which is actually the java.util. Collection interface

from which Set and List extend. (That’s right, extend, not implement. There
are no direct implementations of Collection.)

B Collections (capital ‘C’ and ends with ‘s’), which is actually the java.util. Collections

class that holds a pile of static utility methods for use with collections.
exam

You can so easily mistake “Collections” for “Collection”—be careful. Keep in
$atch

mind that Collections is a class, with static utility methods, while Collection is

an interface with declarations of the methods common to most collections
including add, remove, contains, size, and iterator.

FIGURE 7-3

Lists, Sets,
and Maps

Collections come in three basic flavors:

Collections (Exam Objective 9.1)

19

Lists Lists of things (classes that implement List)
Sets Unique things (classes that implement Set)
Maps

Things with a unique ID (classes that implement Map)

Figure 7-3 illustrates the structure of a List, a Set, and a Map.
But there are subflavors within those three types:

Sorted

Unsorted

Ordered

Unordered

An implementation class can be unsorted and unordered, ordered but unsorted, or

Index:

Value:

0

“Boulder”

“Ft. Collins”

2

“Greeley”

3

“Boulder”

4

“Denver”

5

“Boulder”

List: The salesman’s itinerary (Duplicates allowed)

Greeley

Ft. Collins

Denver

Idaho Springs

Set: The salesman'’s territory (No duplicates allowed)

Hashcode Buckets:

“Flux Capacitor”

343} [s12] [774] []

Values: “Sky Hook” “Monkey Wrench” “Phase Inverter” “Warp Core”

HashMap: the salesman’s products (Keys generated from product IDs)

both ordered and sorted. But an implementation can never be sorted but unordered,
because sorting is a specific type of ordering, as you'll see in a moment. For example,

20 Chapter 7: Objects and Collections

a HashSet is an unordered, unsorted set, while a LinkedHashSet is an ordered (but
not sorted) set that maintains the order in which objects were inserted.

Maybe we need to be explicit about the difference between sorted and ordered,
but first we have to discuss the idea of izeration. When you think of iteration, you
may think of iterating over an array using, say, a for loop to access each element in
the array in order ([0], [1], [2], etc.). Iterating through a collection usually means
walking through the elements one after another starting from the first element.
Sometimes, though, even the concept of firstis a little strange—in a Hashtable there
really Zsmta notion of first, second, third, and so on. In a Hashtable, the elements are
placed in a (as far as you're concerned) chaotic order based on the hashcode of the key.
But something has to go first when you iterate; thus, when you iterate over a Hashtable
there will indeed be an order. But as far as you can tell, it's completely arbitrary and
can change in an apparently random way with further insertions into the collection.

Ordered When a collection is ordered, it means you can iterate through the
collection in a specific (not-random) order. A Hashtable collection is not ordered.
Although the Hashtable itself has internal logic to determine the order (based on
hashcodes and the implementation of the collection itself), yox won’t find any order
when you iterate through the Hashtable. An ArrayList, however, keeps the order
established by the elements’ index position (just like an array). LinkedHashSet keeps
the order established by insertion, so the last element inserted is the last element in
the LinkedHashSet (as opposed to an ArrayList where you can insert an element at a
specific index position). Finally, there are some collections that keep an order referred
to as the natural order of the elements, and those collections are then not just ordered,
but also sorted. Let’s look at how natural order works for sorted collections.

Sorted You know how to sort alphabetically—A comes before B, F comes before
G, etc. For a collection of String objects, then, the natural order is alphabetical. For
Integer objects, the natural order is by numeric value. And for Foo objects, the natural
order is, um, we don’t know. There #s 7o natural order for Foo unless or until the Foo
developer provides one, through an interface that defines how instances of a class can
be compared to one another. For the exam, you don’t need to know Aow to define
natural order for your classes, only that you know there 7s such a thing as natural order
and that it’s used in sorted collections.

So, a sorted collection means a collection sorted by natural order. And natural order
is defined by the class of the objects being sorted (or a supertype of that class, of course).

Collections (Exam Objective 9.1) 2 |

If you decide that Foo objects should be compared to one another (and thus sorted)
using the value of their bar instance variables, then a sorted collection will order the
Foo objects according to the rules in the Foo class for how to use the bar instance
variable to determine the order. Again, you don’t need to know Aow to define natural
order, but keep in mind that natural order is not the same as an ordering determined
by insertion, access, or index. A collection that keeps an order (such as insertion order)
is not really considered sorted unless it uses natural order or, optionally, the ordering
rules that you specify in the constructor of the sorted collection.

Figure 7-4 highlights the key distinctions between ordered and sorted collections.

_ import java.util.*;
GIGHRERTS public class Ordered {

public static void main(String [] args) {
What it means i
b dered LinkedHashSet lhs = new LinkedHashSet () ; OUtP_Ut s
to be ordere lhs.add ("Chicago"); Chicago
or sorted lhs.add ("Detroit"); Detroit
lhs.add ("Atlanta"); Atlanta
lhs.add ("Denver"); Denver
Iterator it = lhs.iterator();
while (it.hasNext()) (
System.out.println(“city ” + it.next());
}
}
}
A LinkedHashSet, ordered by order of insertion
import java.util.*;
public class Sorted {
public static void main(String [] args) {
TreeSet ts = new TreeSet(); Output is
ts.add ("Chicago"); Atlanta
ts.add ("Detroit"); Chicago
ts.add ("Atlanta"); Denver
ts.add ("Denver"); Detroit

Iterator it

whi

}
}
}

= ts.iterator();

le (it.hasNext()) (
System.out.println(“city ” + it.next());

ATreeSet, sorted alphabetically

22 Chapter 7: Objects and Collections

Now that we know about ordering and sorting, we’ll look at each of the three
interfaces, and then we'll dive into the concrete implementations of those interfaces.

List

A List cares about the index. The one thing that List has that nonlists don’t have is
a set of methods related to the index. Those key methods include things like
get (int index), indexOf (), add (int index, Object obj), etc.
(You don’t need to memorize the method signatures.) All three List implementations
are ordered by index position—a position that you determine either by setting an
object at a specific index or by adding it without specifying position, in which case
the object is added to the end. The three List implementations are described in the
following section.

ArrayList Think of this as a growable array. It gives you fast iteration and fast
random access. To state the obvious: it is an ordered collection (by index), but not
sorted. You might want to know that as of version 1.4, ArrayList now implements
the new RandomAccess interface—a marker interface (meaning it has no methods)
that says, “this list supports fast (generally constant time) random access.” Choose
this over a LinkedList when you need fast iteration but aren’t as likely to be doing a
lot of insertion and deletion.

