
Part I
The Programmer’s

Exam

CHAPTERS

1 Language Fundamentals

2 Declarations and Access Control

3 Operators and Assignments

4 Flow Control, Exceptions, and Assertions

5 Object Orientation, Overloading and
Overriding, Constructors,
and Return Types

6 Java.lang—The Math Class, Strings,
and Wrappers

7 Objects and Collections

8 Inner Classes

9 Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1
Blind Folio 1:1

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1
Blind Folio 1:1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6
Blind Folio 2

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1
Language
Fundamentals

CERTIFICATION OBJECTIVES

• Java Programming Language Keywords

• Literals and Ranges of All Primitive
Data Types

• Array Declaration, Construction,
and Initialization

• Using a Variable or Array Element
That Is Uninitialized and Unassigned

• Command-Line Arguments to Main

✓ Two-Minute Drill

Q&A Self Test

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1
Blind Folio 1:3

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This chapter looks at the Java fundamentals that you need to pass the Java 1.4
Programmer exam. Because you’re planning on becoming Sun certified, we assume
you already know the basics of Java, so this chapter concentrates just on the details

you’ll need for the exam. If you’re completely new to Java, this chapter (and the rest of the
book) will be confusing, despite our spectacularly cogent writing. That’s our story and we’re
sticking to it!

CERTIFICATION OBJECTIVE

Java Programming Language Keywords
(Exam Objective 4.4)

Identify all Java programming language keywords and correctly constructed identifiers.

Keywords are special reserved words in Java that you cannot use as identifiers
(names) for classes, methods, or variables. They have meaning to the compiler; it
uses them to figure out what your source code is trying to do. Table 1-1 contains
all 49 of the reserved keywords.

You must memorize these for the test; you can count on being asked to select the
keywords (and nonkeywords) from a list. Notice none of the reserved words have

4 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

abstract boolean break byte case catch

char class const continue default do

double else extends final finally float

for goto if implements import instanceof

int interface long native new package

private protected public return short static

strictfp super switch synchronized this throw

throws transient try void volatile while

assert

TABLE 1-1 Complete List of Java Keywords

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Java Programming Language Keywords (Exam Objective 4.4) 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

capital letters; this is a good first step when weeding out nonkeywords on the exam.
You’re probably familiar with most of them, but we’ll review them anyway. Don’t
worry right now about what each keyword means or does; we’ll cover most of them
in more detail in later chapters.

Look for questions that include reserved words from languages other than
Java. You might see include, overload, unsigned, virtual, friend,
and the like. Besides appearing in questions specifically asking for keyword
identification, the “imposter” words may show up in code examples used
anywhere in the exam. Repeat after me, “Java is not C++.”

Access Modifiers
The following are access modifiers:

■ private Makes a method or a variable accessible only from within its
own class.

■ protected Makes a method or a variable accessible only to classes in the
same package or subclasses of the class.

■ public Makes a class, method, or variable accessible from any other class.

Class, Method, and Variable Modifiers
The following are class, method, and/or variable modifiers:

■ abstract Used to declare a class that cannot be instantiated, or
a method that must be implemented by a nonabstract subclass.

■ class Keyword used to specify a class.

■ extends Used to indicate the superclass that a subclass is extending.

■ final Makes it impossible to extend a class, override a method, or
reinitialize a variable.

■ implements Used to indicate the interfaces that a class will implement.

■ interface Keyword used to specify an interface.

■ native Indicates a method is written in a platform-dependent language,
such as C.

■ new Used to instantiate an object by invoking the constructor.

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

■ static Makes a method or a variable belong to a class as opposed to
an instance.

■ strictfp Used in front of a method or class to indicate that
floating-point numbers will follow FP-strict rules in all expressions.

■ synchronized Indicates that a method can be accessed by only one
thread at a time.

■ transient Prevents fields from ever being serialized. Transient fields are
always skipped when objects are serialized.

■ volatile Indicates a variable may change out of sync because it is used
in threads.

Flow Control
The following are keywords used to control the flow through a block of code:

■ break Exits from the block of code in which it resides.

■ case Executes a block of code, dependent on what the switch tests for.

■ continue Stops the rest of the code following this statement from
executing in a loop and then begins the next iteration of the loop.

■ default Executes this block of code if none of the switch-case
statements match.

■ do Executes a block of code one time, then, in conjunction with the
while statement, it performs a test to determine whether the block should
be executed again.

■ else Executes an alternate block of code if an if test is false.

■ for Used to perform a conditional loop for a block of code.

■ if Used to perform a logical test for true or false.

■ instanceof Determines whether an object is an instance of a class,
superclass, or interface.

■ return Returns from a method without executing any code that follows
the statement (can optionally return a variable).

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Java Programming Language Keywords (Exam Objective 4.4) 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

■ switch Indicates the variable to be compared with the case statements.

■ while Executes a block of code repeatedly while a certain condition
is true.

Error Handling
The following are keywords used in error handling:

■ catch Declares the block of code used to handle an exception.

■ finally Block of code, usually following a try-catch statement, which is
executed no matter what program flow occurs when dealing with an exception.

■ throw Used to pass an exception up to the method that called this method.

■ throws Indicates the method will pass an exception to the method that
called it.

■ try Block of code that will be tried, but which may cause an exception.

■ assert Evaluates a conditional expression to verify the programmer’s
assumption.

Package Control
The following are keywords used for package control:

■ import Statement to import packages or classes into code.

■ package Specifies to which package all classes in a source file belong.

Primitives
The following keywords are primitives:

■ boolean A value indicating true or false.

■ byte An 8-bit integer (signed).

■ char A single Unicode character (16-bit unsigned)

■ double A 64-bit floating-point number (signed).

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ float A 32-bit floating-point number (signed).

■ int A 32-bit integer (signed).

■ long A 64-bit integer (signed).

■ short A 16-bit integer (signed).

Variable Keywords
The following keywords are a special type of reference variable:

■ super Reference variable referring to the immediate superclass.

■ this Reference variable referring to the current instance of an object.

Void Return Type Keyword
The void keyword is used only in the return value placeholder of a method
declaration.

■ void Indicates no return type for a method.

Unused Reserved Words
There are two keywords that are reserved in Java but which are not used. If you try
to use one of these, the Java compiler will scold you with the following:

KeywordTest.java:4: 'goto' not supported.
goto MyLabel;

1 error

The engineers’ first-draft of the preceding compiler warning resembled the
following:

KeywordTest.java:4: ‘goto’ not supported. Duh.
You have no business programming in Java. Begin erasing Java
Software Development Kit? (Yes/OK)
1 life-altering error

■ const Do not use to declare a constant; use public static final.

■ goto Not implemented in the Java language. It’s considered harmful.

8 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Look for questions that use a keyword as the name of a method or variable.
The question might appear to be asking about, say, a runtime logic problem,
but the real problem will be that the code won’t even compile because of the
illegal use of a keyword. For example, the following code will not compile:
class Foo {
public void go() {

// complex code here
}
public int break(int b) {
// code that appears to break something

}
}

You might be fooled by the use of the keyword break as a method name, because
the method might genuinely appear to be code that “breaks” something, and therefore
the method name makes sense. Meanwhile, you’re trying to figure out the complex
code within the methods, when you needn’t look beyond the illegal method name and
choose the “Code does not compile” answer.

According to the Java Language Specification, null, true, and false are
technically literal values (sometimes referred to as manifest constants) and not keywords.
Just as with the other keywords, if you try to create an identifier with one of these
literal values, you’ll get a compiler error. For the purposes of the exam, treat them
just as you would the other reserved words. You will not be asked to differentiate
between reserved words and these reserved literals.

Be careful of practice exams with questions that, for example, ask if false
is a keyword. Many exam candidates worry about how to answer such
a question, but the real exam does not expect you to make a distinction
between the reserved keywords and the literals of null, true, and false.
Because the certainty of this being on the exam has reached urban legend
status, Sun modified the objectives for exam 310-035 to clear up any
confusion. Objective 4.4 now includes the statement, “Note: There will not
be any questions regarding esoteric distinctions between keywords and
manifest constants.” Contrary to popular belief, the exam creators are not
evil or malicious. (I will admit, however, that while creating the exam, we
experienced a giddy joy when one of us came up with a particularly tricky,
er, clever question. High-fives all around!)

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Java Programming Language Keywords (Exam Objective 4.4) 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

class LiteralTest {
public static void main (String [] args) {

int true = 100; // this will cause error
}

}

Compiling this code gives us the following error (or something similar depending
on which compiler you are using):

%javac LiteralTest.java
LiteralTest.java:3: not a statement.

int true = 100; // this will cause error
^

In other words, trying to assign a value to true is much like saying:

int 200 = 100;

Look for words that differ from the Java reserved words in subtle ways. For
example, you might see protect rather than protected, extend rather than
extends.

CERTIFICATION OBJECTIVE

Literals and Ranges of All Primitive
Data Types (Exam Objective 4.6)

State the range of all primitive data types and declare literal values for String and all
primitive types using all permitted formats, bases, and representations.

For the exam, you’ll need to know the ranges of all primitive data types. Primitives
include byte, short, int, long, float, double, boolean, and char.
The primitive long, for instance, has a range of -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. But you knew that. Go memorize them all and come
back when you’ve burned it in. Just kidding. The good news is you don’t have to
memorize such ridiculous numbers. There’s an easier method to calculate the ranges,
and for the larger integer values it will be enough to know that 16 bits gives you

10 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

more than 60,000 possibilities, 32 bits gives you approximately 4 billion, and so on.
But you will need to know that the number types (both integer and floating-point
types) are all signed, and how that affects the range. First, let’s review the concepts.

Range of Primitive Types
All six number types in Java are signed, meaning they can be negative or positive.
The leftmost bit (the most significant digit) is used to represent the sign, where a 1
means negative (glass half empty) and 0 means positive (glass half full), as shown in
Figure 1-1. The rest of the bits represent the value, using two’s complement notation.

Table 1-2 shows the primitive types with their sizes and ranges. Figure 1-2 shows
that with a byte, for example, there are 256 possible numbers (or 28). Half of these are
negative, and half -1 are positive. The positive range is one less than the negative range
because the number zero is stored as a positive binary number. We use the formula
-2(bits - 1) to calculate the negative range, and we use 2(bits -1)–1 for the positive range.

The range for floating-point numbers is complicated to determine, but luckily
you don’t need to know these for the exam (although you are expected to know that
a double holds 64 bits and a float 32).

For boolean types there is not a range; a boolean can be only true or
false. If someone asks you for the bit depth of a boolean, look them straight
in the eye and say, “That’s virtual-machine dependent.” They’ll be impressed.

The char type (a character) contains a single, 16-bit Unicode character. Although
the extended ASCII set known as ISO Latin-1 needs only 8 bits (256 different
characters), a larger range is needed to represent characters found in languages other
than English. Unicode characters are actually represented by unsigned 16-bit integers,
which means 216 possible values, ranging from 0 to 65535 (216)-1. You’ll learn in

Literals and Ranges of All Primitive Data Types (Exam Objective 4.6) 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

FIGURE 1-1

The sign bit
for a byte

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3 that because a char is really an integer type, it can be assigned to any
number type large enough to hold 65535.

Literal Values for All Primitive Types
A primitive literal is merely a source code representation of the primitive data types—
in other words, an integer, floating-point number, boolean, or character that you
type in while writing code. The following are examples of primitive literals:

'b' // char literal
42 // int literal
false // boolean literal
2546789.343 // double literal

Integer Literals
There are three ways to represent integer numbers in the Java language: decimal
(base 10), octal (base 8), and hexadecimal (base 16). Most exam questions with
integer literals use decimal representations, but the few that use octal or hexadecimal
are worth studying for. Even though the odds that you’ll ever actually use octal in
the real world are astronomically tiny, they were included in the exam just for fun.

12 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Type Bits Bytes Minimum Range Maximum Range

byte 8 1 -27 27–1

short 16 2 -215 215–1

int 32 4 -231 231–1

long 64 8 -263 263–1

float 32 4 Not needed Not needed

double 64 8 Not needed Not needed

TABLE 1-2 Ranges of Primitive Numbers

FIGURE 1-2

The range
of a byte

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Literals and Ranges of All Primitive Data Types (Exam Objective 4.6) 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Decimal Literals Decimal integers need no explanation; you’ve been using them
since grade one or earlier. Chances are, you don’t keep your checkbook in hex. (If
you do, there’s a Geeks Anonymous (GA) group ready to help.) In the Java language,
they are represented as is, with no prefix of any kind, as follows:

int length = 343;

Octal Literals Octal integers use only the digits 0 to 7. In Java, you represent an
integer in octal form by placing a zero in front of the number, as follows:

class Octal {
public static void main(String [] args) {

int five = 06; // Equal to decimal 6
int seven = 07; // Equal to decimal 7
int eight = 010; // Equal to decimal 8
int nine = 011; // Equal to decimal 9
System.out.println("Octal 010 = " + eight);

}
}

Notice that when we get past seven and are out of digits to use (we are only
allowed the digits 0 through 7 for octal numbers), we revert back to zero, and one
is added to the beginning of the number. You can have up to 21 digits in an octal
number, not including the leading zero. If we run the preceding program, it displays
the following:

Octal 010 = 8

Hexadecimal Literals Hexadecimal (hex for short) numbers are constructed
using 16 distinct symbols. Because we never invented single digit symbols for the
numbers 10 through 15, we use alphabetic characters to represent these digits.
Counting from 0 through 15 in hex looks like this:

0 1 2 3 4 5 6 7 8 9 a b c d e f

Java will accept capital or lowercase letters for the extra digits (one of the few
places Java is not case-sensitive!). You are allowed up to 16 digits in a hexadecimal
number, not including the prefix 0x or the optional suffix extension L, which will
be explained later.

All of the following hexadecimal assignments are legal:

class HexTest {
public static void main (String [] args) {

int x = 0X0001;

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int y = 0x7fffffff;
int z = 0xDeadCafe;
System.out.println("x = " + x + " y = " + y + " z = " + z);

}
}

Running HexTest produces the following output:

x = 1 y = 2147483647 z = -559035650

Don’t be misled by changes in case for a hexadecimal digit or the ‘x’
preceding it. 0XCAFE and 0xcafe are both legal.

All three integer literals (octal, decimal, and hexadecimal) are defined as int
by default, but they may also be specified as long by placing a suffix of L or l after
the number:

long jo = 110599L;
long so = 0xFFFFl; // Note the lowercase 'l'

Floating-Point Literals
Floating-point numbers are defined as a number, a decimal symbol, and more
numbers representing the fraction.

double d = 11301874.9881024;

In the preceding example, the number 11301874.9881024 is the literal value.
Floating-point literals are defined as double (64 bits) by default, so if you want to
assign a floating-point literal to a variable of type float (32 bits), you must attach
the suffix F or f to the number. If you don’t, the compiler will complain about a
possible loss of precision, because you’re trying to fit a number into a (potentially)
less precise “container.” The F suffix gives you a way to tell the compiler, “Hey, I know
what I’m doing and I’ll take the risk, thank you very much.”

float f = 23.467890; // Compiler error, possible loss of precision
float g = 49837849.029847F; // OK; has the suffix "F"

You may also optionally attach a D or d to double literals, but it is not necessary
because this is the default behavior. But for those who enjoy typing, knock yourself out.

double d = 110599.995011D; // Optional, not required
double g = 987.897; // No 'D' suffix, but OK because the

// literal is a double

14 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Look for numeric literals that include a comma, for example,
int x = 25,343; // Won't compile because of the comma

Boolean Literals
Boolean literals are the source code representation for boolean values. A boolean
value can only be defined as true or false. Although in C (and some other
languages) it is common to use numbers to represent true or false, this will
not work in Java. Again, repeat after me, “Java is not C++.”

boolean t = true; // Legal
boolean f = 0; // Compiler error!

Be on the lookout for questions that use numbers where booleans are
required. You might see an if test that uses a number, as in the following:
int x = 1; if (x) { } // Compiler error!

Character Literals
A char literal is represented by a single character in single quotes.

char a = 'a';
char b = '@';

You can also type in the Unicode value of the character, using the Unicode
notation of prefixing the value with \u as follows:

char letterN = '\u004E'; // The letter 'N'

Remember, characters are just 16-bit unsigned integers under the hood. That
means you can assign a number literal, assuming it will fit into the unsigned
16-bit range (65535 or less). For example, the following are all legal:
char a = 0x892; // octal literal
char b = 982; // int literal
char c = (char) 70000; // The cast is required; 70000 is out of char range
char d = (char) -98; // Ridiculous, but legal

And the following are not legal and produce compiler errors:
char e = -29; // Possible loss of precision; needs a cast
char f = 70000 // Possible loss of precision; needs a cast

Literals and Ranges of All Primitive Data Types (Exam Objective 4.6) 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can also use an escape code if you want to represent a character that can’t be
typed in as a literal, including the characters for linefeed, newline, horizontal tab,
backspace, and double and single quotes.

char c = '\"'; // A double quote
char d = '\n'; // A newline

Now that you’re familiar with the primitive data types and their ranges, you
should be able to identify the proper data type to use in a given situation. Next
are some examples of real-life quantities. Try to pick the primitive type that best
represents the quantity.

Literal Values for Strings
A string literal is a source code representation of a value of a String object. For
example, the following is an example of two ways to represent a string literal:

String s = "Bill Joy";
System.out.println("Bill" + " Joy");

16 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Which primitive type would be best to represent the
number of stars in the universe?

long

Which primitive type would be best to represent a
single multiple choice question on a test, with only
one answer allowed?

char

Which primitive type would be best to represent a
single multiple choice question on a test, with more
than one answer allowed?

char []

Which primitive type would be best to represent the
population of the U.S. in 2003?

int (or long for the world population)

Which primitive type would be best to represent the
amount of money (in dollars and cents) you plan on
having at retirement?

float (or double if you are a CEO of
a software company)

SCENARIO & SOLUTION

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 17

Although strings are not primitives, they’re included in this section because they
can be represented as literals—in other words, typed directly into code. The only other
nonprimitive type that has a literal representation is an array, which we’ll look at in
the next section.

Thread t = ??? // what literal value could possibly go here?

CERTIFICATION OBJECTIVE

Array Declaration, Construction, and
Initialization (Exam Objective 1.1)

Write code that declares, constructs, and initializes arrays of any base type using any of
the permitted forms both for declaration and for initialization.

Arrays are objects in Java that store multiple variables of the same type. Arrays
can hold either primitives or object references, but the array itself will always be an
object on the heap, even if the array is declared to hold primitive elements. In other
words, there is no such thing as a primitive array, but you can make an array of
primitives.

For this objective, you need to know three things:

■ How to make an array reference variable (declare)

■ How to make an array object (construct)

■ How to populate the array with elements (initialize)

There are several different ways to do each of those, and you need to know about
all of them for the exam.

Arrays are efficient, but most of the time you’ll want to use one of the Collection
types from java.util (including HashMap, ArrayList, TreeSet). Collection classes
offer more flexible ways to access an object (for insertion, deletion, reading,
etc.) and unlike arrays, can expand or contract dynamically as you add or
remove elements (they’re really managed arrays, since they use arrays behind
the scenes). There’s a Collection type for a wide range of needs. Do you need
a fast sort? A group of objects with no duplicates? A way to access a name/value
pair? A linked list? Chapter 6 covers them in more detail.

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Declaring an Array
Arrays are declared by stating the type of element the array will hold, which can
be an object or a primitive, followed by square brackets to the left or right of the
identifier.

Declaring an Array of Primitives

int[] key; // Square brackets before name (recommended)
int key []; // Square brackets after name (legal but less readable)

Declaring an Array of Object References

Thread[] threads; // Recommended
Thread threads []; // Legal but less readable

When declaring an array reference, you should always put the array brackets
immediately after the declared type, rather than after the identifier (variable
name). That way, anyone reading the code can easily tell that, for example,
key is a reference to an int array object, and not an int primitive.

We can also declare multidimensional arrays, which are in fact arrays of arrays.
This can be done in the following manner:

String[][][] occupantName;
String[] ManagerName [];

The first example is a three-dimensional array (an array of arrays of arrays) and
the second is a two-dimensional array. Notice in the second example we have one
square bracket before the variable name and one after. This is perfectly legal to the
compiler, proving once again that just because it’s legal doesn’t mean it’s right.

It is never legal to include the size of the array in your declaration. Yes, we
know you can do that in some other languages, which is why you might see
a question or two that include code similar to the following:

int[5] scores;

The preceding code won’t make it past the compiler. Remember, the JVM
doesn’t allocate space until you actually instantiate the array object. That’s
when size matters.

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Constructing an Array
Constructing an array means creating the array object on the heap—in other words,
doing a new on the array type. To create an array object, Java needs to know how
much space to allocate on the heap, so you must specify the size of the array at
construction time. The size of the array is the number of elements the array will hold.

Constructing One-Dimensional Arrays
The most straightforward way to construct an array is to use the keyword new followed
by the array type, with a bracket specifying how many elements of that type the
array will hold. The following is an example of constructing an array of type int:

int[] testScores; // Declares the array of ints
testScores = new int[4]; //constructs an array and assigns it
//the testScores variable

The preceding code puts one new object on the heap—an array object holding
four elements—with each element containing an int with a default value of 0.
Think of this code as saying to the compiler, “Create an array object on the heap
that will hold four primitives of type int, and assign it to the previously declared
reference variable named testScores. And while you’re at it, go ahead and set each
int element to zero. Thanks.” (The compiler appreciates good manners.) Figure 1-3
shows how the testScores array appears on the heap, after construction.

The next objective (4.5) covers more detail on the default values for array elements,
but for now we’re more concerned with how the array object itself is initialized.

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

FIGURE 1-3

A one-dimensional
array on the heap

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can also declare and construct an array in one statement as follows:

int[] testScores = new int[14];

This single statement produces the same result as the two previous statements.
Arrays of object types can be constructed in the same way:

Thread[] threads = new Thread[5];

The key point to remember here is that—despite how the code appears—the
Thread constructor is not being invoked. We’re not creating a Thread instance, but
rather a single Thread array object. After the preceding statements, there are still
no actual Thread objects!

Think carefully about how many objects are on the heap after a code statement
or block executes. The exam will expect you to know, for example, that the
preceding code produces just one object (the array assigned to the reference
variable named threads). The single object referenced by threads holds five
Thread reference variables, but no Thread objects have been created or assigned
to those references.

Remember, arrays must always be given a size at the time they are constructed.
The JVM needs the size to allocate the appropriate space on the heap for the new
array object. It is never legal, for example, to do the following:

int[] carList = new int[]; // Will not compile; needs a size

So don’t do it, and if you see it on the test, run screaming toward the nearest answer
marked “Compilation fails.”

You may see the words construct, create, and instantiate used interchangeably.
They all mean, “An object is built and placed on the heap.” These words also
imply that the object’s constructor runs, as a result of the contruct/create/
instantiate code. You can say with certainty, for example, that any code that
uses the keyword new will (if it runs successfully) cause the class constructor
and all superclass constructors to run.

In addition to being constructed with new, arrays can also be created using a
kind of syntax shorthand that creates the array while simultaneously initializing the
array elements to values supplied in code (as opposed to default values). We’ll look

20 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

at that in detail in the section on initialization. For now, understand that because
of these syntax shortcuts, objects can still be created even without you ever using or
seeing the keyword new.

Constructing Multidimensional Arrays
Multidimensional arrays, remember, are simply arrays of arrays. So a two-dimensional
array of type int is really an object of type int array (int []), with each element
in that array holding a reference to another int array. The second dimension holds
the actual int primitives.

The following code declares and constructs a two-dimensional array of type int:

int[][] ratings = new int[3][];

Notice that only the first brackets are given a size. That’s acceptable in Java, since
the JVM needs to know only the size of the object assigned to the variable ratings.

Figure 1-4 shows how a two-dimensional int array works on the heap.

Initializing an Array
Initializing an array means putting things into it. Things (why, yes that is a technical
term) in the array are the array’s elements, and they’re either primitive values (2, ‘a’,
false, etc.), or objects referred to by the reference variables in the array. If you
have an array of objects (as opposed to primitives) the array doesn’t actually hold the
objects, just as any other nonprimitive variable never actually holds the object, but
instead holds a reference to the object. But we talk about arrays as, for example, “an
array of five strings”, even though what we really mean is, “an array of five references
to String objects.” Then the big question becomes whether or not those references
are actually pointing (oops, this is Java, we mean referring) to real String objects, or
are simply null. Remember, a reference that has not had an object assigned to it is a
null reference. And if you try to actually use that null reference by, say, applying the
dot operator to invoke a method on it, you’ll get the infamous NullPointerException.

The individual elements in the array can be accessed with an index number. The
index number always begins with zero, so for an array of ten objects the index numbers
will run from 0 through 9. Suppose we create an array of three Animals as follows:

Animal [] pets = new Animal[3];

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 21

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

We have one array object on the heap, with three null references of type Animal, but
we still do not have any Animal objects. The next step is to create some Animal objects
and assign them to index positions in the array referenced by pets:

pets[0] = new Animal();
pets[1] = new Animal();
pets[2] = new Animal();

This code puts three new Animal objects on the heap and assigns them to the
three index positions (elements) in the pets array.

22 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

FIGURE 1-3

A two-dimensional
array on the heap

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 23

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Look for code that tries to access an out of range array index. For example,
if an array has three elements, trying to access the [3] element will raise an
ArrayIndexOutOfBoundsException, because in an array of three elements,
the legal index values are 0, 1, and 2. You also might see an attempt to use a
negative number as an array index. The following are examples of legal and
illegal array access attempts. Be sure to recognize that these cause runtime
exceptions and not compiler errors! Nearly all of the exam questions list both
runtime exception and compiler error as possible answers.

int[] x = new int[5];

x[4] = 2; // OK, the last element is at index 4

x[5] = 3; // Runtime exception. There is no element at index 5!

int [] z = new int[2];

int y = -3;

z[y] = 4; // Runtime exception.; y is a negative number

These can be hard to spot in a complex loop, but that’s where you’re most
likely to see array index problems in exam questions.

A two-dimensional array (an array of arrays) can be initialized as follows:

int[][] scores = new int[3][];
// Declare and create an array holding three references to int arrays

scores[0] = new int[4];
// the first element in the scores array is an int array of four int element

scores[1] = new int[6];
// the second element in the scores array is an int array of six int elements

scores[2] = new int[1];
// the third element in the scores array is an int array of one int element

Initializing Elements in a Loop
Array objects have a single public variable length that gives you the number of
elements in the array. The last index value, then, is always one less than the length.
For example, if the length of an array is 4, the index values are from 0 through 3.
Often, you’ll see array elements initialized in a loop as follows:

Dog[] myDogs = new Dog[6]; // creates an array of 6 Dog references
for (int x = 0; x < myDogs.length; x++) {

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

myDogs[x] = new Dog(); // assign a new Dog to the index position x
}

The length variable tells us how many elements the array holds, but it does not tell
us whether those elements have been initialized.

Declaring, Constructing, and Initializing on One Line
You can use two different array-specific syntax shortcuts to both initialize (put
explicit values into an array’s elements) and construct (instantiate the array object
itself) in a single statement. The first is used to declare, create, and initialize in one
statement as follows:

1. int x = 9;
2. int[] dots = {3,6,x,8};

Line 2 in the preceding code does four things:

■ Declares an int array reference variable named dots.

■ Creates an int array with a length of four (four elements).

■ Populates the elements with the values 3, 6, 9, and 8.

■ Assigns the new array object to the reference variable dots.

The size (length of the array) is determined by the number of items between the
comma-separated curly braces. The code is functionally equivalent to the following
longer code:

int[] dots;
dots = new int[4];
int x = 9;
dots[0] = 3;
dots[1] = 6;
dots[2] = x;
dots[3] = 8;

This begs the question, “Why would anyone use the longer way?” Two reasons
come to mind. First, you might not know—at the time you create the array—the
values that will be assigned to the array’s elements. Second, you might just prefer
doing it the long, slower-to-type way. Or third (OK, that’s three reasons), maybe
you just didn’t know it was possible. This array shortcut alone is worth the price
of this book (well, that combined with the delightful prose).

24 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

With object references rather than primitives, it works exactly the same way:

Dog puppy = new Dog("Frodo");
Dog[] myDogs = {puppy, new Dog("Clover"), new Dog("Aiko")};

The preceding code creates one Dog array, referenced by the variable myDogs,
with a length of three elements. It assigns a previously created Dog object (assigned
to the reference variable puppy) to the first element in the array, and also creates
two new Dog objects ("Clover" and "Aiko"), and assigns the two newly created instances
to the last two Dog reference variable elements in the myDogs array. Figure 1-5 shows
the result of the preceding code.

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 25

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

FIGURE 1-4

Declaring,
constructing,
and initializing an
array of objects

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

26 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

You can also use the shortcut syntax with multidimensional arrays, as follows:

int[][] scores = {{5,2,4,7}, {9,2}, {3,4}};

The preceding code creates a total of four objects on the heap. First, an array of
int arrays is constructed (the object that will be assigned to the scores reference
variable). The scores array has a length of three, derived from the number of items
(comma-separated) between the outer curly braces. Each of the three elements in
the scores array is a reference variable to an int array, so the three int arrays
are constructed and assigned to the three elements in the scores array.

The size of each of the three int arrays is derived from the number of items within
the corresponding inner curly braces. For example, the first array has a length of four,
the second array has a length of two, and the third array has a length of two. So far
we have four objects: one array of int arrays (each element is a reference to an int
array), and three int arrays (each element in the three int arrays is an int value).
Finally, the three int arrays are initialized with the actual int values within the inner
curly braces. Thus, the first int array contains the values 5, 2, 4, and 7. The following
code shows the values of some of the elements in this two-dimensional array:

scores[0] // an array of four ints
scores[1] // an array of 2 ints
scores[2] // an array of 2 ints
scores[0][1] // the int value 5
scores[2][1] // the int value 4

Figure 1-6 shows the result of declaring, constructing, and initializing
a two-dimensional array in one statement.

Constructing and Initializing an Anonymous Array
The second shortcut is called anonymous array creation and can be used to construct
and initialize an array, and then assign the array to a previously declared array
reference variable:

int[] testScores;
testScores = new int[] {4,7,2};

The preceding code creates a new int array with three elements, initializes the three
elements with the values 4, 7, and 2, and then assigns the new array to the previously
declared int array reference variable testScores. We call this anonymous array creation
because with this syntax you don’t even need to assign the new array to anything.

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 27

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Maybe you’re wondering, “What good is an array if you don’t assign it to a reference
variable?” You can use it to create a just-in-time array to use, for example, as an argument
to a method that takes an array parameter. The following code demonstrates
a just-in-time array argument:

public class Foof {
void takesAnArray(int [] someArray) {
// use the array parameter
…
}

FIGURE 1-5 Declaring, constructing, and initializing a two-dimensional array

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public static void main (String [] args) {
Foof f = new Foof();
f.takesAnArray(new int[] {7,7,8,2,5}); //we need an array argument

}
}

Remember that you do not specify a size when using anonymous array creation
syntax. The size is derived from the number of items (comma-separated)
between the curly braces. Pay very close attention to the array syntax used
in exam questions (and there will be a lot of them). You might see syntax
such as

new Object[3] {null, new Object(), new Object()};

// not legal;size must not be specified

Legal Array Element Assignments
What can you put in a particular array? For the exam, you need to know that arrays
can have only one declared type (int [], Dog[], String [], and so on) but that
doesn’t necessarily mean that only objects or primitives of the declared type can be
assigned to the array elements. And what about the array reference itself? What kind
of array object can be assigned to a particular array reference? For the exam, you’ll
need to know the answer to all of these questions. And, as if by magic, we’re actually
covering those very same topics in the following sections. Pay attention.

Arrays of Primitives
Primitive arrays can accept any value that can be promoted implicitly to the declared
type of the array. Chapter 3 covers the rules for promotion in more detail, but for an
example, an int array can hold any value that can fit into a 32-bit int variable.
Thus, the following code is legal:

int[] weightList = new int[5];
byte b = 4;
char c = 'c';
short s = 7;
weightList[0] = b; // OK, byte is smaller than int
weightlist[1] = c; // OK, char is smaller than int
weightList[2] = s; // OK, short is smaller than int

28 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 29

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Arrays of Object References
If the declared array type is a class, you can put objects of any subclass of the
declared type into the array. For example, if Dog is a subclass of Animal, you
can put both Dog objects and Animal objects into the array as follows:

class Car {}
class Subaru extends Car {}
class Honda extends Car {}
class Ferrari extends Car {}
Car [] myCars = {new Subaru(), new Honda(), new Ferrari()};

It helps to remember that the elements in a Car array are nothing more than Car
reference variables. So anything that can be assigned to a Car reference variable can
be legally assigned to a Car array element. Chapter 5 covers polymorphic assignments
in more detail.

If the array is declared as an interface type, the array elements can refer to any
instance of any class that implements the declared interface. The following code
demonstrates the use of an interface as an array type:

interface Sporty {
void beSporty();

}

class Ferrari extends Car implements Sporty {
public void beSporty() {
…

// implement cool sporty method in a Ferrari-specific way
}

}
class RacingFlats extends AthleticShoe implements Sporty {

public void beSporty() {
…

// implement cool sporty method in a RacingShoe-specific way
}

}
class GolfClub { }
class TestSportyThings {

public static void main (String [] args) {
Sporty[] sportyThings = new Sporty [3];
sportyThings[0] = new Ferrari(); // OK, Ferrari implements Sporty
sportyThings[1] = new RacingFlats();
// OK, RacingFlats implements Sporty
sportyThings[2] = new GolfClub();

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

30 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

// Not OK; GolfClub does not implement Sporty
// I don't care what anyone says

}
}

The bottom line is this: any object that passes the “IS-A” test for the declared
array type can be assigned to an element of that array.

Array Reference Assignments for One-Dimensional Arrays
For the exam, you need to recognize legal and illegal assignments for array reference
variables. We’re not talking about references in the array (in other words, array
elements), but rather references to the array object. For example, if you declare an
int array, the reference variable you declared can be reassigned to any int array
(of any size), but cannot be reassigned to anything that is not an int array, including
an int value. Remember, all arrays are objects, so an int array reference cannot
refer to an int primitive. The following code demonstrates legal and illegal
assignments for primitive arrays:

int[] splats;
int[] dats = new int[4];
char[] letters = new char[5];
splats = dats; // OK, dats refers to an int array
splats = letters; // NOT OK, letters refers to a char array

It’s tempting to assume that because a variable of type byte, short, or char
can be explicitly promoted and assigned to an int, an array of any of those types
could be assigned to an int array. You can’t do that in Java, but it would be just like
those cruel, heartless (but otherwise attractive) exam developers to put tricky array
assignment questions in the exam.

Arrays that hold object references, as opposed to primitives, aren’t as restrictive.
Just as you can put a Honda object in a Car array (because Honda extends Car),
you can assign an array of type Honda to a Car array reference variable as follows:

Car[] cars;
Honda[] cuteCars = new Honda[5];
cars = cuteCars; // OK because Honda is a type of Car
Beer[] beers = new Beer [99];
cars = beers; // NOT OK, Beer is not a type of Car

Apply the IS-A test to help sort the legal from the illegal. Honda IS-A Car, so
a Honda array can be assigned to a Car array. Beer IS-A Car is not true; Beer does
not extend Car (not to mention the fact that it doesn’t make logical sense, unless
you’ve already had too much of it).

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You cannot reverse the legal assignments. A Car array cannot be assigned to
a Honda array. A Car is not necessarily a Honda, so if you’ve declared a
Honda array, it might blow up if you were allowed to assign a Car array
to the Honda reference variable. Think about it: a Car array could hold a
reference to a Ferrari, so someone who thinks they have an array of Hondas
could suddenly find themselves with a Ferrari. Remember that the IS-A test
can be checked in code using the instanceof operator. The instanceof
operator is covered in more detail in Chapter 3. Figure 1-7 shows an example
of legal and illegal assignments for references to an array.

Array Declaration, Construction, and Initialization (Exam Objective 1.1) 31

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

FIGURE 1-6 Legal and illegal array assignments

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

32 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

The rules for array assignment apply to interfaces as well as classes. An array
declared as an interface type can reference an array of any type that implements the
interface. Remember, any object from a class implementing a particular interface will
pass the IS-A (instanceof) test for that interface. For example, if Box implements
Foldable, the following is legal:

Foldable[] foldingThings;
Box[] boxThings = new Box[3];
foldingThings = boxThings;
// OK, Box implements Foldable, so Box IS-A Foldable

Array Reference Assignments for Multidimensional Arrays
When you assign an array to a previously declared array reference, the array you’re
assigning must be the same dimension as the reference you’re assigning it to. For example,
a two-dimensional array of int arrays cannot be assigned to a regular int array
reference, as follows:

int[] blots;
int[][] squeegees = new int[3][];
blots = squeegees; // NOT OK, squeegees is a two-d array of int arrays
int[] blocks = new int[6];
blots = blocks; // OK, blocks is an int array

Pay particular attention to array assignments using different dimensions. You
might, for example, be asked if it’s legal to assign an int array to the first element
in an array of int arrays, as follows:

int[][] books = new int[3][];
int[] numbers = new int[6];
int aNumber = 7;
books[0] = aNumber; //NOT OK, expecting an int array instead of an int
books[0] = numbers; //OK, numbers is an int array

CERTIFICATION OBJECTIVE

Using a Variable or Array Element That Is
Uninitialized and Unassigned (Exam Objective 4.5)

Identify all Java programming language keywords and correctly constructed identifiers.

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Java gives us the option of initializing a declared variable or leaving it uninitialized.
When we attempt to use the uninitialized variable, we can get different behavior
depending on what type of variable or array we are dealing with (primitives or objects).
The behavior also depends on the level (scope) at which we are declaring our variable.
An instance variable is declared within the class but outside any method or constructor,
whereas a local variable is declared within a method (or in the argument list of the
method).

Local variables are sometimes called stack, temporary, automatic, or method
variables, but the rules for these variables are the same regardless of what
you call them. Although you can leave a local variable uninitialized, the
compiler complains if you try to use a local variable before initializing it
with a value, as we shall see.

Primitive and Object Type Instance Variables
Instance variables (also called member variables) are variables defined at the class level.
That means the variable declaration is not made within a method, constructor, or
any other initializer block. Instance variables are initialized to a default value each
time a new instance is created. Table 1-3 lists the default values for primitive and
object types.

Primitive Instance Variables
In the following example, the integer year is defined as a class member because it is
within the initial curly braces of the class and not within a method’s curly braces:

public class BirthDate {
int year; // Instance variable
public static void main(String [] args) {

BirthDate bd = new BirthDate();
bd.showYear();

}
public void showYear() {

System.out.println("The year is " + year);
}

}

When the program is started, it gives the variable year a value of zero, the default
value for primitive number instance variables.

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objective 4.5) 33

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

34 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

It’s a good idea to initialize all your variables, even if you’re assigning them
with the default value. Your code will be easier to read; programmers who
have to maintain your code (after you win the lottery and move to Tahiti)
will be grateful.

Object Reference Instance Variables
When compared with uninitialized primitive variables, Object references that aren’t
initialized are a completely different story. Let’s look at the following code:

public class Book {
private String title;
public String getTitle() {

return title;
}
public static void main(String [] args) {

Book b = new Book();
System.out.println("The title is " + b.getTitle());

}
}

This code will compile fine. When we run it, the output is

The title is null

The title variable has not been explicitly initialized with a String assignment, so
the instance variable value is null. Remember that null is not the same as an empty
String (“”). A null value means the reference variable is not referring to any object
on the heap. Thus, the following modification to the Book code runs into trouble:

public class Book {
private String title;

Variable Type Default Value

Object reference null (not referencing any object)

byte, short, int, long 0

float, double 0.0

boolean false

char ‘\u0000’

TABLE 1-3

Default Values
for Primitive and
Reference Types

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public String getTitle() {
return title;

}
public static void main(String [] args) {

Book b = new Book();
String s = b.getTitle(); // Compiles and runs
String t = s.toLowerCase(); // Runtime Exception!

}
}

When we try to run the Book class, the JVM will produce the following error:

%java Book
Exception in thread "main" java.lang.NullPointerException

at Book.main(Book.java:12

We get this error because the reference variable title does not point (refer) to
an object. We can check to see whether an object has been instantiated by using the
keyword null, as the following revised code shows:

public class Book {
private String title;
public String getTitle() {

return title;
}
public static void main(String [] args) {

Book b = new Book();
String s = b.getTitle(); // Compiles and runs
if (s != null) {

String t = s.toLowerCase();
}

}
}

The preceding code checks to make sure the object referenced by the variable s
is not null before trying to use it. Watch out for scenarios on the exam where you
might have to trace back through the code to find out whether an object reference
will have a value of null. In the preceding code, for example, you look at the instance
variable declaration for title, see that there’s no explicit initialization, recognize that
the title variable will be given the default value of null, and then realize that the
variable s will also have a value of null. Remember, the value of s is a copy of
the value of title (as returned by the getTitle() method), so if title is a null
reference, s will be too.

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objective 4.5) 35

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Array Instance Variables
An array is an object; thus, an array instance variable that’s declared but not explicitly
initialized will have a value of null, just as any other object reference instance variable.
But…if the array is initialized, what happens to the elements contained in the array?
All array elements are given their default values—the same default values that elements
of that type get when they’re instance variables. The bottom line: Array elements are
always always always given default values, regardless of where the array itself is declared
or instantiated. By the way, if you see the word always three times in a row, reread
the sentence three times. Now, once more, with feeling!

If we initialize an array, object reference elements will equal null if they are not
initialized individually with values. If primitives are contained in an array, they will
be given their respective default values. For example, in the following code, the array
year will contain 100 integers that all equal zero by default:

public class BirthDays {
static int [] year = new int[100];
public static void main(String [] args) {

for(int i=0;i<100;i++)
System.out.println("year[" + i + "] = " + year[i]);

}
}

When the preceding code runs, the output indicates that all 100 integers in the
array equal zero.

Local (Stack, Automatic) Primitives and Objects
Local variables are defined within a method, including method parameters.

“Automatic” is just another term for “local variable.” It does not mean
the automatic variable is automatically assigned a value! The opposite
is true; an automatic variable must be assigned a value in the code;
otherwise, the compiler will complain.