Vector Vector is a holdover from the earliest days of Java; Vector and Hashtable
were the two original collections, the rest were added with Java 2 versions 1.2 and 1.4.
A Vector is basically the same as an ArrayList, but Vector () methods are synchronized
for thread safety. You’ll normally want to use ArrayList instead of Vector because the
synchronized methods add a performance hit you might not need. And if you 4o need
thread safety, there are utility methods in class Collections that can help. Vector is
the only class other than ArrayList to implement RandomAccess.

LinkedList A LinkedList List is ordered by index position, like ArrayList, except
that the elements are doubly-linked to one another. This linkage gives you new methods
(beyond what you get from the List interface) for adding and removing from the
beginning or end, which makes it an easy choice for implementing a stack or queue.
Keep in mind that a LinkedList may iterate more slowly than an ArrayList, but it’s a
good choice when you need fast insertion and deletion.

Collections (Exam Objective 9.1) 2.3

Set

A Set cares about uniqueness—it doesn’t allow duplicates. Your good friend the
equals () method determines whether two objects are identical (in which case
only one can be in the set). The three Set implementations are described in the
following sections.

HashSet A HashSet is an unsorted, unordered Set. It uses the hashcode of the
object being inserted, so the more efficient your hashCode () implementation the
better access performance you’ll get. Use this class when you want a collection with
no duplicates and you don’t care about order when you iterate through it.

LinkedHashSet A LinkedHashSet is an ordered version of HashSet that maintains
a doubly-linked List across all elements. Use this class instead of HashSet when you
care about the iteration order; when you iterate though a HashSet the order is
unpredictable, while a LinkedHashSet lets you iterate through the elements in the
order in which they were inserted. Optionally, you can construct a LinkedHashSet
so that it maintains the order in which elements were last accessed, rather than the
order in which elements were inserted. That’s a pretty handy feature if you want to
build a least-recently-used cache that kills off objects (or flattens them) that haven’t
been used for awhile. (LinkedHashSet is a new collection class in version 1.4.)

TreeSet The TreeSet is one of two sorted collections (the other being TreeMap).
It uses a Red-Black tree structure (but you knew that), and guarantees that the
elements will be in ascending order, according to the natural order of the elements.
Optionally, you can construct a TreeSet with a constructor that lets you give the
collection your own rules for what the natural order should be (rather than relying
on the ordering defined by the elements’ class).

Map

A Map cares about unique identifiers. You map a unique key (the ID) to a specific
value, where both the key and the value are of course objects. You’re probably quite
familiar with Maps since many languages support data structures that use a key/value
or namelvalue pair. Where the keys land in the Map is based on the key’s hashcode,
s0, like HashSet, the more efficient your hashCode () implementation, the better
access performance you’ll get. The Map implementations let you do things like search
for a value based on the key, ask for a collection of just the values, or ask for a collection
of just the keys.

24 Chapter 7: Objects and Collections

exam

Datch

HashMap The HashMap gives you an unsorted, unordered Map. When you
need a Map and you don’t care about the order (when you iterate through it), then
HashMap is the way to go; the other maps add a little more overhead. HashMap

allows one null key in a collection and multiple null values in a collection.

Hashtable Like Vector, Hashtable has been in from prehistoric Java times. For
fun, don’t forget to note the naming inconsistency: HashMap vs. Hashtable. Where’s
the capitalization of “t”? Oh well, you won’t be expected to spell it. Anyway, just as
Vector is a synchronized counterpart to the sleeker, more modern ArrayList, Hashtable
is the synchronized counterpart to HashMap. Remember that you don’t synchronize a
class, so when we say that Vector and Hashtable are synchronized, we just mean that
the key methods of the class are synchronized. Another difference, though, is that
while HashMap lets you have null values as well as one null key, a Hashrable doesn’t
let you have anything that’s null.

LinkedHashMap Like its Set counterpart, LinkedHashSet, the LinkedHashMap
collection maintains insertion order (or, optionally, access order). Although it will be
somewhat slower than HashMap for adding and removing elements, you can expect
faster iteration with a LinkedHashMap. (LinkedHashMap is a new collection class as
of version 1.4.)

TreeMap You can probably guess by now that a TreeMap is a sorted Map. And
you already know that this means “sorted by the natural order of the elements.” But
like TreeSet, TreeMap lets you pass your own comparison rules in when you construct
a TreeMap, to specify how the elements should be compared to one another when
they’re being ordered.

Look for incorrect mixtures of interfaces with classes. You can easily eliminate
some answers right away if you recognize that, for example, a Map can’t be the
collection class you choose when you need a namelvalue pair collection, since
Map is an interface and not a concrete implementation class. The wording on
the exam is explicit when it matters, so if you’re asked to choose an interface,
choose an interface rather than a class that implements that interface. The
reverse is also true—if you’re asked to choose an implementation class, don’t
choose an interface type.

Whew! That’s all the collection stuff you'll need for the exam, and Table 7-2 puts

it in a nice little summary.

TABLE 7-2

Collections (Exam Objective 9.1) 2.8

Collection Interface Concrete Implementation Classes

(o] FT Map Set List Ordered Sorted
HashMap X No No
Hashtable X No No
TreeMap X Sorted By natural order or
custom comparison rules
LinkedHashMap X By insertion order No
or last access order
HashSet X No No
TreeSet X Sorted By natural order or
custom comparison rules
LinkedHashSet X By insertion order ~ No
or last access order
ArrayList X By index No
Vector X By index No
LinkedList X By index No
ex a\?’)a ¢ch Be sure you know how to interpret Table 7-2 in a practical way. For the

exam, you might be expected to choose a collection based on a particular
requirement, where that need is expressed as a scenario. For example, which
collection would you use if you needed to maintain and search on a list of parts,
identified by their unique alphanumeric serial where the part would be of type
Part? Would you change your answer at all if we modified the requirement
such that you also need to be able to print out the parts in order, by their
serial number? For the first question, you can see that since you have a Part
class, but need to search for the objects based on a serial number, you need a
Map. The key will be the serial number as a String, and the value will be the
Part instance. The default choice should be HashMap, the quickest Map for
access. But now when we amend the requirement to include getting the parts
in order of their serial number, then we need a TreeMap—which maintains the
natural order of the keys. Since the key is a String, the natural order for a String
will be a standard alphabetical sort. If the requirement had been to keep track
of which part was last accessed, then we’d probably need a LinkedHashMap.

26 Chapter 7: Objects and Collections

But since a LinkedHashMap loses the natural order (replacing it with last-
accessed order), if we need to list the parts by serial number, we’ll have to
explicitly sort the collection, using a utility method.

Now that you know how to compare, organize, access, and sort objects, there’s
only one thing left to learn in this sequence: how to get 7id of objects. The last
objective in this chapter looks at the garbage collection system in Java. You simply
won’t believe how many garbage collection questions are likely to show up on your
exam, so pay close attention to this last section. Most importantly, you'll need to
know what is and is not guaranteed and what you're responsible for when it comes
to memory management in Java.