Local Primitives
In the following time travel simulator, the integer year is defined as an automatic
variable because it is within the curly braces of a method.

36 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objective 4.5) 37

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

public class TimeTravel {
public static void main(String [] args) {

int year = 2050;
System.out.println("The year is " + year);

}
}

Okay, so we’ve still got work to do on the physics. Local variables, including primitives,
always always always must be initialized before you attempt to use them (though not
necessarily on the same line of code). Java does not give local variables a default value;
you must explicitly initialize them with a value, as in the preceding example. If you
try to use an uninitialized primitive in your code, you’ll get a compiler error:

public class TimeTravel {
public static void main(String [] args) {

int year; // Local variable (declared but not initialized)
System.out.println("The year is " + year); // Compiler error

}
}

Compiling produces the following output:

%javac TimeTravel.java
TimeTravel.java:4: Variable year may not have been initialized.

System.out.println("The year is " + year);
1 error

To correct our code, we must give the integer year a value. In this updated
example, we declare it on a separate line, which is perfectly valid:

public class TimeTravel {
public static void main(String [] args) {

int year; // Declared but not initialized
int day; // Declared but not initialized
System.out.println("You step into the portal.");
year = 2050; // Initialize (assign an explicit value)
System.out.println("Welcome to the year " + year);

}
}

Notice in the preceding example we declared an integer called day that never
gets initialized, yet the code compiles and runs fine. Legally, you can declare a local

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

38 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

variable without initializing it as long as you don’t use the variable, but let’s face it,
if you declared it, you probably had a reason. (Although we have heard of programmers
declaring random local variables just for sport, to see if they can figure out how and
why they’re being used.)

The compiler can’t always tell whether a local variable has been initialized
before use. For example, if you initialize within a logically conditional block
(in other words, a code block that may not run, such as an if block or for loop
without a literal value of true or false in the test), the compiler knows that
the initialization might not happen, and can produce an error. The following
code upsets the compiler:

public class TestLocal {

public static void main(String [] args) {

int x;

if (args[0] != null) { //assume you know this will always be true

x = 7; // compiler can’t tell that this statement will run

}

int y = x;

}

}

The preceding code produces the following error when you attempt to compile it:

TestLocal.java:8: variable x might not have been initialized
int y = x;

1 error

Because of the compiler-can’t-tell-for-certain problem, you will sometimes need
to initialize your variable outside the conditional block, just to make the compiler
happy. You know why that’s important if you’ve seen the bumper sticker: “When the
compiler’s not happy, ain’t nobody happy.”

Local Objects
Objects, too, behave differently when declared within a method rather than as instance
variables. With instance variable object references, you can get away with leaving an
object reference uninitialized, as long as the code checks to make sure the reference
isn’t null before using it. Remember, to the compiler, null is a value. You can’t
use the dot operator on a null reference, because there is no object at the other

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objective 4.5) 39

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

end of it, but a null reference is not the same as an uninitialized reference. Locally
declared references can’t get away with checking for null before use, unless you
explicitly initialize the local variable to null. The compiler will complain about
the following code:

import java.util.Date;
public class TimeTravel {

public static void main(String [] args) {
Date date;
if (date == null)

System.out.println("date is null");
}

}

Compiling the code results in the following error:

%javac TimeTravel.java
TimeTravel.java:5: Variable date may not have been initialized.

If (date == null)
1 error

Instance variable references are always given a default value of null, until
explicitly initialized to something else. But local references are not given a default
value; in other words, they aren’t null. If you don’t initialize a local reference variable,
then by default, its value is…well that’s the whole point—it doesn’t have any value at
all! So we’ll make this simple: Just set the darn thing to null explicitly, until you’re
ready to initialize it to something else. The following local variable will compile
properly:

Date date = null; // Explicitly set the local reference variable to null

Local Arrays
Just like any other object reference, array references declared within a method must
be assigned a value before use. That just means you must declare and construct the
array. You do not, however, need to explicitly initialize the elements of an array.
We’ve said it before, but it’s important enough to repeat: array elements are given
their default values (0, false, null, ‘\u0000’, etc.) regardless of whether the
array is declared as an instance or local variable. The array object itself, however, will
not be initialized if it’s declared locally. In other words, you must explicitly initialize
an array reference if it’s declared and used within a method, but at the moment you
construct an array object, all of its elements are assigned their default values.

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

40 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

CERTIFICATION OBJECTIVE

Command-Line Arguments to Main
(Exam Objective 4.3)

State the correspondence between index values in the argument array passed to a main
method and command line arguments.

Now that you know all about arrays, command-line arguments will be a piece of
cake. Remember that the main method—the one the JVM invokes—must take a
String array parameter. That String array holds the arguments you send along with
the command to run your Java program, as follows:

class TestMain {
public static void main (String [] args) {

System.out.println("First arg is " + args[0]);
}

}

When invoked at the command line as follows,

%java TestMain Hello

the output is

First arg is Hello

The length of the args array will always be equal to the number of command-line
arguments. In the following code, args.length is one, meaning there is one
element in the array, and it is at index zero. If you try to access beyond length-1,
you’ll get an ArrayIndexOutOfBoundsException! This causes your entire
program to explode in a spectacular JVM shutdown, so be sure the right number of
arguments are being passed, perhaps with a nice user suggestion. The following code
is an example of a main method expecting three arguments:

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Command-Line Arguments to Main (Exam Objective 4.3) 41

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

public static void main (String [] args) {
if (args.length < 3) {
System.out.println("Usage: [name] [social security #]
//[IQ] Try again when you have a clue");

}
}

The String array parameter does not have to be named args or arg. It can be
named, for example, freddie. Also, remember that the main argument is just an
array! There’s nothing special about it, other than how it gets passed into
main (from the JVM).

EXERCISE 1-1

Creating a Program That Outputs Command-Line Arguments
In the following exercise…

1. Create a program that outputs every command-line argument, then displays
the number of arguments.

2. You should use the array variable length to retrieve the length of the array.

An example of how you might write your code is at the end of this chapter.

CERTIFICATION SUMMARY
After absorbing the material in this chapter, you should be familiar with some of the
nuances of the Java language. You may also be experiencing confusion around why
you ever wanted to take this exam in the first place. That’s normal at this point. If
you hear yourself saying, “What was I thinking?” just lie down until it passes. We
would like to tell you that it gets easier… that this was the toughest chapter and it’s
all downhill from here.

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s briefly review what you’ll need to know for the exam.
There will be more than one question dealing with keywords, so be sure you can

identify which are keywords and which aren’t. Make sure you’re familiar with the
ranges of integer primitives, and the bit depth of all primitives. And, although this
isn’t Java language specific, you must be able to convert between octal, decimal, and
hexadecimal literals. You have also learned about arrays, and how they behave when
declared in a class or a method.

Be certain that you know the effects of leaving a variable uninitialized, and how
the variable’s scope changes the behavior. You’ll also be expected to know what happens
to the elements of an array when they’re not explicitly initialized.

For the exam, knowing what you can’t do with the Java language is just as
important as knowing what you can do. Give the sample questions a try! They’re
very similar to the difficulty and structure of the real exam questions, and should
be an eye opener for how difficult the exam can be. Don’t worry if you get a lot of
them wrong. If you find a topic that you are weak in, spend more time reviewing
and studying. Many programmers need two or three serious passes through a chapter
(or an individual objective) before they can answer the questions confidently.

42 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

✓TWO-MINUTE DRILL

Java Programming Language Keywords

❑ Keywords cannot be used as identifiers (names) for classes, methods,
variables, or anything else in your code.

❑ All keywords start with a lowercase letter.

Literals and Ranges of All Primitive Data Types

❑ All six number types in Java are signed, so they can be positive or negative.

❑ Use the formula -2(bits-1) to 2(bits-1)-1 to determine the range of an integer type.

❑ A char is really a 16-bit unsigned integer.

❑ Literals are source code representations of primitive data types, or String.

❑ Integers can be represented in octal (0127), decimal (1245), and hexadecimal
(0XCAFE).

❑ Numeric literals cannot contain a comma.

❑ A char literal can be represented as a single character in single quotes (‘A’).

❑ A char literal can also be represented as a Unicode value (‘\u0041’).

❑ A char literal can also be represented as an integer, as long as the integer is
less than 65536.

❑ A boolean literal can be either true or false.

❑ Floating-point literals are always double by default; if you want a float,
you must append an F or f to the literal.

Array Declaration, Construction, and Initialization

❑ Arrays can hold primitives or objects, but the array itself is always an object.

❑ When you declare an array, the brackets can be to the left or right of the
variable name.

❑ It is never legal to include the size of an array in the declaration.

Two-Minute Drill 43

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ You must include the size of an array when you construct it (using new)
unless you are creating an anonymous array.

❑ Elements in an array of objects are not automatically created, although
primitive array elements are given default values.

❑ You’ll get a NullPointerException if you try to use an array element
in an object array, if that element does not refer to a real object.

❑ Arrays are indexed beginning with zero. In an array with three elements, you
can access element 0, element 1, and element 2.

❑ You’ll get an ArrayIndexOutOfBoundsException if you try to
access outside the range of an array.

❑ Arrays have a length variable that contains the number of elements in the array.

❑ The last index you can access is always one less than the length of the array.

❑ Multidimensional arrays are just arrays of arrays.

❑ The dimensions in a multidimensional array can have different lengths.

❑ An array of primitives can accept any value that can be promoted implicitly
to the declared type of the array. For example, a byte variable can be placed
in an int array.

❑ An array of objects can hold any object that passes the IS-A (or instanceof)
test for the declared type of the array. For example, if Horse extends Animal,
then a Horse object can go into an Animal array.

❑ If you assign an array to a previously declared array reference, the array you’re
assigning must be the same dimension as the reference you’re assigning it to.

❑ You can assign an array of one type to a previously declared array reference of
one of its supertypes. For example, a Honda array can be assigned to an array
declared as type Car (assuming Honda extends Car).

Using a Variable or Array Element That Is
Uninitialized and Unassigned

❑ When an array of objects is instantiated, objects within the array are not
instantiated automatically, but all the references get the default value of null.

❑ When an array of primitives is instantiated, all elements get their default values.

44 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ Just as with array elements, instance variables are always initialized with
a default value.

❑ Local/automatic/method variables are never given a default value. If you
attempt to use one before initializing it, you’ll get a compiler error.

Command-Line Arguments to Main

❑ Command-line arguments are passed to the String array parameter in the
main method.

❑ The first command-line argument is the first element in the main String
array parameter.

❑ If no arguments are passed to main, the length of the main String array
parameter will be zero.

Two-Minute Drill 45

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully! These questions are very similar to the kinds of questions you’ll
see on the latest exam. Again, don’t worry if you have trouble with them at first; the style of the exam
questions can take some getting used to. For example, you might find yourself looking at the answers
and wanting to kick yourself for missing little things that you actually knew, but just didn’t see in the
question. The best advice we have for both the practice questions and the real exam is to always look
again. As soon as you get an idea in your head about the answer to a question, imagine someone standing
next to you and whispering in your ear, “Are you sure? Look again.” Much of the time, you’ll look
again and say, “I’m sure,” especially since your first reaction is often the best one to go with. But you’ll
be surprised by how often that second look brings up something new.

Java Programming Language Keywords (Objective 4.4)

1. Given the following,

1. public class Test {
2. public static void main(String [] args) {
3. signed int x = 10;
4. for (int y=0; y<5; y++, x--)
5. System.out.print(" " + x);
6. }
7. }

what is the result? (Choose one.)

A. 10 9 8 7 6

B. 9 8 7 6 5

C. Compilation fails

D. An exception is thrown at runtime

2. Which is a reserved word in the Java programming language? (Choose one.)

A. method

B. native

C. subclasses

D. reference

E. array

46 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 47

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

3. Which one of these lists contains only Java programming language keywords? (Choose one.)

A. class, if, void, long, Int, continue

B. goto, instanceof, native, finally, default, throws

C. try, virtual, throw, final, volatile, transient

D. strictfp, constant, super, implements, do

E. byte, break, assert, switch, include

4. Which two are keywords? (Choose two.)

A. interface

B. unsigned

C. Float

D. this

E. string

Literals and Ranges of All Primitive Data Types (Objective 4.6)

5. Which three are valid declarations of a char? (Choose three.)

A. char c1 = 064770;

B. char c2 = ‘face’;

C. char c3 = 0xbeef;

D. char c4 = \u0022;

E. char c5 = ‘\iface’;

F. char c6 = ‘\uface’;

6. Which two are valid declarations of a String? (Choose two.)

A. String s1 = null;

B. String s2 = ‘null’;

C. String s3 = (String) ‘abc’;

D. String s4 = (String) ‘\ufeed’;

E. String s5 = “strings rule”;

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

48 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

7. Which one is a valid declaration of a boolean? (Choose one.)

A. boolean b1 = 0;

B. boolean b2 = ‘false’;

C. boolean b3 = false;

D. boolean b4 = Boolean.false();

E. boolean b5 = no;

8. What is the numerical range of a char? (Choose one.)

A. –128 to 127

B. –(2 ^ 15) to (2 ^ 15) - 1

C. 0 to 32767

D. Platform dependent

E. 0 to 65535

9. Which three are valid declarations of a float? (Choose three.)

A. float f1 = -343;

B. float f2 = 3.14;

C. float f3 = 0x12345;

D. float f4 = 42e7;

E. float f5 = 2001.0D;

F. float f6 = 2.81F;

Array Declaration, Construction, and Initialization (Objective 1.1)

10. Which three are legal array declarations? (Choose three.)

A. int [] myScores [];

B. char [] myChars;

C. int [6] myScores;

D. Dog myDogs [];

E. Dog myDogs [7];

11. Given the following,

1. public class Test {
2. public static void main(String [] args) {

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 49

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

3. int [] [] [] x = new int [3] [] [];
4. int i,j;
5. x[0] = new int[4][];
6. x[1] = new int[2][];
7. x[2] = new int[5][];
8. for (i=0; i<x.length; i++)
9. for (j=0; j<x[i].length; j++) {
10. x[i][j] = new int [i + j + 1];
11. System.out.println("size = " + x[i][j].length);
12. }
13. }
14. }

how many lines of output will be produced? (Choose one.)

A. 7

B. 9

C. 11

D. 13

E. Compilation fails

F. An exception is thrown at runtime

12. Given the following,

1. public class Test {
2. public static void main(String [] args) {
3. byte [][] big = new byte [7][7];
4. byte [][] b = new byte [2][1];
5. byte b3 = 5;
6. byte b2 [][][][] = new byte [2][3][1][2];
7.
8. }
9. }

which of the following lines of code could be inserted at line 7, and still allow the code to
compile? (Choose four that would work.)

A. b2[0][1] = b;

B. b[0][0] = b3;

C. b2[1][1][0] = b[0][0];

D. b2[1][2][0] = b;

E. b2[0][1][0][0] = b[0][0];

F. b2[0][1] = big;

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

50 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

13. Which two will declare an array and initialize it with five numbers? (Choose two.)

A. Array a = new Array(5);

B. int [] a = {23,22,21,20,19};

C. int [] array;

D. int array [] = new int [5];

E. int a [] = new int(5);

F. int [5] array;

14. Which will legally declare, construct, and initialize an array? (Choose one.)

A. int [] myList = {“1”, “2”, “3”};

B. int [] myList = (5, 8, 2);

C. int myList [] [] = {4,9,7,0};

D. int myList [] = {4, 3, 7};

E. int [] myList = [3, 5, 6];

F. int myList [] = {4; 6; 5};

Using a Variable or Array Element That Is Uninitialized and Unassigned
(Objective 4.5)

15. Which four describe the correct default values for array elements of the types indicated?
(Choose four.)

A. int -> 0

B. String -> “null”

C. Dog -> null

D. char -> ‘\u0000’

E. float -> 0.0f

F. boolean -> true

16. Given the following,

1. public class TestDogs {
2. public static void main(String [] args) {
3. Dog [][] theDogs = new Dog[3][];
4. System.out.println(theDogs[2][0].toString());
5. }
6. }

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 51

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

7.
8. class Dog {}

what is the result? (Choose one.)

A. null

B. theDogs

C. Compilation fails

D. An exception is thrown at runtime

17. Given the following,

1. public class X {
2. public static void main(String [] args) {
3. String names [] = new String[5];
4. for (int x=0; x < args.length; x++)
5. names[x] = args[x];
6. System.out.println(names[2]);
7. }
8. }

and the command line invocation is

java X a b

what is the result? (Choose one.)

A. names

B. null

C. Compilation fails

D. An exception is thrown at runtime

Command-Line Arguments to Main (Objective 4.3)

18. Given the following,

1. public class CommandArgs {
2. public static void main(String [] args) {
3. String s1 = args[1];
4. String s2 = args[2];
5. String s3 = args[3];
6. String s4 = args[4];
7. System.out.print(" args[2] = " + s2);
8. }
9. }

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

52 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

and the command-line invocation,

java CommandArgs 1 2 3 4

what is the result?

A. args[2] = 2

B. args[2] = 3

C. args[2] = null

D. args[2] = 1

E. Compilation fails

F. An exception is thrown at runtime

19. Given the following,

1. public class CommandArgsTwo {
2. public static void main(String [] argh) {
3. String [] args;
4. int x;
5. x = argh.length;
6. for (int y = 1; y <= x; y++) {
7. System.out.print(" " + argh[y]);
8. }
9. }

10. }

and the command-line invocation,

java CommandArgsTwo 1 2 3

what is the result?

A. 0 1 2

B. 1 2 3

C. 0 0 0

D. null null null

E. Compilation fails

F. An exception is thrown at runtime

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

20. Given the following,

1. public class CommandArgsThree {
2. public static void main(String [] args) {
3. String [][] argCopy = new String[2][2];
4. int x;
5. argCopy[0] = args;
6. x = argCopy[0].length;
7. for (int y = 0; y < x; y++) {
8. System.out.print(" " + argCopy[0][y]);
9. }
10. }
11. }

and the command-line invocation,

java CommandArgsThree 1 2 3

what is the result?

A. 0 0

B. 1 2

C. 0 0 0

D. 1 2 3

E. Compilation fails

F. An exception is thrown at runtime

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Self Test 53

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELF TEST ANSWERS

Java Programming Language Keywords (Objective 4.4)

1. � C. The word “signed” is not a valid modifier keyword in the Java language. All number
primitives in Java are signed. Always.

2. � B. The word native is a valid keyword, used to modify a method declaration.
� A, D, and E are not keywords. C is wrong because the keyword for subclassing in
Java is extends, not ‘subclasses’.

3. � B. All the words in answer B are among the 49 Java keywords.
� A is wrong because the keyword for the primitive int starts with a lowercase i . C is
wrong because “virtual” is a keyword in C++, but not Java. D is wrong because “constant”
is not a keyword. Constants in Java are marked static and final. E is wrong because
“include” is a keyword in C, but not Java.

4. � A and D. Both interface and this are both valid keywords.
� B is wrong because “unsigned” is a keyword in C/C++ but not in Java. C is wrong because
“Float” is a class type. The keyword for the Java primitive is float. E is wrong because
although “String” is a class type in Java, “string” is not a keyword.

Literals and Ranges of All Primitive Data Types (Objective 4.6)

5. � A, C, and F. A is an octal representation of the integer value 27128, which is legal because
it fits into an unsigned 16-bit integer. C is a hexadecimal representation of the integer value
48879, which fits into an unsigned 16-bit integer. F is a Unicode representation of a character.
� B is wrong because you can’t put more than one character in a char literal. You know that
B is a literal character because it comes between single quotes. The only other acceptable char
literal that can go between single quotes is a Unicode value, and Unicode literals must always start
with a ‘\u’. D is wrong because the single quotes are missing. E is wrong because it appears to be
a Unicode representation (notice the backslash), but starts with ‘\i’ rather than ‘\u’.

6. � A and E. A sets the String reference to null; E initializes the String reference with a literal.
� B is wrong because null cannot be in single quotes. C is wrong because there are multiple
characters between the single quotes (‘abc’). D is wrong because you can’t cast a char
(primitive) to a String (object).

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

54 Chapter 1: Language Fundamentals

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. � C. A boolean can only be assigned the literal true or false.
� A, B, D, and E are all invalid assignments for a boolean.

8. � E. A char is really a 16-bit integer behind the scenes, so it supports 216 (from 0 to 65535)
values.

9. � A, C, and F. A and C are integer literals (32 bits), and integers can be legally assigned to
floats (also 32 bits). F is correct because F is appended to the literal, declaring it as a float
rather than a double (the default for floating point literals).
� B, D, and E are all doubles.

Array Declaration, Construction, and Initialization (Objective 1.1)

10. � A, B, and D. With an array declaration, you can place the brackets to the right or left of
the identifier. A looks strange, but it’s perfectly legal to split the brackets in a multidimensional
array, and place them on both sides of the identifier. Although coding this way would only
annoy your fellow programmers, for the exam, you need to know it’s legal.
� C and E are wrong because you can’t declare an array with a size. The size is only needed
when the array is actually instantiated (and the JVM needs to know how much space to
allocate for the array, based on the type of array and the size).

11. � C. The loops use the array sizes (length).
If you think this question is unfairly complicated, get used to it. Question 11 is a good example
of the kinds of questions you’ll see on the exam. You should approach complex loop questions
by using a pencil and paper and stepping through the loop (or loops, in this case), keeping
track of the variable values at each iteration. Tedious, we know, but you can expect a lot of
questions like this on the exam. Take your time and recheck your work.

12. � A, B, E, and F. This question covers the issue of, “What can I assign to an array reference
variable?” The key is to get the dimensions right. For example, if an array is declared as a
two-dimensional array, you can’t assign a one-dimensional array to a one-dimensional array
reference.
� C is wrong because it tries to assign a primitive byte where a byte array (one dimension) is
expected. D is wrong because it tries to assign a two-dimensional array where a one-dimensional
array is expected.

13. � B and D. Both are legal ways to declare and initialize an array with five elements.
� A is wrong because it shows an example of instantiating a class named Array, passing
the integer value 5 to the object’s constructor. If you don’t see the brackets, you can be

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Self Test Answers 55

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

56 Chapter 1: Language Fundamentals

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

certain there is no actual array object! In other words, an Array object (instance of class Array)
is not the same as an array object. C is wrong because it shows a legal array declaration, but
with no initialization. E is wrong (and will not compile) because the initialization uses parens ()
rather than brackets. F is wrong (and will not compile) because it declares an array with a size.
Arrays must never be given a size when declared.

14. � D. The only legal array declaration and assignment statement is D.
� A is wrong because it initializes an int array with String literals. B and E are wrong
because they use something other than curly braces for the initialization. C is wrong because
it provides initial values for only one dimension, although the declared array is a two-dimensional
array. F is wrong because it uses semicolons where it should use commas, to separate the items
in the initialization.

Using a Variable or Array Element That Is Uninitialized and Unassigned
(Objective 4.5)

15. � A, C, D, and E.
� B is wrong because the default value for a String (and any other object reference) is null,
with no quotes. F is wrong because the default value for boolean elements is false.

16. � D. The second dimension of the array referenced by theDogs has not been initialized.
Attempting to access an uninitialized object element (line 4) raises a
NullPointerException.

17. � B. The names array is initialized with five null elements. Then elements 0 and 1 are
assigned the String values “a” and “b” respectively (the command-line arguments passed
to main). Elements 2, 3, and 4 remain unassigned, so they have a value of null.

Command-line Arguments to Main (Objective 4.3)

18. � F. An exception is thrown because at line 6, the array index (the fifth element) is out of
bounds. The exception thrown is the cleverly named
ArrayIndexOutOfBoundsException.

19. � F. An exception is thrown because at some point in line 7, the value of x will be equal to y,
resulting in an attempt to access an index out of bounds for the array. Remember that you can
access only as far as length-1, so loop logical tests should use x<someArray.length as
opposed to x <= someArray.length.

20. � D. In line 5, the reference variable argCopy[0], which was referring to an array with
two elements, is reassigned to an array (args) with three elements.

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXERCISE ANSWERS
Exercise 1.1: Command-Line Arguments to Main

Your completed code should look something like the following:

public class MainTest {
public static void main (String [] args) {

for (int i = 0;i < args.length;i++) {
System.out.println(args[i]);

}
System.out.println("Total words: " + args.length);

}
}

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1

Exercise Answers 57

P:\010Comp\CertPrs8\684-6\ch01.vp
Wednesday, November 13, 2002 5:21:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2
Blind Folio 2:1

2
Declarations and
Access Control

CERTIFICATION OBJECTIVES

• Declarations and Modifiers

• Declaration Rules

• Interface Implementation

✓ Two-Minute Drill

Q&A Self Test

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

We’re on a roll. We’ve covered the fundamentals of keywords, primitives, arrays,
and variables. Now it’s time to drill deeper into rules for declaring classes,
methods, and variables. We’ll tackle access modifiers, abstract method

implementation, interface implementation, and what you can and can’t return from a method.
Chapter 2 includes the topics asked most often on the exam, so you really need a solid grasp
of this chapter’s content. Grab your caffeine and let’s get started.

CERTIFICATION OBJECTIVE

Declarations and Modifiers (Exam Objective 1.2)
Declare classes, nested classes, methods, instance variables, static variables, and automatic
(method local) variables making appropriate use of all permitted modifiers (such as
public, final, static, abstract, and so forth). State the significance of
each of these modifiers both singly and in combination, and state the effect of package
relationships on declared items qualified by these modifiers.

When you write code in Java, you’re writing classes. Within those classes, as
you know, are variables and methods (plus a few other things). How you declare
your classes, methods, and variables dramatically affects your code’s behavior. For
example, a public method can be accessed from code running anywhere in your
application. Mark that method private, though, and it vanishes from everyone’s
radar (except the class in which it was declared). For this objective, we’ll study the
ways in which you can modify (or not) a class, method, or variable declaration.
You’ll find that we cover modifiers in an extreme level of detail, and though we
know you’re already familiar with them, we’re starting from the very beginning.
Most Java programmers think they know how all the modifiers work, but on closer
study often find out that they don’t (at least not to the degree needed for the exam).
Subtle distinctions are everywhere, so you need to be absolutely certain you’re
completely solid on everything in this objective before taking the exam.

2 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declarations and Modifiers (Exam Objective 1.2) 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Class Declarations and Modifiers
We’ll start this objective by looking at how to declare and modify a class. Although
nested (often called inner) classes are on the exam, we’ll save nested class declarations
for Chapter 8. You’re going to love that chapter. No, really. Seriously. No
kidding around.

Before we dig into class declarations, let’s do a quick review of the rules:

■ There can be only one public class per source code file.

■ The name of the file must match the name of the public class.

■ If the class is part of a package, the package statement must be the first line
in the source code file.

■ If there are import statements, they must go between the package statement
and the class declaration. If there isn’t a package statement, then the import
statement(s) must be the first line(s) in the source code file. If there are no
package or import statements, the class declaration must be the first line in
the source code file. (Comments don’t count; they can appear anywhere
in the source code file.)

■ Import and package statements apply to all classes within a source code file.

The following code is a bare-bones class declaration:

class MyClass { }

This code compiles just fine, but you can also add modifiers before the class
declaration. Modifiers fall into two categories:

■ Access modifiers: public, protected, private

■ Nonaccess modifiers (including strictfp, final, and abstract)

We’ll look at access modifiers first, so you’ll learn how to restrict or allow access to
a class you create. Access control in Java is a little tricky because there are four access
controls (levels of access) but only three access modifiers. The fourth access control
level (called default or package access) is what you get when you don’t use any of the

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

three access modifiers. In other words, every class, method, and instance variable you
declare has an access control, whether you explicitly type one or not. Although all
four access controls (which means all three modifiers) work for most method and
variable declarations, a class can be declared with only public or default access; the
other two access control levels don’t make sense for a class, as you’ll see.

Java is a package-centric language; the developers assumed that for good
organization and name scoping, you would put all your classes into packages.
They were right, and you should. Imagine this nightmare: three different
programmers, in the same company but working on different parts of a
project, write a class named Utilities. If those three Utilities classes have not
been declared in any explicit package, and are in the classpath, you won’t
have any way to tell the compiler or JVM which of the three you’re trying to
reference. Sun recommends that developers use reverse domain names,
appended with division and/or project names. For example, if your domain
name is geeksanonymous.com, and you’re working on the client code for the
TwelvePointOSteps program, you would name your package something like
com.geeksanonymous.steps.client. That would essentially change the name
of your class to com.geeksanonymous.steps.client.Utilities. You
might still have name collisions within your company, if you don’t come up
with your own naming schemes, but you’re guaranteed not to collide with
classes developed outside your company (assuming they follow Sun’s naming
convention, and if they don’t, well, Really Bad Things could happen).

Class Access
What does it mean to access a class? When we say code from one class (class A)
has access to another class (class B), it means class A can do one of three things:

■ Create an instance of class B

■ Extend class B (in other words, become a subclass of class B)

■ Access certain methods and variables within class B, depending on the access
control of those methods and variables.

In effect, access means visibility. If class A can’t see class B, the access level of the
methods and variables within class B won’t matter; class A won’t have any way to
access those methods and variables.

4 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Default Access A class with default access has no modifier preceding it in the
declaration. In other words, it’s the access control you get when you don’t type a
modifier in the class declaration. Think of default access as package-level access,
because a class with default access can be seen only by classes within the same package.
For example, if class A and class B are in different packages, and class A has default
access, class B won’t be able to create an instance of class A, or even declare a
variable or return type of class A. In fact, class B has to pretend that class A doesn’t
even exist, or the compiler will complain. Look at the following source file:

package cert;
class Beverage {
}

Now look at the second source file:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage {
}

As you can see, the superclass (Beverage) is in a different package from the
subclass (Tea). The import statement at the top of the Tea file is trying (fingers
crossed) to import the Beverage class. The Beverage file compiles fine, but watch
what happens when we try to compile the Tea file:

>javac Tea.java
Tea.java:1: Can't access class cert.Beverage. Class or
interface must be public, in same package, or an accessible member
class.
import cert.Beverage;
..

Tea won’t compile because its superclass, Beverage, has default access and is in
a different package. You can do one of two things to make this work. You could
put both classes in the same package, or declare Beverage as public, as the next
section describes.

Declarations and Modifiers (Exam Objective 1.2) 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

When you see a question with complex logic, be sure to look at the access
modifiers first. That way, if you spot an access violation (for example, a class
in package A trying to access a default class in package B), you’ll know the
code won’t compile so you don’t have to bother working through the logic.
It’s not as if, you know, you don’t have anything better to do with your time
while taking the exam. Just choose the “Compilation fails” answer and zoom
on to the next question.

Public Access A class declaration with the public keyword gives all classes
from all packages access to the public class. In other words, all classes in the Java
Universe (JU) (you’ll be tested on this acronym) have access to a public class. Don’t
forget, though, that if a public class you’re trying to use is in a different package
from the class you’re writing, you’ll still need to import the public class. (Just
kidding about the JU acronym. We just made that up to keep you on your toes.)

In the example from the preceding section, we may not want to place the subclass
in the same package as the superclass. To make the code work, we need to add the
keyword public in front of the superclass (Beverage) declaration, as follows:

package cert;
public class Beverage {
}

This changes the Beverage class so it will be visible to all classes in all packages.
The class can now be instantiated from all other classes, and any class is now free to
subclass (extend from) it—unless, that is, the class is also marked with the nonaccess
modifier final. Read on.

Other (Nonaccess) Class Modifiers
You can modify a class declaration using the keyword final, abstract,
or strictfp. These modifiers are in addition to whatever access control is on
the class, so you could, for example, declare a class as both public and final.
But you can’t always mix nonabstract modifiers. You’re free to use strictfp in
combination with abstract or final, but you must never, ever, ever mark a
class as both final and abstract. You’ll see why in the next two sections.

You won’t need to know how strictfp works, so we’re focusing only on
modifying a class as final or abstract. For the exam, you need to know only
that strictfp is a keyword and can be used to modify a class or a method, but
never a variable. Marking a class as strictfp means that any method code in the

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

class will conform to the IEEE754 standard rules for floating points. Without that
modifier, floating points used in the methods might behave in a platform-dependent
way. If you don’t declare a class as strictfp, you can still get strictfp
behavior on a method-by-method basis, by declaring a method as strictfp. If
you don’t know the IEEE754 standard, now’s not the time to learn it. You have, as
we say, bigger fish to fry.

Final Classes When used in a class declaration, the final keyword means
the class can’t be subclassed. In other words, no other class can ever extend (inherit
from) a final class, and any attempts to do so will give you a compiler error.

So why would you ever mark a class final? After all, doesn’t that violate the
whole OO notion of inheritance? You should make a final class only if you need an
absolute guarantee that none of the methods in that class will ever be overridden. If
you’re deeply dependent on the implementations of certain methods, then using
final gives you the security that nobody can change the implementation out
from under you.

You’ll notice many classes in the Java core libraries are final. For example, the
String class cannot be subclassed. Imagine the havoc if you couldn’t guarantee how
a String object would work on any given system your application is running on! If
programmers were free to extend the String class (and thus substitute their new
String subclass instances where java.lang.String instances are expected),
civilization—as we know it—could collapse. So use final for safety, but only when
you’re certain that your final class has indeed said all that ever needs to be said in its
methods. Marking a class final means, in essence, your class can’t ever be improved
upon, or even specialized, by another programmer.

Another benefit of having nonfinal classes is this scenario: imagine you find a
problem with a method in a class you’re using, but you don’t have the source code.
So you can’t modify the source to improve the method, but you can extend the class
and override the method in your new subclass, and substitute the subclass everywhere
the original superclass is expected. If the class is final, though, then you’re stuck.

Let’s modify our Beverage example by placing the keyword final in the declaration:

package cert;
public final class Beverage{

public void importantMethod() {
}

}

Declarations and Modifiers (Exam Objective 1.2) 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Now, if we try to compile the Tea subclass:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage {
}

We get the following error:

>javac Tea.java
Tea.java:3: Can't subclass final classes: class
cert.Beverage class Tea extends Beverage{
1 error

In practice, you’ll almost never make a final class. A final class obliterates
a key benefit of OO—extensibility. So unless you have a serious safety or
security issue, assume that some day another programmer will need to extend
your class. If you don’t, the next programmer forced to maintain your code
will hunt you down and <insert really scary thing>.

Abstract Classes An abstract class can never be instantiated. Its sole purpose,
mission in life, raison d’être, is to be extended (subclassed). Why make a class if you
can’t make objects out of it? Because the class might be just too, well, abstract. For
example, imagine you have a class Car that has generic methods common to all
vehicles. But you don’t want anyone actually creating a generic, abstract Car object.
How would they initialize its state? What color would it be? How many seats?
Horsepower? All-wheel drive? Or more importantly, how would it behave? In other
words, how would the methods be implemented?

No, you need programmers to instantiate actual car types such as SubaruOutback,
BMWBoxster, and the like, and we’ll bet the Boxster owner will tell you his car
does things the Subaru can do “only in its dreams!” Take a look at the following
abstract class:

abstract class Car {
private double price;
private Color carColor;
private String model;
private String year;
public abstract void goFast();
public abstract void goUpHill();

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public abstract void impressNeighbors();
// Additional, important, and serious code goes here

}

The preceding code will compile fine. However, if you try to instantiate a Car in
another body of code, you’ll get a compiler error:

AnotherClass.java:7: class Car is an abstract
class. It can't be instantiated.

Car x = new Car();
1 error

Notice that the methods marked abstract end in a semicolon rather than
curly braces.

Look for questions with a method declaration that ends with a semicolon,
rather than curly braces. If the method is in a class—as opposed to an
interface—then both the method and the class must be marked abstract.
You might get a question that asks how you could fix a code sample that
includes a method ending in a semicolon, but without an abstract modifier
on the class or method. In that case, you could either mark the method and
class abstract, or remove the abstract modifier from the method. Oh,
and if you change a method from abstract to nonabstract, don’t forget to change
the semicolon at the end of the method declaration into a curly brace pair!

We’ll look at abstract methods in more detail later in this objective, but always
remember that if even a single method is abstract, the whole class must be declared
abstract. One abstract method spoils the whole bunch. You can, however, put
nonabstract methods in an abstract class. For example, you might have methods
with implementations that shouldn’t change from car type to car type, such as
getColor() or setPrice(). By putting nonabstract methods in an abstract
class, you give all concrete subclasses (concrete just means not abstract) inherited
method implementations. The good news there is that concrete subclasses get to
inherit functionality, and need to implement only the methods that define
subclass-specific behavior.

(By the way, if you think we misused raison d’être, for gosh sakes don’t send an
email. We’re rather pleased with ourselves, and let’s see you work it into a programmer
certification book.)

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Declarations and Modifiers (Exam Objective 1.2) 9

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Coding with abstract class types (including interfaces, discussed later in
this chapter) let’s you take advantage of polymorphism, and gives you the
greatest degree of flexibility and extensibility. You’ll learn more about
polymorphism in Chapter 5.

You can’t mark a class as both abstract and final. They have nearly opposite
meanings. An abstract class must be subclassed, whereas a final class must not
be subclassed. If you see this combination of abstract and final modifiers,
used for a class or method declaration, the code will not compile.

EXERCISE 2-1

Creating an Abstract Superclass and Concrete Subclass
The following exercise will test your knowledge of public, default, final, and abstract
classes. Create an abstract superclass named Fruit and a concrete subclass named
Apple. The superclass should belong to a package called food and the subclass can
belong to the default package (meaning it isn’t put into a package explicitly). Make
the superclass public and give the subclass default access.

1. Create the superclass as follows:

package food;
public abstract class Fruit{ /* any code you want */}

2. Create the subclass in a separate file as follows:

import food.Fruit;
class Apple extends Fruit{ /* any code you want */}

3. Create a directory called food off the directory in your class path setting.

4. Attempt to compile the two files. If you want to use the Apple class, make
sure you place the Fruit.class file in the food subdirectory.

Method and Variable Declarations and Modifiers
We’ve looked at what it means to use a modifier in a class declaration, and now we’ll
look at what it means to modify a method or variable declaration.

10 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Methods and instance (nonlocal) variables are collectively known as members. You
can modify a member with both access and nonaccess modifiers, and you have more
modifiers to choose from (and combine) than when you’re declaring a class.

Member Access
Because method and variable members are usually given access control in exactly
the same way, we’ll cover both in this section.

Whereas a class can use just two of the four access control levels (default or
public), members can use all four:

■ public

■ protected

■ default

■ private

Default protection is what you get when you don’t type an access modifier in the
member declaration. The default and protected access control types have almost
identical behavior, except for one difference that will be mentioned later.

It’s crucial that you know access control inside and out for the exam. There
will be quite a few questions with access control playing a role. Some
questions test several concepts of access control at the same time, so not
knowing one small part of access control could blow an entire question.

What does it mean for code in one class to have access to a member of another
class? For now, ignore any differences between methods and variables. If class A has
access to a member of class B, it means that class B’s member is visible to class A.
When a class does not have access to another member, the compiler will slap you
for trying to access something that you’re not even supposed to know exists!

You need to understand two different access issues:

■ Whether method code in one class can access a member of another class

■ Whether a subclass can inherit a member of its superclass

The first type of access is when a method in one class tries to access a method or
a variable of another class, using the dot operator (.) to invoke a method or retrieve a
variable. For example,

Declarations and Modifiers (Exam Objective 1.2) 11

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

class Zoo {
public String coolMethod() {

return "Wow baby";
}

}

class Moo {
public void useAZoo() {

Zoo z = new Zoo();
// If the preceding line compiles Moo has access
// to the Zoo class
// But… does it have access to the coolMethod()?

System.out.println("A Zoo says, " + z.coolMethod());
// The preceding line works because Moo can access the
// public method

}
}

The second type of access revolves around which, if any, members of a superclass a
subclass can access through inheritance. We’re not looking at whether the subclass
can, say, invoke a method on an instance of the superclass (which would just be an
example of the first type of access). Instead, we’re looking at whether the subclass
inherits a member of its superclass. Remember, if a subclass inherits a member, it’s
exactly as if the subclass actually declared the member itself. In other words, if a
subclass inherits a member, the subclass has the member.

class Zoo {
public String coolMethod() {

return "Wow baby";
}

}

class Moo extends Zoo {
public void useMyCoolMethod() {

// Does an instance of Moo inherit the coolMethod()?
System.out.println("Moo says, " + this.coolMethod());
// The preceding line works because Moo can inherit the public method

// Can an instance of Moo invoke coolMethod() on an instance of Zoo?
Zoo z = new Zoo();
System.out.println("Zoo says, " + z.coolMethod());
// coolMethod() is public, so Moo can invoke it on a Foo reference

}
}

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Figure 2-1 compares the effect of access modifiers on whether a class can inherit a
member of another class, or access a member of another class using a reference of an
instance of that class.

Much of access control (both types) centers on whether the two classes involved
are in the same or different packages. Don’t forget, though, if class A itself can’t be
accessed by class B, then no members within class A can be accessed by class B.

Declarations and Modifiers (Exam Objective 1.2) 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

FIGURE 2-1

Comparison of
inheritance vs.
dot operator for
member access

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You need to know the effect of different combinations of class and member
access (such as a default class with a public variable). To figure this out, first
look at the access level of the class. If the class itself will not be visible to
another class, then none of the members will be either, even if the member
is declared public. Once you’ve confirmed that the class is visible, then it
makes sense to look at access levels on individual members.

Public Members When a method or variable member is declared public,
it means all other classes, regardless of the package they belong to, can access the
member (assuming the class itself is visible). Look at the following source file:

package book;
import cert.*; // Import all classes in the cert package
class Goo {

public static void main(String [] args) {
Sludge o = new Sludge();
o.testIt();

}
}

Now look at the second file:

package cert;
public class Sludge {

public void testIt() {
System.out.println("sludge");

}
}

As you can see, Goo and Sludge are in different packages. However, Goo can
invoke the method in Sludge without problems because both the Sludge class and
its testIt() method are marked public.

For a subclass, if a member of its superclass is declared public, the subclass
inherits that member regardless of whether both classes are in the same package. Read
the following code:

package cert;
public class Roo {

public String doRooThings() {
// imagine the fun code that goes here
}

}

14 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declarations and Modifiers (Exam Objective 1.2) 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

The Roo class declares the doRooThings() member as public. So if we
make a subclass of Roo, any code in that Roo subclass can call its own inherited
doRooThings() method.

package notcert; //Not the package Roo is in
import cert.Roo;
class Cloo extends Roo {

public void testCloo() {
System.out.println(doRooThings());

}
}

Notice in the preceding code that the doRooThings() method is invoked
without having to preface it with a reference. Remember, if you see a method invoked
(or a variable accessed) without the dot operator (.), it means the method or variable
belongs to the class where you see that code. It also means that the method or
variable is implicitly being accessed using the this reference. So in the preceding
code, the call to doRooThings() in the Cloo class could also have been written
as this.doRooThings(). The reference this always refers to the currently
executing object—in other words, the object running the code where you see the
this reference. Because the this reference is implicit, you don’t need to preface
your member access code with it, but it won’t hurt. Some programmers include it
to make the code easier to read for new (or non) java programmers.

Besides being able to invoke the doRooThings() method on itself, code from
some other class can call doRooThings() on a Cloo instance, as in the following:

class Toon {
public static void main (String [] args) {

Cloo c = new Cloo();
System.out.println(c.doRooThings()); //No problem; method is public

}
}

Private Members Members marked private can’t be accessed by code in
any class other than the class in which the private member was declared. Let’s make
a small change to the Roo class from an earlier example.

package cert;
public class Roo {

private String doRooThings() {
// imagine the fun code that goes here, but only the Roo class knows
}

}

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The doRooThings() method is now private, so no other class can use it. If we
try to invoke the method from any other class, we’ll run into trouble.

package notcert;
import cert.Roo;
class UseARoo {

public void testIt() {
Roo r = new Roo(); //So far so good; class Roo is still public
System.out.println(r.doRooThings()); //Compiler error!

}
}

If we try to compile the UseARoo class, we get the following compiler error:

%javac Balloon.java
Balloon.java:5: No method matching doRooThings() found in class
cert.Roo.

r.doRooThings();
1 error

It’s as if the method doRooThings() doesn’t exist, and as far as any code
outside of the Roo class is concerned, it’s true. A private member is invisible to any
code outside the member’s own class.

What about a subclass that tries to inherit a private member of its superclass?
When a member is declared private, a subclass can’t inherit it. For the exam, you
need to recognize that a subclass can’t see, use, or even think about the private
members of its superclass. You can, however, declare a matching method in the
subclass. But regardless of how it looks, it is not an overriding method! It is simply a
method that happens to have the same name as a private method (which you’re not
supposed to know about) in the superclass. The rules of overriding do not apply, so
you can make this newly-declared-but-just-happens-to-match method declare new
exceptions, or change the return type, or anything else you want to do with it.

package cert;
public class Roo {

private String doRooThings() {
// imagine the fun code that goes here, but no other class will know
}

}

The doRooThings() method is now off limits to all subclasses, even those in
the same package as the superclass.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

16 Chapter 2: Declarations and Access Control

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

package cert; //Cloo and Roo are in the same package
class Cloo extends Roo { //Still OK, superclass Roo is public

public void testCloo() {
System.out.println(doRooThings()); //Compiler error!

}
}

If we try to compile the subclass Cloo, the compiler is delighted to spit out the
following error:

%javac Cloo.java
Cloo.java:4: Undefined method: doRooThings()

System.out.println(doRooThings());
1 error

Although you’re allowed to mark instance variables as public, in practice
it’s nearly always best to keep all variables private or protected. If
variables need to be changed, set, or read, programmers should use public
accessor methods, so that code in any other class has to ask to get or set
a variable (by going through a method), rather than access it directly.
Accessor methods should usually take the form get<propertyName> and
set<propertyName>, and provide a place to check and/or validate before
returning or modifying a value. Without this protection, the weight variable of
a Cat object, for example, could be set to a negative number if the offending
code goes straight to the public variable as in someCat.weight = -20. But
an accessor method, setWeight(int wt), could check for an inappropriate
number. (OK, wild speculation, but we’re guessing a negative weight might be
inappropriate for a cat. And no wisecracks from you cat haters.) Chapter 5
will discuss this data protection (encapsulation) in more detail.

Can a private method be overridden by a subclass? That’s an interesting question,
but the answer is technically no. Since the subclass, as we’ve seen, cannot inherit a
private method, it therefore cannot override the method—overriding depends on
inheritance. We’ll cover the implications of this in more detail a little later in this
section as well as in Chapter 5, but for now just remember that a method marked
private cannot be overridden. Figure 2-2 illustrates the effects of the public and
private access modifiers on classes from the same or different packages.

Protected and Default Members The protected and default access control
levels are almost identical, but with one critical difference. A default member may

Declarations and Modifiers (Exam Objective 1.2) 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

be accessed only if the class accessing the member belongs to the same package,
whereas a protected member can be accessed (through inheritance) by a subclass
even if the subclass is in a different package. Take a look at the following two classes:

package certification;
public class OtherClass {

18 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

FIGURE 2-2

The effects of
public and
private access

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

void testIt() { // No modifier means method has default access
System.out.println("OtherClass");

}
}

In another source code file you have the following:

package somethingElse;
import certification.OtherClass;
class AccessClass {

static public void main(String [] args) {
OtherClass o = new OtherClass();
o.testIt();

}
}

As you can see, the testIt() method in the second file has default (think:
package-level) access. Notice also that class OtherClass is in a different package
from the AccessClass. Will AccessClass be able to use the method testIt()?
Will it cause a compiler error? Will Daniel ever marry Francesca? Stay tuned.

%javac AccessClass.java
AccessClass.java:5: No method matching testIt() found in class
certification.OtherClass.

o.testIt();
1 error

From the preceding results, you can see that AccessClass can’t use the OtherClass
method testIt() because testIt() has default access, and AccessClass is
not in the same package as OtherClass. So AccessClass can’t see it, the compiler
complains, and we have no idea who Daniel and Francesca are.

Default and protected behavior differ only when we talk about subclasses. This
difference is not often used in actual practice, but that doesn’t mean it won’t be on
the exam! Let’s look at the distinctions between protected and default access.

If the protected keyword is used to define a member, any subclass of the class
declaring the member can access it. It doesn’t matter if the superclass and subclass
are in different packages, the protected superclass member is still visible to the
subclass (although visible only in a very specific way as we’ll see a little later). This
is in contrast to the default behavior, which doesn’t allow a subclass to access a
superclass member unless the subclass is in the same package as the superclass.

Declarations and Modifiers (Exam Objective 1.2) 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Whereas default access doesn’t extend any special consideration to subclasses
(you’re either in the package or you’re not), the protected modifier respects
the parent-child relationship, even when the child class moves away (and joins a
new package). So, when you think of default access, think package restriction. No
exceptions. But when you think protected, think package + kids. A class with
a protected member is marking that member as having package-level access for all
classes, but with a special exception for subclasses outside the package.

But what does it mean for a subclass-outside-the-package to have access (visibility)
to a superclass (parent) member? It means the subclass inherits the member. It does
not, however, mean the subclass-outside-the-package can access the member using a
reference to an instance of the superclass. In other words, protected = inheritance.
Protected does not mean that the subclass can treat the protected superclass member
as though it were public. So if the subclass-outside-the-package gets a reference to
the superclass (by, for example, creating an instance of the superclass somewhere
in the subclass’ code), the subclass cannot use the dot operator on the superclass
reference to access the protected member. To a subclass-outside-the-package, a
protected member might as well be default (or even private), when the subclass is
using a reference to the superclass. The subclass can only see the protected member
through inheritance.

Are you confused? So are we. Hang in there and it will all become clear with the
next batch of code examples. (And don’t worry; we’re not actually confused. We’re
just trying to make you feel better if you are. You know, like it’s OK for you to feel as
though nothing makes sense, and that it isn’t your fault. Or is it? <insert evil laugh>)

Let’s take a look at a protected instance variable (remember, an instance variable is
a member) of a superclass.

package certification;
public class Parent {

protected int x = 9; // protected access
}

The preceding code declares the variable x as protected. This makes the
variable accessible to all other classes in the certification package, as well as
inheritable by any subclasses outside the package. Now let’s create a subclass in a
different package, and attempt to use the variable x (that the subclass inherits).

package other; // Different package
import certification.Parent;
class Child extends Parent {

20 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declarations and Modifiers (Exam Objective 1.2) 21

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

public void testIt() {
System.out.println("x is " + x); // No problem; Child inherits x

}
}

The preceding code compiles fine. Notice, though, that the Child class is
accessing the protected variable through inheritance. Remember, anytime we talk
about a subclass having access to a superclass member, we could be talking about
the subclass inheriting the member, not simply accessing the member through a
reference to an instance of the superclass (the way any other nonsubclass would
access it). Watch what happens if the subclass Child (outside the superclass’ package)
tries to access a protected variable using a Parent class reference.

package other;
import certification.Parent;
class Child extends Parent {

public void testIt() {
System.out.println("x is " + x); // No problem; Child inherits x
Parent p = new Parent(); // Can we access x using the p reference?
System.out.println("X in parent is " + p.x); // Compiler error!

}
}

The compiler is more than happy to show us the problem:

%javac -d . other/Child.java
other/Child.java:9: x has protected access in certification.Parent
System.out.println("X in parent is " + p.x);

^
1 error

So far we’ve established that a protected member has essentially package-level or
default access to all classes except for subclasses. We’ve seen that subclasses outside
the package can inherit a protected member. Finally, we’ve seen that subclasses
outside the package can’t use a superclass reference to access a protected member.
For a subclass outside the package, the protected member can be accessed only through
inheritance.

But there’s still one more issue we haven’t looked at…what does a protected
member look like to other classes trying to use the subclass-outside-the-package to
get to the subclass’ inherited protected superclass member? For example, using our
previous Parent/Child classes, what happens if some other class—Neighbor, say—
in the same package as the Child (subclass), has a reference to a Child instance and

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

22 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

wants to access the member variable x ? In other words, how does that protected
member behave once the subclass has inherited it? Does it maintain its protected
status, such that classes in the Child’s package can see it?

No! Once the subclass-outside-the-package inherits the protected member, that
member (as inherited by the subclass) becomes private to any code outside the
subclass. So if class Neighbor instantiates a Child object, then even if class Neighbor
is in the same package as class Child, class Neighbor won’t have access to the Child’s
inherited (but protected) variable x. The bottom line: when a
subclass-outside-the-package inherits a protected member, the member is essentially
private inside the subclass, such that only the subclass’ own code can access it.
Figure 2-3 illustrates the effect of protected access on classes and subclasses in the
same or different packages.

Whew! That wraps up protected, the most misunderstood modifier in Java.
Again, it’s used only in very special cases, but you can count on it showing up on
the exam. Now that we’ve covered the protected modifier, we’ll switch to default
member access, a piece of cake compared to protected.

Let’s start with the default behavior of a member in a superclass. We’ll modify
the Parent’s member x to make it default.

package certification;
public class Parent {

int x = 9; // No access modifier, means default (package) access
}

Notice we didn’t place an access modifier in front of the variable x. Remember
that if you don’t type an access modifier before a class or member declaration, the
access control is default, which means package level. We’ll now attempt to access
the default member from the Child class that we saw earlier. When we compile the
Child file, we get the following error:

%javac Child.java
Child.java:4: Undefined variable: x

System.out.println("Variable x is " + x);
1 error

The compiler gives the same error as when a member is declared as private.
The subclass Child (in a different package from the superclass Parent) can’t see or

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

use the default superclass member x ! Now, what about default access for two classes
in the same package?

package certification;
public class Parent{

int x = 9; // default access
}

Declarations and Modifiers (Exam Objective 1.2) 23

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

FIGURE 2-3 The effects of protected access

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

And in the second class you have the following:

package certification;
class Child extends Parent{

static public void main(String [] args) {
Parent sc = new Parent();
sc.testIt();

}
public void testIt() {

System.out.println("Variable x is " + x); // No problem;
}

}

The preceding source file compiles fine, and the class Child runs and displays the
value of x. Just remember that default members are visible only to the subclasses that
are in the same package as the superclass.

Local Variables and Access Modifiers Can access modifiers be applied to
local variables? This one should be simple to remember: NO!

There is never a case where an access modifier can be applied to a local
variable, so watch out for code like the following:

class Foo {

void doStuff() {

private int x = 7;

this.doMore(x);

}

}

You can be certain that any local variable declared with an access modifier
will not compile. In fact, there is only one modifier that can ever be applied
to local variables—final.

That about does it for our discussion on member access modifiers. Table 2-1
shows all the combinations of access and visibility; you really should spend some
time with it. Next, we’re going to dig into the other (nonaccess) modifiers that
you can apply to member declarations.

24 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declarations and Modifiers (Exam Objective 1.2) 25

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Nonaccess Member Modifiers
We’ve discussed member access, which refers to whether or not code from one
class can invoke a method (or access an instance variable) from another class. That
still leaves a boatload of other modifiers you can use on member declarations. Two
you’re already familiar with—final and abstract—because we applied them
to class declarations earlier in this chapter. But we still have to take a quick look at
transient, synchronized, native, strictfp, and then a long look at
the Big One—static. We’ll look first at modifiers applied to methods, followed
by a look at modifiers applied to instance variables. We’ll wrap up this objective
with a look at how static works when applied to variables and methods.

Final Methods The final keyword prevents a method from being overridden
in a subclass, and is often used to enforce the API functionality of a method. For
example, the Thread class has a method called isAlive() that checks whether a
thread is still active. If you extend the Thread class, though, there is really no way
that you can correctly implement this method yourself (it uses native code, for one
thing), so the designers have made it final. Just as you can’t subclass the String class
(because we need to be able to trust in the behavior of a String object), you can’t
override many of the methods in the core class libraries. This can’t-be-overridden
restriction provides for safety and security, but you should use it with great caution.
Preventing a subclass from overriding a method stifles many of the benefits of OO
including extensibility through polymorphism.

Visibility Public Protected Default Private

From the same class Yes Yes Yes Yes

From any class in the same package Yes Yes Yes No

From any non-subclass class outside the package Yes No No No

From a subclass in the same package Yes Yes Yes No

From a subclass outside the same package Yes Yes No No

TABLE 2-1 Determining Access to Class Members

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A typical final method declaration looks like this:

class SuperClass{
public final void showSample() {

System.out.println("One thing.");
}

}

It’s legal to extend SuperClass, since the class itself isn’t marked final, but we
can’t override the final method showSample(), as the following code attempts
to do:

class SubClass extends SuperClass{
public void showSample() { // Try to override the final superclass method

System.out.println("Another thing.");
}

}

Attempting to compile the preceding code gives us the following:

%javac FinalTest.java
FinalTest.java:5: The method void showSample() declared in class
SubClass cannot override the final method of the same signature
declared in class SuperClass. Final methods cannot be overridden.

public void showSample() { }
1 error

Final Arguments Method arguments are the variable declarations that appear
in between the parentheses in a method declaration. A typical method declaration
with multiple arguments looks like this:

public Record getRecord(int fileNumber, int recordNumber) {}

Method arguments are essentially the same as local variables. In the preceding
example, the variables fileNumber and recordNumber will both follow all the rules
applied to local variables. This means they can also have the modifier final:

public Record getRecord(int fileNumber, final int recordNumber) {}

In this example, the variable recordNumber is declared as final, which of course
means it can’t be modified within the method. In this case, “modified” means
reassigning a new value to the variable. In other words, a final argument must keep
the same value that the parameter had when it was passed into the method.

26 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declarations and Modifiers (Exam Objective 1.2) 27

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Abstract Methods An abstract method is a method that’s been declared (as
abstract) but not implemented. In other words, the method contains no functional
code. And if you recall from the previous section on abstract classes, an abstract
method declaration doesn’t even have curly braces for where the implementation
code goes, but instead closes with a semicolon. You mark a method abstract
when you want to force subclasses to provide the implementation. For example,
if you write an abstract class Car with a method goUpHill(), you might want
to force each subtype of car to define its own goUpHill() behavior, specific to
that particular type of car. (If you’ve ever lived in the Rockies, you know that the
differences in how cars go uphill (or fail to) is not, um, subtle.)

A typical abstract method declaration is as follows:

public abstract void showSample();

Notice that the abstract method ends with a semicolon instead of curly braces. It
is illegal to have an abstract method in a class that is not declared abstract. Look at
the following illegal class:

public class IllegalClass{
public abstract void doIt();

}

The preceding class will produce the following error if you try to compile it:

%javac IllegalClass.java
IllegalClass.java:1: class IllegalClass must be declared abstract.
It does not define void doIt() from class IllegalClass.
public class IllegalClass{
1 error

You can, however, have an abstract class with no abstract methods. The following
example will compile fine:

public abstract class LegalClass{
void goodMethod() {

// lots of real implementation code here
}

}

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

28 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

In the preceding example, goodMethod() is not abstract. Three different clues
tell you it’s not an abstract method:

■ The method is not marked abstract.

■ The method declaration includes curly braces, as opposed to ending in
a semicolon.

■ The method provides actual implementation code.

Any class that extends an abstract class must implement all abstract methods of the
superclass. Unless the subclass is also abstract. The rule is

The first concrete subclass of an abstract class must implement all abstract methods of
the superclass.

Concrete just means nonabstract, so if you have an abstract class extending another
abstract class, the abstract subclass doesn’t need to provide implementations for the
inherited abstract methods. Sooner or later, though, somebody’s going to make a
nonabstract subclass (in other words, a class that can be instantiated), and that
subclass will have to implement all the abstract methods from up the inheritance
tree. The following example demonstrates an inheritance tree with two abstract
classes and one concrete class:

public abstract class Vehicle {
private String type;
public abstract void goUpHill(); // Abstract method
public String getType() {

return type;
} // Non-abstract method

}

public abstract class Car extends Vehicle {
public abstract void goUpHill(); // Still abstract
public void doCarThings() {

// special car code goes here
}

}

public class Mini extends Car {
public void goUpHill() {

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

// Mini-specific going uphill code
}

}

So how many methods does class Mini have? Three. It inherits both the getType()
and doCarThings() methods, because they’re public and concrete (nonabstract).
But because goUpHill() is abstract in the superclass Vehicle, and is never
implemented in the Car class (so it remains abstract), it means class Mini—as the
first concrete class below Vehicle—must implement the goUpHill() method. In
other words, class Mini can’t pass the buck (of abstract method implementation) to
the next class down the inheritance tree, but class Car can since Car, like Vehicle, is
abstract. Figure 2-4 illustrates the effects of the abstract modifier on concrete and
abstract subclasses.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Declarations and Modifiers (Exam Objective 1.2) 29

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

FIGURE 2-4

The effects of
abstract on
subclasses

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Look for concrete classes that don’t provide method implementations for
abstract methods of the superclass. For example, the following code won’t
compile:

public abstract class A {

abstract void foo();

}

class B extends A {

void foo(int I) {

}

}

Class B won’t compile because it doesn’t implement the inherited abstract
method foo(). Although the foo(int I) method in class B might appear
to be an implementation of the superclass’ abstract method, it is simply
an overloaded method (a method using the same identifier, but different
arguments), so it doesn’t fulfill the requirements for implementing the
superclass’ abstract method. We’ll look at the differences between overloading
and overriding in detail in Chapter 5.

A method can never, ever, ever be marked as both abstract and final, or
both abstract and private. Think about it—abstract methods must be
implemented (which essentially means overridden by a subclass) whereas final and
private methods cannot ever be overridden by a subclass. Or to phrase it another
way, an abstract designation means the superclass doesn’t know anything about
how the subclasses should behave in that method, whereas a final designation
means the superclass knows everything about how all subclasses (however far down the
inheritance tree they may be) should behave in that method. The abstract and
final modifiers are virtually opposites. Because private methods cannot even
be seen by a subclass (let alone inherited) they too cannot be overridden, so they too
cannot be marked abstract.

Abstract methods also cannot be marked as synchronized, strictfp, or
native, all of which are modifiers describing something about the implementation
of a method. Because abstract methods define the signature, access, and return type,
but can say nothing about implementation, be watching for any of the following
illegal method declarations:

abstract synchronized void foo();
abstract strictfp void foof();
abstract native void poof();

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

30 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declarations and Modifiers (Exam Objective 1.2) 31

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

The preceding declarations will deliver you a nice compiler error message similar to

MyClass.java:18: illegal combination of modifiers: abstract and synchronized
abstract synchronized void foo();

^
MyClass.java:19: illegal combination of modifiers: abstract and strictfp

abstract strictfp void foof();
^

MyClass.java:20: illegal combination of modifiers: abstract and native
abstract native void poof();

^

Finally, you need to know that the abstract modifier can never be combined
with the static modifier. We’ll cover static methods later in this objective,
but for now just remember that the following would be illegal:

abstract static void doStuff();

And it would give you an error that should be familiar by now:

MyClass.java:2: illegal combination of modifiers: abstract and static
abstract static void doStuff();

^

Synchronized Methods The synchronized keyword indicates that a
method can be accessed by only one thread at a time. We’ll discuss this nearly to
death in Chapter 9, but for now all we’re concerned with is knowing that the
synchronized modifier can be applied only to methods—not variables, not
classes, just methods. A typical synchronized declaration looks like this:

public synchronized Record retrieveUserInfo(int id) { }

You should also know that the synchronized modifier can be matched with
any of the four access control levels (which means it can be paired with any of the
three access modifier keywords). And you can also combine synchronized
with final, but never with abstract. Synchronization is an implementation
issue; only the programmer can decide whether a method needs to be marked as
synchronized. If you declare a method like the following,

abstract synchronized void doStuff();

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you’ll get a compiler error similar to this:

MyClass.java:2: illegal combination of modifiers: abstract and synchronized
abstract synchronized void doStuff();

^

Native Methods The native modifier indicates that a method is implemented
in a platform-dependent language, such as C. You don’t need to know how to use
native methods for the exam, other than knowing that native is a modifier (thus
a reserved keyword), native can never be combined with abstract, and
native can be applied only to methods—not classes, not variables, just methods.

Strictfp Methods We looked earlier at using strictfp as a class modifier,
but even if you don’t declare a class as strictfp, you can still declare an individual
method as strictfp. Remember, strictfp forces floating points (and any
floating-point operations) to adhere to the IEE754 standard. With strictfp,
you can predict how your floating points will behave regardless of the underlying
platform the JVM is running on. The downside is that if the underlying platform
is capable of supporting greater precision, a strictfp method won’t be able to
take advantage of it.

You’ll need to have the IEEE754 standard pretty much memorized—that is,
if you need something to help you fall asleep. For the exam, however, you don’t
need to know anything about strictfp other than what it’s used for, that it can
modify a class or nonabstract method declaration, and that a variable can never be
declared strictfp.

Variable Declarations
We’ve already discussed variable access, which refers to the ability of code in one class
to access a variable in another class. In this section we’ll look at the other keywords
that apply to variable declarations, but first we’ll do a quick review of the difference
between instance and local variables.

Instance Variables Instance variables are defined inside the class, but outside of
any method, and are only initialized when the class is instantiated. Instance variables
are the fields that belong to each unique object. For example, the following code defines
fields (instance variables) for the name, title, and manager for employee objects:

32 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

class Employee {
// define fields (instance variables) for employee instances
private String name;
private String title,
private String manager;
// other code goes here including access methods for private fields

}

The preceding Employee class says that each employee instance will know its own
name, title, and manager. In other words, each instance can have its own unique
values for those three fields. If you see the term “field,” “instance variable,”
“property,” or “attribute,” they mean virtually the same thing. (There actually are
subtle but occasionally important distinctions between the terms, but those distinctions
aren’t used on the exam.)

For the exam, you need to know that instance variables

■ Can use any of the four access levels (which means they can be marked
with any of the three access modifiers)

■ Can be marked final

■ Can be marked transient

■ Cannot be marked abstract

■ Cannot be marked synchronized

■ Cannot be marked strictfp

■ Cannot be marked native

We’ve already covered the effects of applying access control to instance variables
(it works the same way as it does for member methods). A little later in this chapter
we’ll look at what it means to apply the final or transient modifier to an
instance variable. First, though, we’ll take a quick look at the difference between
instance and local variables. Figure 2-5 compares the way in which modifiers can be
applied to methods vs. variables.

Local (Automatic/Stack/Method) Variables Local variables are variables
declared within a method. That means the variable is not just initialized within the
method, but also declared within the method. Just as the local variable starts its life
inside the method, it’s also destroyed when the method has completed. Local

Declarations and Modifiers (Exam Objective 1.2) 33

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

variables are always on the stack, not the heap. Although the value of the variable
might be passed into, say, another method that then stores the value in an instance
variable, the variable itself lives only within the scope of the method.

Just don’t forget that while the local variable is on the stack, if the variable is an
object reference the object itself will still be created on the heap. There is no such thing
as a stack object, only a stack variable. You’ll often hear programmers use the phrase,
“local object,” but what they really mean is, “locally declared reference variable.” So
if you hear a programmer use that expression, you’ll know that he’s just too lazy to
phrase it in a technically precise way. You can tell him we said that—unless he’s
really really big and knows where we live.

Local variable declarations can’t use most of the modifiers that can be applied to
instance variables, such as public (or the other access modifiers), transient,
volatile, abstract, or static, but as we saw earlier, local variables can
be marked final. And if you remember Chapter 1 (which we know you do, since
it is, in fact, unforgettable), before a local variable can be used, it must be initialized
with a value.

class TestServer {
public void logIn() {

int count = 10;
}

}

34 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

FIGURE 2-5

Comparison
of modifiers
on variables
vs. methods

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Typically, you’ll initialize a local variable in the same line in which you declare
it, although you might still need to reinitialize it later in the method. The key is to
remember that a local variable must be initialized before you try to use it. The compiler
will reject any code that tries to use a local variable that hasn’t been assigned a value,
because—unlike instance variables—local variables don’t get default values.

A local variable can’t be referenced in any code outside the method in which it’s
declared. In the preceding code example, it would be impossible to refer to the
variable count anywhere else in the class except within the scope of the method
logIn(). Again, that’s not to say that the value of count can’t be passed out of the
method to take on a new life. But the variable holding that value, count, can’t be
accessed once the method is complete, as the following illegal code demonstrates:

class TestServer {
public void logIn() {

int count = 10;
}
public void doSomething(int i) {

count = i; // Won't compile! Can't access count outside method login()
}

It is possible to declare a local variable with the same name as an instance variable.
That’s known as shadowing, and the following code demonstrates this in action:

class TestServer {
int count = 9; // Declare an instance variable named count
public void logIn() {

int count = 10; // Declare a local variable named count
System.out.println("local variable count is " + count);

}
public void count() {

System.out.println("instance variable count is " + count);
}
public static void main(String[] args) {

new TestServer().logIn();
new TestServer().count();

}
}

The preceding code produces the following output:

local variable count is 10
instance variable count is 9

Declarations and Modifiers (Exam Objective 1.2) 35

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Why on earth (or the planet of your choice) would you want to do that? Normally,
you won’t. But one of the more common reasons is to name an argument with
the same name as the instance variable to which the parameter will be assigned.
The following (but wrong) code is trying to set an instance variable’s value using
a parameter:

class Foo {
int size = 27;
public void setSize(int size) {

size = size; // ??? which size equals which size???
}

}

So you’ve decided that—for overall readability—you want to give the argument the
same name as the instance variable its value is destined for, but how do you resolve
the naming collision? Use the keyword this. The keyword this always always
always refers to the object currently running. The following code shows this in action:

class Foo {
int size = 27;
public void setSize(int size) {

this.size = size; // this.size means the current object's
// instance variable for size

}
}

Final Variables Declaring a variable with the final keyword makes it
impossible to reinitialize that variable once it has been initialized with an explicit
value (notice we said explicit rather than default). For primitives, this means that
once the variable is assigned a value, the value can’t be altered. For example, if
you assign 10 to the int variable x, then x is going to stay 10, forever. So that’s
straightforward for primitives, but what does it mean to have a final object reference
variable? A reference variable marked final can’t ever be reassigned to refer to a
different object. The data within the object, however, can be modified, but the
reference variable cannot be changed. In other words, you can use a final reference
to modify the object it refers to, but you can’t modify the reference variable to make it
refer to a different object. Burn this in: there are no final objects, only final references.

36 Chapter 2: Declarations and Access Control

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declarations and Modifiers (Exam Objective 1.2) 37

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

You might need to remind yourself what the value of a reference variable actually
is. A reference variable’s value—in other words, the bit pattern the variable holds—is
not an object. Just as the value of a primitive variable is the bit pattern representing
the primitive (for example, the bits representing the integer value 2), the value of
a reference variable is a bit pattern representing, well, a reference. We’re not using
“traditional” pointers in Java, but you can still think of it as a pointer (not necessarily
a pointer to an object, but a pointer to a pointer to…). A reference variable holds
bits that represent, in a platform-dependent format, a way to get to an object. That’s
really all we care about, and all we’re even allowed to know about reference variables
in Java, unless you happen to be one of the developers of a JVM.

Final instance variables don’t have to be explicitly initialized in the same line in
which they’re declared, but the compiler will make sure that the final variable has
a value by the time the constructor has completed. Don’t count on the default
value for final variables, though, because a final variable—even if it’s an instance
variable—won’t be given one. The rule is: if you declare a final instance variable,
you’re obligated to give it an explicit value, and you must do so by the time the
constructor completes. Look at the following code:

class FinalTest{
final int x; // Will not work unless x is assigned in the constructor
public void showFinal() {

System.out.println("Final x = " + x);
}

}

Attempting to compile the preceding code gives us the following:

%javac FinalTest.java
FinalTest.java:2: Blank final variable 'x' may not have been
initialized. It must be assigned a value in an initializer, or in
every constructor.

final int x;
1 error

If you declare an instance variable as final, but don’t give it an explicit value at
the time you declare it, the variable is considered a blank final. The final instance
variable can stay blank only until the constructor completes.

class FinalTest{
final int x; // Will work because it's initialized in the constructor

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public FinalTest() {
x = 28; // Whew! The compiler is relieved that we took care of it
System.out.println("Final x = " + x);

}
}

So now we’ve seen that you need to assign a value to a final variable, but then
what? As we mentioned earlier, you can’t change a final variable once it’s been
initialized! Let’s look at declaring an object reference variable as final:

import java.util.Date;
class TestClass {

final Date d = new Date();
public void showSample() {

d.setYear(2001); //Altering Date object, not d variable, so it's OK
}

}

In the showSample() method in the preceding class, the year of the Date
instance is modified by invoking setYear() on the final reference variable d.
That’s perfectly legal, and the class compiles fine, because an instance can have its
data modified even though the reference to it is declared final. But now let’s see
what happens when we try to assign a new object to the final reference variable d,
after d has been initialized.

import java.util.Date;
class FinalTest {

final Date d = new Date(); // Initialize d
public void showSample() {

d.setYear(2001);
d = new Date(); // Won't work! Can't change the value of d

}
}

Code within the showSample() method tries to reassign a new object to d.
If we try to compile the preceding class, we’re treated to this error:

%javac FinalTest.java
FinalTest.java:6: Can't assign a value to a final variable: d

d = new Date();
1 error

38 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Declarations and Modifiers (Exam Objective 1.2) 39

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Look for code that tries to reassign a final variable, but don’t expect it to be
obvious. For example, a variable declared in an interface is always implicitly final,
whether you declare it that way or not! So you might see code similar to the
following:

interface Foo {

Integer x = new Integer(5); // x is implicitly final

}

class FooImpl implements Foo {

void doStuff() {

x = new Integer(5); // Big Trouble! Can’t assign new object to x

}

}

The reference variable x is final. No matter what. You’re allowed to explicitly
declare it as final if you like, but it doesn’t matter to the compiler whether
you do or not. It simply is final, just because it’s an interface variable, and
they are always implicitly public static final. We’ll look at interface
variables again later in this chapter, but for now just remember that a final
variable can’t be reassigned, and that in the case of interface variables,
they’re final even if they don’t say it out loud. The exam expects you to
spot any attempt to violate this rule.

We’ve now covered how the final modifier can be applied to classes, methods,
and variables. Figure 2-6 highlights the key points and differences of the various
applications of final.

Transient Variables If you mark an instance variable as transient, you’re
telling the JVM to skip (ignore) this variable when you attempt to serialize the
object declaring it. Serialization is one of the coolest features of Java; it lets you save
(sometimes called “flatten”) an object by writing its state (in other words, the value
of its instance variables) to a special type of IO stream. With serialization you can
save an object to a file, or even ship it over a wire for reinflating (deserializing) at
the other end, in another JVM. For the exam, you aren’t required to know how
serialization works, but you need to know that transient can be applied only
to instance variables.

Don’t be surprised, though, if serialization shows up in some future version of
the exam. Regardless of its relevance for the exam, serialization is one of the most

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

powerful aspects of Java and is worth your learning all about it. Most advanced uses
of Java—RMI, EJB, and Jini, for example—depend on it. OK, we’ll step off the
serialization soapbox now, and resume our exam prep already in progress.

Volatile Variables The volatile modifier tells the JVM that a thread
accessing the variable must always reconcile its own private copy of the variable with
the master copy in memory. Say what? Don’t worry about it. For the exam, all you
need to know about volatile is that, as with transient, it can be applied
only to instance variables. Make no mistake, the idea of multiple threads accessing

40 Chapter 2: Declarations and Access Control

FIGURE 2-6

The effect
of final
on variables,
methods,
and classes

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

an instance variable is scary stuff, and very important for any Java programmer to
understand. But as you’ll see in Chapter 9, you’ll probably use synchronization,
rather than the volatile modifier, to make your data thread-safe.

The volatile modifier may also be applied to project managers.

Static Variables and Methods
The static modifier has such a profound impact on the behavior of a method or
variable that we’re treating it as a concept entirely separate from the other modifiers.
To understand the way a static member works, we’ll look first at a reason for using
one. Imagine you’ve got a utility class with a method that always runs the same way;
its sole function is to return, say, a random number. It wouldn’t matter which
instance of the class performed the method—it would always behave exactly the
same way. In other words, the method’s behavior has no dependency on the state
(instance variable values) of an object. So why, then, do you need an object when
the method will never be instance-specific? Why not just ask the class itself to run
the method?

Let’s imagine another scenario: suppose you want to keep a running count of
all instances instantiated from a particular class. Where do you actually keep that
variable? It won’t work to keep it as an instance variable within the class whose
instances you’re tracking, because the count will just be initialized back to a default
value with each new instance. The answer to both the utility-method-always-
runs-the-same scenario and the keep-a-running-total-of-instances scenario is to use
the static modifier. Variables and methods marked static belong to the class,
rather than to any particular instance. In fact, you can use a static method or variable
without having any instances of that class at all. You need only have the class available
to be able to invoke a static method or access a static variable. Static variables, too, can
be accessed without having an instance of a class. But if there are instances, a static
variable of a class will be shared by all instances of that class; there is only one copy.

The following code declares and uses a static counter variable:

class Frog {
static int frogCount = 0; // Declare and initialize static variable
public Frog() {

frogCount += 1; // Modify the value in the constructor
}
public static void main (String [] args) {

new Frog();
new Frog();

Declarations and Modifiers (Exam Objective 1.2) 41

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

42 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

new Frog();
System.out.println("Frog count is now " + frogCount);

}
}

In the preceding code, the static frogCount variable is set to zero when the Frog class
is first loaded by the JVM, before any Frog instances are created! (By the way, you
don’t actually need to initialize a static variable to zero; static variables get the same
default values instance variables get.) Whenever a Frog instance is created, the Frog
constructor runs and increments the static frogCount variable. When this code
executes, three Frog instances are created in main(), and the result is

Frog count is now 3

Now imagine what would happen if frogCount were an instance variable (in other
words, nonstatic):

class Frog {
int frogCount = 0; // Declare and initialize instance variable
public Frog() {

frogCount += 1; // Modify the value in the constructor
}
public static void main (String [] args) {

new Frog();
new Frog();
new Frog();
System.out.println("Frog count is now " + frogCount);

}
}

When this code executes, it should still create three Frog instances in main(), but
the result is…a compiler error! We can never get this code to run because it won’t
even compile.

Frog.java:11: non-static variable frogCount cannot be referenced
from a static context

System.out.println("Frog count is " + frogCount);
^

1 error

The JVM doesn’t know which Frog object’s frogCount you’re trying to access. The
problem is that main() is itself a static method, and thus isn’t running against any
particular instance of the class, rather just on the class itself. A static method can’t
access a nonstatic (instance) variable, because there is no instance! That’s not to say
there aren’t instances of the class alive on the heap, but rather that even if there are,

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declarations and Modifiers (Exam Objective 1.2) 43

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

the static method doesn’t know anything about them. The same applies to instance
methods; a static method can’t directly invoke a nonstatic method. Think static =
class, nonstatic = instance. Making the method called by the JVM (main()) a
static method means the JVM doesn’t have to create an instance of your class just
to start running code.

One of the mistakes most often made by new Java programmers is attempting
to access an instance variable (which means nonstatic variable) from the
static main() method (which doesn’t know anything about any instances,
so it can’t access the variable). The following code is an example of illegal
access of a nonstatic variable from a static method:

class Foo {

int x = 3;

public static void main (String [] args) {

System.out.println(“x is “ + x);

}

}

Understand that this code will never compile, because you can’t access a
nonstatic (instance) variable from a static method. Just think of the compiler
saying, “Hey, I have no idea which Foo object’s x variable you’re trying to print!”
Remember, it’s the class running the main() method, not an instance of the
class. Of course, the tricky part for the exam is that the question won’t look
as obvious as the preceding code. The problem you’re being tested for—
accessing a nonstatic variable from a static method—will be buried in code
that might appear to be testing something else. For example, the code above
would be more likely to appear as

class Foo {

int x = 3;

float y = 4.3f;

public static void main (String [] args) {

for (int z = x; z < ++x; z--, y = y + z) {

// complicated looping and branching code

}

}

So while you’re off trying to follow the logic, the real issue is that x and y can’t
be used within main(), because x and y are instance, not static, variables! The
same applies for accessing nonstatic methods from a static method. The rule
is, a static method of a class can’t access a nonstatic (instance) member—
method or variable—of its own class.

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Accessing Static Methods and Variables
Since you don’t need to have an instance in order to invoke a static method or access
a static variable, then how do you invoke or use a static member? What’s the syntax?
We know that with a regular old instance method, you use the dot operator on a
reference to an instance:

class Frog {
int frogSize = 0;
public int getFrogSize() {

return frogSize;
}
public Frog(int s) {

frogSize = s;
}
public static void main (String [] args) {

Frog f = new Frog(25);
System.out.println(f.getFrogSize()); // Access instance method using f

}
}

In the preceding code, we instantiate a Frog, assign it to the reference variable f, and
then use that f reference to invoke a method on the Frog instance we just created. In
other words, the getFrogSize() method is being invoked on a specific Frog
object on the heap.

But this approach (using a reference to an object) isn’t appropriate for accessing
a static method, because there might not be any instances of the class at all! So, the
way we access a static method (or static variable) is to use the dot operator on the
class name, as opposed to on a reference to an instance, as follows:

class Frog {
static int frogCount = 0; // Declare and initialize static variable
public Frog() {

frogCount += 1; // Modify the value in the constructor
}

}

class TestFrog {
public static void main (String [] args) {
new Frog();
new Frog();
new Frog();
System.out.print("frogCount:"+Frog.frogCount); //Access static variable

}
}

44 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

But just to make it really confusing, the Java language also allows you to use an object
reference variable to access a static member:

Frog f = new Frog();
int frogs = f.getFrogCount; // Access static method getFrogCount using f

In the preceding code, we instantiate a Frog, assign the new Frog object to the
reference variable f, and then use the f reference to invoke a static method! But even
though we are using a specific Frog instance to access the static method, the rules
haven’t changed. This is merely a syntax trick to let you use an object reference
variable (but not the object it refers to) to get to a static method or variable, but the
static member is still unaware of the particular instance used to invoke the static
member. In the Frog example, the compiler knows that the reference variable f is of
type Frog, and so the Frog class static method is run with no awareness or concern
for the Frog instance at the other end of the f reference. In other words, the compiler
cares only that reference variable f is declared as type Frog. Figure 2-7 illustrates the
effects of the static modifier on methods and variables.

Another point to remember is that static methods can’t be overridden! This doesn’t
mean they can’t be redefined in a subclass, as we’ll see a little later when we look at
overriding in more detail, but redefining and overriding aren’t the same thing.

Things you can mark as static:

■ Methods

■ Variables

■ Top-level nested classes (we’ll look at nested classes in Chapter 8)

Things you can’t mark as static:

■ Constructors (makes no sense; a constructor is used only to create instances)

■ Classes

■ Interfaces

■ Inner classes (unless you want them to be top-level nested classes; we’ll explore
this in Chapter 7)

■ Inner class methods and instance variables

■ Local variables

Declarations and Modifiers (Exam Objective 1.2) 45

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

46 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

CERTIFICATION OBJECTIVE

Declaration Rules (Exam Objective 4.1)
Identify correctly constructed source files, package declarations, import statements, class
declarations (of all forms, including nested classes), interface declarations, method
declarations (including the main() method that is used to start execution of a class),
variable declarations, and identifiers.

The previous objective, 1.2, covered the fundamentals of declarations including
modifiers applied to classes, methods, and variables. In this objective, we’ll look at
how those fundamentals must be applied in a few specific situations. We’re not
covering all of Objective 4.1 in this section, however. Inner classes won’t be discussed
here because they’re already in Chapter 8, the chapter on inner classes (what are the

FIGURE 2-7

The effects of
static on methods
and variables

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declaration Rules (Exam Objective 4.1) 47

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

odds?), and we’ll hold off on interfaces until we get to Objective 4.2, the section
immediately following this one.

We promise that this section will be much shorter than the previous one. We
promise that we’ll introduce very little new information. We promise you’ll win
friends and influence people with your declaration prowess. We promise to stop
making promises.

Source Files, Package Declarations, and Import Statements
It’s been awhile since we looked at source declaration rules (about 30+ pages ago),
so let’s do a quick review of the rules again:

■ There can be only one public class per source code file.

■ The name of the file must match the name of the public class.

■ If the class is part of a package, the package statement must be the first line
in the source code file.

■ Import and package statements apply to all classes within a source code file.

■ If there are import statements, they must go between the package statement
and the class declaration. If there isn’t a package statement, the import
statement(s) must be the first line(s) in the source code file. If there are no
package or import statements, the class declaration must be the first line
in the source code file. (Comments don’t count; they can appear anywhere in
the source code file.)