CERTIFICATION OBJECTIVE

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3)

State the behavior that is guaranteed by the garbage collection system.
Write code that explicitly makes objects eligible for garbage collection.
Recognize the point in a piece of source code at which an object becomes

eligible for garbage collection.

Overview of Memory Management and Garbage Collection

This is the section you’ve been waiting for! I’s finally time to dig into the wonderful
world of memory management and garbage collection.

Memory management is a crucial element in many types of applications. Consider a
program that reads in large amounts of data, say from somewhere else on a network,
and then writes that data into a database on a hard drive. A typical design would be
to read the data into some sort of collection in memory, perform some operations on
the data, and then write the data into the database. After the data is written into the
database, the collection that stored the data temporarily must be emptied of old data
or deleted and re-created before processing the next batch. This operation might be
performed thousands of times, and in languages like C or C++ that do not offer
automatic garbage collection, a small flaw in the logic that manually empties or
deletes the collection data structures can allow small amounts of memory to be

Garbage Collection (Exam Objectives 3.1,3.2,3.3) 27

improperly reclaimed or lost. Forever. These small losses are called memory leaks,
and over many thousands of iterations they can make enough memory inaccessible
that programs will eventually crash. Creating code that performs manual memory
management cleanly and thoroughly is a nontrivial and complex task, and while
estimates vary, it is arguable that manual memory management can double the
development effort for a complex program.

Java’s garbage collector provides an automatic solution to memory management.
In most cases it frees you from having to add any memory management logic to your
application. The downside to automatic garbage collection is that you can't completely
control when it runs and when it doesn’t.

Overview of Java’s Garbage Collector

exam

Match

Let’s look at what we mean when we talk about garbage collection in the land of
Java. From the 30,000 ft. level, garbage collection is the phrase used to describe
automatic memory management in Java. Whenever a software program executes (in
Java, C, C++, Lisp, etc.), it uses memory in several different ways. We’re not going
to get into Computer Science 101 here, but it’s typical for memory to be used to
create a stack, a heap, in Java’s case constant pools, and method areas. The heap is
that part of memory where Java objects live, and it’s the one and only part of
memory that is in any way involved in the garbage collection process.

A heap is a heap is a heap. For the exam it’s important to know that you can
call it the heap, you can call it the garbage collectible heap, you can call it
Johnson, but there is one and only one heap.

So, all of garbage collection revolves around making sure that the heap has as
much free space as possible. For the purpose of the exam, what this boils down to is
deleting any objects that are no longer reachable by the Java program running. We'll
talk more about what reachable means, but let’s drill this point in. When the garbage
collector runs, its purpose is to find and delete objects that cannot be reached. 1f you
think of a Java program as in a constant cycle of creating the objects it needs (which
occupy space on the heap), and then discarding them when they’re no longer needed,
creating new objects, discarding them, and so on, the missing piece of the puzzle is
the garbage collector. When it runs, it looks for those discarded objects and deletes
them from memory so that the cycle of using memory and releasing it can continue.

Ah, the great circle of life.

28 Chapter 7: Objects and Collections

When Does the Garbage Collector Run?

The garbage collector is under the control of the JVM. The JVM decides when to run
the garbage collector. From within your Java program you can ask the JVM to run
the garbage collector, but there are no guarantees, under any circumstances, that the
JVM will comply. Left to its own devices, the JVM will typically run the garbage
collector when it senses that memory is running low. Experience indicates that when
your Java program makes a request for garbage collection, the JVM will usually grant
your request in short order, but there are no guarantees. Just when you think you can
count on it, the JVM will decide to ignore your request.

How Does the Garbage Collector Work?

You just can’t be sure. You might hear that the garbage collector uses a mark and
sweep algorithm, and for any given Java implementation that might be true, but the
Java specification doesn’t guarantee any particular implementation. You might hear
that the garbage collector uses reference counting; once again maybe yes maybe no.
The important concept to understand for the exam is when does an object become
eligible for garbage collection. To answer this question fully we have to jump ahead a
little bit and talk about #hreads. (See Chapter 9 for the real scoop on threads.) In a
nutshell, every Java program has from one to many threads. Each thread has its own
little execution stack. Normally, you (the programmer), cause at least one thread to
run in a Java program, the one with the main () method at the bottom of the stack.
However, as you’ll learn in excruciating detail in Chapter 9, there are many really
cool reasons to launch additional threads from your initial thread. In addition to
having its own little execution stack, each thread has its own lifecycle. For now, all
we need to know is that threads can be alive or dead. With this background
information we can now say with stunning clarity and resolve that, an object is
eligible for garbage collection when no live thread can access it.

Based on that definition, the garbage collector does some magical, unknown
operations, and when it discovers an object that can't be reached by any live thread
it will consider that object as eligible for deletion, and it might even delete it at some
point. (You guessed it, it also might 7oz ever delete it.) When we talk about reaching
an object, we're really talking about having a reachable reference variable that refers
to the object in question. If our Java program has a reference variable that refers to
an object, and that reference variable is available to a live thread, then that object is
considered reachable. We'll talk more about how objects can become unreachable in
the following section.

exam

Jatch

Garbage Collection (Exam Objectives 3.1, 3.2,3.3) 29

Can a Java application run out of memory? Yes. The garbage collection system
attempts to remove objects from memory when they are not used. However,
if you maintain too many live objects (objects referenced from other live objects),
the system can run out of memory. Garbage collection cannot ensure that
there is enough memory, only that the memory that is available will be managed
as efficiently as possible.

Writing Code That Explicitly
Makes Objects Eligible for Collection

In the previous section, we learned the theories behind Java garbage collection. In
this section, we show how to make objects eligible for garbage collection using actual
code. We also discuss how to attempt to force garbage collection if it is necessary,
and how you can perform additional cleanup on objects before they are removed
from memory.

Nulling a Reference
As we discussed earlier, an object becomes eligible for garbage collection when there
are no more reachable references to it. Obviously, if there are no reachable references,
it doesn’t matter what happens to the object. For our purposes it is just floating in
space, unused, inaccessible, and no longer needed.

The first way to remove a reference to an object is to set the reference variable
that refers to the object to null. Examine the following code:

1. public class GarbageTruck {

2 public static void main(String [] args) {

3 StringBuffer sb = new StringBuffer("hello");

4. System.out.println(sb) ;

5. // The StringBuffer object is not eligible for collection
6 sb = null;

7 // Now the StringBuffer object is eligible for collection
8 }

9. }

The StringBuffer object with the value hello is assigned the reference variable
sb in the third line. Although the rest of the code does not use the StringBuffer
object, it is not yet eligible for garbage collection. To make it eligible, we set the
reference variable 56 to null, which removes the single reference that existed to
the StringBuffer object. Once line 6 has run, our happy little hel1lo StringBuffer
object is doomed, eligible for garbage collection.