Source File Structure
We know that you know all this, so we’ll just focus on the kinds of import and
package issues you might see on the exam. The following legal (albeit pretty useless)
code declares a class Foo, in package com.geeksanonymous:

package com.geeksanonymous; // Notice the semicolon
class Foo { }

There can be only one package statement per source code file, so the following
would not be legal:

package com.geeksanonymous;
package com.wickedlysmart; // Illegal! Only one package declaration allowed
class Foo { }

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If class Foo adds any import statements, they must be below the package declaration
and above the class declaration, as follows:

package com.geeksanonymous;
import java.util.*; // Wildcard package import
import com.wickedlysmart.Foo; // Explicit class import
class Foo { }

If class Foo has no package declaration, the import statements must be above the
class declaration, as follows:

import java.util.*; // Wildcard package import
import com.wickedlysmart.Foo; // Explicit class import
class Foo { }

You can have only one public class per source code file. You can put as many
classes in a source code file as you like, but only one (or none) can be public. The
file name should match the name of the public class, but if no public class is in the
file, you can name it whatever you like. The following source code file, with two
public classes, would be illegal:

package com.geeksanonymous;
public class Foo { }
public class Bat { }

But the following is fine:

package com.geeksanonymous;
class Foo { }
public class Bat { }

The order in which the classes appear makes no difference; as long as the package
and import statements appear before the first class (and in the correct order), the
class order doesn’t matter.

You should group classes into a single source code file only when those classes
should only be used together as one component. Typically, you’ll keep
each class in a separate file, with the file name matching the class name (a
requirement if the class is public; optional, but good practice, if the class has
default access). Putting multiple classes into a single source code file makes it
much harder to locate the source for a particular class, and makes the source
code less reusable.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

48 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Keep in mind that package and import declarations apply to all classes in a source
file! For the exam, you’ll need to recognize that the package declaration at the top
of a code example means that all classes in that file are in the same package.

The exam uses a line numbering scheme that indicates whether the code in
the question is a snippet (a partial code sample taken from a larger file), or
a complete file. If the line numbers start at 1, you’re looking at a complete
file. If the numbers start at some arbitrary (but always greater than 1)
number, you’re looking at only a fragment of code rather than the complete
source code file. For example, the following indicates a complete file:

1. package fluffy;

2. class Bunny {

3. public void hop() { }

4. }

whereas the following indicates a snippet:

9. public void hop() {

10. System.out.println(“hopping”);

11. }

Using Import Statements
Import statements come in two flavors—wildcard import and explicit class import.
Before we look at both in more detail, say it with me again, “Java is not C.” An
import statement is not an include ! Import statements are little more than a way
for you to save keystrokes when you’re typing your code. When you put a class in
a package (through the package declaration), you essentially give the class a longer
name, which we call the fully qualified name. The fully qualified name of a class,
as opposed to just the class name, is like talking about the difference between your
full name (say, Albert James Bates IV) and your first name (Albert).

For example, if class Foo is in a package com.geeksanonymous,
the Foo class is still named Foo, but it also has a fully qualified name of
com.geeksanonymous.Foo. As we looked at earlier, package organization
helps prevent name collisions—in case other programmers build a class named
Foo, for example. But if a programmer from WickedlySmart builds a Foo class,
its fully qualified name will be com.wickedlysmart.Foo (or possibly
even com.wickedlysmart.projectx.Foo), while a programmer
from GeeksAnonymous gives her Foo class the fully qualified name of

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Declaration Rules (Exam Objective 4.1) 49

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

com.geeksanonymous.Foo. Once you put Foo in a package, if you refer
to the Foo class in some other code, the compiler needs to know which Foo you’re
talking about.

OK, so given that there might be more than one Foo floating around, and that
even within a single application you might want to use, say, two different Foo classes,
you need a way to distinguish between them. Otherwise, the compiler would never
know what you meant if you typed the following:

class Bar {
void doStuff() {

Foo f = new Foo(); // Here you want the WickedlySmart version
} // But how will the compiler know?

}

To eliminate the confusion, you’re required to do one of two things to help the
compiler:

1. Use an import statement,

import com.wickedlysmart.Foo;

class Bar {

void doStuff() {

Foo f = new Foo(); // Now the compiler knows which one to use

}

}

or

2. Use the fully qualified name throughout your code:

class Bar {

void doStuff() {

com.wickedlysmart.Foo f = new com.wickedlysmart.Foo() // No doubts

}

}

OK, we don’t know about you, but we’d prefer the one with less typing. The
import statement is almost always the way to go. You need to recognize that
either option is legal, however. And using both together is legal as well. It’s not a
problem, for example, to do the following:

50 Chapter 2: Declarations and Access Control

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import com.wickedlysmart.Foo; // Import class Foo
class Bar {
void doStuff() {

com.wickedlysmart.Foo f = new com.wickedlysmart.Foo() //OK; not needed
}

}

You might see questions that appear to be asking about classes and packages
in the core Java API that you haven’t studied, because you didn’t think they
were part of the exam objectives. For example, if you see a question like

class Foo extends java.rmi.UnicastRemoteObject {

/// more code

}

don’t panic! You’re not actually being tested on your RMI knowledge, but
rather a language and/or syntax issue. If you see code that references a class
you’re not familiar with, you can assume you’re being tested on the way in
which the code is structured, as opposed to what the class actually does. In the
preceding code example, the question might really be about whether you
need an import statement if you use the fully qualified name in your code
(the answer is no, by the way).

When do you use wildcard package imports vs. explicit class imports? Most of the
time the compiler is just as happy with either, so the choice is more a matter of style
and/or convenience. The tradeoffs usually come down to readability vs. typing.

If you use the wildcard import, other programmers reading your code will know
that you’re referencing classes from a particular package, but they won’t be able to
know how many classes—and what those classes are—from the package you’ve used
unless they wade through the rest of the code! So the explicit class import helps folks
reading your code (including you, if you’re like most programmers and forget what
you wrote a week after writing it) know exactly which classes you’re using. On the
other hand, if you’re using, say, seven classes from a single package, it gets tedious to
type each class in specifically. If we were forced at gunpoint to pick sides, we’d prefer
the explicit class import, because of its, well, explicitness.

The one difference that might matter to you (but which you won’t need to know
for the exam) is that the order in which the compiler resolves imports is not simply
top to bottom. Explicit imports are resolved first, then the classes from the current
package, and last—the implicit imports.

Declaration Rules (Exam Objective 4.1) 51

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Look for syntax errors on import statements. Can you spot what’s wrong with
the following code?

import java.util.Arraylist.*; // Wildcard import

import java.util; // Explicit class import

The first import looks like it should be a valid wildcard import, but ArrayList
is a class, not a package, so it makes no sense (not to mention making the
compiler cranky) to use the wildcard import on a single class. Pay attention to
the syntax detail of the import statement, by looking at how the statement
ends. If it ends with .*; (dot, asterisk, semicolon), then it must be a wildcard
statement; therefore, the thing immediately preceding the .*; must be a
package name, not a class name. Conversely, the second import looks like
an explicit class import, but util is a package, not a class, so you can’t end
that statement with a semicolon.

Think about another dilemma for a moment: what happens if you have two
classes with the same name, from two different packages, and you want to use both
in the same source code? In that case, you have to use the fully qualified names in
code. Even in the core class libraries you’ll find more than one class using the same
name. You’ll find a List class, for example, in both java.awt and java.util.
If you want to use both, you’ll have to make it clear to the compiler.

Wildcard imports alone won’t work properly since importing both packages still
doesn’t help the compiler figure out which version of the List class you want. The
following code shows the problem of trying to use two classes of the same name
(although different packages):

import java.awt.*;
import java.util.*;

class TestImport {
void doStuff() {

List fromAWT = new List(); // How will the compiler know which to use?
List fromUtil = new List(); // How will the compiler know which to use?

}
}

The preceding code confuses the compiler (never a pretty thing), and you’ll get a
message similar to this:

TestImport.java:6: reference to List is ambiguous, both class
java.util.List in java.util and class java.awt.List in java.awt
match

52 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

List w = new List();
^

Formatting the Main() Method
When you want your code to actually run, you have to get the ball rolling with a
main() method. The following rules apply to the main() method:

■ It must be marked static.

■ It must have a void return type.

■ It must have a single String array argument.

■ You can name the argument anything you want.

■ It should be declared public (for the purposes of the exam, assume it
must be public).

There’s nothing special about the main() method; it’s just another static
method in your class. The only thing that makes it different from other methods is
that it has the signature the JVM is looking for when you invoke Java as follows:

java MyClass

Typing that at the command line starts the JVM looking for the class file named
MyClass, and when it finds it, it looks for the main() method—the one with a
signature matching what the JVM is searching for. If it finds the matching method,
you’re good to go. If it doesn’t, you get a runtime error like this:

Exception in thread "main" java.lang.NoSuchMethodError: main

The tricky thing about this error is that you can get it even when there is a main()
method. The following code compiles fine, but still produces the previous
NoSuchMethodError when you try to invoke this class from the command line:

class MyClass {
public void main (String [] args) { }

}

Did you spot the problem? There is a main() method, but it isn’t static. So when
we say “the main() method,” you need to know whether we mean “a method that

Declaration Rules (Exam Objective 4.1) 53

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

happens to be named main()” (which you’re allowed to have) or “the Main()
Method”—the one the JVM looks for.

Look for lots of subtle variations surrounding the main() method. You might
see classes with a main() method similar to the preceding example, where
the signature doesn’t match what the JVM wants. You must know that not
having a proper main() method is a runtime error, not a compiler error! So while
you’re completely free to have as many methods named main() as you like
(or none at all), if no methods match the main() method the JVM looks for,
then you won’t be able to run the class by invoking Java using that class’
name. You can still instantiate the class from other code (or invoke its static
methods once the JVM is already running), it just can’t be used to crank up a
virtual machine and bootstrap your program. If the main() method doesn’t
look like this:

public static void main (String [] args) { }

you won’t be able to run the class. You actually do have a few slight variations
you can make to the main() method. For example, the following is a
perfectly legal, executable main() method:

static public void main (String whatever []) { }

In other words, you’re allowed to name the String array argument whatever
you like, and the static and public modifiers can be used in a different
order. The most important point for the exam is to know that not having the
“able-to-run” main() method is a runtime, rather than compiler, error. A
class with a legal, nonstatic main() method, for example, will compile just
fine, and other code is free to call that method. But when it comes time to
use that class to invoke the JVM, that nonstatic main() method just won’t
cut it, and you’ll get the runtime error.

We’ve covered everything we need for this objective except for interface declarations,
which we’ll look at next, and inner class declarations, which we’ll look at in Chapter
8. The key points for this objective are the structure of a source code file (where to
place the package, import, and class declarations) and the signature of the main()
method (public static void main (String [] args)). Next, we’re going
to dive into the rules for declaring and implementing interfaces.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

54 Chapter 2: Declarations and Access Control

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Interface Implementation (Exam Objective 4.2) 55

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

CERTIFICATION OBJECTIVE

Interface Implementation (Exam Objective 4.2)
Identify classes that correctly implement an interface where that interface is either
java.lang.Runnable or a fully specified interface in the question.

So far in this chapter, we began with Objective 1.2—a look at how to use
modifiers in class, method, and variable declarations. Next, for Objective 4.1, we
covered the rules for structuring a source code file and declaring the main()
method. In this objective, we’ll focus on interface declarations and implementations.

You must know how to implement the java.lang.Runnable interface,
without being shown the code in the question. In other words, you might
be asked to choose from a list of six classes which one provides a correct
implementation of Runnable . Be sure you memorize the signature of the
one and only one Runnable interface method:

public void run() { }

For any other interface-related question not dealing with Runnable , if the
specification of the interface matters, the interface code will appear in the
question. A question, for example, might show you a complete interface and
a complete class, and ask you to choose whether or not the class correctly
implements the interface. But if the question is about Runnable , you won’t
be shown the interface. You’re expected to have Runnable memorized!

Declaring an Interface
When you create an interface, you’re defining a contract for what a class can do,
without saying anything about how the class will do it. An interface is a contract.
You could write an interface Bounceable, for example, that says in effect, “This
is the Bounceable interface. Any class type that implements this interface must agree
to write the code for the bounce() and setBounceFactor() methods.”

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

By defining an interface for Bounceable, any class that wants to be treated as a
Bounceable thing can simply implement the Bounceable interface and provide code
for the interface’s two methods.

Interfaces can be implemented by any class, from any inheritance tree. This lets
you take radically different classes and give them a common characteristic. For
example, you might want both a Ball and a Tire to have bounce behavior, but
Ball and Tire don’t share any inheritance relationship; Ball extends Toy while
Tire extends only java.lang.Object. But by making both Ball and Tire
implement Bounceable, you’re saying that Ball and Tire can be treated as, “Things
that can bounce,” which in Java translates to “Things on which you can invoke the
bounce() and setBounceFactor() methods.” Figure 2-8 illustrates the
relationship between interfaces and classes.

Think of an interface as a 100-percent abstract class. Like an abstract class, an
interface defines abstract methods that take the form,

abstract void bounce(); // Ends with a semicolon rather than curly braces

But while an abstract class can define both abstract and nonabstract methods,
an interface can have only abstract methods. Another place interfaces differ from

56 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

FIGURE 2-8

The relationship
between
interfaces
and classes

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

abstract classes is that interfaces have very little flexibility in how the methods and
variables defined in the interface are declared. The rules are strict, but simple:

■ All interface methods are implicitly public and abstract.

■ Interface methods must not be static.

■ You do not need to actually type the public or abstract modifiers in
the method declaration, but the method is still always public and abstract.

■ All variables defined in an interface must be public, static, and final—in
other words, interfaces can declare only constants, not instance variables.

■ Because interface methods are abstract, they cannot be marked final,
native, strictfp, or synchronized.

■ An interface can extend one or more other interfaces.

■ An interface cannot extend anything but another interface.

■ An interface cannot implement another interface or class.

■ An interface must be declared with the keyword interface.

■ Interface types can be used polymorphically (see Chapter 5 for more details).

The following is a legal interface declaration:

public abstract interface Rollable { }

Typing in the abstract modifier is considered redundant; interfaces are
implicitly abstract whether you type abstract or not. You just need to know that
both of these declarations are legal, and functionally identical:

public abstract interface Rollable { }
public interface Rollable { }

The public modifier is required if you want the interface to have public rather
than default access.

We’ve looked at the interface declaration but now we’ll look closely at the methods
within an interface:

public interface Bounceable {
public abstract void bounce();
public abstract void setBounceFactor(int bf);

}

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Interface Implementation (Exam Objective 4.2) 57

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Typing in the public and abstract modifiers on the methods is redundant,
though, since all interface methods are implicitly public and abstract. Given that
rule, you can see that the following code is exactly equivalent to the preceding
interface:

public interface Bounceable {
void bounce(); // No modifiers
void setBounceFactor(int bf); // No modifiers

}

You must remember that all interface methods are public and abstract regardless of
what you see in the interface definition.

Look for interface methods declared with any combination of public,
abstract, or no modifiers. For example, the following five method
declarations, if declared within an interface, are legal and identical!

void bounce();

public void bounce();

abstract void bounce();

public abstract void bounce();

abstract public void bounce();

The following interface method declarations won’t compile:

final void bounce(); // final and abstract can never be used

static void bounce(); // interfaces define instance methods

private void bounce(); // interface methods are always public

protected void bounce(); // (same as above)

synchronized void bounce(); // can’t mix abstract and synchronized

native void bounce(); // can’t mix abstract and native

strictfp void bounce(); // can’t mix abstract and strictfp

Declaring Interface Constants
You’re allowed to put constants in an interface. By doing so, you guarantee that
any class implementing the interface will have access to the same constant. Imagine
that a Bounceable thing works by using int values to represent gravity where the
Bounceable thing is, its degree of bounciness (bounce-osity?), and so on. Now
imagine that for a Bounceable thing, gravity is set such that a 1 is low, 2 is medium,
3 is high, and for bounciness, 4 is a little bouncy, 8 is very bouncy, and 12 is

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

58 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

extremely bouncy. Those numbers are tough to remember when you’re trying to
decide how to set the values (“let’s see, was it 8 for high gravity and 3 for medium
bounce? Or was it the other way around…”). Now let’s say that you (the developer
of Bounceable) decide that it would be much easier for programmers to remember
names like HIGH_GRAVITY, LOW_BOUNCE, and HIGH_BOUNCE as opposed
to knowing the exact int values corresponding to each of those. So, you know you
want to define some constants so the programmer can just use the constant name
rather than the int value. You need something like the following:

public final static int LOW_BOUNCE = 4;
public final static int HIGH_GRAVITY = 3;
… // and so on

That way, if a method takes the int values,

public void animateIt(int gravity, int bounceFactor) { }

then the code that calls animateIt() can substitute the constants wherever the
int values are expected, as follows:

animator.animateIt(LOW_GRAVITY, HIGH_BOUNCE);

So we’ve made a case for using constants with easy-to-remember names (as
opposed to using nearly arbitrary numbers), but where do you put these constants
so that all Bounceable things (things as in “things that implement the Bounceable
interface”) can substitute the int constant name everywhere one of the int values
is needed? You could define them in some companion class called, for example,
BounceableConstants. But why not just put them in the Bounceable interface? That
way you can guarantee that all Bounceable things will always have access to the
constants, without having to create another class. Look at the changes we’ve made
to the Bounceable interface:

public interface Bounceable {
int LOW_GRAVITY = 1;
int MEDIUM_GRAVITY = 2;
int HIGH_GRAVITY = 3;
int LOW_BOUNCE = 4;
int MEDIUM_BOUNCE = 8;
int HIGH_BOUNCE = 12;

void bounce();

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Interface Implementation (Exam Objective 4.2) 59

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

60 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

void setBounceFactor(int bounceFactor);
void setGravity(int gravity);

}

By placing the constants right in the interface, any class that implements the interface
has direct access to the constants, just as if the class had inherited them. For example,
the following would be legal for a Bounceable implementation class:

class Ball implements Bounceable {
// Lots of exciting code goes here
public void bounce() {

animator.animateIt(LOW_GRAVITY, HIGH_BOUNCE); // MUCH easier this way
}
// Still more action-packed code goes here

}

You need to remember a few rules for interface constants. They must always be

■ public

■ static

■ final

So that sounds simple, right? After all, interface constants are no different
from any other publicly accessible constants, so they obviously must be declared
public, static, and final. But before you breeze past the rest of this
discussion, think about the implications. First, because interface constants are
defined in an interface, they don’t have to be declared as public, static, or
final. They must be public, static, and final, but you don’t have to actually declare
them that way. Just as interface methods are always public and abstract whether
you say so in the code or not, any variable defined in an interface must be—and
implicitly is—a public constant. See if you can spot the problem with the following
implementation of Bounceable:

class Check implements Bounceable {
// Implementation code goes here
public void adjustGravityFactors(int x) {

if (x > LOW_GRAVITY) {
LOW_GRAVITY = x;
MEDIUM_GRAVITY = x + 1;
HIGH-GRAVITY = x + 2;
}

}
}

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can’t change the value of a constant! Once the value has been assigned, the
value can never be modified. The assignment happens in the interface itself (where
the constant is declared), so the implementing class can access it and use it, but as a
read-only value.

Look for interface definitions that define constants, but without explicitly
using the required modifiers. For example, the following are all identical:

public int x = 1; // Looks non-static and non-final, but isn’t!

int x = 1; // Looks default, non-final, and non-static, but isn’t!

static int x = 1; // Doesn’t show final or public

final int x = 1; // Doesn’t show static or public

public static int x = 1; // Doesn’t show final

public final int x = 1; // Doesn’t show static

static final int x = 1 // Doesn’t show public

public static final int x = 1; // Exactly what you get implicitly

Any combination of the required (but implicit) modifiers is legal, as is using
no modifiers at all! On the exam, you can expect to see questions you won’t
be able to answer correctly unless you know, for example, that an interface
variable is final and can never be given a value by the implementing (or any
other) class.

Implementing an Interface
When you implement an interface, you’re agreeing to adhere to the contract defined
in the interface. That means you’re agreeing to provide legal implementations for
every method defined in the interface, and that anyone who knows what the interface
methods look like (not how they’re implemented, but how they can be called and
what they return) can rest assured that they can invoke those methods on an instance
of your implementing class.

For example, if you create a class that implements the Runnable interface (so
that your code can be executed by a specific thread), you must provide the public
void run() method. Otherwise, the poor thread could be told to go execute your
Runnable object’s code and—surprise surprise—the thread then discovers the
object has no run() method! (At which point, the thread would blow up and the
JVM would crash in a spectacular yet horrible explosion.) Thankfully, Java prevents
this meltdown from occurring by running a compiler check on any class that claims
to implement an interface. If the class says it’s implementing an interface, it darn well

Interface Implementation (Exam Objective 4.2) 61

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

better have an implementation for each method in the interface (with a few exceptions
we’ll look at in a moment).

We looked earlier at several examples of implementation classes, including the
Ball class that implements Bounceable, but the following class would also
compile legally:

public class Ball implements Bounceable { // Keyword 'implements'
public void bounce() { }
public void setBounceFactor(int bf) { }

}

OK, we know what you’re thinking: “This has got to be the worst implementation
class in the history of implementation classes.” It compiles, though. And runs. The
interface contract guarantees that a class will have the method (in other words,
others can call the method subject to access control), but it never guaranteed a good
implementation—or even any actual implementation code in the body of the
method. The compiler will never say to you, “Um, excuse me, but did you really
mean to put nothing between those curly braces? HELLO. This is a method after
all, so shouldn’t it do something?”

Implementation classes must adhere to the same rules for method implementation
as a class extending an abstract class. In order to be a legal implementation class, a
nonabstract implementation class must do the following:

■ Provide concrete (nonabstract) implementations for all methods from the
declared interface.

■ Follow all the rules for legal overrides (see Chapter 5 for details).

■ Declare no checked exceptions on implementation methods other than
those declared by the interface method, or subclasses of those declared by
the interface method.

■ Maintain the signature of the interface method, and maintain the same
return type (but does not have to declare the exceptions declared in the
interface method declaration).

But wait, there’s more! An implementation class can itself be abstract! For
example, the following is legal for a class Ball implementing the Bounceable
interface:

abstract class Ball implements Bounceable { }

62 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Interface Implementation (Exam Objective 4.2) 63

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

Notice anything missing? We never provided the implementation methods. And
that’s OK. If the implementation class is abstract, it can simply pass the buck to its
first concrete subclass. For example, if class BeachBall extends Ball, and BeachBall is
not abstract, then BeachBall will have to provide all the methods from Bounceable:

class BeachBall extends Ball {
// Even though we don't say it in the class declaration above,
//BeachBall implements Bounceable, since BeachBall's abstract
//superclass (Ball) implements Bounceable

public void bounce() {
// interesting BeachBall-specific bounce code

}
public void setBounceFactor(int bf) {

// clever BeachBall-specific code for setting a bounce factor
}
// if class Ball defined any abstract methods, they'll have to be
// implemented here as well.

}

Look for methods that claim to implement an interface but don’t provide the
correct method implementations. Unless the implementing class is abstract,
the implementing class must provide implementations for all methods defined
in the interface.

Two more rules you need to know and then we can put this topic to sleep (or put
you to sleep; we always get those two confused):

1. A class can extend more than one interface.

It’s perfectly legal to say, for example, the following:

public class Ball implements Bounceable, Serializable,
Runnable { … }

You can extend only one class, but implement many. But remember that
subclassing defines who and what you are, whereas implementing defines
a role you can play or a hat you can wear, despite how different you
might be from some other class implementing the same interface (but from
a different inheritance tree). For example, a person extends HumanBeing
(although for some, that’s debatable). But a person may also implement
programmer, snowboarder, employee, parent, or
personcrazyenoughtotakethisexam.

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

2. An interface can itself extend another interface, but never implement
anything.

The following code is perfectly legal:

public interface Bounceable extends Moveable { }

What does that mean? The first concrete (nonabstract) implementation class
of Bounceable must implement all the methods of Bounceable, plus all
the methods of Moveable! The subinterface, as we call it, simply adds more
requirements to the contract of the superinterface. You’ll see this concept
applied in many areas of Java, especially J2EE where you’ll often have to
build your own interface that extends one of the J2EE interfaces.

Hold on though, because here’s where it gets strange. An interface can extend
more than one interface! Think about that for a moment. You know that when we’re
talking about classes, the following is illegal:

public class Programmer extends Employee, Geek { } // Illegal!

A class is not allowed to extend multiple classes in Java. It that were allowed, it
would be multiple inheritance, a potential nightmare in some scenarios (more on
that in Chapter 5). An interface, however, is free to extend multiple interfaces.

interface Bounceable extends Moveable, Spherical {
void bounce();
void setBounceFactor(int bf);

}

interface Moveable {
void moveIt();

}

interface Spherical {
void doSphericalThing();

}

Ball is required to implement Bounceable, plus all methods from the interfaces
that Bounceable extends (including any interfaces those interfaces extend and so on

64 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

until you reach the top of the stack—or is it bottom of the stack?—well, you know
what we mean). So Ball would need to look like the following:

class Ball implements Bounceable {
// Implement the methods from Bounceable
public void bounce() { }
public void setBounceFactor(int bf) { }

// Implement the methods from Moveable
public void moveIt() { }

// Implement the methods from Spherical
public void doSphericalThing() { }

}

If class Ball fails to implement any of the methods from Bounceable, Moveable,
or Spherical, the compiler will jump up and down wildly, red in the face, until it
does. Unless, that is, class Ball is marked abstract. In that case, Ball could choose to
implement any, all, or none of the methods from any of the interfaces, thus leaving
the rest of the implementations to a concrete subclass of Ball, as follows:

abstract class Ball implements Bounceable {
public void bounce() { … } // Define bounce behavior
public void setBounceFactor(int bf) { … }
// Don't implement the rest; leave it for a subclass

}

class SoccerBall extends Ball {
// class SoccerBall must implement the interface methods that Ball didn't
public void moveIt() { … }
public void doSphericalThing() { … }
// SoccerBall can choose to override the Bounceable methods
// implemented by Ball
public void bounce() { … }

}

Figure 2-9 compares the legal and illegal use of extends and implements, for both
classes and interfaces.

Interface Implementation (Exam Objective 4.2) 65

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

66 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

FIGURE 2-9 Legal and illegal uses of extends and implements

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Look for illegal uses of extends and implements. The following shows
examples of legal and illegal class and interface declarations:

class Foo { } // OK
class Bar implements Foo { } // No! Can’t implement a class
interface Baz { } // OK
interface Fi { } // OK
interface Fee implements Baz { } // No! Interface can’t implement an interface
interface Zee implements Foo { } // No! Interface can’t implement a class
interface Zoo extends Foo { } // No! Interface can’t extend a class
interface Boo extends Fi { } // OK. Interface can extend an interface
class Toon extends Foo, Button { } // No! Class can’t extend multiple classes
class Zoom implements Fi, Fee { } // OK. class can implement multiple interfaces
interface Vroom extends Fi, Fee { } // OK. interface can extend multiple interfaces

Burn these in, and watch for abuses in the questions you get on the exam.
Regardless of what the question appears to be testing, the real problem might
be the class or interface declaration. Before you get caught up in, say, tracing
a complex threading flow, check to see if the code will even compile. (Just
that tip alone may be worth your putting us in your will!) (You’ll be impressed
by the effort the exam developers put into distracting you from the real
problem.) (How did people manage to write anything before parentheses
were (was?) invented?)

CERTIFICATION SUMMARY
You now have a good understanding of access control as it relates to classes,
methods, and variables. You’ve looked at how access modifiers (public,
protected, private) define the access control of a class or member.
You’ve also looked at the other modifiers including static, final, abstract,
synchronized, etc. You’ve learned how some modifiers can never be combined
in a declaration, such as mixing final with abstract or abstract with
private.

Keep in mind that there are no final objects in Java. A reference variable marked
final can never be changed, but the object it refers to can be modified. You’ve seen
that final applied to methods means a subclass can’t override them, and when
applied to a class, the final class can’t be subclassed.

Interface Implementation (Exam Objective 4.2) 67

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You learned that abstract classes can contain both abstract and nonabstract
methods, but that if even a single method is marked abstract, the class must be
marked abstract. Don’t forget that a concrete (nonabstract) subclass of an abstract
class must provide implementations for all the abstract methods of the superclass,
but that an abstract class does not have to implement the abstract methods from
its superclass. An abstract subclass can “pass the buck” to the first concrete subclass.

Remember what you’ve learned about static variables and methods, especially
that static members are per-class as opposed to per-instance. Don’t forget that a static
method can’t directly access an instance variable from the class it’s in, because it
doesn’t have an explicit reference to any particular instance of the class.

You’ve also looked at source code declarations, including the use of package and
import statements. Don’t forget that you can have a main() method with any legal
signature you like, but if it isn’t public static void main (String []
args), the JVM won’t be able to invoke it to start your program running.

Finally, you covered interface implementation, including the requirement to
implement public void run() for a class that implements Runnable. You
also saw that interfaces can extend another interface (even multiple interfaces), and
that any class that implements an interface must implement all methods from all
the interfaces in the inheritance tree of the interface the class is implementing.

Before you hurl yourself at the practice test, spend some time with the following
optimistically named “Two-Minute Drill.” Come back to this particular drill often,
as you work through this book and especially when you’re doing that last-minute
cramming. Because—and here’s the advice you wished your mother had given you
before you left for college—it’s not what you know, it’s when you know it.

68 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Two-Minute Drill 69

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

✓TWO-MINUTE DRILL

Class Access Modifiers
❑ There are three access modifiers: public, protected, and private.

❑ There are four access levels: public, protected, default, and
private.

❑ Classes can have only public or default access.

❑ Class visibility revolves around whether code in one class can:

❑ Create an instance of another class

❑ Extend (or subclass), another class

❑ Access methods and variables of another class

❑ A class with default access can be seen only by classes within the same
package.

❑ A class with public access can be seen by all classes from all packages.

Class Modifiers (nonaccess)
❑ Classes can also be modified with final, abstract, or strictfp.

❑ A class cannot be both final and abstract.

❑ A final class cannot be subclassed.

❑ An abstract class cannot be instantiated.

❑ A single abstract method in a class means the whole class must be abstract.

❑ An abstract class can have both abstract and nonabstract methods.

❑ The first concrete class to extend an abstract class must implement all
abstract methods.

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Member Access Modifiers
❑ Methods and instance (nonlocal) variables are known as “members.”

❑ Members can use all four access levels: public, protected, default,
private.

❑ Member access comes in two forms:

❑ Code in one class can access a member of another class.

❑ A subclass can inherit a member of its superclass.

❑ If a class cannot be accessed, its members cannot be accessed.

❑ Determine class visibility before determining member visibility.

❑ Public members can be accessed by all other classes, even in different packages.

❑ If a superclass member is public, the subclass inherits it—regardless of
package.

❑ Members accessed without the dot operator (.) must belong to the same class.

❑ this. always refers to the currently executing object.

❑ this.aMethod() is the same as just invoking aMethod().

❑ Private members can be accessed only by code in the same class.

❑ Private members are not visible to subclasses, so private members cannot be
inherited.

❑ Default and protected members differ only in when subclasses are involved:

❑ Default members can be accessed only by other classes in the same package.

❑ Protected members can be accessed by other classes in the same package,
plus subclasses regardless of package.

❑ Protected = package plus kids (kids meaning subclasses).

❑ For subclasses outside the package, the protected member can be accessed
only through inheritance; a subclass outside the package cannot access a
protected member by using a reference to an instance of the superclass (in
other words, inheritance is the only mechanism for a subclass outside the
package to access a protected member of its superclass).

❑ A protected member inherited by a subclass from another package is, in
practice, private to all other classes (in other words, no other classes from

70 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the subclass’ package or any other package will have access to the protected
member from the subclass).

Local Variables
❑ Local (method, automatic, stack) variable declarations cannot have access

modifiers.

❑ final is the only modifier available to local variables.

❑ Local variables don’t get default values, so they must be initialized before use.

Other Modifiers—Members
❑ Final methods cannot be overridden in a subclass.

❑ Abstract methods have been declared, with a signature and return type, but
have not been implemented.

❑ Abstract methods end in a semicolon—no curly braces.

❑ Three ways to spot a nonabstract method:

❑ The method is not marked abstract.

❑ The method has curly braces.

❑ The method has code between the curly braces.

❑ The first nonabstract (concrete) class to extend an abstract class must
implement all of the abstract class’ abstract methods.

❑ Abstract methods must be implemented by a subclass, so they must be
inheritable. For that reason:

❑ Abstract methods cannot be private.

❑ Abstract methods cannot be final.

❑ The synchronized modifier applies only to methods.

❑ Synchronized methods can have any access control and can also be marked
final.

❑ Synchronized methods cannot be abstract.

❑ The native modifier applies only to methods.

❑ The strictfp modifier applies only to classes and methods.

Two-Minute Drill 71

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

❑ Instance variables can

❑ Have any access control

❑ Be marked final or transient

❑ Instance variables cannot be declared abstract, synchronized,
native, or strictfp.

❑ It is legal to declare a local variable with the same name as an instance
variable; this is called “shadowing.”

❑ Final variables have the following properties:

❑ Final variables cannot be reinitialized once assigned a value.

❑ Final reference variables cannot refer to a different object once the object
has been assigned to the final variable.

❑ Final reference variables must be initialized before the constructor completes.

❑ There is no such thing as a final object. An object reference marked final
does not mean the object itself is immutable.

❑ The transient modifier applies only to instance variables.

❑ The volatile modifier applies only to instance variables.

Static variables and methods
❑ They are not tied to any particular instance of a class.

❑ An instance of a class does not need to exist in order to use static members of
the class.

❑ There is only one copy of a static variable per class and all instances share it.

❑ Static variables get the same default values as instance variables.

❑ A static method (such as main()) cannot access a nonstatic (instance)
variable.

❑ Static members are accessed using the class name:
ClassName.theStaticMethodName()

❑ Static members can also be accessed using an instance reference variable,
someObj.theStaticMethodName()
but that’s just a syntax trick; the static method won’t know anything about
the instance referred to by the variable used to invoke the method. The

72 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

compiler uses the class type of the reference variable to determine which static
method to invoke.

❑ Static methods cannot be overridden, although they can be redeclared/
redefined by a subclass. So although static methods can sometimes appear to
be overridden, polymorphism will not apply (more on this in Chapter 5).

Declaration Rules
❑ A source code file can have only one public class.

❑ If the source file contains a public class, the file name should match the
public class name.

❑ A file can have only one package statement, but can have multiple import
statements.

❑ The package statement (if any) must be the first line in a source file.

❑ The import statements (if any) must come after the package and before
the class declaration.

❑ If there is no package statement, import statements must be the first
statements in the source file.

❑ Package and import statements apply to all classes in the file.

❑ A file can have more than one nonpublic class.

❑ Files with no public classes have no naming restrictions.

❑ In a file, classes can be listed in any order (there is no forward referencing
problem).

❑ Import statements only provide a typing shortcut to a class’ fully qualified
name.

❑ Import statements cause no performance hits and do not increase the size
of your code.

❑ If you use a class from a different package, but do not import the class, you
must use the fully qualified name of the class everywhere the class is used
in code.

❑ Import statements can coexist with fully qualified class names in a source file.

❑ Imports ending in ‘.*;’ are importing all classes within a package.

Two-Minute Drill 73

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ Imports ending in ‘;’ are importing a single class.

❑ You must use fully qualified names when you have different classes from
different packages, with the same class name; an import statement will not
be explicit enough.

Properties of main()
❑ It must be marked static.

❑ It must have a void return type.

❑ It must have a single String array argument; the name of the argument is
flexible, but the convention is args.

❑ For the purposes of the exam, assume that the main() method must be
public.

❑ Improper main() method declarations (or the lack of a main() method)
cause a runtime error, not a compiler error.

❑ In the declaration of main(), the order of public and static can be
switched, and args can be renamed.

❑ Other overloaded methods named main() can exist legally in the class, but
if none of them match the expected signature for the main() method, then
the JVM won’t be able to use that class to start your application running.

java.lang.Runnable
❑ You must memorize the java.lang.Runnable interface; it has a single

method you must implement: public void run {}.

Interface Implementation
❑ Interfaces are contracts for what a class can do, but they say nothing about

the way in which the class must do it.

❑ Interfaces can be implemented by any class, from any inheritance tree.

❑ An interface is like a 100-percent abstract class, and is implicitly abstract
whether you type the abstract modifier in the declaration or not.

❑ An interface can have only abstract methods, no concrete methods allowed.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

74 Chapter 2: Declarations and Access Control

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ Interfaces are by default public and abstract—explicit declaration of these
modifiers is optional.

❑ Interfaces can have constants, which are always implicitly public,
static, and final.

❑ Interface constant declarations of public, static, and final are
optional in any combination.

❑ A legal nonabstract implementing class has the following properties:

❑ It provides concrete implementations for all methods from the interface.

❑ It must follow all legal override rules for the methods it implements.

❑ It must not declare any new checked exceptions for an implementation
method.

❑ It must not declare any checked exceptions that are broader than the
exceptions declared in the interface method.

❑ It may declare runtime exceptions on any interface method
implementation regardless of the interface declaration.

❑ It must maintain the exact signature and return type of the methods it
implements (but does not have to declare the exceptions of the interface).

❑ A class implementing an interface can itself be abstract.

❑ An abstract implementing class does not have to implement the interface
methods (but the first concrete subclass must).

❑ A class can extend only one class (no multiple inheritance), but it can
implement many.

❑ Interfaces can extend one or more other interfaces.

❑ Interfaces cannot extend a class, or implement a class or interface.

❑ When taking the exam, verify that interface and class declarations are legal
before verifying other code logic.

Two-Minute Drill 75

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question.

Declarations and Modifiers (Sun Objective 1.2)

1. What is the most restrictive access modifier that will allow members of one class to have access
to members of another class in the same package?

A. public

B. abstract

C. protected

D. synchronized

E. default access

2. Given a method in a protected class, what access modifier do you use to restrict access to
that method to only the other members of the same class?

A. final

B. static

C. private

D. protected

E. volatile

F. default access

3. Given the following,

1. abstract class A {
2. abstract short m1() ;
3. short m2() { return (short) 420; }
4. }
5.
6. abstract class B extends A {
7. // missing code ?
8. short m1() { return (short) 42; }
9. }

which three of the following statements are true? (Choose three.)

76 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 77

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

A. The code will compile with no changes.

B. Class B must either make an abstract declaration of method m2() or implement
method m2() to allow the code to compile.

C. It is legal, but not required, for class B to either make an abstract declaration of method
m2() or implement method m2() for the code to compile.

D. As long as line 8 exists, class A must declare method m1() in some way.

E. If line 6 were replaced with ‘class B extends A {‘ the code would compile.

F. If class A was not abstract and method m1() on line 2 was implemented, the
code would not compile.

4. Which two of the following are legal declarations for nonnested classes and interfaces?
(Choose two.)

A. final abstract class Test {}

B. public static interface Test {}

C. final public class Test {}

D. protected abstract class Test {}

E. protected interface Test {}

F. abstract public class Test {}

5. How many of the following are legal method declarations?

1 – protected abstract void m1();
2 – static final void m1(){}
3 – transient private native void m1() {}
4 – synchronized public final void m1() {}
5 – private native void m1();
6 – static final synchronized protected void m1() {}

A. 1

B. 2

C. 3

D. 4

E. 5

F. All of them

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6. Given the following,

1. package testpkg.p1;
2. public class ParentUtil {
3. public int x = 420;
4. protected int doStuff() { return x; }
5. }

1. package testpkg.p2;
2. import testpkg.p1.ParentUtil;
3. public class ChildUtil extends ParentUtil {
4. public static void main(String [] args) {
5. new ChildUtil().callStuff();
6. }
7. void callStuff() {
8. System.out.print("this " + this.doStuff());
9. ParentUtil p = new ParentUtil();
10. System.out.print(" parent " + p.doStuff());
11. }
12. }

which statement is true?

A. The code compiles and runs, with output this 420 parent 420.

B. If line 8 is removed, the code will compile and run.

C. If line 10 is removed, the code will compile and run.

D. Both lines 8 and 10 must be removed for the code to compile.

E. An exception is thrown at runtime.

Declaration Rules (Sun Objective 4.1)

7. Given the following,

1. interface Count {
2. short counter = 0;
3. void countUp();
4. }
5. public class TestCount implements Count {
6.
7. public static void main(String [] args) {
8. TestCount t = new TestCount();
9. t.countUp();
10. }

78 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

11. public void countUp() {
12. for (int x = 6; x>counter; x--, ++counter) {
13. System.out.print(" " + counter);
14. }
15. }
16. }

what is the result?

A. 0 1 2

B. 1 2 3

C. 0 1 2 3

D. 1 2 3 4

E. Compilation fails

F. An exception is thrown at runtime

8. Given the following,

1. import java.util.*;
2. public class NewTreeSet2 extends NewTreeSet {
3. public static void main(String [] args) {
4. NewTreeSet2 t = new NewTreeSet2();
5. t.count();
6. }
7. }
8. protected class NewTreeSet {
9. void count() {
10. for (int x = 0; x < 7; x++,x++) {
11. System.out.print(" " + x);
12. }
13. }
14. }

what is the result?

A. 0 2 4

B. 0 2 4 6

C. Compilation fails at line 4

D. Compilation fails at line 5

E. Compilation fails at line 8

F. Compilation fails at line 10

Self Test 79

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9. Given the following,

1.
2. public class NewTreeSet extends java.util.TreeSet{
3. public static void main(String [] args) {
4. java.util.TreeSet t = new java.util.TreeSet();
5. t.clear();
6. }
7. public void clear() {
8. TreeMap m = new TreeMap();
9. m.clear();
10. }
11. }

which two statements, added independently at line 1, allow the code to compile? (Choose two.)