30 Chapter 7: Objects and Collections

Reassigning a Reference Variable

We can also decouple a reference variable from an object by setting the reference
variable to refer to another object. Examine the following code:

class GarbageTruck {
public static void main(String [] args) {
StringBuffer sl = new StringBuffer("hello");
StringBuffer s2 = new StringBuffer ("goodbye") ;
System.out.println(sl) ;

// At this point the StringBuffer "hello" is not eligible
sl = s2; // Redirects sl to refer to the "goodbye" object
// Now the StringBuffer "hello" is eligible for collection

}

Objects that are created in a method also need to be considered. When a method
is invoked, any local variables created exist only for the duration of the method. Once
the method has returned, the objects created in the method are eligible for garbage
collection. There is an obvious exception, however. If an object is returned from the
method, its reference might be assigned to a reference variable in the method that
called it; hence, it will not be eligible for collection. Examine the following code:

import java.util.Date;
public class GarbageFactory {
public static void main(String [] args) {
Date d = getDate()
doComplicatedStuff () ;
System.out.println("d = " + d);

public static Date getDate() {
Date d2 = new Date();
String now = d2.toString() ;
System.out.println (now) ;
return d2;

}

In the preceding example, we created a method called getDate () that returns
a Date object. This method creates two objects: a Date and a String containing the
date information. Since the method returns the Date object, it will 7oz be eligible for
collection even after the method has completed. The String object, though, will be
eligible, even though we did not explicitly set the 7zow variable to null.

Garbage Collection (Exam Objectives 3.1, 3.2,3.3) 3 ||

Isolating a Reference

There is another way in which objects can become eligible for garbage collection,
even if they still have valid references! We think of this scenario as islands of isolation.
A simple example is a class that has an instance variable that is a reference variable
to another instance of the same class. Now imagine that two such instances exist and
that they refer to each other. If all other references to these two objects are removed,
then even though each object still has a valid reference, there will be no way for any
live thread to access either object. When the garbage collector runs, it will discover
any such #slands of objects and will remove them. As you can imagine, such islands
can become quite large, theoretically containing hundreds of objects. Examine the
following code:

public class Island {
Island 1i;
public static void main(String [] args) {
Island 12 = new Island();
Island i3 = new Island();
Island i4 = new Island()

i

i2.1i = 1i3; // 12 refers to i3
i3.1 = i4; // 13 refers to i4
i4.1 = 12; // 14 refers to i2
i2 = null;
i3 = null;
i4 = null;

// do complicated, memory intensive stuff

}

When the code reaches // do complicated, the three Island objects
(previously known as i2, i3, and i4) have instance variables so that they refer to
each other, but their links to the outside world (i2, i3, and i4) have been nulled.
These three objects are eligible for garbage collection.

This covers everything you will need to know about making objects eligible for
garbage collection. Study Figure 7-5 to reinforce the concepts of objects without
references and islands of isolation.

32 Chapter 7: Objects and Collections

Objects eligible for garbage collection

public class Island (

Island n;

public static void main(String []

{

args)

Island i2 = new Island():
Island i3 = new Island():
Island i4 = new Island():
i2.n = i3
i3.n = i4
id.n =12
i2 = null; T
i3 - null; @
i4 = nui1; — T
doComplexStuff () ; (/T
N A
i4 Q)
- Three island Objects
The heap
Lost Object ®
Indicated an public class Lost { P
active reference public static void main(String {} args) {
Lost x = new Lost ():
x = null;
""@"’ doComplexStuff () :

Indicates a

deleted reference

}
}

Forcing Garbage Collection

exam
Jatch

The first thing that should be mentioned here is, contrary to this section’s title,
garbage collection cannot be forced. However, Java provides some methods that allow
you to request that the JVM perform garbage collection. For example, if you are about
to perform some time-sensitive operations, you probably want to minimize the chances
of a delay caused by garbage collection. But you must remember that the methods
that Java provides are reguests, and not demands; the virtual machine will do its best
to do what you ask, but there is no guarantee that it will comply.

In reality, it is possible only to suggest to the JVM that it perform garbage
collection. However, there are no guarantees the JVM will actually remove
all of the unused objects from memory. It is essential that you understand
this concept for the exam.

Garbage Collection (Exam Objectives 3.1,3.2,3.3) 33

The garbage collection routines that Java provides are members of the Runtime
class. The Runtime class is a special class that has a single object (a Singleton) for
each main program. The Runtime object provides a mechanism for communicating
directly with the virtual machine. In order to get the Runtime instance, you can use
the method Runtime.getRuntime (), which returns the Singleton. Alternatively,
for the method we are going to discuss, you can call the same method on the System
class, which has static methods that can do the work of obtaining the Singleton for
you. The simplest way to ask for garbage collection (remember—just a request) is

System.gc () ;

Theoretically, after calling System.gc (), you will have as much free memory
as possible. We say theoretically because this routine does not always work that way.
First, the JVM you are using may not have implemented this routine; the language
specification allows this routine to do nothing at all. Second, another thread (again,
see Chapter 9) may perform a substantial memory allocation right after you run the
garbage collection.

This is not to say that System.gc () is a useless method—it’s much better than
nothing. You just cant rely on System.gc () to free up enough memory so that
you don’t have to worry about the garbage collector being run. The certification exam
is interested in guaranteed behavior, not probable behavior.

Now that we are somewhat familiar with how this works, let’s do a little experiment
to see if we can see the effects of garbage collection. The following program lets us
know how much total memory the JVM has available to it and how much free
memory it has. It then creates 10,000 Date objects. After this, it tells us how much
memory is left and then calls the garbage collector (which, if it decides to run, should
halt the program until all unused objects are removed). The final free memory result
should indicate whether it has run. Let’s look at the program:

1 import java.util.Date;

2 public class CheckGC {

3 public static void main(String [] args) {

4. Runtime rt = Runtime.getRuntime () ;

5 System.out.println("Total JVM memory: " + rt.totalMemory());
6 System.out.println("Before Memory = " + rt.freeMemory());
7 Date d = null;

8. for(int 1 = 0;1<10000;1i++) {

9. d = new Date() ;
10. d = null;
11. }
12. System.out.println("After Memory = " + rt.freeMemory());
13. rt.gc(); // an alternate to System.gc ()

14. System.out.println("After GC Memory = " + rt.freeMemory());

34 Chapter7:

Objects and Collections

15. }
6. }

Now, let’s run the program and check the results:

Total JVM memory: 1048568
Before Memory = 703008
After Memory = 458048
After GC Memory = 818272

As we can see, the VM actually did decide to garbage collect (i.e. delete) the eligible
objects. In the preceding example, we suggested to the JVM to perform garbage
collection with 458,048 bytes of memory remaining, and it honored our request.
This program has only one user thread running, so there was nothing else going on
when we called rt . gc (). Keep in mind that the behavior when gc () is called
may be different for different JVMs, so there is no guarantee that the unused objects
will be removed from memory. About the only thing you can guarantee is that if you
are running very low on memory, the garbage collector will run before it throws an
OutOfMemoryException.

Cleaning Up Before Garbage Collection—the Finalize() Method

Java provides you a mechanism to run some code just before your object is deleted
by the garbage collector. This code is located in a method named finalize ()
that all classes inherit from class Object. On the surface this sounds like a great idea;
maybe your object opened up some resources, and you’d like to close them before
your object is deleted. The problem is that, as you may have gathered by now, you
can’t count on the garbage collector to ever delete an object. So, any code that you put
into your class’s overridden finalize () method is not guaranteed ro run. The
finalize () method for any given object might run, but you can’t count on it,
so don’t put any essential code into your finalize () method. In fact, we
recommend that in general you don’t override finalize () atall

Tricky Little Finalize() Gotcha’s

There are a couple of concepts concerning finalize () that you need to remember.

B For any given object, finalize () will be called only once by the
garbage collector.

B Calling finalize () can actually result in saving an object from deletion.

Garbage Collection (Exam Objectives 3.1, 3.2,3.3) 3§

Let’s look into these statements a little further. First of all, remember that
finalize () is a method, and any code that you can put into a normal method
you can put into finalize (). For example, in the finalize () method you
could write code that passes a reference to the object in question back to another
object, effectively uneligiblizing the object for garbage collection. If at some point
later on this same object becomes eligible for garbage collection again, the garbage
collector can still process this object and delete it. The garbage collector, however,
will remember that, for this object, finalize () already ran, and it will not run
finalize() again.

Now that we've gotten down and dirty with garbage collection, verify that the
following scenarios and solutions make sense to you. If they don’t, reread the last

part of this chapter. While awake.

SCENARIO & SOLUTION

I want to allocate an object and make sure that it
never is deallocated. Can I tell the garbage collector
to ignore an object?

My program is not performing as well as I would
expect. I think the garbage collector is taking too
much time. What can I do?

I am creating an object in a method and passing it
out as the method result. How do I make sure the
object isn’t deleted before the method returns?

How do I drop a reference to an object if that object
is referred to in a member of my class?

I want to keep objects around as long as they don’t
interfere with memory allocation. Is there any way |
can ask Java to warn me if memory is getting low?

No. There isn’t a mechanism for marking an

object as undeletable. You can instead create a static
member of a class, and store a reference to the object
in that. Static members are considered live objects.

First, if it really is the garbage collector (and it probably
isn’t), then the code is creating and dropping many
references to many temporary objects. Try to
redesign the program to reuse objects or require
fewer temporary objects.

The object won’t be deleted until the last reference
to the object is dropped. If you return the object as
a method return value, the method that called it will
contain a reference to the object.

Set the member to null. Alternatively, if you set
a reference to a new object, the old object loses one
reference. If that is the last reference, the object
becomes eligible for deletion.

Prior to Java 1.2, you would have to check the
amount of free memory yourself and guess. Java 1.2
introduced soft references for just this situation.
This is not part of the Java 2 exam, however.

36 Chapter 7: Objects and Collections

FROM THE CLASSROOM

Advanced Garbage Collection in Java 2

Up to this point, we have been discussing the case the user wants to undo the change.
original Java memory management model. With This old object is an example of a cache.
Java 2, the original model was augmented with B Weak references These are similar to

reference classes. Reference classes, which derive soft references in that they allow you

from the abstract class Reference, are used for to refer to an object without forcing

more sophisticated memory management. (You the object to remain in memory.

will not need to know the advanced management Weak references are different from

model for the exam.) The Reference class is the
superclass for the WeakReference, SoftReference,
and PhantomReference classes found in the
java.lang.ref package.

soft references, however, in that they
do not request that the garbage collector
attempt to keep the object in memory.
Unlike soft references, which may stick

By default, you as a programmer work with around for a while even after their

strong references. When you hear people talking strong references drop, weak references

about reference.s (at parties, on the bus), they‘ g0 away pretty quickly.
are usually talking about szrong references. This

was the classic Java way of doing things, and it W Phantom references These provide a

is what you have unless you go out of your way means of delaying .the reuse f)f memory
occupied by an object, even if the object
itself is finalized. A phantom object is

one that has been finalized, but whose

to use the Reference classes. Strong references
are used to prevent objects from being garbage

collected; a strong reference from a reachable

object is enough to keep the referred-to object memory has not yet been made available

for another object.

in memory.
Let’s look at the other three types of Objects are placed into one of several
references: categories, depending on what types of

B Soft references The Java language references can be used to get to the object.
References are ordered as follows: strong, soft,
weak, and phantom. Objects are then known
as strongly reachable, softly reachable, weakly

reachable, phantom reachable, or unreachable.

specification states that soft references
can be used to create memory-sensitive
caches. For example, in an image
program, when you make a change to
the image (say, an Image object), the M Strongly reachable If an object has a
old Image object can stick around in strong reference, a soft reference, a weak

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3)

reference, and a phantom reference
all pointing to it, then the object is
considered strongly reachable and
will not be collected.

Softly reachable An object without a
strong reference but with a soft reference,
a weak reference, and a phantom
reference, will be considered softly

weakly reachable and will be collected at
the next garbage collection cycle.

Phantom reachable An object without
a strong, soft, or weak reference but
with a phantom reference, is considered
phantom reachable and will be finalized,
but the memory for that object will not
be collected.

37

reachable and will be collected only B Unreachable
when memory gets low.

B Weakly reachable An object without a
strong or soft reference but with a weak

What about an object
without a strong, soft, weak, or phantom
reference? Well, that object is considered
unreachable and will already have been
or phantom reference, is considered collected, or will be collected as soon as

the next garbage collection cycle is run.

— Bob Hablutzel

CERTIFICATION SUMMARY ‘

As you know by now, when we come to this point in the chapter (the end), we like

to pause for a moment and review all that we’ve done. We began by looking at the
hashCode () and equals () methods, with a quick review of another important
method in class Object, toString () .You learned that overriding toString () is
your opportunity to create a meaningful summary (in the form of a String) of the
state of any given instance in your classes. The toString () method is automatically
called when you ask System.out.println() to printan object.