A. No statement is required

B. import java.util.*;

C. import.java.util.Tree*;

D. import java.util.TreeSet;

E. import java.util.TreeMap;

10. Which two are valid declarations within an interface? (Choose two.)

A. public static short stop = 23;

B. protected short stop = 23;

C. transient short stop = 23;

D. final void madness(short stop);

E. public Boolean madness(long bow);

F. static char madness(double duty);

11. Which of the following class level (nonlocal) variable declarations will not compile?

A. protected int a;

B. transient int b = 3;

C. public static final int c;

D. volatile int d;

E. private synchronized int e;

80 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Interface Implementation (Sun Objective 4.2)

12. Given the following,

1. interface DoMath {
2. double getArea(int rad); }
3.
4. interface MathPlus {
5. double getVol(int b, int h); }
6.
7.
8.

which two code fragments inserted at lines 7 and 8 will compile? (Choose two.)

A. class AllMath extends DoMath {
double getArea(int r); }

B. interface AllMath implements MathPlus {
double getVol(int x, int y); }

C. interface AllMath extends DoMath {
float getAvg(int h, int l); }

D. class AllMath implements MathPlus {
double getArea(int rad); }

E. abstract class AllMath implements DoMath, MathPlus {
public double getArea(int rad) { return rad * rad * 3.14; } }

13. Which three are valid method signatures in an interface? (Choose three.)

A. private int getArea();

B. public float getVol(float x);

C. public void main(String [] args);

D. public static void main(String [] args);

E. boolean setFlag(Boolean [] test []);

14. Which two statements are true for any concrete class implementing the
java.lang.Runnable interface? (Choose two.)

A. You can extend the Runnable interface as long as you override the public run()
method.

Self Test 81

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

B. The class must contain a method called run() from which all code for that thread will
be initiated.

C. The class must contain an empty public void method named run().

D. The class must contain a public void method named runnable().

E. The class definition must include the words implements Threads and contain a
method called run().

F. The mandatory method must be public, with a return type of void, must be called
run(), and cannot take any arguments.

15. Given the following,

1. interface Base {
2. boolean m1 ();
3. byte m2(short s);
4. }

which two code fragments will compile? (Choose two.)

A. interface Base2 implements Base {}

B. abstract class Class2 extends Base {
public boolean m1() { return true; } }

C. abstract class Class2 implements Base { }

D. abstract class Class2 implements Base {
public boolean m1() { return (7 > 4); } }

E. class Class2 implements Base {
boolean m1() { return false; }
byte m2(short s) { return 42; } }

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

82 Chapter 2: Declarations and Access Control

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELF TEST ANSWERS

Declarations and Modifiers

1. � E. default access is the “package oriented” access modifier.
� A and C are wrong because public and protected are less restrictive. B and D are
wrong because abstract and synchronized are not access modifiers.

2. � C. The private access modifier limits access to members of the same class.
� A, B, D, E, and F are wrong because protected and default are the wrong access
modifiers, and final, static, and volatile are modifiers but not access modifiers.

3. � A, C, and E. A and C are correct, because an abstract class does not need to
implement any of its superclass’ methods. E is correct because as it stands, it is a valid concrete
extension of class A.
� B is wrong because an abstract class does not need to implement any of its superclass’
methods. D is wrong because a class that extends another class is free to add new methods. F is
wrong because it is legal to extend an abstract class from a concrete class.

4. � C, F. Both are legal class declarations.
� A is wrong because a class cannot be abstract and final—there would be no way
to use such a class. B is wrong because interfaces and classes cannot be marked as static.
D and E are wrong because classes and interfaces cannot be marked as protected.

5. � E. Statements 1, 2, 4, 5, and 6 are legal declarations.
� A, B, C, D, and F are incorrect because the only illegal declaration is 3; transient
applies only to variable declarations, not to method declarations. As you can see from these
other examples, method declarations can be very extensive.

6. � C. The ParentUtil instance p cannot be used to access the doStuff() method. Because
doStuff() has protected access, and the ChildUtil class is not in the same package as
the ParentUtil class, doStuff() can be accessed only by instances of the ChildUtil class (a
subclass of ParentUtil).
� A, B, D, and E are incorrect because of the access rules described previously.

Declaration Rules

7. � E. The code will not compile because the variable counter is an interface variable that is
by default final static. The compiler will complain at line 12 when the code attempts to

Self Test Answers 83

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

84 Chapter 2: Declarations and Access Control

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

increment counter.
� A, B, C, and D are incorrect because of the explanation given above.

8. � E. Nonnested classes cannot be marked protected (or final for that matter), so the
compiler will fail at line 8.
� A, B, C, and D are incorrect because of the explanation given above.

9. � B and E. TreeMap is the only class that must be imported. TreeSet does not need an
import statement because it is described with a fully qualified name.
� A is incorrect because TreeMap must be imported. C is incorrect syntax for an import
statement. D is incorrect because it will not import TreeMap, which is required.

10. � A and E are valid interface declarations.
� B and C are incorrect because interface variables cannot be either protected or
transient. D and F are incorrect because interface methods cannot be final or
static.

11. � E will not compile; the synchronized modifier applies only to methods.
� A and B will compile because protected and transient are legal variable modifiers.
C will compile because when a variable is declared final it does not have to be initialized
with a value at the same time. D will compile because volatile is a proper variable
modifier.

Interface Implementation

12. � C and E. C are E are correct because interfaces and abstract classes do not need to fully
implement the interfaces they extend or implement (respectively).
� A is incorrect because a class cannot extend an interface. B is incorrect because an interface
cannot implement anything. D is incorrect because the method being implemented is from the
wrong interface.

13. � B, C, and E. These are all valid interface method signatures.
� A, is incorrect because an interface method must be public; if it is not explicitly
declared public it will be made public implicitly. D is incorrect because interface
methods cannot be static.

14. � B and F. When a thread’s run() method completes, the thread will die. The run()
method must be declared public void and not take any arguments.
� A is incorrect because classes can never extend interfaces. C is incorrect because the

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test Answers 85

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 2

run() method is typically not empty; if it were, the thread would do nothing. D is incorrect
because the mandatory method is run(). E is incorrect because the class implements
Runnable.

15. � C and D. C is correct because an abstract class doesn’t have to implement any or all
of its interface’s methods. D is correct because the method is correctly implemented ((7 > 4) is
a boolean).
� A is incorrect because interfaces don’t implement anything. B is incorrect because classes
don’t extend interfaces. E is incorrect because interface methods are implicitly public, so the
methods being implemented must be public.

P:\010Comp\CertPrs8\684-6\ch02.vp
Wednesday, November 13, 2002 5:20:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3
Operators and
Assignments

CERTIFICATION OBJECTIVES

• Java Operators

• Logical Operators

• Passing Variables into Methods

✓ Two-Minute Drill

Q&A Self Test

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3
Blind Folio 3:1

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3
Blind Folio 3:1

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

If you’ve got variables, you’re going to modify them. You’ll increment them, add them
together, shift their bits, flip their bits, and compare one to another. In this chapter you’ll
learn how to do all that in Java. We’ll end the chapter exploring the effect of passing

variables of all types into methods. For an added bonus, you’ll learn how to do things that you’ll
probably never use in the real world, but that will almost certainly be on the exam. After all,
what fun would it be if you were tested only on things you already use?

CERTIFICATION OBJECTIVE

Java Operators (Exam Objective 5.1)
Determine the result of applying any operator (including assignment operators and
instanceof) to operands of any type, class, scope, or accessibility, or any combination
of these.

Java operators produce new values from one or more operands (just so we’re all clear,
the operands are things on the right or left side of the operator). The result of most
operations is either a boolean or numeric value. And because you know by now that
Java is not C++, you won’t be surprised that Java operators can’t be overloaded.
There is, however, one operator that comes overloaded out of the box: If applied to a
String, the + operator concatenates the right-hand operand to the operand on the left.

Stay awake. The operators and assignments portion of the exam is typically the
one where exam takers see their lowest scores. We aren’t naming names or anything,
but even some of the exam creators (including one whose last name is a mountain
range in California) have been known to get a few of these wrong.

Assignment Operators
Assigning a value to a variable seems straightforward enough; you simply assign the
stuff on the right side of the = to the variable on the left. Well, sure, but don’t expect
to be tested on something like this:

x = 6;

No, you won’t be tested on the no-brainer (technical term) assignments. You will,
however, be tested on the trickier assignments involving complex expressions and

2 Chapter 3: Operators and Assignments

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

casting. We’ll look at both primitive and reference variable assignments. But before
we begin, let’s back up and peek inside of a variable. What is a variable? How are the
variable and its value related?

Variables are just bit holders, with a designated type. You can have an int holder,
a double holder, a Button holder, and even a String[] holder. Within that holder
is a bunch of bits representing the value. For primitives, the bits represent a numeric
value (although we don’t know what that bit pattern looks like for boolean, but
we don’t care). A byte with a value of 6, for example, means that the bit pattern in
the variable (the byte holder) is 00000110, representing the 8 bits.

So the value of a primitive variable is clear, but what’s inside an object holder? If
you say

Button b = new Button();

what’s inside the Button holder b? Is it the Button object? No! A variable referring to
an object is just that—a reference variable. A reference variable bit holder contains
bits representing a way to get to the object. We don’t know what the format is; the
way in which object references are stored is virtual-machine specific (it’s a pointer to
something, we just don’t know what that something really is). All we can say for sure
is that the variable’s value is not the object, but rather a value representing a specific
object on the heap. Or null. If the reference variable has not been assigned a value,
or has been explicitly assigned a value of null, the variable holds bits
representing—you guessed it—null. You can read

Button b = null;

as “The Button variable b is not referring to any object.”
So now that we know a variable is just a little box o’ bits, we can get on with the

work of changing those bits. We’ll look first at assigning values to primitives, and
finish with assignments to reference variables.

Primitive Assignments
The equal (=) sign is used for assigning a value to a variable, and it’s cleverly named
the assignment operator. There are actually 12 assignment operators, but the other 11
are all combinations of the equal sign and other arithmetic operators, as shown in
Table 3-1. These compound assignment operators have a couple of special properties
we’ll look at in this section.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can assign a primitive variable using a literal or the result of an expression.
Take a look at the following:

int x = 7; // literal assignment
int y = x + 2; // assignment with an expression (including a literal)
int z = x * y; // assignment with an expression

The most important point to remember is that a literal integer (such as 7) is
always implicitly an int. Thinking back to Chapter 1, you’ll recall that an int is a
32-bit value. No big deal if you’re assigning a value to an int or a long variable,
but what if you’re assigning to a byte variable? After all, a byte-sized holder can’t hold
as many bits as an int-sized holder. Here’s where it gets weird. The following is legal,

byte b = 27;

but only because the compiler automatically narrows the literal value to a byte. In
other words, the compiler puts in the cast. The preceding code is identical to the
following:

byte b = (byte) 27; // Explicitly cast the int literal to a byte

It looks as though the compiler gives you a break, and let’s you take a shortcut
with assignments to integer variables smaller than an int. (Everything we’re saying
about byte applies equally to char and short, both of which are smaller than an int.)
We’re not actually at the weird part yet, by the way.

We know that a literal integer is always an int, but more importantly—the result
of an expression involving anything int-sized or smaller is always an int. In other
words, add two bytes together and you’ll get an int—even if those two bytes are tiny.
Multiply an int and a short and you’ll get an int. Divide a short by a byte and you’ll
get…an int. OK, now we’re at the weird part. Check this out:

byte b = 3; // No problem, 3 fits in a byte
byte c = 8; // No problem, 8 fits in a byte
byte d = b + c; // Should be no problem, sum of the two bytes

// fits in a byte

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

4 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

= *= /= %=

+= -= <<= >>=

>>>= &= ^= |=

TABLE 3-1

Compound
Assignment
Operators

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The last line won’t compile! You’ll get the following error:

TestBytes.java:5: possible loss of precision
found : int
required: byte

byte c = a + b;
^

We tried to assign the sum of two bytes to a byte variable, the result of which (11)
was definitely small enough to fit into a byte, but the compiler didn’t care. It knew
the rule about int-or-smaller expressions always resulting in an int. It would have
compiled if we’d done the explicit cast:

byte c = (byte) (a + b);

Assigning Floating-Point Numbers Floating-point numbers have slightly
different assignment behavior than integer types. We’ve already discussed this in
Chapter 1, but we’ll do another quick review here while we’re on the subject. First,
you must know that every floating-point literal is implicitly a double (64 bits), not a
float. So the literal 2.3, for example, is considered a double. If you try to assign a
double to a float, the compiler knows you don’t have enough room in a 32-bit
float container to hold the precision of a 64-bit double, and it lets you know.
The following code looks good, but won’t compile:

float f = 32.3;

You can see that 32.3 should fit just fine into a float-sized variable, but the compiler
won’t allow it. In order to assign a floating-point literal to a float variable, you must
either cast the value or append an f to the end of the literal. The following
assignments will compile:

float f = (float) 32.3;
float g = 32.3f;
float h = 32.3F;

Assigning a Literal That Is Too Large for the Variable We’ll also get a
compiler error if we try to assign a literal value that the compiler knows is too big to
fit into the variable.

byte a = 128; // byte can only hold up to 127

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The preceding code gives us this error:

TestBytes.java:5: possible loss of precision
found : int
required: byte
byte a = 128;

We can fix it with a cast:

byte a = (byte) 128;

But then what’s the result? When you narrow a primitive, Java simply truncates the
higher-order bits that won’t fit. In other words, it loses all the bits to the left of the
bits you’re narrowing to.

Let’s take a look at what happens in the preceding code. There, 128 is the bit
pattern 10000000. It takes a full 8 bits to represent 128. But because the literal
128 is an int, we actually get 32 bits, with the 128 living in the right-most
(lower-order) 8 bits. So a literal 128 is actually

00000000000000000000000010000000

Take our word for it; there are 32 bits there.
To narrow the 32 bits representing 128, Java simply lops off the leftmost

(higher-order) 24 bits. We’re left with just the 10000000. But remember that a
byte is signed, with the leftmost bit representing the sign (and not part of the value
of the variable). So we end up with a negative number (the 1 that used to represent
128 now represents the negative sign bit). Remember, to find out the value of a
negative number using two’s complement notation, you flip all of the bits and then
add 1. Flipping the 8 zeroes give us: 01111111, and adding 1 to that gives us
10000000, or back to 128! And when we apply the sign bit, we end up with -128.

You must use an explicit cast to assign 128 to a byte, and the assignment leaves
you with the value -128. A cast is nothing more than your way of saying to the
compiler, “Trust me. I’m a professional. I take full responsibility for anything weird
that happens when those top bits are chopped off.”

That brings us to the compound assignment operators. The following will
compile,

byte b = 3;
b += 7; // No problem - adds 7 to b (result is 10)

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

6 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and is equivalent to

byte b = 3;
b = (byte) (b + 7); // Won’t compile without the

// cast, since b + 7 results in an int

The compound assignment operator += let’s you add to the value of b, without
putting in an explicit cast.

Assigning One Primitive Variable to Another Primitive Variable
When you assign one primitive variable to another, the contents of the right-hand
variable are copied, for example,

int a = 6;
int b = a;

The preceding code can be read as, “Assign the bit pattern for the number 6 to the
int variable a. Then copy the bit pattern in a, and place the copy into variable b.
So, both variables now hold a bit pattern for 6, but the two variables have no other
relationship. We used the variable a only to copy its contents. At this point, a and b
have identical contents (in other words, identical values), but if we change the contents
of a or b, the other variable won’t be affected.”

Take a look at the following example:

class ValueTest {
public static void main (String [] args) {

int a = 10; // Assign a value to a
System.out.println("a = " + a);
int b = a;
b = 30;
System.out.println("a = " + a + "after change to b");

}
}

The output from this program is

%java ValueTest
a = 10
a = 10 after change to b

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice the value of a stayed at 10. The key point to remember is that even after you
assign a to b, a and b are not referring to the same place in memory. The a and b
variables do not share a single value; they have identical copies.

Reference Variable Assignments
You can assign a newly created object to an object reference variable as follows:

Button b = new Button();

The preceding line does three key things:

■ Makes a reference variable named b, of type Button

■ Creates a new Button object on the heap

■ Assigns the newly created Button object to the reference variable b

You can also assign null to an object reference variable, which simply means the
variable is not referring to any object:

Button c = null;

The preceding line creates space for the Button reference variable (the bit holder
for a reference value), but doesn’t create an actual Button object.

You can also use a reference variable to refer to any object that is a subclass of the
declared reference variable type, as follows:

public class Foo {

public void doFooStuff() {

}

}

public class Bar extends Foo {

public void doBarStuff() { }

}

}

class Test {

public static void main (String [] args) {

Foo reallyABar = new Bar(); // Legal because Bar is a subclass of Foo

Bar reallyAFoo = new Foo(); // Illegal! Foo is not a subclass of Bar

}

}

We’ll look at the concept of reference variable assignments in much more detail
in Chapter 5, so for now you just need to remember the rule that you can assign a

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

8 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subclass of the declared type, but not a superclass of the declared type. But think
about it…a Bar object is guaranteed to be able to do anything a Foo can do, so
anyone with a Foo reference can invoke Foo methods even though the object is
actually a Bar.

In the preceding code, we see that Foo has a method doFooStuff() that
someone with a Foo reference might try to invoke. If the object referenced by the
Foo variable is really a Foo, no problem. But it’s also no problem if the object is a
Bar, since Bar inherited the doFooStuff() method. You can’t make it work in
reverse, however. If a somebody has a Bar reference, they’re going to invoke
doBarStuff(), but if the object being referenced is actually a Foo, it won’t know
how to respond.

Assigning One Reference Variable to Another
With primitive variables, an assignment of one variable to another means the contents
(bit pattern) of one variable are copied into another. Object reference variables work
exactly the same way. The contents of a reference variable are a bit pattern, so if you
assign reference variable a to reference variable b, the bit pattern in a is copied and
the new copy is placed into b. If we assign an existing instance of an object to a new
reference variable, then two reference variables will hold the same bit pattern—a bit
pattern referring to a specific object on the heap. Look at the following code:

import java.awt.Dimension;
class ReferenceTest {

public static void main (String [] args) {
Dimension a = new Dimension(5,10);
System.out.println("a.height = " + a.height);
Dimension b = a;
b.height = 30;
System.out.println("a.height = " + a.height +

"after change to b");
}

}

In the preceding example, a Dimension object a is declared and initialized with
a width of 5 and a height of 10. Next, Dimension b is declared, and assigned the
value of a. At this point, both variables (a and b) hold identical values, because the
contents of a were copied into b. There is still only one Dimension object—the
one that both a and b refer to. Finally, the height property is changed using the b

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

reference. Now think for a minute: Is this going to change the height property of a
as well? Let’s see what the output will be:

%java ReferenceTest
a.height = 10
a.height = 30 after change to b

From this output, we can conclude that both variables refer to the same instance
of the Dimension object. When we made a change to b, the height property was also
changed for a.

One exception to the way object references are assigned is String. In Java, String
objects are given special treatment. For one thing, String objects are immutable; you
can’t change the value of a String object. But it sure looks as though you can.
Examine the following code:

class Strings {

public static void main(String [] args) {

String x = "Java"; // Assign a value to x

String y = x; // Now y and x refer to the same String object

System.out.println("y string = " + y);

x = x + " Bean"; // Now modify the object using the x reference

System.out.println("y string = " + y);

}

}

You might think String y will contain the characters Java Bean after the variable x
is changed, because strings are objects. Let’s see what the output is:

%java String
y string = Java
y string = Java

As you can see, even though y is a reference variable to the same object that x
refers to, when we change x it doesn’t change y ! For any other object type, where two
references refer to the same object, if either reference is used to modify the object,
both references will see the change because there is still only a single object. But with
a string, the VM creates a brand new String object every time we use the + operator
to concatenate two strings, or any time we make any changes at all to a string.
You need to understand what happens when you use a String reference variable to
modify a string:

■ A new string is created, leaving the original String object untouched.

■ The reference used to modify the String (or rather, make a new String by
modifying a copy of the original) is then assigned the brand new String object.

10 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

So when you say,

1. String s = "Fred";
2. String t = s; // Now t and s refer to the same String object
3. t.toUpperCase(); // Invoke a String method that changes the String

you actually haven’t changed the original String object created on line 1. When line
2 completes, both t and s reference the same String object. But when line 3 runs,
rather than modifying the object referred to by t (which is the one and only String
object up to this point), a brand new String object is created. And then abandoned.
Because the new String isn’t assigned to a String variable, the newly created String
(which holds the string “FRED”) is toast. So while two String objects were created
in the preceding code, only one is actually referenced, and both t and s refer to it.
The behavior of strings is extremely important in the exam, so we’ll cover it in much
more detail in Chapter 6.

Comparison Operators
Comparison operators always result in a boolean (true or false) value. This
boolean value is most often used in an if test, as follows,

int x = 8;
if (x < 9) {

// do something
}

but the resulting value can also be assigned directly to a boolean primitive:

class CompareTest {
public static void main(String [] args) {

boolean b = 100 > 99;
System.out.println("The value of b is " + b);

}
}

You have four comparison operators that can be used to compare any combination
of integers, floating-point numbers, or characters:

■ > greater than

■ >= greater than or equal to

■ < less than

■ <= less than or equal to

Java Operators (Exam Objective 5.1) 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s look at some legal comparisons:

class GuessAnimal {
public static void main(String [] args) {

String animal = "unknown";
int weight = 700;
char sex = 'm';
double colorWaveLength = 1.630;
if (weight >= 500) animal = "elephant";
if (colorWaveLength > 1.621) animal = "gray " + animal;
if (sex <= 'f') animal = "female " + animal;
System.out.println("The animal is a " + animal);

}
}

In the preceding code, we are using a comparison between characters. It’s also
legal to compare a character primitive with any number, as the code shows
(though it isn’t great programming style). Running the preceding class will
output the following:

%java GuessAnimal
The animal is a gray elephant

We mentioned that characters can be used in comparison operators. When
comparing a character with a character, or a character with a number, Java will take
the ASCII or Unicode value of the character as the numerical value, and compare
the numbers.

instanceof Comparison
The instanceof operator is used for object reference variables only, and you can
use it to check whether an object is of a particular type. By type, we mean class or
interface type—in other words, if the object referred to by the variable on the left
side of the operator passes the IS-A test for the class or interface type on the right
side (Chapter 5 covers IS-A relationships in detail). Look at the following example:

public static void main (String [] args) {
String s = new String("foo");
if (s instanceof String) {

System.out.print("s is a String");
}

}

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

12 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Even if the object being tested is not an actual instantiation of the class type on
the right side of the operator, instanceof will still return true if the object being
compared is assignment compatible with the type on the right. The following example
demonstrates testing an object using instanceof, to see if it’s an instance of one of
its superclasses:

class A { }
class B extends A { }
public static void main (String [] args) {
B b = new B();
if (b instanceof A) {

System.out.print("b is an A");
}

}

The preceding code shows that b is an a. So you can test an object reference
against its own class type, or any of its superclasses. This means that any object
reference will evaluate to true if you use the instanceof operator against type
Object, as follows,

B b = new B();
if (b instanceof Object) {

System.out.print("b is definitely an Object");
}

which prints

b is definitely an Object

You can use the instanceof operator on interface types as well:

interface Foo { }
class Bar implements Foo { }
class TestBar {

public static void main (String [] args) {
Bar b = new Bar()
if (b instanceof Bar) {

System.out.println("b is a Bar");
}
if (b instanceof Foo) {

System.out.println("b is a Foo");
}

}
}

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Running the TestBar class proves that the Bar object referenced by b is both a Bar
and a Foo:

b is a Bar
b is a Foo

Look for instanceof questions that test whether an object is an instance
of an interface, when the object’s class implements indirectly. An indirect
implementation occurs when one of an object’s superclasses implements
an interface, but the actual class of the instance does not—for example,
interface Foo { }
class A implements Foo { }
class B extends A { }

Using the definitions above, if we instantiate an A and a B as follows,
A a = new A();
B b = new B();

the following are true:
a instanceof A
a instanceof Foo
b instanceof A
b instanceof B
b instanceof Foo // Even though class B doesn’t implement Foo
directly!

An object is said to be of a particular interface type (meaning it will pass the
instanceof test) if any of the object’s superclasses implement the interface.

In addition, it is legal to test whether a null object (or null itself) is an
instance of a class. This will always result in false, of course. The following code
demonstrates this:

class InstanceTest {
public static void main(String [] args) {

String a = null;
boolean b = null instanceof String;
boolean c = a instanceof String;
System.out.println(b + " " + c);

}
}

When this code is run, we get the following output:

false false

14 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

So even though variable a was defined as a String, the underlying object is null;
therefore, instanceof returns a value of false when compared to the String class.

Remember that arrays are objects, even if the array is an array of primitives.
Look for questions that might look like this:
int [] nums = new int[3];
if (nums instanceof Object) { } // result is true

An array is always an instance of Object. Any array.

Table 3-2 shows results from several instanceof comparisons. For this table,
assume the following:

interface Face { }
class Bar implements Face{ }
class Foo extends Bar { }

Equality Operators
Equality can be tested with the operators equals and not equals:

■ == equals (also known as “equal to”)

■ != not equals (also known as “not equal to”)

Equality operators compare two things and return a boolean value. Each individual
comparison can involve two numbers (including char), two boolean values, or two

Java Operators (Exam Objective 5.1) 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

First Operand
(Reference Being Tested)

instanceof Operand
(Type We’re Comparing
the Reference Against) Result

null Any Class or Interface type false

Foo instance Foo, Bar, Face, Object true

Bar instance Bar, Face, Object true

Bar instance Foo false

Foo [] Foo, Bar, Face false

Foo [] Object true

Foo[1] Foo, Bar, Face, Object true

TABLE 3-2 Operands and Results Using instanceof Operator

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

object reference variables. You can’t compare incompatible types, however. What
would it mean to ask if a boolean is equal to a char? Or if a Button is equal to a
String array? (Exactly, nonsense, which is why you can’t do it.) There are four
different types of things that can be tested:

■ Numbers

■ Characters

■ Boolean primitives

■ Object reference variables

So what does == actually look at? The value in the variable—in other words, the
bit pattern.

Equality for Primitives
Most programmers are familiar with comparing primitive values. The following
code shows some equality tests on primitive variables:

class ComparePrimitives {
public static void main(String [] args) {

System.out.println("character 'a' == 'a'? " + ('a' == 'a'));
System.out.println("character 'a' == 'b'? " + ('a' == 'b'));
System.out.println("5 != 6? " + (5 != 6));
System.out.println("5.0 == 5L? " + (5.0 == 5L));
System.out.println("true == false? " + (true == false));

}
}

This program produces the following output:

%java ComparePrimitives
character 'a' == 'a'? true
character 'a' == 'b'? false
5 != 6? true
5.0 == 5L? true // Compare a floating point to an int
true == false? false

As we can see, if a floating-point number is compared with an integer and the
values are the same, the == operator returns true as expected.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

16 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Don’t mistake = for == in a boolean expression. The following is legal:
1. boolean b = false;
2. if (b = true) {
3. System.out.println(“b is true”);
4.} else {
5. System.out.println(“b is false”);
6.}

Look carefully! You might be tempted to think the output is “b is false,”
but look at the boolean test in line 2. The boolean variable b is not being
compared to true, it’s being set to true, so line 3 executes and we get “b is
true.” Keeping in mind that the result of any assignment expression is the
value of the variable following the assignment, you can see that in line 3, the
result of the expression will be true—the value of (b = true). This substitution
of = for == works only with boolean variables, since the if test can be done only
on boolean expressions. Thus, the following does not compile:
7. int x = 1;
8. if (x = 0) { }

Because x is an integer (and not a boolean), the result of (x = 0) is 0 (the result
of the assignment). Integers cannot be used where a boolean value is expected,
so the code in line 8 won’t work unless changed from an assignment (=) to an
equality test (==) as follows:
if (x == 0) { }

Equality for Reference Variables
As we saw earlier, two reference variables can refer to the same object, as the
following code snippet demonstrates:

Button a = new Button("Exit");
Button b = a;

After running this code, both variable a and variable b will refer to the same object
(a Button with the label Exit). Reference variables can be tested to see if they refer to
the same object by using the == operator. Remember, the == operator is looking at the
bits in the variable, so for reference variables if the bits in both variables are identical,
then both refer to the same object. Look at the following code:

import java.awt.Button;
class CompareReference {

public static void main(String [] args) {

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Button a = new Button("Exit");
Button b = new Button("Exit");
Button c = a;
System.out.println("Is reference a == b? " + (a == b));
System.out.println("Is reference a == c? " + (a == c));

}
}

This code creates three reference variables. The first two, a and b, are separate
Button objects that happen to have the same label. The third reference variable, c, is
initialized to refer to the same object that a refers to. When this program runs, the
following output is produced:

Is reference a == b? false
Is reference a == c? true

This shows us that a and c reference the same instance of a Button. We’ll take
another look at the implications of testing object references for equality in Chapters
6 and 7, where we cover String comparison and the equals() method (as opposed
to the equals operator we’re looking at here).

Arithmetic Operators
We’re sure you’re familiar with the basic arithmetic operators.

■ + addition

■ – subtraction

■ × multiplication

■ / division

These can be used in the standard way:

class MathTest {
public static void main (String [] args) {

int x = 5 * 3;
int y = x - 4;
System.out.println("x - 4 is " + y); // Prints 11

}
}

(Warning: if you don’t know how to use the basic arithmetic operators, your
fourth-grade teacher, Mrs. Beasley, should be hunted down and forced to take

18 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

the programmer’s exam. That’s assuming you actually ever went to your fourth-
grade class.)

One operator you might not be as familiar with (and we won’t hold Mrs. Beasley
responsible) is the remainder operator, %. The remainder operator divides the left
operand by the right operand, and the result is the remainder, as the following code
demonstrates:

class MathTest {
public static void main (String [] args) {

int x = 15;
int y = x % 4;
System.out.println("The result of 15 % 4 is the remainder of

15 divided by 4. The remainder is " + y);
}

}

Running class MathTest prints the following:

The result of 15 % 4 is the remainder of 15 divided by 4. The remainder is 3

You can also use a compound assignment operator (shown in Table 3-1) if the
operation is being done to a single variable. The following demonstrates using the
%= compound assignment operator:

class MathTest {
public static void main (String [] args) {

int x = 15;
x %= 4; // same as x = x % 4;
System.out.println("The remainder of 15 % 4 is " + x);

}
}

You’re expected to know what happens when you divide by zero. With integers,
you’ll get a runtime exception (ArithmeticException), but with floating-point
numbers you won’t. Floating-point numbers divided by zero return either positive
infinity or negative infinity, depending on whether or not the zero is positive or
negative! That’s right, some floating-point operators can distinguish between
positive and negative zero. Rules to remember are these:

■ Dividing an integer by zero will violate an important law of thermodynamics,
and cause an ArithmeticException (can’t divide by zero).

■ Using the remainder operator (%) will result in an ArithmeticException if
the right operand is zero (can’t divide by zero).

Java Operators (Exam Objective 5.1) 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

■ Dividing a floating-point number by zero will not result in an
ArithmeticException, and the universe will remain intact.

■ Using the remainder operator on floating-point numbers, where the right
operand is zero, will not result in an ArithmeticException.

String Concatenation Operator
The plus sign can also be used to concatenate two strings together, as we saw earlier
(and we’ll definitely see again):

String animal = "Grey " + "elephant";

String concatenation gets interesting when you combine numbers with Strings.
Check out the following:

String a = "String";
int b = 3;
int c = 7;
System.out.println(a + b + c);

Will the + operator act as a plus sign when adding the int variables b + c? Or will
the + operator treat 3 and 7 as characters, and concatenate them individually? Will
the result be String10 or String37? OK, you’ve had long enough to think
about it. The result is

String37

The int values were simply treated as characters and glued on to the right side of
the string. So we could read the previous code as:

“Start with String a, “String”, and add the character 3 (the value of b) to it, to
produce a new string “String3”, and then add the character 7 (the value of c) to
that, to produce a new string “String37”, then print it out.”

However, if you put parentheses around the two int variables, as follows,

System.out.println(a + (b + c));

you’ll get

String10

Using parentheses causes the (b + c) to evaluate first, so the + operator functions
as the addition operator, given that both operands are int values. The key point here

20 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

is that the left-hand operand is not a String. If it were, then the + operator would
perform String concatenation. The previous code can be read as:

“Add the values of b + c together, then take the sum and convert it to a String and
concatenate it with the String from variable a.”

The rule to remember is

If either operand is a String, the + operator becomes a String concatenation
operator. If both operands are numbers, the + operator is the addition operator.

You’ll find that sometimes you might have trouble deciding whether, say, the left
hand operator is a String or not. On the exam, don’t expect it to always be obvious.
(Actually, now that we think about it, don’t expect it ever to be obvious.) Look at the
following code:

System.out.println(x.foo() + 7);

You can’t know how the + operator is being used until you find out what the
foo() method returns! If foo() returns a String, then 7 is concatenated to the
returned String. But if foo() returns a number, then the + operator is used to add 7
to the return value of foo().

If you don’t understand how String concatenation works, especially within a
print statement, you could actually fail the exam even if you know the rest
of the answer to the question! Because so many questions ask, “What is the
result?”, you need to know not only the result of the code running, but also
how that result is printed. Although there will be at least a half-dozen questions
directly testing your String knowledge, String concatenation shows up in
other questions on virtually every objective, and if you get the concatenation
wrong, you’ll miss that question regardless of your ability to work out the rest
of the code. Experiment! For example, you might see a line such as
int b = 2;
int c = 3;
System.out.println(““ + b + c);

which prints
23

but if the print statement changes to
System.out.println(b + c);

then the result becomes
5.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 21

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Increment and Decrement
Java has two operators that will increment or decrement a variable by exactly one.
These operators are composed of either two plus signs (++) or two minus signs (--):

■ ++ increment (prefix and postfix)

■ -- decrement (prefix and postfix)

The operator is placed either before (prefix) or after (postfix) a variable to change
the value. Whether the operator comes before or after the operand can change the
outcome of an expression. Examine the following:

1. class MathTest {

2. static int players = 0;

3. public static void main (String [] args) {

4. System.out.println("players online: " + players++);

5. System.out.println("The value of players is " + players);

6. System.out.println("The value of players is now " + ++players);

7. }

8. }

Notice that in the fourth line of the program the increment operator is after the
variable players. That means we’re using the postfix increment operator, which causes
the variable players to be incremented by one but only after the value of players is used
in the expression. When we run this program, it outputs the following:

%java MathTest
players online: 0
The value of players is 1
The value of players is now 2

Notice that when the variable is written to the screen, at first it says the value is 0.
Because we used the postfix increment operator, the increment doesn’t happen until
after the players variable is used in the print statement. Get it? The post in postfix
means after. The next line, line 5, doesn’t increment players; it just outputs it to the
screen, so the newly incremented value displayed is 1. Line 6 applies the prefix
operator to players, which means the increment happens before the value of the
variable is used (pre means before). So the output is 2.

Expect to see questions mixing the increment and decrement operators with other
operators, as in the following example:

int x = 2;
int y = 3;

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

22 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if ((y == x++) | (x < ++y)) {
System.out.println("x = " + x + " y = " + y);

}

The preceding code prints

x = 3 y = 4

You can read the code as

“If 3 is equal to 2 OR 3 < 4…”

The first expression compares x and y, and the result is false, because the
increment on x doesn’t happen until after the == test is made. Next, we increment x,
so now x is 3. Then we check to see if x is less than y, but we increment y before
comparing it with x ! So the second logical test is (3 < 4). The result is true, so the
print statement runs.

Look out for questions that use the increment or decrement operators on a
final variable. Because final variables can’t be changed, the increment and
decrement operators can’t be used with them, and any attempt to do so will
result in a compiler error. The following code won’t compile,
final int x = 5;
int y = x++;

and produces the error
Test.java:4: cannot assign a value to final variable x
int y = x++;

^

You can expect a violation like this to be buried deep in a complex piece of
code. If you spot it, you know the code won’t compile and you can move on
without working through the rest of the code (unless, of course, you’re into
the sport of Extreme Test-Taking, and you want the running-out-of-time
challenge).

As with String concatenation, the increment and decrement operators are used
throughout the exam, even on questions that aren’t trying to test your knowledge of
how those operators work. You might see them in questions on for loops, exceptions,
even threads. Be ready.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 23

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Shift Operators
The following are shift operators:

■ >> right shift

■ << left shift

■ >>> unsigned right shift (also called zero-filled right shift)

The more obscure the topic, the more likely it will appear on the exam.
Operators such as +, -, *, and / aren’t likely to be tested for on the exam
because they’re so commonly used. Shift operators are rarely used by most
programmers; therefore, they will most definitely be on the exam.

The shift operators shift the bits of a number to the right or left, producing a
new number. Shift operators are used on integral numbers only (not floating-point
numbers). To determine the result of a shift, you have to convert the number into
binary. Let’s look at an example of a bit shift:

8 >> 1;

First, we must convert this number to a binary representation:

0000 0000 0000 0000 0000 0000 0000 1000

An int is a 32-bit integer, so all 32 bits must be displayed. If we apply a bit shift
of one to the right, using the >> operator, the new bit number is

0000 0000 0000 0000 0000 0000 0000 0100

Notice how the 1 bit moved over to the right, one place.
We can now convert this back to a decimal number (base 10) to get 4. The

following code shows the complete example:

class BitShift {
public static void main(String [] args) {

int x = 8;
System.out.println("Before shift x equals " + x);
x = x >> 1;
System.out.println("After shift x equals " + x);

}
}

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

24 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When we compile and run this program we get the following output:

%java BitShift
Before shift x equals 8
After shift x equals 4

As you can see, the results are exactly what we expected them to be. Shift
operations can work on all integer numbers, regardless of the base they’re displayed
in (octal, decimal, or hexadecimal). The left shift works in exactly the same way,
except all bits are shifted in the opposite direction. The following code uses a
hexadecimal number to shift:

class BitShift {
public static void main(String [] args) {

int x = 0x80000000;
System.out.println("Before shift x equals " + x);
x = x << 1;
System.out.println("After shift x equals " + x);

}
}

To understand the preceding example, we’ll convert the hexadecimal number to a
bit number. Fortunately, it’s pretty simple to convert from hexadecimal to bits. Each
hex digit converts to a four-bit representation, as we can see here:

8 0 0 0 0 0 0 0
1000 0000 0000 0000 0000 0000 0000 0000

In the preceding example, the very leftmost bit represents the sign (positive or
negative). When the leftmost bit is 1, the number is negative; and when it is 0, the
number is positive. Running our program gives us the following:

%java BitShift
Before shift x equals -2147483648
After shift x equals 0

Shifting the bits one to the left moves the sign bit out where it simply drops off
the left edge (it doesn’t wrap around or anything like that) leaving us with 0 in the
leftmost bit. What about the right side? What gets filled in on the right side as the
previous rightmost bits move to the left? With the left shift operator, the right side is
always filled with zeroes.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 25

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Then what about the left side of a right shift operation? When we shift to the
right, what gets filled in on the left as the previous leftmost bit moves to the right?
What takes its place? The answer depends on which of the two right shift operators
we’re using.

When using the right shift operator (>>) to shift the bits of a negative number,
the sign bit gets shifted to the right, but the leftmost bits are filled in on the left
with whatever the sign bit was. So the bottom line is that with the right shift
operator (>>), a negative number stays negative. For example, let’s use the hex
number 0x80000000 again:

1000 0000 0000 0000 0000 0000 0000 0000

Now we’ll shift the bits, using >>, one to the right:

1100 0000 0000 0000 0000 0000 0000 0000

As we can see, the sign bit is shifted to the right but (and this is important) the
leftmost bit is filled with the original sign bit. Let’s try some code that shifts it four
to the right rather than just one:

class BitShift {
public static void main(String [] args) {

int x = 0x80000000;
System.out.println("Before shift x equals " + x);
x = x >> 4;
System.out.println("After shift x equals " + x);

}
}

In line 5 of this program, the number will be bit shifted four to the right.
Running this program gives us the following output:

%java BitShift
Before shift x equals -2147483648
After shift x equals -134217728

The number now equals the following in bit representation:

1111 1000 0000 0000 0000 0000 0000 0000

Notice how the four new bits on the left have all been filled in with the original
sign bit.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

26 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

We can use a special shift operator if we don’t want to keep the sign bit. This is the
unsigned right shift operator >>>. Let’s change the code slightly to use this operator:

class BitShift {
public static void main(String [] args) {

int x = 0x80000000;
System.out.println("Before shift x equals " + x);
x >>>= 4; //Assignment operator
System.out.println("After shift x equals " + x);

}
}

The output for this program is now the following:

%java BitShift
Before shift x equals -2147483648
After shift x equals 134217728

As we can see, the new number is positive because the negative bit wasn’t kept.
In bit representation, the old number is

1000 0000 0000 0000 0000 0000 0000 0000

and the new number is

0000 1000 0000 0000 0000 0000 0000 0000

Notice how the leftmost bits are filled in with zeroes, even though the original sign bit
was a 1. That’s why the unsigned right shift operator is often referred to as the “zero
filled right shift operator.” One important implication of using >>> vs. >> is that the
result of an unsigned right shift is always positive, regardless of the original sign bit.

You also need to know that all operands in a bit shift are promoted to at least an
int (a long if the second operand is a long). And what happens if you try to shift by
more places than the number of bits in the number being shifted? For example, what
happens if you try to shift an int by 33? The rule to remember is: the number of
bits shifted is always going to be the right operand modulus the total number of bits
for that primitive type. So for an int, that means you’ll shift by the right operand
modulus 32, and for a long, the right operand modulus 64. For example, if you try
to shift an int by, say, 34, it looks like this,

int x = 2;
int y = x >> 34;

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 27

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

but because it’s meaningless to shift by 34, since you don’t even have that many bits,
you actually end up shifting by 34 % 32 (we can use the remainder operator to
figure this out), which leaves us with a remainder of 2. So the result is actually

int y = x >> 2;

You need to know what the bit shifts are actually doing in practical terms.
A right shift operator is actually causing the number being shifted to be divided
by 2 to the power of the number of bits to shift. For example, shifting x >> 4
is exactly the same as saying x / 24. And x >> 8 is exactly the same as x / 28.
With the left shift operator, the result is exactly the same as multiplying the
number being shifted by 2 to the power of the number of bits to shift. So
shifting x << 3 is the same as saying x * 23. One day, you will thank us for
pointing this out. (We accept checks and chocolate!)