Next you reviewed the purpose of == (to see if two reference variables refer to
the same object) and the equals () method (to see if two objects are meaningfully
equivalent). You learned the downside of not overriding equals () —you may not
be able to find the object in a collection. We discussed a little bit about how to write
a good equals () method—don't forget to use instanceof and refer to the
object’s significant attributes. We reviewed the contracts for overriding equals ()
and hashCode (). We learned about the theory behind hashcodes, the difference

38 Chapter 7: Objects and Collections

between legal, appropriate, and efficient hashcoding. We also saw that even though
wildly inefficient, it’s legal for a hashCode () method to always return the same value.
Next we turned to collections, where we learned about Lists, Sets, and Maps, and

the difference between ordered and sorted collections. We learned the key attributes
of the common collection classes, and when to use which. Finally, we dove into garbage
collection, Java’s automatic memory management feature. We learned that the heap
is where objects live and where all the cool garbage collection activity takes place. We
learned that in the end, the JVM will perform garbage collection whenever it wants
to. You (the programmer) can request a garbage collection run, but you can’t force it.
We talked about garbage collection only applying to objects that are e/igible, and that
eligible means “inaccessible from any live thread.” Finally, we discussed the rarely useful
finalize () method, and what you'll have to know about it for the exam. All in
all one fascinating chapter.

Two-Minute Drill 39

TWO-MINUTE DRILL

Here are some of the key points from Chapter 7.

Overriding hashCode() and equals()

Q

a

Q

The critical methods in class Object are equals (), finalize (),
hashCode (), and toString ().

equals (), hashCode (), and toString () are public (Einalize ()
is protected).

Fun facts about toString ():

1 Override toString () so that System.out.println () or other
methods can see something useful.

O Override toString () to return the essence of your object’s state.
Use == to determine if two reference variables refer to the same object.
Use equals () to determine if two objects are meaningfully equivalent.

If you don’t override equals (), your objects won t be useful hashtable/
hashmap keys.

If you don’t override equals (), two different objects can’t be considered
the same.

Strings and wrappers override equals () and make good hashtable/
hashmap keys.

When overriding equals (), use the instanceof operator to be sure
you're evaluating an appropriate class.

When overriding equals (), compare the objects’ significant attributes.
Highlights of the equals () contract:
O Reflexive: x.equals (x) is true.

Q Symmetric: If x.equals (y) is true, then y.equals (x) must
be true.

O Transitive: If x . equals (y) is true, and yv.equals (z) is true,
then z.equals (x) is true.

40 Chapter7: Objects and Collections

Q Consistent: Multiple calls to x. equals (y) will return the same result.
Q Null:If xisnotnull, then x.equals (null) is false.

U Ifx.equals (y) is true, then x.hashCode () == y.hashCode ()
must be true.

U Ifyou override equals (), override hashCode ().
U Classes HashMap, Hashtable, LinkedHashMap, and LinkedHashSet

use hashing.
O A JegalhashCode () override compiles and runs.
O An appropriate hashCode () override sticks to the contract.

Q An efficienthashCode () override distributes keys randomly across
a wide range of buckets.

U To reiterate: if two objects are equal, their hashcodes must be equal.

U I¢’s legal for a hashCode () method to return the same value for all instances
(although in practice it’s very inefficient).

U Highlights of the hashCode () contract:
O Consistent: Multiple calls to x . hashCode () return the same integer.

O Ifx.equals (y) is true, then x.hashCode () == y.hashCode ()
must be true.

O Ifx.equals (y) is false, then x.hashCode () ==
v .hashCode () can be either true or false, but false
will tend to create better efficiency.

U Transient variables aren’t appropriate for equals () and hashCode ().

Collections

U Common collection activities include adding objects, removing objects, verifying
object inclusion, retrieving objects, and iterating.

U Three meanings for “collection”:
U collection—Represents the data structure in which objects are stored
p)

O Collection—java.util.Collection—Interface from which Set
and List extend

O Collections—A class that holds static collection utility methods

Two-Minute Drill 4 ||

O Three basic flavors of collections include Lists, Sets, Maps:

u
u

Q

Lists of things: Ordered, duplicates allowed, with an index

Sets of things: May or may not be ordered and/or sorted, duplicates
not allowed

Maps of things with keys: May or may not be ordered and/or sorted,
duplicate keys not allowed

O Four basic subflavors of collections include Sorted, Unsorted, Ordered,
Unordered.

O Ordered means iterating through a collection in a specific, nonrandom order.

O Sorted means iterating through a collection in a natural sorted order.

U Natural means alphabetic, numeric, or programmer-defined, whichever applies.

O Key attributes of common collection classes:

Q
Q

(.

Q

ArrayList: Fast iteration and fast random access

Vector: Like a somewhat slower ArrayList, mainly due to its synchronized
methods

LinkedList: Good for adding elements to the ends, i.e., stacks and queues
HashSet: Assures no duplicates, provides no ordering

LinkedHashSet: No duplicates; iterates by insertion order or last accessed
(new with 1.4)

TreeSet: No duplicates; iterates in natural sorted order

HashMap: Fastest updates (key/value pairs); allows one null key,
many null values

Hashtable: Like a slower HashMap (as with Vector, due to its synchronized
methods). No null values or null keys allowed

LinkedHashMap: Faster iterations; iterates by insertion order or last accessed,
allows one null key, many null values (new with 1.4)

TreeMap: A sorted map, in natural order

Garbage Collection

O In Java, garbage collection provides some automated memory management.

O All objects in Java live on the heap.

472 Chapter 7. Objects and Collections

U0

ESEEC G CINE

U U

The heap is also known as the garbage collectible heap.

The purpose of garbage collecting is to find and delete objects that can’t
be reached.

Only the /VM decides exactly when to run the garbage collector.
You (the programmer) can only recommend when to run the garbage collector.

You can’t know the G.C. algorithm; maybe it uses mark and sweep, maybe it’s
generational and/or iterative.

Objects must be considered eligible before they can be garbage collected.
An object is eligible when no live thread can reach it.

To reach an object, a live thread must have a live, reachable reference variable
to that object.

Java applications can run out of memory.

Islands of objects can be garbage collected, even though they have references.
To reiterate: garbage collection can’t be forced.

Request garbage collection with System.gc () ; (recommended).

Class Object hasa finalize () method.

The finalize () method is guaranteed to run once and only once before
the garbage collector deletes an object.

Since the garbage collector makes no guarantees, finalize () may never run.

You can uneligibilize an object from within finalize ().

Self Test 43

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question.

HashCode and equals() (Exam Objective 9.2)

I. Given the following,

11. x = 0;

12. if (x1l.hashCode() != x2.hashCode()) x = x + 1;
13. if (x3.equals(x4)) x = x + 10;

14. if (!x5.equals(x6)) x = x + 100;

15. if (x7.hashCode() == x8.hashCode()) x = x + 1000;
16. System.out.println("x = " + x);

and assuming that the equals () and hashCode() methods are property implemented, if the
outputis “x = 11117, which of the following statements will always be true?