EXERCISE 3-1

Using Shift Operators

1. Try writing a class that takes an integer of 1, shifts the bit 31 to the left,
then 31 to the right.

2. What number does this now represent?

3. What is the bit representation of the new number?

Bitwise Operators
The bitwise operators take two individual bit numbers, then use AND/OR to
determine the result on a bit-by-bit basis. There are three bitwise operators:

■ & AND

■ | inclusive OR

■ ^ exclusive OR

The & operator compares corresponding bits between two numbers. If both
bits are 1, the final bit is also 1. If only one of the bits is 1, the resulting bit is 0.

28 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once again, for bitwise operations we must convert numbers to bit representations.
Table 3-3 displays the truth table for each of these operators. The left side of the
table displays the x and y values, and the right side shows the result of the operator
on these two values.

Let’s compare two numbers, 10 and 9, with the & operator:

1010 & 1001 = 1000

Try putting the second operand directly beneath the first, to make it easier to see
the result. For the preceding comparison (10 and 9), you can look at it as

1 0 1 0
&
1 0 0 1

1 0 0 0

As we can see, only the first bit (8) is a 1 in both locations, hence the final
number is 1000 in bit representation (or 8 in decimal). Let’s see this in some code:

class Bitwise {
public static void main(String [] args) {

int x = 10 & 9; // 1010 and 1001
System.out.println("1010 & 1001 = " + x);

}
}

When we run this code, the following output is produced:

%java Bitwise
1010 & 1001 = 8

The | (OR) operator is different from the & (AND) operator when it compares
corresponding bits. Whereas the & operator will set a resulting bit to 1 only if both

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Java Operators (Exam Objective 5.1) 29

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

X Y & (AND) | (OR) ^ (XOR)

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

TABLE 3-3

Calculating
Values from
a Truth Table

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

operand bits in the same position are 1, the | operator will set the resulting bit to 1 if
either (of both) of the bits is a 1. So, for the numbers 10 and 9, we get the following,

1010 | 1001 = 1011

which is easier to see as

1 0 1 0
|

1 0 0 1

1 0 1 1

In this case because we have 1s in the 1, 2, and 8 bit slots, those bits are carried
in to the result. This expression produces the number 11 (in decimal). Let’s look
at this in code:

class Bitwise {
public static void main(String [] args) {

int x = 10 | 9; // 1010 and 1001
System.out.println("1010 & 1001 = " + x);

}
}

When we run the preceding code, we receive the following:

%java Bitwise
1010 & 1001 = 11

The ^ (Exclusive OR, also known as XOR) operator compares two bits to see if
they are different. If they are different, the result is a 1. Look at the numbers 10
and 5 in bit representation:

1010 ^ 0101 = 1111

As we can see, the result is 15 in decimal form. To see it a little more clearly:

1 0 1 0
^

0 1 0 1

1 1 1 1

Now let’s look at doing an XOR on 8 and13:

1000 ^ 1101 = 0101

30 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

The result is 5 in decimal form.

1 0 0 0
^

1 1 0 1

0 1 0 1

Bitwise Complement Operator
The ~ operator is a flip-the-bits operator. It will change all 1s to 0s and vice versa.
Look at the following code:

class Bitwise {
public static void main(String [] args) {

int x = 5;
System.out.println("x is initially " + x);
x = ~x;
System.out.println("~x is equal to " + x);

}
}

This program is changing every bit into its complement; thus, the output from
this program is the following:

%java Bitwise
x is initially 5
~x is equal to -6

In bit representation, the conversion looks like this,

~0000 0000 0000 0000 0000 0000 0000 0101

and converts to

1111 1111 1111 1111 1111 1111 1111 1010

Conditional Operator
The conditional operator is a ternary operator (it has three operands) and is used to
evaluate boolean expressions, much like an if statement except instead of executing
a block of code if the test is true, a conditional operator will assign a value to a
variable. In other words, the goal of the conditional operator is to decide which of

Java Operators (Exam Objective 5.1) 31

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

two values to assign to a variable. A conditional operator is constructed using a ?
(question mark) and a : (colon). The parentheses are optional. Its structure is
as follows:

someVariable = (boolean expression) ? value to assign if true : value to assign if false

Let’s take a look at a conditional operator in code:

class Salary {

public static void main(String [] args) {

int numOfPets = 3;

String status = (numOfPets<4)?"Pet limit not exceeded":"too many pets";

System.out.println("This pet status is " + status);

}

}

You can read the preceding code as:

“Set numOfPets equal to 3. Next we’re going to assign a String to the
status variable. If numOfPets is less than 4, assign “Pet limit not exceeded” to
the status variable; otherwise, assign “too many pets” to the status variable.”

A conditional operator starts with a boolean operation, followed by two possible
values for the variable to the left of the conditional operator. The first value (the one
to the left of the colon) is assigned if the conditional (boolean) test is true, and the
second value is assigned if the conditional test is false. You can even nest conditional
operators into one statement.

class AssignmentOps {
public static void main(String [] args) {

int sizeOfYard = 10;
int numOfPets = 3;
String status = (numOfPets<4)?"Pet count OK"

:(sizeOfYard > 8)? "Pet limit on the edge"
:"too many pets";

System.out.println("Pet status is " + status);
}

}

Don’t expect many questions using conditional operators, but you need to be able
to spot them and respond correctly. Conditional operators are sometimes confused
with assertion statements, so be certain you can tell the difference. Chapter 4 covers
assertions in detail.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

32 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Primitive Casting
Casting lets you convert primitive values from one type to another. We looked at
primitive casting earlier in this chapter, in the assignments section, but now we’re
going to take a deeper look. Object casting is covered in Chapter 5.

Casts can be implicit or explicit. An implicit cast means you don’t have to write
code for the cast; the conversion happens automatically. Typically, an implicit cast
happens when you’re doing a widening conversion. In other words, putting a smaller
thing (say, a byte) into a bigger container (like an int). Remember those “possible loss
of precision” compiler errors we saw in the assignments section? Those happened
when you tried to put a larger thing (say, a long) into a smaller container (like a
short). The large-value-into-small-container conversion is referred to as narrowing
and requires an explicit cast, where you tell the compiler that you’re aware of the
danger and accept full responsibility. First we’ll look at an implicit cast:

int a = 100;
long b = a; // Implicit cast, an int value always fits in a long

An explicit casts looks like this:

float a = 100.001;
int b = (int)a; // Explicit cast, a float can lose info as an int

Integer values may be assigned to a double variable without explicit casting, because
any integer value can fit in a 64-bit double. The following line demonstrates this:

double d = 100L; // Implicit cast

In the preceding statement, a double is initialized with a long value (as denoted by
the L after the numeric value). No cast is needed in this case because a double can
hold every piece of information that a long can store. If, however, we want to assign
a double value to an integer type, we’re attempting a narrowing conversion and the
compiler knows it:

class Casting {
public static void main(String [] args) {

int x = 3957.229; // illegal
}

}

Java Operators (Exam Objective 5.1) 33

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

If we try to compile the preceding code, the following error is produced:

%javac Casting.java
Casting.java:3: Incompatible type for declaration. Explicit cast
needed to convert double to int.

int x = 3957.229; // illegal
1 error

In the preceding code, a floating-point value is being assigned to an integer
variable. Because an integer is not capable of storing decimal places, an error occurs.
To make this work, we’ll cast the floating-point number into an integer:

class Casting {
public static void main(String [] args) {

int x = (int)3957.229; // legal cast
System.out.println("int x = " + x);

}
}

When you a cast a floating-point number to an integer type, the value loses
all the digits after the decimal. Running the preceding code will produce the
following output:

%java Casting
int x = 3957

We can also cast a larger number type, such as a long, into a smaller number type,
such as a byte. Look at the following:

class Casting {
public static void main(String [] args) {

long l = 56L;
byte b = (byte)l;
System.out.println("The byte is " + b);

}
}

The preceding code will compile and run fine. But what happens if the long value
is larger than 127 (the largest number a byte can store)? Let’s modify the code and
find out:

class Casting {
public static void main(String [] args) {

long l = 130L;
byte b = (byte)l;

34 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

System.out.println("The byte is " + b);
}

}

The code compiles fine, and when we run it we get the following:

%java Casting
The byte is -126

You don’t get a runtime error, even when the value being narrowed is too large for
the type. The bits to the left of the lower 8 just…go away. As we saw in the
assignments section, if the leftmost bit in the byte now happens to be a 1, the 1 is no
longer part of the value and instead becomes the sign bit for the new byte.

EXERCISE 3-2

Casting Primitives
Create a float number type of any value, and assign it to a short using casting.

1. Declare a float variable: float f = 234.56F;

2. Assign the float to a short: short s = (short)f;

CERTIFICATION OBJECTIVE

Logical Operators (Exam Objective 5.3)
In an expression involving the operators &, |, &&, and ||, and variables of known
values, state which operands are evaluated and the value of the expression.

There are four logical operators. Two you’ve seen before; the & and | bitwise
operators can be used in boolean expressions. The other two we haven’t yet covered,
and are known as the short-circuit logical operators:

■ && short-circuit AND

■ || short-circuit OR

Logical Operators (Exam Objective 5.3) 35

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Short-Circuit Logical Operators
The && operator is similar to the & operator, except it evaluates only boolean
values and can’t be used as a bitwise operator. Remember, for an AND expression
to be true, both operands must be true—for example,

if ((2 < 3) && (3 < 4)) { }

The preceding expression evaluates to true only because both operand one (2 < 3)
and operand two (3 < 4) evaluate to true.

The short-circuit feature of the && operator is that it doesn’t waste its time on
pointless evaluations. A short-circuit && evaluates the left side of the operation first
(operand one), and if operand one resolves to false, the && operator doesn’t bother
looking at the right side of the equation (operand two). The operator already knows
that the complete expression can’t possibly be true, since one operand has already
proven to be false.

class Logical {
public static void main(String [] args) {

boolean b = true && false;
System.out.println("boolean b = " + b);

}
}

When we run the preceding code, we get

C:\Java Projects\BookTest>java Logical
boolean b = false

The || operator is similar to the && operator, except that it evaluates the left side
first, this time looking for true. If the first operand in an OR operation is true, the
result will be true, so the short-circuit || doesn’t waste time looking at the right side
of the equation. If the first operand is false, however, the short-circuit || has to
evaluate the second operand to see if the result of the OR operation will be true or
false. Pay close attention to the following example; you’ll see quite a few questions
like this on the exam:

1. class TestOR {
2. public static void main (String [] args) {
3. if ((isItSmall(3)) || (isItSmall(7))) {
4. System.out.println("Result is true");

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

36 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. }
6. if ((isItSmall(6)) || (isItSmall(9))) {
7. System.out.println("Result is true");
8. }
9. }
10.
11. public static boolean isItSmall(int i) {
12. if (i < 5) {
13. System.out.println("i less than 5");
14. return true;
15. } else {
16. System.out.println("i greater than 5");
17. return false;
18. }
19. }
20. }

What is the result?

[localhost:~/javatests] kathy% java TestOR
i less than 5
Result is true
i greater than 5
i greater than 5

Here’s what happened when the main() method ran:

1. When we hit line 3, the first operand in the || expression (in other words, the
left side of the || operation) is evaluated.

2. The isItSmall(3) method is invoked and prints “i less than 5”.

3. The isItSmall(3) method returns true.

4. Because the first operand in the || expression on line 3 is true, the ||
operator doesn’t bother evaluating the second operand. So we never see the
“i greater than 5” that would have printed had the second operand
been evaluated (which would have invoked isItSmall(7)).

5. Line 6 is now evaluated, beginning with the first operand in the || expression
on line 6.

6. The isItSmall(6)method is invoked and prints “i greater than 5”.

7. The isItSmall(6) method returns false.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Logical Operators (Exam Objective 5.3) 37

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

8. Because the first operand in the || expression on line 6 is false, the || operator
can’t skip the second operand; there’s still a chance the expression can be true,
if the second operand evaluates to true.

9. The isItSmall(9)method is invoked and prints “i greater than 5”.

10. The isItSmall(9) method returns false, so the expression on line 6 is false,
and thus line 7 never executes.

The || and && operators only work with boolean operands. The exam may try
to fool you by using integers with these operators, so be on guard for questions
such as,
if (5 && 6) { }

where it looks as though we’re trying to do a bitwise AND on the bits
representing the integers 5 and 6, but the code won’t even compile.

Logical Operators (not Short-Circuit)
The bitwise operators, & and |, can also be used in logical expressions. But because
they aren’t the short-circuit operators, they evaluate both sides of the expression,
always! They’re inefficient. For example, even if the first operand (left side) in an &
expression is false, the second operand will still be evaluated—even though it’s now
impossible for the result to be true! And the | is just as inefficient; if the first operand is
true, it still plows ahead and evaluates the second operand even when it knows the
expression will be true.

The rule to remember is

The short-circuit operators (&& and ||) can be used only in logical (not bitwise)
expressions. The bitwise operators (& and |) can be used in both logical and bitwise
expressions, but are rarely used in logical expressions because they’re not efficient.

You’ll find a lot of questions on the exam that use both the short-circuit and
non-short-circuit logical operators. You’ll have to know exactly which operands
are evaluated and which are not, since the result will vary depending on
whether the second operand in the expression is evaluated. The “Self Test”
at the end of this chapter includes several logical operator questions similar
to those on the exam.

Now that you have a better idea how operators work in Java, the following chart
shows some operators in action:

38 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION OBJECTIVE

Passing Variables into Methods (Exam Objective 5.4)
Determine the effect upon objects and primitive values of passing variables into methods
and performing assignments or other modifying operations in that method.

Methods can be declared to take primitives and/or object references. You need
to know how (or if) the caller’s variable can be affected by the called method. The
difference between object reference and primitive variables, when passed into
methods, is huge and important. To understand this section, you’ll need to be
comfortable with the assignments section covered in the first part of this chapter.

Passing Object Reference Variables
When you pass an object variable into a method, you must keep in mind that you’re
passing the object reference, and not the actual object itself. Remember that a reference
variable holds bits that represent (to the underlying VM) a way to get to a specific
object in memory (on the heap). More importantly, you must remember that you
aren’t even passing the actual reference variable, but rather a copy of the reference
variable. A copy of a variable means you get a copy of the bits in that variable, so
when you pass a reference variable, you’re passing a copy of the bits representing
how to get to a specific object. In other words, both the caller and the called method
will now have identical copies of the reference, and thus both will refer to the same
exact (not a copy) object on the heap.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Passing Variables into Methods (Exam Objective 5.4) 39

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

What is the result of (1 & 3)? 1

What is the result of (1 | 3)? 3

What is the result of (1 << 2)? 4

What is the resulting value of (new String(“fred”)
instanceof Object)?

true

SCENARIO & SOLUTION

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For this example, we’ll use the Dimension class from the java.awt package:

1. import java.awt.Dimension;
2. class ReferenceTest {
3. public static void main (String [] args) {
4. Dimension d = new Dimension(5,10);
5. ReferenceTest rt = new ReferenceTest();
6. System.out.println("Before modify() d.height = " + d.height);
7. rt.modify(d);
8. System.out.println("After modify() d.height = " + d.height);
9. }

10. void modify(Dimension dim) {
11. dim.height = dim.height + 1;
12. System.out.println("dim = " + dim.height);
13. }
14. }

When we run this class, we can see that the modify() method was indeed able
to modify the original (and only) Dimension object created on line 4.

C:\Java Projects\Reference>java ReferenceTest
Before modify() d.height = 10
dim = 11
After modify() d.height = 11

Notice when the Dimension object on line 4 is passed to the modify()
method, any changes to the object that occur inside the method are being made to
the object whose reference was passed. In the preceding example, reference variables
d and dim both point to the same object.

Does Java Use Pass-By-Value Semantics?
If Java passes objects by passing the reference variable instead, does that mean
Java uses pass-by-reference for objects? Not exactly, although you’ll often hear and
read that it does. Java is actually pass-by-value for all variables running within
a single VM. Pass-by-value means pass-by-variable-value. And that means,
pass-by-copy-of-the-variable !

It makes no difference if you’re passing primitive or reference variables, you are
always passing a copy of the bits in the variable. So for a primitive variable, you’re
passing a copy of the bits representing the value. For example, if you pass an int
variable with the value of 3, you’re passing a copy of the bits representing 3. The
called method then gets its own copy of the value, to do with it what it likes.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

40 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

And if you’re passing an object reference variable, you’re passing a copy of the bits
representing the reference to an object. The called method then gets its own copy of
the reference variable, to do with it what it likes. But because two identical reference
variables refer to the exact same object, if the called method modifies the object (by
invoking setter methods, for example), the caller will see that the object the caller’s
original variable refers to has also been changed. In the next section, we’ll look at
how the picture changes when we’re talking about primitives.

The bottom line on pass-by-value: the called method can’t change the caller’s
variable, although for object reference variables, the called method can change the
object the variable referred to. What’s the difference between changing the variable
and changing the object? For object references, it means the called method can’t
reassign the caller’s original reference variable and make it refer to a different object,
or null. For example, in the following code,

void bar() {
Foo f = new Foo();
doStuff(f);

}

void doStuff(Foo g) {
g = new Foo();

}

reassigning g does not reassign f ! At the end of the bar() method, two Foo objects
have been created, one referenced by the local variable f and one referenced by the
local (argument variable) g. Because the doStuff() method has a copy of the
reference variable, it has a way to get to the original Foo object, but the doStuff()
method does not have a way to get to the f reference variable. So doStuff() can
change what f refers to, but can’t change the actual contents (bit pattern) of f.

Passing Primitive Variables
Let’s look at what happens when a primitive variable is passed to a method:

class ReferenceTest {
public static void main (String [] args) {

int a = 1;
ReferenceTest rt = new ReferenceTest();
System.out.println("Before modify() a = " + a);
rt.modify(a);

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Passing Variables into Methods (Exam Objective 5.4) 41

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("After modify() a = " + a);
}
void modify(int number) {

number = number + 1;
System.out.println("number = " + number);

}
}

In this simple program, the variable a is passed to a method called modify(),
which increments the variable by 1. The resulting output looks like this:

C:\Java Projects\Reference>java ReferenceTest
Before modify() a = 1
number = 2
After modify() a = 1

Notice that a did not change after it was passed to the method. Remember, it
was only a copy of a that was passed to the method. When a primitive variable is
passed to a method, it is passed by value, which means pass-by-copy-of-the-bits-in-
the-variable.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

42 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

The Shadowy World of Variables

Just when you think you’ve got it all figured
out, you see a piece of code with variables
not behaving the way you think they should.
You might have stumbled into code with a
shadowed variable. You can shadow a variable
in several ways; we’ll look just at the one most
likely to trip you up—hiding an instance
variable by shadowing it with a local variable.

Shadowing involves redeclaring a variable
that’s already been declared somewhere else.

The effect of shadowing is to hide the
previously declared variable in such a way
that it may look as though you’re using the
hidden variable, but you’re actually using the
shadowing variable. You might find reasons
to shadow a variable intentionally, but
typically it happens by accident and causes
hard-to-find bugs. On the exam, you can
expect to see questions where shadowing
plays a role.

FROM THE CLASSROOM

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Passing Variables into Methods (Exam Objective 5.4) 43

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

You can shadow an instance variable by
declaring a local variable of the same name,

either directly or as part of an argument
as follows:

class Foo {
int size = 7;
static void changeIt(int size) {

size = size + 200;
System.out.println("size in changeIt is " + size);

}
public static void main (String [] args) {

Foo f = new Foo();
System.out.println("size = " + size);
changeIt(size);
System.out.println("size after changeIt is " + size);

}
}

The preceding code appears to change the
size instance variable in the changeIt()
method, but because changeIt() has a

parameter named size, the local size variable is
modified while the instance variable size is
untouched. Running class Foo prints

%java Foo
size = 7
size in changeIt is 207
size after changeIt is 7

Things become more interesting when the
shadowed variable is an object reference,

rather than a primitive:

class Bar {
int barNum = 28;

}
class Foo {

Bar myBar = new Bar();
void changeIt(Bar myBar) {

myBar.barNum = 99;

FROM THE CLASSROOM

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

44 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

CERTIFICATION SUMMARY
If you’ve studied this chapter diligently, and thought of nothing else except this
chapter for the last 72 hours, you should have a firm grasp on Java operators. You
should understand what equality means when tested with the == operator, and you
know how primitives and objects behave when passed to a method. Let’s review the
highlights of what you’ve learned in this chapter.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

System.out.println("myBar.barNum in changeIt is " + barNum);
myBar = new Bar();
myBar.barNum = 420;
System.out.println("myBar.barNum in changeIt is now " + barNum);

}
public static void main (String [] args) {

Foo f = new Foo();
System.out.println("f.myBar.barNum is " + f.myBar.barNum);
changeIt(f.myBar);
System.out.println("myBar.barNum after changeIt is " + f.myBar.barNum);

}
}

The preceding code prints out this:

f.myBar.barNum is 28
myBar.barNum in changeIt is 99
myBar.barNum in changeIt is now 420
f.myBar.barNum after changeIt is 99

You can see that the shadowing variable
(the local parameter myBar in changeIt())
can still affect the myBar instance variable,
because the myBar parameter receives a
reference to the same Bar object. But when

the local myBar is reassigned a new Bar object,
which we then modify by changing its barNum
value, Foo’s original myBar instance variable is
untouched.

FROM THE CLASSROOM

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To understand what a bit-shift operation is doing, you need to look at the
number being shifted in its binary form. The left shift (<<) shifts all bits to the left,
filling the right side with zeroes, and the right shift (>>) shifts all bits right, filling in
the left side with whatever the sign bit was. The unsigned right shift (>>>) moves all
bits to the right, but fills the left side with zeroes, regardless of the original sign bit.
Thus, the result of an unsigned right shift is always a positive number.

The logical operators (&& and ||) can be used only to evaluate two boolean
expressions. The bitwise operators (& and |) can be used on integral numbers to
produce a resulting numeric value, or on boolean values to produce a resulting
boolean value. The difference between && and & is that the && operator won’t
bother testing the right operand if the left evaluates to false, because the result of
the && expression can never be true. The difference between || and | is that the ||
operator won’t bother testing the right operand if the left evaluates to true, because
the result is already known to be true at that point.

The == operator can be used to compare values of primitives, but it can also be
used to determine whether two reference variables refer to the same object.

Although both objects and primitives are passed by value into a method, key
differences exist between how they behave once passed. Objects are passed by a
copy of the reference value, while primitives are passed by a copy of the variable value.
This means that if an object is modified within a method, other code referring to
that object will notice the change. Both the caller and called methods have identical
copies of reference variables; therefore, they both refer to the exact same object
in memory.

Be prepared for a lot of exam questions involving the topics from this chapter.
Even within questions testing your knowledge of another objective, the code will
frequently use operators, assignments, object and primitive passing, etc., so be on
your toes for this topic, and take the “Self Test” seriously.

Passing Variables into Methods (Exam Objective 5.4) 45

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

✓TWO-MINUTE DRILL
Here are some of the key points from each certification objective in Chapter 3.

Java Operators (Sun Objective 5.1)
❑ The result of performing most operations is either a boolean or a

numeric value.

❑ Variables are just bit holders with a designated type.

❑ A reference variable’s bits represent a way to get to an object.

❑ An unassigned reference variable’s bits represent null.

❑ There are 12 assignment operators: =, *=, /=, %=, +=, -=, <<=, >>=, >>>=,
&=, ^=, |=.

❑ Numeric expressions always result in at least an int-sized result—never
smaller.

❑ Floating-point numbers are implicitly doubles (64 bits).

❑ Narrowing a primitive truncates the high-order bits.

❑ Two’s complement means: flip all the bits, then add 1.

❑ Compound assignments (e.g. +=) perform an automatic cast.

Reference Variables
❑ When creating a new object, e.g., Button b = new Button();, three things

happen:

❑ Make a reference variable named b, of type Button

❑ Create a new Button object

❑ Refer the reference variable b to the Button object

❑ Reference variables can refer to subclasses of the declared type but not
superclasses.

String Objects and References
❑ String objects are immutable, cannot be changed.

46 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

❑ When you use a String reference variable to modify a String:

❑ A new string is created (the old string is immutable).

❑ The reference variable refers to the new string.

Comparison Operators
❑ Comparison operators always result in a boolean value (true or false).

❑ There are four comparison operators: >, >=, <, <=.

❑ When comparing characters, Java uses the ASCII or Unicode value of the
number as the numerical value.

instanceof Operator
❑ instanceof is for reference variables only, and checks for whether this

object is of a particular type.

❑ The instanceof operator can be used only to test objects (or null)
against class types that are in the same class hierarchy.

❑ For interfaces, an object is “of a type” if any of its superclasses implement the
interface in question.

Equality Operators
❑ Four types of things can be tested: numbers, characters, booleans, reference

variables.

❑ There are two equality operators: == and !=.

Arithmetic Operators
❑ There are four primary operators: add, subtract, multiply, and divide.

❑ The remainder operator returns the remainder of a division.

❑ When floating-point numbers are divided by zero, they return positive or
negative infinity.

❑ When the remainder operator performs a floating-point divide by zero, it will
not cause a runtime exception.

Two-Minute Drill 47

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ When integers are divided by zero, a runtime ArithmeticException is thrown.

❑ When the remainder operator performs an integer divide by zero, a runtime
ArithmeticException is thrown.

String Concatenation Operator
❑ If either operand is a String, the + operator concatenates the operands.

❑ If both operands are numeric, the + operator adds the operands.

Increment/Decrement Operators
❑ Prefix operator runs before the value is used in the expression.

❑ Postfix operator runs after the value is used in the expression.

❑ In any expression, both operands are fully evaluated before the operator is
applied.

❑ Final variables cannot be incremented or decremented.

Shift Operators
❑ There are three shift operators: >>, <<, >>>; the first two are signed, the last

is unsigned.

❑ Shift operators can only be used on integer types.

❑ Shift operators can work on all bases of integers (octal, decimal, or
hexadecimal).

❑ Bits are filled as follows:

❑ << fills the right bits with zeros.

❑ >> fills the left bits with whatever value the original sign bit (leftmost
bit) held.

❑ >>> fills the left bits with zeros (negative numbers will become positive).

❑ All bit shift operands are promoted to at least an int.

❑ For int shifts > 32 or long shifts > 64, the actual shift value is the remainder
of the right operand / divided by 32 or 64, respectively.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

48 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Bitwise Operators
❑ There are three bitwise operators—&, ^, |—and a bitwise complement,

operator ~.

❑ The & operator sets a bit to 1 if both operand’s bits are set to 1.

❑ The ^ operator sets a bit to 1 if exactly one operand’s bit is set to 1.

❑ The | operator sets a bit to 1 if at least one operand’s bit is set to 1.

❑ The ~ operator reverses the value of every bit in the single operand.

Ternary (Conditional Operator)
❑ Returns one of two values based on whether a boolean expression is true

or false.

❑ The value after the ? is the ‘if true return’.

❑ The value after the : is the ‘if false return’.

Casting
❑ Implicit casting (you write no code) happens when a widening conversion

occurs.

❑ Explicit casting (you write the cast) happens when a narrowing conversion
occurs.

❑ Casting a floating point to an integer type causes all digits to the right of the
decimal point to be lost (truncated).

❑ Narrowing conversions can cause loss of data—the most significant bits
(leftmost) can be lost.

Logical Operators (Sun Objective 5.3)
❑ There are four logical operators: &, |, &&, ||.

❑ Logical operators work with two expressions that must resolve to boolean
values.

❑ The && and & operators return true only if both operands are true.

❑ The || and | operators return true if either or both operands are true.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Two-Minute Drill 49

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ The && and || operators are known as short-circuit operators.

❑ The && operator does not evaluate the right operand if the left operand
is false.

❑ The || does not evaluate the right operand if the left operand is true.

❑ The & and | operators always evaluate both operands.

Passing Variables into Methods (Sun Objective 5.4)
❑ Methods can take primitives and/or object references as arguments.

❑ Method arguments are always copies—of either primitive variables or
reference variables.

❑ Method arguments are never actual objects (they can be references to
objects).

❑ In practice, a primitive argument is a completely detached copy of the
original primitive.

❑ In practice, a reference argument is another copy of a reference to the
original object.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

50 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question.

Java Operators (Sun Objective 5.1)

1. Which two are equal? (Choose two.)

A. 32 / 4;

B. (8 >> 2) << 4;

C. 2 ^ 5;

D. 128 >>> 2;

E. (2 << 1) * (32 >> 3);

F. 2 >> 5;

2. Given the following,

1. import java.awt.*;
2. class Ticker extends Component {
3. public static void main (String [] args) {
4. Ticker t = new Ticker();
5.
6. }
7. }

which two of the following statements, inserted independently, could legally be inserted into
line 5 of this code? (Choose two.)

A. boolean test = (Component instanceof t);

B. boolean test = (t instanceof Ticker);

C. boolean test = t.instanceof(Ticker);

D. boolean test = (t instanceof Component);

E. boolean test = t.instanceof(Object);

F. boolean test = (t instanceof String);

Self Test 51

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

52 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

3. Given the following,

1. class Equals {
2. public static void main(String [] args) {
3. int x = 100;
4. double y = 100.1;
5. boolean b = (x = y);
6. System.out.println(b);
7. }
8. }

what is the result?

A. true

B. false

C. Compilation fails

D. An exception is thrown at runtime

4. Given the following,

1. import java.awt.Button;
2. class CompareReference {
3. public static void main(String [] args) {
4. float f = 42.0f;
5. float [] f1 = new float[2];
6. float [] f2 = new float[2];
7. float [] f3 = f1;
8. long x = 42;
9. f1[0] = 42.0f;

10. }
11. }

which three statements are true? (Choose three.)

A. f1 == f2

B. f1 == f3

C. f2 == f1[1]

D. x == f1[0]

E. f == f1[0]

5. Given the following,

1. class BitShift {
2. public static void main(String [] args) {

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3. int x = 0x80000000;
4. System.out.print(x + " and ");
5. x = x >>> 31;
6. System.out.println(x);
7. }
8. }

what is the output from this program?

A. -2147483648 and 1

B. 0x80000000 and 0x00000001

C. -2147483648 and -1

D. 1 and -2147483648

E. None of the above

6. Given the following,

1. class Bitwise {
2. public static void main(String [] args) {
3. int x = 11 & 9;
4. int y = x ^ 3;
5. System.out.println(y | 12);
6. }
7. }

what is the result?

A. 0

B. 7

C. 8

D. 14

E. 15

7. Which of the following are legal lines of code? (Choose all that apply.)

A. int w = (int)888.8;

B. byte x = (byte)1000L;

C. long y = (byte)100;

D. byte z = (byte)100L;

Self Test 53

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

54 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Logical Operators (Sun Objective 5.3)

8. Given the following,

1. class Test {
2. public static void main(String [] args) {
3. int x= 0;
4. int y= 0;
5. for (int z = 0; z < 5; z++) {
6. if ((++x > 2) || (++y > 2)) {
7. x++;
8. }
9. }
10. System.out.println(x + " " + y);
11. }
12. }

what is the result?

A. 5 3

B. 8 2

C. 8 3

D. 8 5

E. 10 3

F. 10 5

9. Given the following,

1. class Test {
2. public static void main(String [] args) {
3. int x= 0;
4. int y= 0;
5. for (int z = 0; z < 5; z++) {
6. if ((++x > 2) && (++y > 2)) {
7. x++;
8. }
9. }
10. System.out.println(x + " " + y);
11. }
12. }

What is the result?

A. 5 2

B. 5 3

C. 6 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 55

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

D. 6 4

E. 7 5

F. 8 5

10. Given the following,

1. class SSBool {
2. public static void main(String [] args) {
3. boolean b1 = true;
4. boolean b2 = false;
5. boolean b3 = true;
6. if (b1 & b2 | b2 & b3 | b2)
7. System.out.print("ok ");
8. if (b1 & b2 | b2 & b3 | b2 | b1)
9. System.out.println("dokey");
10. }
11. }

what is the result?

A. ok

B. dokey

C. ok dokey

D. No output is produced

E. Compilation error

F. An exception is thrown at runtime

11. Given the following,

1. class Test {
2. public static void main(String [] args) {
3. int x=20;
4. String sup = (x<15)?"small":(x<22)?"tiny":"huge";
5. System.out.println(sup);
6. }
7. }

what is the result of compiling and running this code?

A. small

B. tiny

C. huge

D. Compilation fails

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12. Given the following,

1. class BoolArray {
2. boolean [] b = new boolean[3];
3. int count = 0;
4.
5. void set(boolean [] x, int i) {
6. x[i] = true;
7. ++count;
8. }
9.
10. public static void main(String [] args) {
11. BoolArray ba = new BoolArray();
12. ba.set(ba.b, 0);
13. ba.set(ba.b, 2);
14. ba.test();
15. }
16.
17. void test() {
18. if (b[0] && b[1] | b[2])
19. count++;
20. if (b[1] && b[(++count - 2)])
21. count += 7;
22. System.out.println("count = " + count);
23. }
24. }

what is the result?

A. count = 0

B. count = 2

C. count = 3

D. count = 4

E. count = 10

F. count = 11

Passing Variables into Methods (Sun Objective 5.4)

13. Given the following,

1. class Test {
2. static int s;
3.

56 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. public static void main(String [] args) {
5. Test p = new Test();
6. p.start();
7. System.out.println(s);
8. }
9.
10. void start() {
11. int x = 7;
12. twice(x);
13. System.out.print(x + " ");
14. }
15.
16. void twice(int x) {
17. x = x*2;
18. s = x;
19. }
20. }

what is the result?

A. 7 7

B. 7 14

C. 14 0

D. 14 14

E. Compilation fails

F. An exception is thrown at runtime

14. Given the following,

1. class Test {
2. public static void main(String [] args) {
3. Test p = new Test();
4. p.start();
5. }
6.
7. void start() {
8. boolean b1 = false;
9. boolean b2 = fix(b1);
10. System.out.println(b1 + " " + b2);
11. }
12.
13. boolean fix(boolean b1) {
14. b1 = true;

Self Test 57

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

15. return b1;
16. }
17. }

what is the result?

A. true true

B. false true

C. true false

D. false false

E. Compilation fails

F. An exception is thrown at runtime

15. Given the following,

1. class PassS {
2. public static void main(String [] args) {
3. PassS p = new PassS();
4. p.start();
5. }
6.
7. void start() {
8. String s1 = "slip";
9. String s2 = fix(s1);
10. System.out.println(s1 + " " + s2);
11. }
12.
13. String fix(String s1) {
14. s1 = s1 + "stream";
15. System.out.print(s1 + " ");
16. return "stream";
17. }
18. }

what is the result?

A. slip stream

B. slipstream stream

C. stream slip stream

D. slipstream slip stream

E. Compilation fails

F. An exception is thrown at runtime

58 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

16. Given the following,

1. class SC2 {
2. public static void main(String [] args) {
3. SC2 s = new SC2();
4. s.start();
5. }
6.
7. void start() {
8. int a = 3;
9. int b = 4;
10. System.out.print(" " + 7 + 2 + " ");
11. System.out.print(a + b);
12. System.out.print(" " + a + b + " ");
13. System.out.print(foo() + a + b + " ");
14. System.out.println(a + b + foo());
15. }
16.
17. String foo() {
18. return "foo";
19. }
20. }

what is the result?

A. 9 7 7 foo 7 7foo

B. 72 34 34 foo34 34foo

C. 9 7 7 foo34 34foo

D. 72 7 34 foo34 7foo

E. 9 34 34 foo34 34foo

17. Given the following,

1. class PassA {
2. public static void main(String [] args) {
3. PassA p = new PassA();
4. p.start();
5. }
6.
7. void start() {
8. long [] a1 = {3,4,5};
9. long [] a2 = fix(a1);
10. System.out.print(a1[0] + a1[1] + a1[2] + " ");
11. System.out.println(a2[0] + a2[1] + a2[2]);

Self Test 59

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

60 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

12. }
13.
14. long [] fix(long [] a3) {
15. a3[1] = 7;
16. return a3;
17. }
18. }

what is the result?

A. 12 15

B. 15 15

C. 3 4 5 3 7 5

D. 3 7 5 3 7 5

E. Compilation fails

F. An exception is thrown at runtime

18. Given the following,

1. class Two {
2. byte x;
3. }
4.
5. class PassO {
6. public static void main(String [] args) {
7. PassO p = new PassO();
8. p.start();
9. }
10.
11. void start() {
12. Two t = new Two();
13. System.out.print(t.x + " ");
14. Two t2 = fix(t);
15. System.out.println(t.x + " " + t2.x);
16. }
17.
18. Two fix(Two tt) {
19. tt.x = 42;
20. return tt;
21. }
22. }

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

what is the result?

A. null null 42

B. 0 0 42

C. 0 42 42

D. 0 0 0

E. Compilation fails

F. An exception is thrown at runtime

Self Test 61

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELF TEST ANSWERS

Java Operators (Sun Objective 5.1)

1. � B and D. B and D both evaluate to 32. B is shifting bits right then left using the signed
bit shifters >> and <<. D is shifting bits using the unsigned operator >>>, but since the
beginning number is positive the sign is maintained.

A evaluates to 8, C looks like 2 to the 5th power, but ^ is the Exclusive OR operator so C
evaluates to 7. E evaluates to 16, and F evaluates to 0 (2 >> 5 is not 2 to the 5th).

2. � B and D. B is correct because class type Ticker is part of the class hierarchy of t; therefore
it is a legal use of the instanceof operator. D is also correct because Component is part of the
hierarchy of t, because Ticker extends Component in line 2.
� A is incorrect because the syntax is wrong. A variable (or null) always appears before the
instanceof operator, and a type appears after it. C and E are incorrect because the statement is
used as a method, which is illegal. F is incorrect because the String class is not in the hierarchy
of the t object.

3. � C. The code will not compile because in line 5, the line will work only if we use (x == y)
in the line. The == operator compares values to produce a boolean, whereas the = operator
assigns a value to variables.
� A, B, and D are incorrect because the code does not get as far as compiling. If we corrected
this code, the output would be false.

4. � B, D, and E. B is correct because the reference variables f1 and f3 refer to the same array
object. D is correct because it is legal to compare integer and floating-point types. E is correct
because it is legal to compare a variable with an array element.
� C is incorrect because f2 is an array object and f1[1] is an array element.

5. � A. The >>> operator moves all bits to the right, zero filling the left bits. The bit
transformation looks like this:

Before: 1000 0000 0000 0000 0000 0000 0000 0000
After: 0000 0000 0000 0000 0000 0000 0000 0001

� C is incorrect because the >>> operator zero fills the left bits, which in this case changes
the sign of x, as shown. B is incorrect because the output method print() always displays
integers in base 10. D is incorrect because this is the reverse order of the two output numbers.
E is incorrect because there was a correct answer.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

62 Chapter 3: Operators and Assignments

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6. � D. The & operator produces a 1 bit when both bits are 1. The result of the & operation
is 9. The ^ operator produces a 1 bit when exactly one bit is 1; the result of this operation is 10.
The | operator produces a 1 bit when at least one bit is 1; the result of this operation is 14.
� A, B, C, and E, are incorrect based on the program logic described above.

7. � A, B, C, and D. A is correct because when a floating-point number (a double in this case)
is cast to an int, it simply loses the digits after the decimal. B and D are correct because a long
can be cast into a byte. If the long is over 127, it loses its most significant (leftmost) bits. C
actually works, even though a cast is not necessary, because a long can store a byte.
� There are no incorrect answer choices.

Logical Operators (Sun Objective 5.3)

8. � B. The first two iterations of the for loop both x and y are incremented. On the third
iteration x is incremented, and for the first time becomes greater than 2. The short circuit or
operator || keeps y from ever being incremented again and x is incremented twice on each of
the last three iterations.
� A, C, D, E, and F are incorrect based on the program logic described above.

9. � C. In the first two iterations x is incremented once and y is not because of the short circuit
&& operator. In the third and forth iterations x and y are each incremented, and in the fifth
iteration x is doubly incremented and y is incremented.
� A, B, D, E, and F are incorrect based on the program logic described above.

10. � B. The & operator has a higher precedence than the | operator so that on line 6 b1 and b2
are evaluated together as are b2 & b3. The final b1 in line 8 is what causes that if test to be true.
� A, C, and D are incorrect based on the program logic described above.

11. � B. This is an example of a nested ternary operator. The second evaluation (x < 22) is
true, so the “tiny” value is assigned to sup.
� A, C, and D are incorrect based on the program logic described above.

12. � C. The reference variables b and x both refer to the same boolean array. Count is
incremented for each call to the set() method, and once again when the first if test is true.
Because of the && short circuit operator, count is not incremented during the second if test.
� A, B, D, E, and F are incorrect based on the program logic described above.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

Self Test Answers 63

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

64 Chapter 3: Operators and Assignments

Passing Variables into Methods (Sun Objective 5.4)

13. � B. The int x in the twice() method is not the same int x as in the start()
method. Start()’s x is not affected by the twice() method. The instance variable s is
updated by twice()’s x, which is 14.
� A, C, and D are incorrect based on the program logic described above.

14. � B. The boolean b1 in the fix() method is a different boolean than the b1 in the
start() method. The b1 in the start() method is not updated by the fix() method.
� A, C, D, E, and F are incorrect based on the program logic described above.

15. � D. When the fix() method is first entered, start()’s s1 and fix()’s s1 reference
variables both refer to the same String object (with a value of “slip”). Fix()’s s1 is reassigned
to a new object that is created when the concatenation occurs (this second String object has a
value of “slipstream”). When the program returns to start(), another String object is
created, referred to by s2 and with a value of “stream”.
� A, B, C, and E are incorrect based on the program logic described above.

16. � D. Because all of these expressions use the + operator, there is no precedence to worry
about and all of the expressions will be evaluated from left to right. If either operand being
evaluated is a String, the + operator will concatenate the two operands; if both operands are
numeric, the + operator will add the two operands.
� A, B, C, and E are incorrect based on the program logic described above.

17. � B. The reference variables a1 and a3 refer to the same long array object. When the [1]
element is updated in the fix() method, it is updating the array referred to by a1. The
reference variable a2 refers to the same array object.
� A, C, D, E, and F are incorrect based on the program logic described above.