A. x2.equals (x1
B. x3.hashCode(
C. x5.hashCode (
D. x8.equals (x7

== x4 .hashCode ()

)
)
) !'= x6.hashCode ()
)

2. Given the following,

class Testl {
public int value;
public int hashCode() { return 42; }
}
class Test2 {
public int value;
public int hashcode() { return (int) (value”5); }

}
which statement is true?

A. class Testl will not compile.
B. The Testl hashCode () method is more efficient than the Test2 hashCode () method.
C. The Testl hashCode () method is less efficient than the Test2 hashCode () method.

44 Chapter 7: Objects and Collections

D. class Test2 will not compile.
E. The two hashcode () methods will have the same efficiency.

3. Which two statements are true about comparing two instances of the same class, given that the
equals () and hashCode () methods have been properly overridden? (Choose two.)

A. Ifthe equals () method returns true, the hashCode () comparison == must
return true.

B. Ifthe equals () method returns false, the hashCode () comparison != must return
true.

C. If the hashCode () comparison == returns true, the equals () method must return
true.

D. If the hashCode () comparison == returns true, the equals () method might
return true.

E. If the hashCode () comparison != returns true, the equals () method might

return true.

4. Which class does not override the equals () and hashCode () methods, inheriting them
directly from class Object?

java.lang.String
java.lang.Double
java.lang.StringBuffer

java.lang.Character

moOo®»

java.util. ArrayList

5. What two statements are true about properly overridden hashCode () and equals ()
methods?

A. hashCode () doesn’t have to be overridden if equals () is.

B. equals () doesn’t have to be overridden if hashCode () is.

C. hashCode () can always return the same value, regardless of the object that invoked it.
D

. If two different objects that are not meaningfully equivalent both invoke hashCode (),
then hashCode () can’t return the same value for both invocations.

m

equals () can be true even if it’s comparing different objects.

Using Collections (Exam Objective 9.1)

Self Test 4.8

6. Which collection class allows you to grow or shrink its size and provides indexed access to its

elements, but whose methods are not synchronized?

monN® >

java.util. HashSet
java.util.LinkedHashSet
java.util.List

java.util. ArrayList

java.util.Vector

Which collection class allows you to access its elements by associating a key with an element’s
value, and provides synchronization?

m o w >

java.util.SortedMap
java.util. TreeMap
java.util. TreeSet
java.util. HashMap

java.util. Hashtable

Given the following,

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

TreeSet map = new TreeSet () ;

map.add("one") ;
map.add("two") ;
map.add("three") ;
map.add("four") ;

map.add("one") ;

Iterator it = map.iterator();

while (it.hasNext ()) {
System.out.print(it.next() + " ");

}

what is the result?

mmQgQOw>»

one two three four
four three two one
four one three two
one two three four one
one four three two one

The print order is not guaranteed.

46 Chapter 7: Objects and Collections

9. Which collection class allows you to associate its elements with key values, and allows you to
retrieve objects in FIFO (first-in, first-out) sequence?

java.util. ArrayList
java.util. LinkedHashMap
java.util. HashMap
java.util. TreeMap
java.util. LinkedHashSet

java.util. TreeSet

mmogNnw >

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3)
10. Given the following,

1 public class X {

2 public static void main(String [] args) {
3. X x = new X();

4. X x2 = ml(x);

5 X x4 = new X();

6 x2 = x4;

7 doComplexStuff () ;
8. }

9. static X ml(X mx) {
10. mx = new X();

11. return mx;

12. }

13. 3}

After line 6 runs. how many objects are eligible for garbage collection?

A 0
B. 1
C. 2
D. 3
E. 4

11. Which statement is true?

A. All objects that are eligible for garbage collection will be garbage collected by the garbage
collector.

B. Objects with at least one reference will never be garbage collected.

Self Test 47

Objects from a class with the finalize () method overridden will never be garbage
collected.

Objects instantiated within anonymous inner classes are placed in the garbage collectible heap.

Once an overridden finalize () method is invoked, there is no way to make that object
ineligible for garbage collection.

12. Given the following,

1. class X2 {

2. public X2 x;

3. public static void main(String [] args) {
4. X2 x2 = new X2();
5. X2 x3 = new X2();
6. X2.X = X3;

7. x3.xX = X2;

8. x2 = new X2();

9. x3 = X2;

10. doComplexStuff () ;
11. }

12. }

after line 9 runs, how many objects are eligible for garbage collection?

moON® >

W N = O

4

13. Which statement is true?

A

B.

C.
D.

Calling Runtime.gc () will cause eligible objects to be garbage collected.
The garbage collector uses a mark and sweep algorithm.
If an object can be accessed from a live thread, it can’t be garbage collected.

If object 1 refers to object 2, then object 2 can’t be garbage collected.

14. Given the following,

12. X3 x2 = new X3();
13. X3 x3 new X3 () ;
14. X3 x5 = x3;

15. x3 = x2;

16. X3 x4 = x3;

48 Chapter 7: Objects and Collections

17. x2 = null;
18. // 1insert code

what two lines of code, inserted independently at line 18, will make an object eligible for
garbage collection? (Choose two.)

A. x3 = null;
B. x4 = null;
C. x5 = null;
D. x3 = x4;
E. x5 = x4;

Given the following,

12. wvoid doStuff3 () {

13. X x = new X();

14. X v = doStuff (x);

15. y = null;

16. X = null;

17. 1}

18. X doStuff (X mx) {

19. return doStuff2 (mx) ;
20. 1}

at what point is the object created in line 13 eligible for garbage collection?
A. After line 15 runs
After line 16 runs
After line 17 runs

The object is not eligible.

mooOw

It is not possible to know for sure.

SELF TEST ANSWERS

Strings (Exam Objective 9.2)

M B. By contract, if two objects are equivalent according to the equals () method, then
the hashCode () method must evaluate them to be ==.

A is incorrect because if the hashCode () values are not equal, the two objects must not
be equal. C is incorrect because if equals () is not true there is no guarantee of any result

Self Test Answers 4.9

from hashCode (). D is incorrect because hashCode () will often return == even if the
two objects do not evaluate to equals () being true.

2. M C. The so-called “hashing algorithm” implemented by class Test1 will always return the
same value, 42, which is legal but which will place all of the hash table entries into a single
bucket, the most inefficient setup possible.

& A and D are incorrect because these classes are legal. B and E are incorrect based on the
logic described above.

3. M AandD. A is a restatement of the equals () and hashCode () contract. D is true
because if the hashCode () comparison returns ==, the two objects might or might not
be equal.
% B, C, and E are incorrect. B and C are incorrect because the hashCode () method is
very flexible in its return values, and often two dissimilar objects can return the same hash code
value. E is a negation of the hashCode () and equals () contract.

4. M C.javalang.StringBuffer is the only class in the list that uses the default methods provided
by class Object.
B A, C, D, E, and F are incorrect based on the logic described above.

5. M Cand E are correct.
&l A, B, and D are incorrect. A and B are incorrect because by contract hashCode () and
equals () can’t be overridden unless both are overridden. D is incorrect; hashCode ()
will often return the same value when hashing dissimilar objects.

Using Collections (Exam Objective 9.1)

6. M D. All of the collection classes allow you to grow or shrink the size of your collection.
ArrayList provides an index to its elements. The newer collection classes tend not to have
synchronized methods. Vector is an older implementation of ArrayList functionality and
has synchronized methods; it is slower than ArrayList.

A, B, C, and E are incorrect based on the logic described above; C, Liszis an interface.

7. M E. Hashtable is the only class listed that provides synchronized methods. If you need
synchronization great; otherwise, use HashMap, it’s faster.
B A, B, C, and D are incorrect based on the logic described above.

8. M C. TreeSet assures no duplicate entries; also, when it is accessed it will return elements
in natural order, which typically means alphabetical.
A, B, D, E, and F are incorrect based on the logic described above.

BO Chapter7: Objects and Collections

9. M B. LinkedHashMap is the collection class used for caching purposes. FIFO is another way
to indicate caching behavior. To retrieve LinkedHashMap elements in cached order, use the
values () method and iterate over the resultant collection.

A, C, D, E, and E are incorrect based on the logic described above.

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3)

10. M B. By the time line 6 has run, the only object without a reference is the one generated
as a result of line 4. Remember that “Java is pass by value,” so the reference variable x is not
affected by the m1 () method.

E A, C, D, and E are incorrect based on the logic described above.

Il. M D.All objects are placed in the garbage collectible heap.
A is incorrect because the garbage collector makes no guarantees. B is incorrect because
islands of isolated objects can exist. C is incorrect because finalize () has no such mystical
powers. E is incorrect because within a finalize () method, an object’s reference can be
passed back to a live thread.

12. M C. This is an example of the islands of isolated objects. By the time line 9 has run, the
objects instantiated in lines 4 and 5 are referring to each other, but no live thread can reach
either of them.

& A, B, D, and E are incorrect based on the logic described above.

13. M C. This is a great way to think about when objects can be garbage collected.
¥ A and B assume guarantees that the garbage collector never makes. D is wrong because
of the now famous #slands of isolation scenario.

14. M Cand E. By the time line 18 is reached, x2 is null, x3 and x4 refer to the object created
in line 12, and x5 refers to the object created in line 13. Any kind of redirection of x5 will
leave the second object without a reference.

A, B, and D are incorrect because the first object has two references; changing one of the
references will not cause the first object to become unreachable.

I15. M Eis correct. A copy of a reference to the line 13 object is passed to the doStuf£2 ()
method. We don’t know what goes on in that method; it’s possible that the reference is passed
to other live objects.

& A, B, C, and D are incorrect based on the logic described above.

SUN™ CERTIFIED PROGRAMMER & DEVELOPER

Inner Classes

CERTIFICATION OBJECTIVES

° Inner Classes
° Method-Local Inner Classes
° Anonymous Inner Classes

o Static Nested Classes
\/ Two-Minute Drill
Q&A Self Test

2 Chapter 8: Inner Classes

nner classes (including static nested classes) appear throughout the exam. Although there

are no official exam objectives specifically about inner classes, the objectives related to

declarations (1.2 and 4.1) and instantiation (6.3) include inner classes. More importantly,
the code used to represent questions on virtually any topic on the exam can involve inner
classes. Unless you deeply understand the rules and syntax for inner classes, you're likely to
miss questions you’d otherwise be able to answer. As if the exam weren’t already tough enough.

This chapter looks at the ins and outs (inners and outers?) of inner classes, and
exposes you to the kinds of (often strange-looking) syntax examples you'll see
scattered throughout the entire exam. So you've really got two goals for this
chapter—to learn what you’ll need to answer questions testing your inner class
knowledge, and to learn how to read and understand inner class code so that you
can correctly process questions testing your knowledge of ozher topics.

So what’s all the hoopla about inner classes? Before we get into it, we have to warn
you (if you don't already know) that inner classes have inspired passionate love ‘em
or hate ‘em debates since first introduced in version 1.1 of the language. For once,
we're going to try to keep our opinions to ourselves here and just present the facts as
you'll need to know them for the exam. It’s up to you to decide how—and to what
extent—you should use them in your own development. We mean it. Not even our
tone will betray our true feelings about them. (OK, OK, we'll tell you! We believe
they have some powerful, efficient uses in very specific situations, including code
that’s easier to read and maintain, but they can also be abused and lead to code that’s
as clear as a cornfield maze, and to the syndrome known as “reuseless”. .. code thats
useless over and over again.)

Inner classes let you define one class within another. They provide a type of
scoping for your classes since you can make one class a member of another class. Just
as classes have member variables and methods, a class can also have member classes.
They come in several flavors, depending on how and where you define the inner
class, including a special kind of inner class known as a “top-level nested class”

(an inner class marked static), which technically isn’t really an inner class.
Because a static nested class is still a class defined within the scope of another class,
we're still going to cover them in this chapter on inner classes.

Unlike the other chapters in this book, the certification objectives for inner classes
don’t have official exam objective numbers since they’re part of other objectives covered
elsewhere. So for this chapter, the Certification Objective headings represent the four
inner class zopics discussed in this chapter, rather than four official exam objectives

Inner Classes 3

Inner Classes
Method-local Inner Classes

Anonymous Inner Classes

Static Nested Classes

CERTIFICATION OBJECTIVE

Inner Classes

You’re an OO programmer, so you know that for reuse and flexibility/extensibility
you need to keep your classes specialized. In other words, a class should have code
only for the things an object of that particular type needs to do; any ozher behavior
should be part of another class better suited for #hat job. Sometimes, though, you
find yourself designing a class where you discover you need behavior that belongs in
a separate, specialized class, but also needs to be intimately tied to the class you'’re
designing.

Event handlers are perhaps the best example of this (and in fact, one of the main
reasons inner classes were added to the language in the first place). If you have a
GUI class that performs some job like, say, a chat client, you might want the
chat-client—specific methods (accept input, read new messages from server, send user
input back to server, etc.) to be in the class. But how do those methods get invoked
in the first place? A user clicks a button. Or types some text in the input field. Or a
separate thread doing the I/O work of getting messages from the server has messages
that need to be displayed in the GUI. So you have chat-client—specific methods, but
you also need methods for handling the “events” (button presses, keyboard typing,
I/O available, etc.) that drive the calls on those chat-client methods. The ideal
scenario—from an OO perspective—is to keep the chat-client—specific methods in
the ChatClient class, and put the event-handling code in a separate event-handling c/ass.

Nothing un