18. � C. In the fix() method, the reference variable tt refers to the same object (class Two) as
the t reference variable. Updating tt.x in the fix() method updates t.x (they are one in the
same object). Remember also that the instance variable x in the Two class is initialized to 0.
� A, B, D, E, and F are incorrect based on the program logic described above.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXERCISE ANSWERS
Exercise 3-1: Using Shift Operators

The program should look something like the following:

class BitShift {
public static void main(String [] args) {

int x = 0x00000001; // or simply 1
x <<= 31;
x >>= 31;
System.out.println("After shift x equals " + x);

}
}

The number should now equal -1. In bits, this number is

1111 1111 1111 1111 1111 1111 1111 1111

Exercise 3-2: Casting Primitives
The program should look something like the following:

class Cast {
public static void main(String [] args) {

float f = 234.56F;
short s = (short)f;

}
}

Exercise Answers 65

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 3

P:\010Comp\CertPrs8\684-6\ch03.vp
Wednesday, November 13, 2002 5:19:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4
Flow Control,
Exceptions, and
Assertions

CERTIFICATION OBJECTIVES

• Writing Code Using if and switch
Statements

• Writing Code Using Loops

• Handling Exceptions

• Working with the Assertion Mechanism

✓ Two-Minute Drill

Q&A Self Test

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4
Blind Folio 4:1

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Can you imagine trying to write code using a language that didn’t give you a way to
execute statements conditionally? In other words, a language that didn’t let you say,
“If this thing over here is true, then I want this thing to happen; otherwise, do this other

thing instead.” Flow control is a key part of most any useful programming language, and Java offers
several ways to do it. Some, like if statements and for loops, are common to most languages.
But Java also throws in a couple flow control features you might not have used before—exceptions
and assertions.

The if statement and the switch statement are types of conditional/decision controls
that allow your program to perform differently at a “fork in the road,” depending on
the result of a logical test. Java also provides three different looping constructs—for,
while, and do-while—so you can execute the same code over and over again
depending on some condition being true. Exceptions give you a clean, simple way to
organize code that deals with problems that might crop up at runtime. Finally, the
assertion mechanism, added to the language with version 1.4, gives you a way to do
debugging checks on conditions you expect to smoke out while developing, when
you don’t necessarily need or want the runtime overhead associated with exception
handling.

With these tools, you can build a robust program that can handle any logical
situation with grace. Expect to see a wide range of questions on the exam that include
flow control as part of the question code, even on questions that aren’t testing your
knowledge of flow control.

CERTIFICATION OBJECTIVE

Writing Code Using if and switch Statements
(Exam Objective 2.1)

Write code using if and switch statements and identify legal argument types for
these statements.

The if and switch statements are commonly referred to as decision statements. When
you use decision statements in your program, you’re asking the program to evaluate
a given expression to determine which course of action to take. We’ll look at the if
statement first.

2 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if-else Branching
The basic format of an if statement is as follows:

if (booleanExpression) {
System.out.println("Inside if statement");

}

The expression in parentheses must evaluate to a boolean true or false result.
Typically you’re testing something to see if it’s true, and then running a code block
(one or more statements) if it is true, and (optionally) another block of code if it
isn’t. We consider it good practice to enclose the blocks within curly braces, even if
there’s only one statement in the block. The following code demonstrates a legal if
statement:

if (x > 3) {
System.out.println("x is greater than 3");

} else {
System.out.println("x is not greater than 3");

}

The else block is optional, so you can also use the following:

if (x > 3) {
y = 2;

}
z += 8;
a = y + x;

The preceding code will assign 2 to y if the test succeeds (meaning x really is greater
than 3), but the other two lines will execute regardless.

Even the curly braces are optional if you have only one statement to execute within
the body of the conditional block. The following code example is legal (although not
recommended for readability):

if (x > 3)
y = 2;

z += 8;
a = y + x;

Be careful with code like this, because you might think it should read as, “If x is
greater than 3, then set y to 2, z to z + 8, and a to y + x.” But the last two lines are

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Writing Code Using if and switch Statements (Exam Objective 2.1) 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

going to execute no matter what! They aren’t part of the conditional flow. You might
find it even more misleading if the code were indented as follows:

if (x > 3)
y = 2;
z += 8;
a = y + x;

You might have a need to nest if-else statements (although, again, not recommended
for readability, so nested if tests should be kept to a minimum). You can set up an
if-else statement to test for multiple conditions. The following example uses two
conditions so that if the first test succeeds, we want to perform a second test before
deciding what to do:

if (price < 300) {
buyProduct();

}
else

if (price < 400) {
getApproval();

}
else {

dontBuyProduct();
}

}

Sometimes you can have a problem figuring out which if your else goes to, as
follows:

if (exam.done())
if (exam.getScore() < 0.61)
System.out.println("Try again.");
else System.out.println("Java master!"); // Which if does this belong to?

We intentionally left out the indenting in this piece of code so it doesn’t give clues
as to which if statement the else belongs to. Did you figure it out? Java law decrees
that an else clause belongs to the innermost if statement to which it might possibly
belong (in other words, the closest preceding if that doesn’t have an else). In the
case of the preceding example, the else belongs to the second if statement in
the listing. With proper indenting, it would look like this:

if (exam.done())
if (exam.getScore() < 0.61)

System.out.println("Try again.");

4 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Writing Code Using if and switch Statements (Exam Objective 2.1) 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

else
System.out.println("Java master!"); // Which if does this belong to?

Following our coding conventions by using curly braces, it would be even easier
to read:

if (exam.done()) {
if (exam.getScore() < 0.61) {

System.out.println("Try again.");
} else {

System.out.println("Java master!"); // Which if does this belong to?
}

Don’t be getting your hopes up about the exam questions being all nice and
indented properly, however. Some exam takers even have a slogan for the way
questions are presented on the exam: anything that can be made more confusing,
will be.

Be prepared for questions that not only fail to indent nicely, but intentionally
indent in a misleading way: Pay close attention for misdirection like the
following example:

if (exam.done())

if (exam.getScore() < 0.61)

System.out.println(“Try again.”);

else

System.out.println(“Java master!”); // Hmmmmm… now where does it belong?

Of course, the preceding code is exactly the same as the previous two examples,
except for the way it looks.

Legal Arguments for if Statements
if statements can test against only a boolean. Any expression that resolves down to
a boolean is fine, but some of the expressions can be complex, like the following,

int y = 5;
int x = 2;
if ((((x > 3) && (y < 2)) | doStuff()))
System.out.print("true");
}

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

which prints

true

You can read the preceding code as, “If both (x > 3) and (y < 2) are true, or if the
result of doStuff() is true, then print “true.” So basically, if just doStuff()
alone is true, we’ll still get “true.” If doStuff() is false, though, then both (x > 3)
and (y < 2) will have to be true in order to print “true.”

The preceding code is even more complex if you leave off one set of parentheses
as follows,

int y = 5;
int x = 2;
if (((x > 3) && (y < 2) | doStuff()))
System.out.print("true");
}

which now prints…nothing! Because the preceding code (with one less set of
parentheses) evaluates as though you were saying, “If (x > 3) is true, and either (y < 2)
or the result of doStuff() is true, then print “true.” So if (x > 3) is not true, no
point in looking at the rest of the expression.” Because of the short-circuit && and
the fact that at runtime the expression is evaluated as though there were parentheses
around ((y< 2) | doStuff()), it reads as though both the test before the
&& (x > 3) and then the rest of the expression after the && (y<2 | doStuff())
must be true.

Remember that the only legal argument to an if test is a boolean. Table 4-1 lists
illegal arguments that might look tempting, compared with a modification to make
each argument legal.

One common mistake programmers make (and that can be difficult to spot),
is assigning a boolean variable when you meant to test a boolean variable.
Look out for code like the following:

boolean boo = false;

if (boo = true) { }

You might think one of three things:
1. The code compiles and runs fine, and the if test fails because boo is false.
2. The code won’t compile because you’re using an assignment (=) rather

than an equality test (==).
3. The code compiles and runs fine and the if test succeeds because boo is

set to true (rather than tested for true) in the if argument!

6 Chapter 4: Flow Control, Exceptions, and Assertions

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Well, number 3 is correct. Pointless, but correct. Given that the result of
any assignment is the value of the variable after the assignment, the
expression (boo = true) has a result of true. Hence, the if test
succeeds. But the only variable that can be assigned (rather than tested
against something else) is a boolean; all other assignments will result in
something nonboolean, so they’re not legal, as in the following:

int x = 3;

if (x = 5) { } // Won’t compile because x is not a boolean!

Because if tests require boolean expressions, you need to be really solid on both
logical operators and if test syntax and semantics.

switch Statements
Another way to simulate the use of multiple if statements is with the switch statement.
Take a look at the following if-else code, and notice how confusing it can be to have
nested if tests, even just a few levels deep:

int x = 3;
if(x == 1) {

System.out.println("x equals 1");
}
else if(x == 2) {

System.out.println("x equals 2");
}
else if(x == 3) {

System.out.println("x equals 3");
}
else {

System.out.println("No idea what x is");
}

Writing Code Using if and switch Statements (Exam Objective 2.1) 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Illegal Arguments to if Legal Arguments to if

int x = 1;
if (x) { }

int x = 1;
if (x == 1) { }

if (0) { } if (false)

if (x = 6) if (x == 6)

TABLE 4-1

Illegal and Legal
Arguments to if

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Now let’s see the same functionality represented in a switch construct:

int x = 3;
switch (x) {

case 1:
System.out.println("x is equal to 1");
break;

case 2:
System.out.println("x is equal to 2");
break;

case 3:
System.out.println("x is equal to 3");
break;

default:
System.out.println("Still no idea what x is");

}

Legal Arguments to switch and case
The only type that a switch can evaluate is the primitive int! That means only
variables and valuables that can be automatically promoted (in other words, implicitly
cast) to an int are acceptable. So you can switch on any of the following, but
nothing else:

byte
short
char
int

You won’t be able to compile if you use anything else, including the remaining
numeric types of long, float, and double.

The only argument a case can evaluate is one of the same type as switch can use,
with one additional—and big—constraint: the case argument must be final! The case
argument has to be resolved at compile time, so that means you can use only a literal
or final variable. Also, the switch can only check for equality. This means that the
other relational operators such as greater than are rendered unusable in a case. The
following is an example of a valid expression using a method invocation in a switch
statement. Note that for this code to be legal, the method being invoked on the
object reference must return a value compatible with an int.

String s = "xyz";
switch (s.length()) {

case 1:

8 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("length is one");
break;

case 2:
System.out.println("length is two");
break;

case 3:
System.out.println("length is three");
break;

default:
System.out.println("no match");

}

The following example uses final variables in a case statement. Note that if the
final keyword is omitted, this code will not compile.

final int one = 1;
final int two = 2;
int x = 1;
switch (x) {

case one: System.out.println("one");
break;

case two: System.out.println("two");
break;

}

One other rule you might not expect involves the question, “What happens if I
switch on a variable smaller than an int?” Look at the following switch example:

byte g = 2;
switch(g) {
case 23:
case 128:
}

This code won’t compile. Although the switch argument is legal—a byte is
implicitly cast to an int—the second case argument (128) is too large for a byte,
and the compiler knows it! Attempting to compile the preceding example gives you
an error:

Test.java:6: possible loss of precision
found : int
required: byte

case 129:
^

Writing Code Using if and switch Statements (Exam Objective 2.1) 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

It’s also illegal to have more than one case label using the same value. For example,
the following block of code won’t compile because it uses two cases with the same
value of 80:

int temp = 90;
switch(temp) {

case 80 :
System.out.println("80");
break;

case 80 :
System.out.println("80");
break;

case 90:
System.out.println("90");
break;

default:
System.out.println("default");

}

Look for any violation of the rules for switch and case arguments. For example,
you might find illegal examples like the following three snippets:

Integer in = new Integer(4);

switch (in) { }

==================

switch(x) {

case 0 {

y = 7;

}

}

==================

switch(x) {

0: { }

1: { }

}

In the first example, you can’t switch on an Integer object, only an int
primitive. In the second example, the case uses a curly brace and omits
the colon. The third example omits the keyword case.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

10 Chapter 4: Flow Control, Exceptions, and Assertions

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Default, Break, and Fall-Through in switch Blocks
When the program encounters the keyword break during the execution of a switch
statement, execution will immediately move out of the switch block to the next
statement after the switch. If break is omitted, the program just keeps executing
the different case blocks until either a break is found or the switch statement ends.
Examine the following code:

int x = 1;
switch(x) {

case 1: System.out.println("x is one");
case 2: System.out.println("x is two");
case 3: System.out.println("x is three");

}
System.out.println("out of the switch");

The code will print the following:

x is one
x is two
x is three
out of the switch

This combination occurs because the code didn’t hit a break statement; thus,
execution just kept dropping down through each case until the end. This dropping
down is actually called “fall through,” because of the way execution falls from one
case to the next. Think of the matching case as simply your entry point into the
switch block! In other words, you must not think of it as, “Find the matching case,
execute just that code, and get out.” That’s not how it works. If you do want that
“just the matching code” behavior, you’ll insert a break into each case as follows:

int x = 1;
switch(x) {

case 1: {
System.out.println("x is one");
break;

}
case 2: {

System.out.println("x is two");
break;

}
case 3: {

System.out.println("x is two");

Writing Code Using if and switch Statements (Exam Objective 2.1) 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

break;
}

}
System.out.println("out of the switch");

Running the preceding code, now that we’ve added the break statements, will print

x is one
out of the switch

and that’s it. We entered into the switch block at case 1. Because it matched the
switch() argument, we got the println statement, then hit the break and
jumped to the end of the switch.

Another way to think of this fall-through logic is shown in the following code:

int x = someNumberBetweenOneAndTen;

switch (x) {
case 2:
case 4:
case 6:
case 8:
case 10: {

System.out.println("x is an even number");
break;

}
}

This switch statement will print “x is an even number” or nothing, depending on
whether the number is between one and ten and is odd or even. For example, if x is 4,
execution will begin at case 4, but then fall down through 6, 8, and 10, where it
prints and then breaks. The break at case 10, by the way, is not needed; we’re
already at the end of the switch anyway.

The Default Case
What if, using the preceding code, you wanted to print “x is an odd number” if
none of the cases (the even numbers) matched? You couldn’t put it after the switch
statement, or even as the last case in the switch, because in both of those situations
it would always print “x is an odd number.” To get this behavior, you’ll use the
default keyword. (By the way, if you’ve wondered why there is a default
keyword even though we don’t use a modifier for default access control, now you’ll

12 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Writing Code Using if and switch Statements (Exam Objective 2.1) 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

see that the default keyword is used for a completely different purpose.) The
only change we need to make is to add the default case to the preceding code:

int x = someNumberBetweenOneAndTen;

switch (x) {
case 2:
case 4:
case 6:
case 8:
case 10: {

System.out.println("x is an even number");
break;

}
default: System.out.println("x is an odd number");

}

The default case doesn’t have to come at the end of the switch. Look for it in
strange places such as the following:

int x = 2;

switch (x) {

case 2: System.out.println(“2”);

default: System.out.println(“default”);

case 3: System.out.println(“3”);

case 4: System.out.println(“4”);

}

Running the preceding code prints

2

default

3

4

and if we modify it so that the only match is the default case:

int x = 7;

switch (x) {

case 2: System.out.println(“2”);

default: System.out.println(“default”);

case 3: System.out.println(“3”);

case 4: System.out.println(“4”);

}

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Running the preceding code prints
default

3

4

The rule to remember is default works just like any other case for fall-through!

EXERCISE 4-1

Creating a switch-case Statement
Try creating a switch-case statement using a char value as the case. Include a default
behavior if none of the char values match.

1. Make sure a char variable is declared before the switch statement.

2. Each case statement should be followed by a break.

3. The default value can be located at the end, middle, or top.

CERTIFICATION OBJECTIVE

Writing Code Using Loops (Exam Objective 2.2)
Write code using all forms of loops including labeled and unlabeled, use of break
and continue, and state the values taken by loop counter variables during and after
loop execution.

Java loops come in three flavors: while, do-while, and for. All three let you repeat a
block of code as long as some condition is true, or for a specific number of iterations.
You’re probably familiar with loops from other languages, so even if you’re somewhat
new to Java, these won’t be a problem to learn.

14 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using while Loops
The while loop is good for scenarios where you don’t know how many times block
or statement should repeat, but you want it to continue as long as some condition is
true. A while statement looks like this:

int x = 2;
while(x == 2) {

System.out.println(x);
++x;

}

In this case, as in all loops, the expression (test) must evaluate to a boolean result.
Any variables used in the expression of a while loop must be declared before the
expression is evaluated. In other words, you can’t say

while (int x = 2) { }

Then again, why would you? Instead of testing the variable, you’d be declaring and
initializing it, so it would always have the exact same value. Not much of a test
condition!

The body of the while loop will only execute if the condition results in a true
value. Once inside the loop, the loop body will repeat until the condition is no
longer met and evaluates to false. In the previous example, program control will
enter the loop body because x is equal to 2. However, x is incremented in the loop,
so when the condition is checked again it will evaluate to false and exit the loop.

The key point to remember about a while loop is that it might not ever run. If
the test expression is false the first time the while expression is checked, the loop
body will be skipped and the program will begin executing at the first statement
after the while loop. Look at the following example:

int x = 8;
while (x > 8) {

System.out.println("in the loop");
x = 10;

}
System.out.println("past the loop");

Running this code produces

past the loop

Writing Code Using Loops (Exam Objective 2.2) 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Although the test variable x is incremented within the while loop body, the program
will never see it. This is in contrast to the do-while loop that executes the loop body
once, and then does the first test.

Using do-while Loops
The following shows a do-while statement in action:

do {
System.out.println("Inside loop");

} while(false);

The System.out.println() statement will print once, even though the
expression evaluates to false. The do-while loop will always run the code in the loop
body at least once. Be sure to note the use of the semicolon at the end of the while
expression.

As with if tests, look for while loops (and the while test in a do-while loop) with
an expression that does not resolve to a boolean. Take a look at the following
examples of legal and illegal while expressions:

int x = 1;

while (x) { } // Won’t compile; x is not a boolean

while (x = 5) { } // Won’t compile; resolves to 5 (result of assignment)

while (x == 5) { } // Legal, equality test

while (true) { } // Legal

Using for Loops
The for loop is especially useful for flow control when you already know how many
times you need to execute the statements in the loop’s block. The for loop declaration
has three main parts, besides the body of the loop:

■ Declaration and initialization of variables

■ The boolean expression (conditional test)

■ The iteration expression

16 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Each of the three for declaration parts is separated by a semicolon. The following
two examples demonstrate the for loop. The first example shows the parts of a for
loop in a pseudocode form, and the second shows typical syntax of the loop.

for (/*Initialization*/ ; /*Condition*/ ; /* Iteration */) {
/* loop body */

}

for (int i = 0; i<10; i++) {
System.out.println("i is " + i);

}

Declaration and Initialization
The first part of the for statement lets you declare and initialize zero, one, or multiple
variables of the same type inside the parentheses after the for keyword. If you declare
more than one variable of the same type, then you’ll need to separate them with
commas as follows:

for (int x = 10, y = 3; y > 3; y++) { }

The declaration and initialization happens before anything else in a for loop. And whereas
the other two parts—the boolean test and the iteration expression—will run with
each iteration of the loop, the declaration and initialization happens just once, at the
very beginning. You also must know that the scope of variables declared in the for loop
ends with the for loop! The following demonstrates this:

for (int x = 1; x < 2; x++) {
System.out.println(x); // Legal

}
System.out.println(x); // Not Legal! x is now out of scope and
can't be accessed.

If you try to compile this, you’ll get

Test.java:19: cannot resolve symbol
symbol : variable x
location: class Test
System.out.println(x);

^

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Writing Code Using Loops (Exam Objective 2.2) 17

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Conditional (boolean) Expression
The next section that executes is the conditional expression, which (like all other
conditional tests) must evaluate to a boolean value. You can have only one logical
expression, but it can be very complex. Look out for code that uses logical expressions
like this:

for (int x = 0; ((((x < 10) && (y-- > 2)) | x == 3)); x++) { }

The preceding code is legal, but the following is not:

for (int x = 0; (x > 5), (y < 2); x++) { } // too many
//expressions

The compiler will let you know the problem:

TestLong.java:20: ';' expected
for (int x = 0; (x > 5), (y < 2); x++) { }

^

The rule to remember is this: You can have only one test expression. In other words,
you can’t use multiple tests separated by commas, even though the other two parts
of a for statement can have multiple parts.

Iteration Expression
After each execution of the body of the for loop, the iteration expression is executed.
This part is where you get to say what you want to happen with each iteration of
the loop. Remember that it always happens after the loop body runs! Look at the
following:

for (int x = 0; x < 1; x++) {
// body code here

}

The preceding loop executes just once. The first time into the loop x is set to 0, then
x is tested to see if it’s less than 1 (which it is), and then the body of the loop executes.
After the body of the loop runs, the iteration expression runs, incrementing x by 1.
Next, the conditional test is checked, and since the result is now false, execution
jumps to below the for loop and continues on. Keep in mind that this iteration
expression is always the last thing that happens ! So although the body may never execute
again, the iteration expression always runs at the end of the loop block, as long as no

18 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

other code within the loop causes execution to leave the loop. For example, a break,
return, exception, or System.exit() will all cause a loop to terminate
abruptly, without running the iteration expression. Look at the following code:

static boolean doStuff() {
for (int x = 0; x < 3; x++) {

System.out.println("in for loop");
return true;

}
return true;

}

Running this code produces

in for loop

The statement only prints once, because a return causes execution to leave
not just the current iteration of a loop, but the entire method. So the iteration
expression never runs in that case. Table 4-2 lists the causes and results of abrupt
loop termination.

for Loop Issues
None of the three sections of the for declaration are required! The following
example is perfectly legal (although not necessarily good practice):

for(; ;) {
System.out.println("Inside an endless loop");

}

In the preceding example, all the declaration parts are left out so it will act like
an endless loop. For the exam, it’s important to know that with the absence of the

Writing Code Using Loops (Exam Objective 2.2) 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Code in Loop What Happens

break Execution jumps immediately to the first statement after the for loop.

return Execution immediately jumps back to the calling method.

System.exit() All program execution stops; the VM shuts down.

TABLE 4-2 Causes of Early Loop Termination

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

initialization and increment sections, the loop will act like a while loop. The following
example demonstrates how this is accomplished:

int i = 0;

for (;i<10;) {
i++;
//do some other work

}

The next example demonstrates a for loop with multiple variables in play. A comma
separates the variables, and they must be of the same type. Remember that the
variables declared in the for statement are all local to the for loop, and can’t be used
outside the scope of the loop.

for (int i = 0,j = 0; (i<10) && (j<10); i++, j++) {
System.out.println("i is " + i + "j is " +j);

}

Variable scope plays a large role in the exam. You need to know that a variable
declared in the for loop can’t be used beyond the for loop. But a variable only
initialized in the for statement (but declared earlier) can be used beyond the loop.
For example, the following is legal,

int x = 3;

for (x = 12; x < 20, x++) { }

System.out.println(x);

while this is not,

for (int x = 3; x < 20; x++) { }System.out.println(x);

The last thing to note is that all three sections of the for loop are independent of each
other. The three expressions in the for statement don’t need to operate on the same
variables, although they typically do. But even the iterator expression, which many
mistakenly call the “increment expression,” doesn’t need to increment or set anything;
you can put in virtually any arbitrary code statements that you want to happen with
each iteration of the loop. Look at the following:

int b = 3;
for (int a = 1; b != 1; System.out.println("iterate")) {

b = b - a;
}

20 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Writing Code Using Loops (Exam Objective 2.2) 21

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

The preceding code prints

iterate
iterate

Most questions in the new (1.4) exam list “Compilation fails” and “An exception
occurs at runtime” as possible answers. This makes it more difficult because
you can’t simply work through the behavior of the code. You must first make
sure the code isn’t violating any fundamental rules that will lead to compiler
error, and then look for possible exceptions, and only after you’ve satisfied
those two should you dig into the logic and flow of the code in the question.

Using break and continue in for Loops
The break and continue keywords are used to stop either the entire loop (break)
or just the current iteration (continue). Typically if you’re using break or continue,
you’ll do an if test within the loop, and if some condition becomes true (or false
depending on the program), you want to get out immediately. The difference between
them is whether or not you continue with a new iteration or jump to the first statement
below the loop and continue from there.

continue statements must be inside a loop; otherwise, you’ll get a compiler
error. break statements must be used inside either a loop or switch statement.

The break statement causes the program to stop execution of the innermost
looping and start processing the next line of code after the block.

The continue statement causes only the current iteration of the innermost loop
to cease and the next iteration of the same loop to start if the condition of the loop is
met. When using a continue statement with a for loop, you need to consider the
effects that continue has on the loop iteration. Examine the following code, which
will be explained afterward.

for (int i = 0; i < 10; i++) {
System.out.println("Inside loop");
continue;

}

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The question is, is this an endless loop? The answer is no. When the continue
statement is hit, the iteration expression still runs! It runs just as though the current
iteration ended “in the natural way.” So in the preceding example, i will still increment
before the condition (i < 10) is checked again. Most of the time, a continue is
used within an if test as follows:

for (int i = 0; i < 10; i++) {
System.out.println("Inside loop");
if (foo.doStuff() == 5) {
continue;

}
// more loop code, that won't be reached when the above if
//test is true

}

Unlabeled Statements
Both the break statement and the continue statement can be unlabeled or
labeled. Although it’s far more common to use break and continue unlabeled,
the exam expects you to know how labeled break and continue work. As stated
before, a break statement (unlabeled) will exit out of the innermost looping construct
and proceed with the next line of code beyond the loop block. The following example
demonstrates a break statement:

boolean problem = true;
while (true) {

if (problem) {
System.out.println("There was a problem");
break;

}
}
//next line of code

In the previous example, the break statement is unlabeled. The following is
another example of an unlabeled continue statement:

while (!EOF) {
//read a field from a file
if (there was a problem) {

//move to the next field in the file
continue;

}
}

22 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, there is a file being read from one field at a time. When an error
is encountered, the program moves to the next field in the file and uses the continue
statement to go back into the loop (if it is not at the end of the file) and keeps reading
the various fields. If the break command were used instead, the code would stop
reading the file once the error occurred and move on to the next line of code. The
continue statement gives you a way to say, “This particular iteration of the loop
needs to stop, but not the whole loop itself. I just don’t want the rest of the code in
this iteration to finish, so do the iteration expression and then start over with the
test, and don’t worry about what was below the continue statement.”

Labeled Statements
You need to understand the difference between labeled and unlabeled break and
continue. The labeled varieties are needed only in situations where you have a
nested loop, and need to indicate which of the nested loops you want to break from,
or from which of the nested loops you want to continue with the next iteration.
A break statement will exit out of the labeled loop, as opposed to the innermost
loop, if the break keyword is combined with a label. An example of what a label
looks like is in the following code:

foo:
for (int x = 3; x < 20; x++) {

while(y > 7) {
y--;

}
}

The label must adhere to the rules for a valid variable name and should adhere to
the Java naming convention. The syntax for the use of a label name in conjunction
with a break statement is the break keyword, then the label name, followed by a
semicolon. A more complete example of the use of a labeled break statement is as
follows:

outer:
for(int i=0; i<10; i++) {

while (y > 7) {
System.out.println("Hello");
break outer;

} // end of inner for loop
System.out.println("Outer loop."); // Won't print

Writing Code Using Loops (Exam Objective 2.2) 23

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

} // end of outer for loop
System.out.println("Good-Bye");

Running this code produces

Hello
Good-Bye

In this example the word Hello will be printed one time. Then, the labeled break
statement will be executed, and the flow will exit out of the loop labeled outer. The
next line of code will then print out Good-Bye. Let’s see what will happen if the
continue statement is used instead of the break statement. The following code
example is the same as the preceding one, with the exception of substituting
continue for break:

outer:
for (int i=0; i<10; i++) {

for (int j=0; j<5; j++) {
System.out.println("Hello");
continue outer;

} // end of inner loop
System.out.println("outer"); // Never prints

}
System.out.println("Good-Bye");

Running this code produces

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Good-Bye

In this example, Hello will be printed ten times. After the continue statement
is executed, the flow continues with the next iteration of the loop identified with the
label. Finally, when the condition in the outer loop evaluates to false, the i loop
will finish and Good-Bye will be printed.

24 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Handling Exceptions (Exam Objectives 2.3 and 2.4) 25

EXERCISE 4-2

Creating a Labeled while Loop
Try creating a labeled while loop. Make the label outer and provide a condition to
check whether a variable age is less than or equal to 21. Within the loop, it should
increment the age by one. Every time it goes through the loop, it checks whether
the age is 16. If it is, it will print a message to get your driver’s license and continue
to the outer loop. If not, it just prints “Another year.”

1. The outer label should appear just before the while loop begins. It does not
matter if it is on the same line or not.

2. Make sure age is declared outside of the while loop.

Labeled continue and break statements must be inside the loop that has
the same label name; otherwise, the code will not compile.

CERTIFICATION OBJECTIVE

Handling Exceptions (Exam Objectives 2.3 and 2.4)
Write code that makes proper use of exceptions and exception handling clauses (try,
catch, finally) and declares methods and overriding methods that throw exceptions.

Recognize the effect of an exception arising at a specified point in a code fragment.
Note that the exception may be a runtime exception, a checked exception, or an error
(the code may include try, catch, or finally clauses in any legitimate combination).

An old maxim in software development says that 80 percent of the work is used
20 percent of the time. The 80 percent refers to the effort required to check and
handle errors. In many languages, writing program code that checks for and deals
with errors is tedious and bloats the application source into confusing spaghetti.
Still, error detection and handling may be the most important ingredient of any
robust application. Java arms developers with an elegant mechanism for handling
errors that produces efficient and organized error-handling code: exception handling.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Exception handling allows developers to detect errors easily without writing
special code to test return values. Even better, it lets us keep exception-handling code
cleanly separated from the exception-generating code. It also lets us use the same
exception-handling code to deal with a range of possible exceptions.

The exam has two objectives covering exception handling, but because they’re
covering the same topic we’re covering both objectives with the content in this section.

Catching an Exception Using try and catch
Before we begin, let’s introduce some terminology. The term exception means
“exceptional condition” and is an occurrence that alters the normal program flow.
A bunch of things can lead to exceptions, including hardware failures, resource
exhaustion, and good old bugs. When an exceptional event occurs in Java, an
exception is said to be thrown. The code that’s responsible for doing something
about the exception is called an exception handler, and it catches the thrown exception.

Exception handling works by transferring the execution of a program to an
appropriate exception handler when an exception occurs. For example, if you call
a method that opens a file but the file cannot be opened, execution of that method
will stop, and code that you wrote to deal with this situation will be run. Therefore,
we need a way to tell the JVM what code to execute when a certain exception happens.
To do this, we use the try and catch keywords. The try is used to define a
block of code in which exceptions may occur. This block of code is called a guarded
region (which really means “risky code goes here”). One or more catch clauses
match a specific exception (or class of exceptions—more on that later) to a block
of code that handles it. Here’s how it looks in pseudocode:

1. try {
2. // This is the first line of the "guarded region"
3. // that is governed by the try keyword.
4. // Put code here that might cause some kind of exception.
5. // We may have many code lines here or just one.
6. }
7. catch(MyFirstException) {
8. // Put code here that handles this Exception.
9. // This is the next line of the exception handler.
10. // This is the last line of the exception handler.
11. }
12. catch(MySecondException) {
13. // Put code here that handles this exception
14. }

26 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Handling Exceptions (Exam Objectives 2.3 and 2.4) 27

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

15.
16. // Some other unguarded (normal, non-risky) code begins here

In this pseudocode example, lines 2 through 5 constitute the guarded region that
is governed by the try clause. Line seven is an exception handler for an exception
of type MyFirstException. Line 12 is an exception handler for an exception of type
MySecondException. Notice that the catch blocks immediately follow the try
block. This is a requirement; if you have one or more catch blocks, they must
immediately follow the try block. Additionally, the catch blocks must all follow
each other, without any other statements or blocks in between. Also, the order in which
the catch blocks appear matters, as we’ll see a little later.

Execution starts at line 2. If the program executes all the way to line 5 with no
exceptions being thrown, execution will transfer to line 15 and continue downward.
However, if at any time in lines 2 through 5 (the try block) an exception is thrown
of type MyFirstException, execution will immediately transfer to line 8. Lines 8
through 10 will then be executed so that the entire catch block runs, and then
execution will transfer to line 15 and continue.

Note that if an exception occurred on, say, line 3 of the try block, the rest of the
lines in the try block (3 through 5) would never be executed. Once control jumps
to the catch block, it never returns to complete the balance of the try block.
This is exactly what you want, though. Imagine your code looks something like this
pseudocode:

try {
getTheFileFromOverNetwork
readFromTheFileAndPopulateTable

}
catch(CantGetFileFromNetwork) {

useLocalFileInstead
}

The preceding pseudocode demonstrates how you typically work with exceptions.
Code that’s dependent on a risky operation (as populating a table with file data is
dependent on getting the file from the network) is grouped into a try block in such
a way that if, say, the first operation fails, you won’t continue trying to run other code
that’s guaranteed to also fail. In the pseudocode example, you won’t be able to read
from the file if you can’t get the file off the network in the first place.

One of the benefits of using exception handling is that code to handle any
particular exception that may occur in the governed region needs to be written only

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

28 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

once. Returning to our earlier code example, there may be three different places in
our try block that can generate a MyFirstException, but wherever it occurs it will
be handled by the same catch block (on line 7). We’ll discuss more benefits of
exception handling near the end of this chapter.

Using finally
Try and catch provide a terrific mechanism for trapping and handling exceptions,
but we are left with the problem of how to clean up after ourselves. Because execution
transfers out of the try block as soon as an exception is thrown, we can’t put our
cleanup code at the bottom of the try block and expect it to be executed if an
exception occurs. Almost as bad an idea would be placing our cleanup code in the
catch blocks.

Exception handlers are a poor place to clean up after the code in the try block
because each handler then requires its own copy of the cleanup code. If, for example,
you allocated a network socket or opened a file somewhere in the guarded region,
each exception handler would have to close the file or release the socket. That would
make it too easy to forget to do cleanup, and also lead to a lot of redundant code. To
address this problem, Java offers the finally block.

A finally block encloses code that is always executed at some point after the
try block, whether an exception was thrown or not. Even if there is a return statement
in the try block, the finally block executes right after the return statement! This
is the right place to close your files, release your network sockets, and perform any
other cleanup your code requires. If the try block executes with no exceptions, the
finally block is executed immediately after the try block completes. If there
was an exception thrown, the finally block executes immediately after the proper
catch block completes.

Let’s look at another pseudocode example:

1: try {
2: // This is the first line of the "guarded region".
3: }
4: catch(MyFirstException) {
5: // Put code here that handles this error.
6: }
7: catch(MySecondException) {
8: // Put code here that handles this error.
9: }
10: finally {
11: // Put code here to release any resource we
12: // allocated in the try clause.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

13: }
14:
15: // More code here

As before, execution starts at the first line of the try block, line 2. If there are no
exceptions thrown in the try block, execution transfers to line 11, the first line of
the finally block. On the other hand, if a MySecondException is thrown while
the code in the try block is executing, execution transfers to the first line of that
exception handler, line 8 in the catch clause. After all the code in the catch
clause is executed, the program moves to line 11, the first line of the finally clause.
Repeat after me: finally always runs ! OK, we’ll have to refine that a little, but for now,
start burning in the idea that finally always runs. If an exception is thrown, finally runs.
If an exception is not thrown, finally runs. If the exception is caught, finally runs. If
the exception is not caught, finally runs. Later we’ll look at the few scenarios in which
finally might not run or complete.
finally clauses are not required. If you don’t write one, your code will compile

and run just fine. In fact, if you have no resources to clean up after your try block
completes, you probably don’t need a finally clause. Also, because the compiler
doesn’t even require catch clauses, sometimes you’ll run across code that has a
try block immediately followed by a finally block. Such code is useful when
the exception is going to be passed back to the calling method, as explained in the
next section. Using a finally block allows the cleanup code to execute even when
there isn’t a catch clause.

The following legal code demonstrates a try with a finally but no catch:

try {
// do stuff

} finally {
//clean up

}

The following legal code demonstrates a try, catch, and finally:

try {
// do stuff

} catch (SomeException ex) {
// do exception handling

} finally {
// clean up

}

Handling Exceptions (Exam Objectives 2.3 and 2.4) 29

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

30 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

The following illegal code demonstrates a try without catch or finally:

try {
// do stuff

}
System.out.println("out of try block"); // need a catch or finally here

The following illegal code demonstrates a misplaced catch block:

try {
// do stuff

}
System.out.println("out of try block"); // can't have code between try/catch
catch(Exception ex) { }

It is illegal to use a try clause without either a catch clause or a finally
clause. A try clause by itself will result in a compiler error. Any catch
clauses must immediately follow the try block. Any finally clauses must
immediately follow the last catch clause. It is legal to omit either the catch
clause or the finally clause, but not both.

You can’t sneak any code in between the try and catch (or try and
finally) blocks. The following won’t compile:

try {

// do stuff

}

System.out.print(“below the try”); //Illegal!

catch(Exception ex) { }

Propagating Uncaught Exceptions
Why aren’t catch clauses required? What happens to an exception that’s thrown
in a try block when there is no catch clause waiting for it? Actually, there’s no
requirement that you code a catch clause for every possible exception that could
be thrown from the corresponding try block. In fact, it’s doubtful that you could
accomplish such a feat! If a method doesn’t provide a catch clause for a particular
exception, that method is said to be “ducking” the exception (or “passing the buck”).

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

So what happens to a ducked exception? Before we discuss that, we need to briefly
review the concept of the call stack. Most languages have the concept of a method
stack or a call stack. Simply put, the call stack is the chain of methods that your
program executes to get to the current method. If your program starts in method
main() and main() calls method a(), which calls method b() that in turn
calls method c(), the call stack consists of the following:

c
b
a
main

A stack can be represented as growing upward (although it can also be visualized
as growing downward). As you can see, the last method called is at the top of the
stack, while the first calling method is at the bottom. If you could print out the state
of the stack at any given time, you would produce a stack trace. The method at the
very top of the stack trace would be the method you were currently executing. If
we move back down the call stack, we’re moving from the current method to the
previously called method. Figure 4-1 illustrates a way to think about how the call
stack in Java works.

Now let’s examine what happens to ducked exceptions. Imagine a building, say,
five stories high, and at each floor there is a deck or balcony. Now imagine that on
each deck, one person is standing holding a baseball mitt. Exceptions are like balls
dropped from person to person, starting from the roof. An exception is first thrown

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Handling Exceptions (Exam Objectives 2.3 and 2.4) 31

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

FIGURE 4-1

The Java method
call stack

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

32 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

from the top of the stack (in other words, the person on the roof), and if it isn’t
caught by the same person who threw it (the person on the roof), it drops down
the call stack to the previous method, which is the person standing on the deck one
floor down. If not caught there, by the person one floor down, the exception/ball
again drops down to the previous method (person on the next floor down), and so
on until they are caught or until they reach the very bottom of the call stack. This is
called exception propagation.

If they reach the bottom of the call stack, it’s like reaching the bottom of a very
long drop; the ball explodes, and so does your program. An exception that’s never
caught will cause your application to stop running. A description (if one is available)
of the exception will be displayed, and the call stack will be “dumped.” This helps
you debug your application by telling you what exception was thrown, from what
method it was thrown, and what the stack looked like at the time.

You can keep throwing an exception down through the methods on the stack.
But what about when you get to the main() method at the bottom? You can
throw the exception out of main() as well. This results in the Java virtual
machine (JVM) halting, and the stack trace will be printed to the output.
The following code throws an exception,

class TestEx {

public static void main (String [] args) {

doStuff();

}

static void doStuff() {

doMoreStuff();

}

static void doMoreStuff() {

int x = 5/0; // Can’t divide by zero! ArithmeticException is thrown here

}

}

which prints out the stack trace,

%java TestEx

Exception in thread “main” java.lang.ArithmeticException: / by zero

at TestEx.doMoreStuff(TestEx.java:10)

at TestEx.doStuff(TestEx.java:7)

at TestEx.main(TestEx.java:3)

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Handling Exceptions (Exam Objectives 2.3 and 2.4) 33

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

EXERCISE 4-3

Propagating and Catching an Exception
So far you have only seen exceptions displayed in this chapter with pseudocode. In
this exercise we attempt to create two methods that deal with exceptions. One of the
methods is the main() method, which will call another method. If an exception is
thrown in the other method, it must deal with it. A finally statement will be
included to indicate it is all done. The method it will call will be named reverse(),
and it will reverse the order of the characters in the string. If the string contains no
characters, it will propagate an exception up to the main() method.

1. Create an enclosing class called Propagate and a main() method, which will
remain empty for now.

2. Create a method called reverse(). It takes an argument of a string and
returns a String.

3. Check if the String has a length of 0 by using the length() method. If the
length is 0, it will throw a new exception.

4. Now let’s include the code to reverse the order of the String. Because this
isn’t the main topic of this chapter, the reversal code has been provided, but
feel free to try it on your own.

String reverseStr = "";
for(int i=s.length()-1;i>=0;--i) {

reverseStr += s.charAt(i);
}
return reverseStr;

5. Now in the main() method we will attempt to call this method and deal
with any potential exceptions. Additionally, we will include a finally
statement that tells us it has finished.

Defining Exceptions
We have been discussing exceptions as a concept. We know that they are thrown
when a problem of some type happens, and we know what effect they have on the

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

flow of our program. In this section we will develop the concepts further and use
exceptions in functional Java code. Earlier we said that an exception is an occurrence
that alters the normal program flow. But because this is Java, anything that’s not a
primitive must be…an object. Exceptions are no, well, exception to this rule. Every
exception is as an instance of a class that has class Exception in its inheritance hierarchy.
In other words, exceptions are always some subclass of java.lang.Exception.

When an exception is thrown, an object of a particular Exception subtype is
instantiated and handed to the exception handler as an argument to the catch clause.
An actual catch clause looks like this:

try {
// some code here

}
catch (ArrayIndexOutOfBoundsException e) {

e.printStackTrace();
}

In this example, e is an instance of a class with the tersely named
ArrayIndexOutOfBoundsException. As with any other object, you
can call its methods.

Exception Hierarchy
All exception classes are subtypes of class Exception. This class derives from the class
Throwable (which derives from the class Object). Figure 4-2 shows the hierarchy for
the exception classes.

As you can see, there are two subclasses that derive from Throwable: Exception
and Error. Classes that derive from Error represent unusual situations that are not
caused by program errors or by anything that would normally happen during program
execution, such as the JVM running out of memory. Generally, your application
won’t be able to recover from an Error, so you’re not required to handle them. If
your code does not handle them (and it usually won’t), it will still compile with no
trouble. Although often thought of as exceptional conditions, Errors are technically
not exceptions because they do not derive from class Exception.

In general, an exception represents something that happens not as a result of a
programming error, but rather because some resource is not available or some other
condition required for correct execution is not present. For example, if your application
is supposed to communicate with another application or computer that is not

34 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

answering, this is an exception that is not caused by a bug. Figure 4-2 also shows a
subtype of Exception called RuntimeException. These exceptions are a special case
because they actually do indicate program errors. They can also represent rare, difficult
to handle exceptional conditions. Runtime exceptions are discussed in greater detail
later in this chapter.

Java provides many exception classes, most of which have quite descriptive names.
There are two ways to get information about an exception. The first is from the type
of the exception itself. The next is from information that you can get from the
exception object. Class Throwable (at the top of the inheritance tree for exceptions)
provides its descendants with some methods that are useful in exception handlers.
One of these is printStackTrace(). As expected, if you call an exception
object’s printStackTrace() method, as in the earlier example, a stack trace
from where the exception occurred will be printed.

We discussed that a call stack builds upward with the most recently called method
at the top. You will notice that the printStackTrace() method prints the most
recently entered method first and continues down, printing the name of each method
as it works its way down the call stack (this is called unwinding the stack) from the top.

Handling Exceptions (Exam Objectives 2.3 and 2.4) 35

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

FIGURE 4-2

Exception class
hierarchy

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

36 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

For the exam, it is not necessary to know any of the methods contained in the
Throwable classes, including Exception and Error. You are expected to know
that Exception, Error, RuntimeException, and Throwable types can all be
thrown using the throws keyword, and can all be caught (although you rarely
will catch anything other than Exception subtypes).

Handling an Entire Class Hierarchy of Exceptions
We’ve discussed that the catch keyword allows you to specify a particular type of
exception to catch. You can actually catch more than one type of exception in a single
catch clause. If the exception class that you specify in the catch clause has no
subclasses, then only the specified class of exception will be caught. However, if the
class specified in the catch clause does have subclasses, any exception object that
subclasses the specified class will be caught as well.

For example, class IndexOutOfBoundsException has two subclasses,
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.
You may want to write one exception handler that deals with exceptions produced
by either type of boundary error, but you might not be concerned with which
exception you actually have. In this case, you could write a catch clause like
the following:

try {
// Some code here that can throw a boundary exception

}
catch (IndexOutOfBoundsException e) {

e.printStackTrace();
}

If any code in the try block throws ArrayIndexOutOfBoundsException or
StringIndexOutOfBoundsException, the exception will be caught and handled. This
can be convenient, but it should be used sparingly. By specifying an exception class’
superclass in your catch clause, you’re discarding valuable information about the
exception. You can, of course, find out exactly what exception class you have, but if
you’re going to do that, you’re better off writing a separate catch clause for each
exception type of interest.

Resist the temptation to write a single catchall exception handler such as the
following:

try {

// some code

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

}

catch (Exception e) {

e.printStackTrace();

}

This code will catch every exception generated. Of course, no single exception
handler can properly handle every exception, and programming in this way
defeats the design objective. Exception handlers that trap many errors at
once will probably reduce the reliability of your program because it’s likely
that an exception will be caught that the handler does not know how to handle.

Exception Matching
If you have an exception hierarchy composed of a superclass exception and a number
of subtypes, and you’re interested in handling one of the subtypes in a special way
but want to handle all the rest together, you need write only two catch clauses.

When an exception is thrown, Java will try to find a catch clause for the
exception type. If it doesn’t find one, it will search for a handler for a supertype of
the exception. If it does not find a catch clause that matches a supertype for the
exception, then the exception is propagated down the call stack. This process is
called exception matching.

Let’s look at an example:

1: import java.io.*;
2: public class ReadData {
3: public static void main(String args[]) {
4: try {
5: RandomAccessFile raf =
6: new RandomAccessFile("myfile.txt", "r");
7: byte b[] = new byte[1000];
8: raf.readFully(b, 0, 1000);
9: }
10: catch(FileNotFoundException e) {
11: System.err.println("File not found");
12: System.err.println(e.getMessage());
13: e.printStackTrace();
14: }
15: catch(IOException e) {
16: System.err.println("IO Error");
17: System.err.println(e.toString());
18: e.printStackTrace();
19: }

Handling Exceptions (Exam Objectives 2.3 and 2.4) 37

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

20: }
21: }

This short program attempts to open a file and to read some data from it. Opening
and reading files can generate many exceptions, most of which are some type of
IOException. Imagine that in this program we’re interested in knowing only whether
the exact exception is a FileNotFoundException. Otherwise, we don’t care exactly
what the problem is.

FileNotFoundException is a subclass of IOException. Therefore, we could handle
it in the catch clause that catches all subtypes of IOException, but then we would
have to test the exception to determine whether it was a FileNotFoundException.
Instead, we coded a special exception handler for the FileNotFoundException and
a separate exception handler for all other IOException subtypes.

If this code generates a FileNotFoundException, it will be handled by the
catch clause that begins at line 10. If it generates another IOException—perhaps
EOFException, which is a subclass of IOException—it will be handled by the catch
clause that begins at line 15. If some other exception is generated, such as a runtime
exception of some type, neither catch clause will be executed and the exception
will be propagated down the call stack.

Notice that the catch clause for the FileNotFoundException was placed above
the handler for the IOException. This is really important! If we do it the opposite
way, the program will not compile. The handlers for the most specific exceptions must
always be placed above those for more general exceptions. The following will not compile:

try {
// do risky IO things

} catch (IOException e) {
// handle general IOExceptions

} catch (FileNotFoundException ex) {
// handle just FileNotFoundException

}

You’ll get the following compiler error:

TestEx.java:15: exception java.io.FileNotFoundException has
already been caught
} catch (FileNotFoundException ex) {

^

If you think of the people with baseball mitts, imagine that the most general mitts
are the largest, and can thus catch many different kinds of balls. An IOException

38 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mitt is large enough and flexible enough to catch any type of IOException. So if the
person on the fifth floor (say, Fred) has a big ‘ol IOException mitt, he can’t help but
catch a FileNotFoundException ball with it. And if the guy (say, Jimmy) on the
second floor is holding a FileNotFoundException mitt, that FileNotFoundException
ball will never get to him, since it will always be stopped by Fred on the fifth floor,
standing there with his big-enough-for-any-IOException mitt.

So what do you do with exceptions that are siblings in the class hierarchy? If one
Exception class is not a subtype or supertype of the other, then the order in which
the catch clauses are placed doesn’t matter.

Exception Declaration and the Public Interface
So, how do we know that some method throws an exception that we have to catch?
Just as a method must specify what type and how many arguments it accepts and
what is returned, the exceptions that a method can throw must be declared (unless the
exceptions are subclasses of RuntimeException). The list of thrown exceptions
is part of a method’s public interface. The throws keyword is used as follows to
list the exceptions that a method can throw:

void myFunction() throws MyException1, MyException2 {
// code for the method here

}

This method has a void return type, accepts no arguments, and declares that it
throws two exceptions of type MyException1 and MyException2. (Just because
the method declares that it throws an exception doesn’t mean it always will. It just
tells the world that it might.)

Suppose your method doesn’t directly throw an exception, but calls a method that
does. You can choose not to handle the exception yourself and instead just declare it,
as though it were your method that actually throws the exception. If you do declare
the exception that your method might get from another method, and you don’t
provide a try/catch for it, then the method will propagate back to the method
that called your method, and either be caught there or continue on to be handled by
a method further down the stack.

Any method that might throw an exception (unless it’s a subclass of RuntimeException)
must declare the exception. That includes methods that aren’t actually throwing it
directly, but are “ducking” and letting the exception pass down to the next method
in the stack. If you “duck” an exception, it is just as if you were the one actually

Handling Exceptions (Exam Objectives 2.3 and 2.4) 39

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

40 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

throwing the exception. RuntimeException subclasses are exempt, so the compiler
won’t check to see if you’ve declared them. But all non-RuntimeExceptions are
considered “checked” exceptions, because the compiler checks to be certain you’ve
acknowledged that “bad things could happen here.”

Remember this: Each method must either handle all checked exceptions by
supplying a catch clause or list each unhandled checked exception as a thrown
exception. This rule is referred to as Java’s handle or declare requirement. (Sometimes
called catch or declare.)

Look for code that invokes a method declaring an exception, where the calling
method doesn’t handle or declare the checked exception. The following code
has two big problems that the compiler will prevent:

void doStuff() {

doMore();

}

void doMore() {

throw new IOException();

}

First, the doMore() method throws a checked exception, but does not declare
it! But suppose we fix the doMore() method as follows:

void doMore() throws IOException { … }

The doStuff() method is still in trouble because it, too, must declare the
IOException, unless it handles it by providing a try/catch, with a catch

clause that can take an IOException.

Again, some exceptions are exempt from this rule. An object of type
RuntimeException may be thrown from any method without being specified as
part of the method’s public interface (and a handler need not be present). And
even if a method does declare a RuntimeException, the calling method is under
no obligation to handle or declare it. RuntimeException, Error, and all of their
subtypes are unchecked exceptions and unchecked exceptions do not have to be
specified or handled.

Here is an example:

import java.io.*;
class Test {

public int myMethod1() throws EOFException {
return myMethod2();

}
public int myMethod2() throws EOFException {

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

// Some code that actually throws the exception goes here
return 1;

}
}

Let’s look at myMethod1(). Because EOFException subclasses IOException
and IOException subclasses Exception, it is a checked exception and must be declared
as an exception that may be thrown by this method. But where will the exception
actually come from? The public interface for method myMethod2() called here
declares that an exception of this type can be thrown. Whether that method actually
throws the exception itself or calls another method that throws it is unimportant to
us; we simply know that we have to either catch the exception or declare that we
throw it. The method myMethod1() does not catch the exception, so it declares
that it throws it.

Now let’s look at another legal example, myMethod3().

public void myMethod3() {
// Some code that throws a NullPointerException goes here

}

According to the comment, this method can throw a NullPointerException.
Because RuntimeException is the immediate superclass of NullPointerException, it
is an unchecked exception and need not be declared. We can see that myMethod3()
does not declare any exceptions.

Runtime exceptions are referred to as unchecked exceptions. All other exceptions,
meaning all those that do not derive from java.lang.RuntimeException, are checked
exceptions. A checked exception must be caught somewhere in your code. If you invoke
a method that throws a checked exception but you don’t catch the checked exception
somewhere, your code will not compile. That’s why they’re called checked exceptions;
the compiler checks to make sure that they’re handled or declared. A number of the
methods in the Java 2 Standard Edition libraries throw checked exceptions, so you
will often write exception handlers to cope with exceptions generated by methods
you didn’t write.

You can also throw an exception yourself, and that exception can be either an
existing exception from the Java API or one of your own. To create your own
exception, you simply subclass Exception (or one of its subclasses) as follows:

class MyException extends Exception { }

Handling Exceptions (Exam Objectives 2.3 and 2.4) 41

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

42 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

And if you throw the exception, the compiler will guarantee that you declare it
as follows:

class TestEx {
void doStuff() {
throw new MyException(); // Throw a checked exception

}
}

The preceding code upsets the compiler:

TestEx.java:6: unreported exception MyException; must be caught or
declared to be thrown
throw new MyException();
^

When an object of a subtype of Exception is thrown, it must be handled
or declared. These objects are called checked exceptions, and include all
exceptions except those that are subtypes of RuntimeException, which are
unchecked exceptions. Be ready to spot methods that don’t follow the handle
or declare rule, such as

class MyException extends Exception {

void someMethod () {

doStuff();

}

void doStuff() throws MyException {

try {

throw new MyException();

}

catch(MyException me) {

throw me;

}

}

You need to recognize that this code won’t compile. If you try, you’ll get

TestEx.java:8: unreported exception MyException; must be caught or

declared to be thrown

doStuff();

^

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Handling Exceptions (Exam Objectives 2.3 and 2.4) 43

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

The exam objectives specifically state that you need to know how an Error
compares with checked and unchecked exceptions. Objects of type Error are
not Exception objects, although they do represent exceptional conditions.
Both Exception and Error share a common superclass, Throwable, thus both
can be thrown using the throws keyword. When an Error or a subclass of
Error is thrown, it’s unchecked. You are not required to catch Error objects or Error
subtypes. You can also throw an Error yourself (although you probably won’t
ever want to) and you can catch one, but again, you probably won’t. What, for
example, would you actually do if you got an OutOfMemoryError? It’s not
like you can tell the garbage collector to run; you can bet the JVM fought
desperately to save itself (and reclaimed all the memory it could) by the time
you got the error. In other words, don’t expect the JVM at that point to say,
“Run the garbage collector? Oh, thanks so much for telling me. That just never
occurred to me. Sure, I’ll get right on it…” Even better, what would you do if
a VirtualMachineError arose? Your program is toast by the time you’d catch
the Error, so there’s really no point in trying to catch one of these babies. Just
remember, though, that you can! The following compiles just fine:

class TestEx {

public static void main (String [] args) {

badMethod();

}

static void badMethod() { // No need to declare an Error

doStuff()

}

static void doStuff() { //No need to declare an Error

try {

throw new Error();

}

catch(Error me) {

throw me; // We catch it, but then rethrow it

}

}

}

If we were throwing a checked exception rather than Error, then the
doStuff() method would need to declare the exception. But remember,
since Error is not a subtype of Exception, it doesn’t need to be declared.
You’re free to declare it if you like, but the compiler just doesn’t care one
way or another when or how the Error is thrown, or by whom.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because Java has checked exceptions, it’s commonly said that Java forces
developers to handle errors. Yes, Java forces us to write exception handlers
for each exception that can occur during normal operation, but it’s up to us to
make the exception handlers actually do something useful. We know software
managers who melt down when they see a programmer write

try {

callBadMethod();

} catch (Exception ex) { }

Notice anything missing? Don’t “eat” the exception by catching it without
actually handling it. You won’t even be able to tell that the exception occurred,
because you’ll never see the stack trace.

Rethrowing the Same Exception
Just as you can throw a new exception from a catch clause, you can also throw the
same exception you just caught. Here’s a catch clause that does this:

catch(IOException e) {
// Do things, then if you decide you can't handle it…

throw e;
}

All other catch clauses associated with the same try are ignored, and the exception
is thrown back to the calling method (the next method down the call stack). If you
throw a checked exception from a catch clause, you must also declare that exception!
In other words, you must handle and declare, as opposed to handle or declare. The
following example is illegal:

public void doStuff() {
try {

// risky IO things
} catch(IOException ex) {

// can't handle it
throw ex; // Can't throw it unless you declare it

}
}

In the preceding code, the doStuff() method is clearly able to throw a checked
exception—in this case an IOException—so the compiler says, “Well, that’s just

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

44 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

peachy that you have a try/catch in there, but it’s not good enough. If you might
rethrow the IOException you catch, then you must declare it!”

EXERCISE 4-4

Creating an Exception
In this exercise we attempt to create a custom exception. We won’t put in any new
methods (it will have only those inherited from Exception), and because it extends
Exception, the compiler considers it a checked exception. The goal of the program
is to check to see if a command-line argument, representing a particular food (as
a string), is considered bad or OK.

1. Let’s first create our exception. We will call it BadFoodException. This
exception will be thrown when a bad food is encountered.

2. Create an enclosing class called MyException and a main() method,
which will remain empty for now.

3. Create a method called checkFood(). It takes a String argument and
throws our exception if it doesn’t like the food it was given. Otherwise, it
tells us it likes the food. You can add any foods you aren’t particularly fond
of to the list.

4. Now in the main() method, you’ll get the command-line argument out of
the String array, and then pass that String on to the checkFood() method.
Because it’s a checked exception, the checkFood() method must declare
it, and the main() method must handle it (using a try/catch). Do not
have main() declare the method, because if main() ducks the exception,
who else is back there to catch it?

As useful as exception handling is, it’s still up to the developer to make proper use
of it. Exception handling makes organizing our code and signaling problems easy,
but the exception handlers still have to be written. You’ll find that even the most
complex situations can be handled, and keep your code reusable, readable, and
maintainable.

Handling Exceptions (Exam Objectives 2.3 and 2.4) 45

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

46 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

CERTIFICATION OBJECTIVE

Working with the Assertion Mechanism
(Exam Objectives 2.4 and 2.5)

Write code that makes proper use of assertions, and distinguish appropriate from
inappropriate uses of assertions.

Identify correct statements about the assertion mechanism.

You know you’re not supposed to make assumptions, but you can’t help it when
you’re writing code. You put them in comments:

if (x > 2 && y) {
// do something

} else if (x < 2 || y) {
// do something

} else {
// x must be 2
// do something else

}

You write print statements with them:

while (true) {
if (x > 2) {

break;
}
System.out.print(“If we got here something went horribly

wrong”);
}

Added to the Java language beginning with version 1.4, assertions let you test your
assumptions during development, without the expense (in both your time and
program overhead) of writing exception handlers for exceptions that you assume
will never happen once the program is out of development and fully deployed.

Starting with exam 310-035 (version 1.4 of the Sun Certified Java Programmer
exam), you’re expected to know the basics of how assertions (in Java) work, including
how to enable them, how to use them, and how not to use them. Because both
objectives test the same concepts, the things you need to know for both are covered
together in this section.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Assertions Overview
Suppose you assume that a number passed into a method (say, methodA()) will
never be negative. While testing and debugging, you want to validate your assumption,
but you don’t want to have to strip out print statements, runtime exception handlers,
or if/else tests when you’re done with development. But leaving any of those in is,
at the least, a performance hit. Assertions to the rescue! Check out the following
preassertions code:

private void methodA(int num) {
if (num >= 0) {

// do stuff
} else { // num must be < 0
// This code will never be reached!
System.out.println("Yikes! num is a negative number! " + num);

}
useNum(num + x);

}

Because you’re so certain of your assumption, you don’t want to take the time (or
program performance hit) to write exception-handling code. And at runtime, you
don’t want the if/else in there either because if you do reach the else condition, it
means your earlier logic (whatever was running prior to this method being called) is
flawed. Assertions let you test your assumptions during development, but the assertion
code—in effect—evaporates when the program is deployed, leaving behind no
overhead or debugging code to track down and remove. Let’s rewrite methodA()
to validate that the argument was not negative:

private void methodA(int num) {
assert (num>=0); // throws an AssertionError

// if this test isn't true
useNum(num + x);

}

Not only do assertions let your code stay cleaner and smaller, but because assertions
are inactive unless specifically “turned on” (enabled), the code will run as though it
were written like this:

private void methodA(int num) {
useNum(num + x); // we've tested this;

// we now know we're good here
}

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 47

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

48 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Assertions work quite simply. You always assert that something is true. If it is, no
problem. Code keeps running. But if your assertion turns out to be wrong (false),
then a stop-the-world AssertionError is thrown (that you should never, ever handle!)
right then and there, so you can fix whatever logic flaw led to the problem.

Assertions come in two flavors: simple and really simple, as follows:

Really Simple

private void doStuff() {
assert (y > x);
// more code assuming y is greater than x

}

Simple

private void doStuff() {
assert (y > x): "y is " + y " " x is " + x;
// more code assuming y is greater than x

}

The difference between them is that the simple version adds a second expression,
separated from the first (boolean expression) by a colon, that adds a little more
information to the stack trace. Both versions throw an immediate AssertionError,
but the simple version gives you a little more debugging help while the simple
version simply tells you that your assumption was false.

Assertions are typically enabled when an application is being tested and
debugged, but disabled when the application is deployed. The assertions are
still in the code, although ignored by the JVM, so if you do have a deployed
application that starts misbehaving, you can always choose to enable
assertions in the field for additional testing.

Assertion Expression Rules
Assertions can have either one or two expressions, depending on whether you’re
using the simple or really simple flavor. The first expression must always result in a
boolean value! Follow the same rules you use for if and while tests. The whole
point is to assert aTest, which means you’re asserting that aTest is true. If it is true,
no problem. If it’s not true, however, then your assumption was wrong and you get
an AssertionError.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The second expression, used only with the simple version of an assert statement,
can be anything that results in a value. Remember, the second expression is used to
generate a String message that displays in the stack trace to give you a little more
debugging information. It works much like System.out.println() in that you
can pass it a primitive or an object, and it will convert it into a String representation.
It must resolve to a value!

Table 4-3 lists legal and illegal expressions for both parts of an assert statement.
Remember, expression2 is used only with the simple assert statement, where the
second expression exists solely to give you a little more debugging detail.

If you see the word “expression” in a question about assertions, and the
question doesn’t specify whether it means expression1 (the boolean test)
or expression2 (the value to print in the stack trace), then always assume the
word expression refers to expression1, the boolean test. For example, if we asked
you the following question,

”An assert expression must result in a boolean value, true or false?”,
assume that the word expression refers to expression1 of an assert, so the
question statement is correct. If the statement were referring to expression2,
however, the statement would not be correct, since expression2 can have
a result of any value, not just a boolean.

Enabling Assertions
If you want to use assertions, you have to think first about how to compile with
assertions in your code, and then about how to run with assertions turned on. Both
require version 1.4 or greater, and that brings us to the first issue: how to compile
with assertions in your code.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 49

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Expression1 Expression2

Legal Illegal Legal Illegal

assert (x ==2) assert (x = 2) : “x is “ + x : void

boolean z = true;
assert (z)

int z = 0;
assert (z)

public int go() { return 1;
: go();

public void go() { }
: go();

assert false assert 1 : new Foo(); : Foo f;

TABLE 4-3 Legal and Illegal assert Expressions

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

50 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Compiling with Assertions
Prior to version 1.4, you might very well have written code like this:

int assert = getInitialValue();
if (assert == getActualResult()) {

// do something
}

Notice that in the preceding code, assert is used as an identifier. No problem
prior to 1.4. But remember that you cannot use a keyword/reserved word as an
identifier, and beginning with version 1.4, assert is now a keyword! The bottom
line is

You can use “assert” as a keyword or as an identifier, but not both.

You get a choice whenever you compile with version 1.4, as to whether you’re
compiling “assertion aware” code or code written in the old way, where assert is
not a reserved word. Let’s look at both. You must know this: in version 1.4, assertions
are disabled by default! If you don’t specifically “turn them on” at compile time, then assert
will not be recognized as a keyword, because the compiler will act as a version 1.3
compiler, with respect to the word “assert” (in which case your code can happily use
assert as an identifier).

Compiling Assertion-Aware Code If you’re using assert as a keyword
(in other words, you’re actually trying to assert something in your code), then you
must explicitly enable assertion-awareness at compile time, as follows:

javac -source 1.4 com/geeksanonymous/TestClass

You can read that as “compile the class TestClass, in the directory com/geeksanonymous,
and do it in the 1.4 way, where assert is a recognized keyword.”

Compiling with Code That Uses Assert as an Identifier If you don’t use
the -source 1.4 flag, then the default behavior is as though you said to the
compiler, “Compile this code as if you didn’t known anything about assert as a
keyword, so that I may use the word assert as an identifier for a method or variable.”
The following is what you get by default:

javac -source 1.3 com/geeksanonymous/TestClass

But since that’s the default behavior, it’s redundant to actually type -source 1.3.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 51

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Running with Assertions
Here’s where it gets cool. Once you’ve written your assertion-aware code (in other
words, code that uses assert as a keyword, to actually perform assertions at runtime),
you can choose to enable or disable them! Remember, assertions are disabled by default.

Enabling Assertions at Runtime You enable assertions at runtime with

java -ea com.geeksanonymous.TestClass

or

java -enableassertions com.geeksanonymous.TestClass

The preceding command-line switches tell the JVM to run with assertions enabled.

Disabling Assertions at Runtime You must also know the command-line
switches for disabling assertions,

java -da com.geeksanonymous.TestClass

or

java -disableassertions com.geeksanonymous.TestClass

Because assertions are disabled by default, using the disable switches might seem
unnecessary. Indeed, using the switches the way we do in the preceding example just
gives you the default behavior (in other words, you get the same result regardless of
whether you use the disabling switches). But…you can also selectively enable and
disable assertions in such a way that they’re enabled for some classes and/or packages,
and disabled for others, while a particular program is running.

Selective Enabling and Disabling The command-line switches to enable and
disable assertions can be used in various ways:

■ With no arguments (as in the preceding examples) Enables or disables
assertions in all classes, except for the system classes.

■ With a package name Enables or disables assertions in the package specified,
and any packages below this package in the same directory hierarchy (more
on that in a moment).

■ With a class name Enables or disables assertions in the class specified.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

52 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

You can combine switches to, say, disable assertions in a single class, but keep
them enabled for all others, as follows:

java -ea -da:com.geeksanonymous.Foo

The preceding command line tells the JVM to enable assertions in general, but
disable them in the class com.geeksanonymous.Foo. You can do the same
selectivity for a package as follows:

java -ea -da:com.geeksanonymous

The preceding command line tells the JVM to enable assertions in general, but disable
them in the package com.geeksanonymous, and all of its subpackages! You may not be
familiar with the term subpackages, since there wasn’t much use of that term prior to
assertions. A subpackage is any package in a subdirectory of the named package. For
example, look at the following directory tree:

com
|_geeksanonymous

|_Foo
|_Bar
|_twelvesteps

|_StepOne
|_StepTwo

This tree lists three directories,

com
geeksanonymous
twelvesteps

and four classes:

com.geeksanonymous.Foo
com.geeksanonymous.Bar
com.geeksanonymous.twelvesteps.StepOne
com.geeksanonymous.twelvesteps.StepTwo

The subpackage of com.geeksanonymous is the twelvesteps package. Remember that
in Java, the com.geeksanonymous.twelvesteps package is treated as a completely distinct
package that has no relationship with the packages above it (in this example, the
com.geeksanonymous package), except they just happen to share a couple of directories.
Table 4-4 lists examples of command-line switches for enabling and disabling assertions.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Assertions Appropriately
Not all legal uses of assertions are considered appropriate. As with so much of Java, you
can abuse the intended use for assertions, despite the best efforts of Sun’s Java engineers
to discourage you. For example, you’re never supposed to handle an assertion failure.
That means don’t catch it with a catch clause and attempt to recover. Legally,
however, AssertionError is a subclass of Throwable, so it can be caught. But just
don’t do it! If you’re going to try to recover from something, it should be an exception.
To discourage you from trying to substitute an assertion for an exception, the
AssertionError doesn’t provide access to the object that generated it. All you get is
the String message.

So who gets to decide what is and is not appropriate? Sun. Both the exam and this
section use Sun’s “official” assertion documentation to determine appropriate and
inappropriate uses.

If you see the word “appropriate” on the exam, do not mistake that for
“legal.” Appropriate always refers to the way in which something is supposed
to be used, according to either the developers of the mechanism or best
practices officially embraced by Sun. If you see the word “correct” in the
context of assertions, as in, “Line 3 is a correct use of assertions,” you should
also assume that correct is referring to how assertions should be used rather
than how they legally could be used.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 53

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Command-Line Example What It Means

java -ea
java -enableassertions

Enable assertions

java -da
java -disableassertions

Disable assertions (the default behavior of version 1.4)

java -ea:com.foo.Bar Enable assertions in class com.foo.Bar

java -ea:com.foo Enable assertions in package com.foo, and any of its subpackages

java -ea -dsa Enable assertions in general, but disable assertions in system classes

java -ea -da:com.foo Enable assertions in general, but disable assertions in package
com.foo and any of its subpackages

TABLE 4-4 Assertion Command-Line Switches

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Do not use assertions to validate arguments to a public method.
The following is an inappropriate use of assertions:

public void doStuff(int x) {
assert (x > 0);
// do things with x

}

A public method might be called from code that you don’t control (or have ever
seen). Because public methods are part of your exposed interface to the outside
world, you’re supposed to guarantee that any constraints on the arguments will
be enforced by the method itself. But since assertions aren’t guaranteed to actually
run (they’re typically disabled in a deployed application), the enforcement won’t
happen if assertions aren’t enabled. You don’t want publicly accessible code that
works only conditionally, depending on whether assertions are enabled or disabled.

If you need to validate public method arguments, you’ll probably use exceptions
to throw, say, an IllegalArgumentException if the values passed to the public method
are invalid.

Do use assertions to validate arguments to a private method.
If you write a private method, you almost certainly wrote (or control) any code that
calls it. When you assume that the logic in code calling your private method is
correct, you can test that assumption with an assert as follows:

private void doMore(int x) {
assert (x > 0);
// do things with x

}

The only difference that matters between the preceding example and the one before
it is the access modifier. So, do enforce constraints on private arguments, but do not
enforce constraints on public methods. You’re certainly free to compile assertion
code with an inappropriate validation of public arguments, but for the exam (and
real life) you need to know that you shouldn’t do it.

Do not use assertions to validate command-line arguments.
This is really just a special case of the “Do not use assertions to validate arguments to
a public method” rule. If your program requires command-line arguments, you’ll
probably use the exception mechanism to enforce them.

54 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Do use assertions, even in public methods, to check for
cases that you know are never, ever supposed to happen.
This can include code blocks that should never be reached, including the default of a
switch statement as follows:

switch(x) {
case 2: y = 3;
case 3: y = 17;
case 4: y = 27;
default: assert false; // We're never supposed to get here!

}

If you assume that a particular code block won’t be reached, as in the preceding
example where you assert that x must be either 2, 3, or 4, then you can use assert
false to cause an AssertionError to be thrown immediately if you ever do reach
that code. So in the switch example, we’re not performing a boolean test—we’ve
already asserted that we should never be there, so just getting to that point is an
automatic failure of our assertion/assumption.

Do not use assert expressions that can cause side effects!
The following would be a very bad idea:

public void doStuff() {
assert (modifyThings());
// continues on

}
public boolean modifyThings() {

x++ = y;
return true;

}

The rule is: An assert expression should leave the program in the same state it was in
before the expression! Think about it. Assert expressions aren’t guaranteed to always
run, so you don’t want your code to behave differently depending on whether
assertions are enabled. Assertions must not cause any side effects. If assertions are
enabled, the only change to the way your program runs is that an AssertionError
can be thrown if one of your assertions (think: assumptions) turns out to be false.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 55

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION SUMMARY
This chapter covered a lot of ground, all of which involves ways of controlling your
program flow, based on a conditional test. First you learned about if and switch
statements. The if statement evaluates one or more expressions to a boolean result.
If the result is true, the program will execute the code in the block that is encompassed
by the if. If an else statement is used and the expression evaluates to false, then the
code following the else will be performed. If the else is not used, then none of the
code associated with the if statement will execute.

You also learned that the switch statement is used to replace multiple if-else
statements. The switch statement can evaluate only integer primitive types that can
be implicitly cast to an int. Those types are byte, short, int, and char.
At runtime, the JVM will try to find a match between the argument to the switch
statement and an argument in a corresponding case statement. If a match is found,
execution will begin at the matching case, and continue on from there until a break
statement is found or the end of the switch statement occurs. If there is no match,
then the default case will execute, if there is one.

You’ve learned about the three looping constructs available in the Java language.
These constructs are the for loop, the while loop, and the do-while loop. In general,
the for loop is used when you know how many times you need to go through the
loop. The while loop is used when you do not know how many times you want to
go through, whereas the do-while is used when you need to go through at least once.
In the for loop and the while loop, the expression will have to evaluate to true to
get inside the block and will check after every iteration of the loop. The do-while
loop does not check the condition until after it has gone through the loop once.
The major benefit of the for loop is the ability to initialize one or more variables
and increment or decrement those variables in the for loop definition.

The break and continue statements can be used in either a labeled or
unlabeled fashion. When unlabeled, the break statement will force the program
to stop processing the innermost looping construct and start with the line of code
following the loop. Using an unlabeled continue command will cause the program
to stop execution of the current iteration of the innermost loop and proceed with
the next iteration. When a break or a continue statement is used in a labeled
manner, it will perform in the same way, with one exception. The statement will not
apply to the innermost loop; instead, it will apply to the loop with the label. The
break statement is used most often in conjunction with the switch statement.

56 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When there is a match between the switch expression and the case value, the code
following the case value will be performed. To stop the execution of the code, the
break statement is needed.

You’ve seen how Java provides an elegant mechanism in exception handling.
Exception handling allows you to isolate your error-correction code into separate blocks
so that the main code doesn’t become cluttered by error-checking code. Another
elegant feature allows you to handle similar errors with a single error-handling block,
without code duplication. Also, the error handling can be deferred to methods further
back on the call stack.

You learned that Java’s try keyword is used to specify a guarded region—a block
of code in which problems might be detected. An exception handler is the code that
is executed when an exception occurs. The handler is defined by using Java’s catch
keyword. All catch clauses must immediately follow the related try block. Java
also provides the finally keyword. This is used to define a block of code that is
always executed, either immediately after a catch clause completes or immediately
after the associated try block in the case that no exception was thrown (or there
was a try but no catch). Use finally blocks to release system resources and to
perform any cleanup required by the code in the try block. A finally block is
not required, but if there is one it must follow the catch. It is guaranteed to be called
except in the special cases where the try or catch code raises an uncaught exception or
issues a System.exit().

An exception object is an instance of class Exception or one of its subclasses. The
catch clause takes, as a parameter, an instance of an object of a type derived from
the Exception class. Java requires that each method either catch any checked exception
it can throw or else declare that it throws the exception. The exception declaration is
part of the method’s public interface. To declare an exception may be thrown, the
throws keyword is used in a method definition, along with a list of all checked
exceptions that might be thrown.

Runtime exceptions are of type RuntimeException (or one of its subclasses). These
exceptions are a special case because they do not need to be handled or declared, and
thus are known as “unchecked” exceptions. Errors are of type java.lang.Error or its
subclasses, and like runtime exceptions, they do not need to be handled or declared.
Checked exceptions include any exception types that are not of type RuntimeException
or Error. If your code fails to either handle a checked exception or declare that it is
thrown, your code won’t compile. But with unchecked exceptions or objects of type
Error, it doesn’t matter to the compiler whether you declare them, or handle them,

Certification Summary 57

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

do nothing about them, or do some combination of declaring and handling. In
other words, you’re free to declare them and handle them, but the compiler won’t
care one way or the other. It is not good practice to handle an Error, though, because
rarely can you do anything to recover from one.

Assertions, added to the language in version 1.4, are a useful new debugging tool.
You learned how you can use them for testing, by enabling them, but keep them
disabled when the application is deployed. If you have older Java code that uses
the word assert an identifier, then you won’t be able to use assertions, and you must
recompile your older code using the default -source 1.3 flag. If you do want to
enable assertions in your code, then you must use the -source 1.4 flag, causing
the compiler to see assert as a keyword rather than an identifier.

You learned how assert statements always include a boolean expression, and if the
expression is true the code continues on, but if the expression is false, an AssertionError
is thrown. If you use the two-expression assert statement, then the second expression
is evaluated, converted to a String representation and inserted into the stack trace to
give you a little more debugging info. Finally, you saw why assertions should not be
used to enforce arguments to public methods, and why assert expressions must
not contain side effects!

58 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Two-Minute Drill 59

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

✓TWO-MINUTE DRILL
Here are some of the key points from each certification objective in Chapter 4.
You might want to loop through them several times, but only if you’re interested in
passing the exam.

Writing Code Using if and switch Statements
❑ The if statement must have all expressions enclosed by at least one pair of

parentheses.

❑ The only legal argument to an if statement is a boolean, so the if test can be
only on an expression that resolves to a boolean or a boolean variable.

❑ Watch out for boolean assignments (=) that can be mistaken for boolean
equality (==) tests:
boolean x = false;

if (x = true) { } // an assignment, so x will always be true!

❑ Curly braces are optional for if blocks that have only one conditional
statement. But watch out for misleading indentations.

❑ Switch statements can evaluate only the byte, short, int, and char
data types. You can’t say
long s = 30;

switch(s) { }

❑ The case argument must be a literal or final variable! You cannot have
a case that includes a non-final variable, or a range of values.

❑ If the condition in a switch statement matches a case value, execution will run
through all code in the switch following the matching case statement until
a break or the end of the switch statement is encountered. In other words, the
matching case is just the entry point into the case block, but unless there’s a
break statement, the matching case is not the only case code that runs.

❑ The default keyword should be used in a switch statement if you want
to execute some code when none of the case values match the conditional value.

❑ The default block can be located anywhere in the switch block, so if no case
matches, the default block will be entered, and if the default does not
contain a break, then code will continue to execute (fall-through) to the end
of the switch or until the break statement is encountered.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

60 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Writing Code Using Loops
❑ A for statement does not require any arguments in the declaration, but has

three parts: declaration and/or initialization, boolean evaluation, and the
iteration expression.

❑ If a variable is incremented or evaluated within a for loop, it must be declared
before the loop, or within for loop declaration.

❑ A variable declared (not just initialized) within the for loop declaration cannot
be accessed outside the for loop (in other words, code below the for loop won’t
be able to use the variable).

❑ You can initialize more than one variable in the first part of the for loop
declaration; each variable initialization must be separated by a comma.

❑ You cannot use a number (old C-style language construct) or anything that
does not evaluate to a boolean value as a condition for an if statement or
looping construct. You can’t, for example, say:
if (x)

unless x is a boolean variable.

❑ The do-while loop will enter the body of the loop at least once, even if the
test condition is not met.

Using break and continue
❑ An unlabeled break statement will cause the current iteration of the

innermost looping construct to stop and the next line of code following the
loop to be executed.

❑ An unlabeled continue statement will cause the current iteration of the
innermost loop to stop, and the condition of that loop to be checked, and if
the condition is met, perform the loop again.

❑ If the break statement or the continue statement is labeled, it will
cause similar action to occur on the labeled loop, not the innermost loop.

❑ If a continue statement is used in a for loop, the iteration statement is
executed, and the condition is checked again.

Catching an Exception Using try and catch
❑ Exceptions come in two flavors: checked and unchecked.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Two-Minute Drill 61

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

❑ Checked exceptions include all subtypes of Exception, excluding classes that
extend RuntimeException.

❑ Checked exceptions are subject to the handle or declare rule; any method that
might throw a checked exception (including methods that invoke methods
that can throw a checked exception) must either declare the exception using
the throws keyword, or handle the exception with an appropriate try/catch.

❑ Subtypes of Error or RuntimeException are unchecked, so the compiler
doesn’t enforce the handle or declare rule. You’re free to handle them, and
you’re free to declare them, but the compiler doesn’t care one way or the other.

❑ If you use an optional finally block, it will always be invoked, regardless
of whether an exception in the corresponding try is thrown or not, and
regardless of whether a thrown exception is caught or not.

❑ The only exception to the finally-will-always-be-called rule is that a finally
will not be invoked if the JVM shuts down. That could happen if code from
the try or catch blocks calls System.exit(), in which case the JVM
will not start your finally block.

❑ Just because finally is invoked does not mean it will complete.
Code in the finally block could itself raise an exception or issue a
System.exit().

❑ Uncaught exceptions propagate back through the call stack, starting from
the method where the exception is thrown and ending with either the first
method that has a corresponding catch for that exception type or a JVM
shutdown (which happens if the exception gets to main(), and main()
is “ducking” the exception by declaring it).

❑ You can create your own exceptions, normally by extending Exception or one
of its subtypes. Your exception will then be considered a checked exception, and
the compiler will enforce the handle or declare rule for that exception.

❑ All catch blocks must be ordered from most specific to most general.
For example, if you have a catch clause for both IOException and
Exception, you must put the catch for IOException first (in order, top
to bottom in your code). Otherwise, the IOException would be caught by
catch(Exception e), because a catch argument can catch the
specified exception or any of its subtypes! The compiler will stop you from
defining catch clauses that can never be reached (because it sees that the
more specific exception will be caught first by the more general catch).

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

62 Chapter 4: Flow Control, Exceptions, and Assertions

Working with the Assertion Mechanism
❑ Assertions give you a way to test your assumptions during development and

debugging.

❑ Assertions are typically enabled during testing but disabled during deployment.

❑ You can use assert as a keyword (as of version 1.4) or an identifier, but
not both together. To compile older code that uses assert as an identifier
(for example, a method name), use the -source 1.3 command-line flag
to javac.

❑ Assertions are disabled at runtime by default. To enable them, use
a command-line flag -ea or -enableassertions.

❑ You can selectively disable assertions using the -da or
-disableassertions flag.

❑ If you enable or disable assertions using the flag without any arguments,
you’re enabling or disabling assertions in general. You can combine enabling
and disabling switches to have assertions enabled for some classes and/or
packages, but not others.

❑ You can enable or disable assertions in the system classes with the -esa or
-dsa flags.

❑ You can enable and disable assertions on a class-by-class basis, using the
following syntax:
java -ea -da:MyClass TestClass

❑ You can enable and disable assertions on a package basis, and any package
you specify also includes any subpackages (packages further down the
directory hierarchy).

❑ Do not use assertions to validate arguments to public methods.

❑ Do not use assert expressions that cause side effects. Assertions aren’t
guaranteed to always run, so you don’t want behavior that changes
depending on whether assertions are enabled.

❑ Do use assertions—even in public methods—to validate that a particular
code block will never be reached. You can use
assert false;
for code that should never be reached, so that an assertion error is thrown
immediately if the assert statement is executed.

❑ Do not use assert expressions that can cause side effects.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 63

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. You’ve heard this before, and this time we really mean it: this chapter’s material is crucial
for the exam! Regardless of what the exam question is really testing, there’s a good chance that flow
control code will be part of the question. Expect to see loops and if tests used in questions throughout
the entire range of exam objectives.

Flow Control (if and switch) (Sun Objective 2.1)

1. Given the following,

1. public class Switch2 {
2. final static short x = 2;
3. public static int y = 0;
4. public static void main(String [] args) {
5. for (int z=0; z < 3; z++) {
6. switch (z) {
7. case y: System.out.print("0 ");
8. case x-1: System.out.print("1 ");
9. case x: System.out.print("2 ");
10. }
11. }
12. }
13. }

what is the result?

A. 0 1 2

B. 0 1 2 1 2 2

C. Compilation fails at line 7.

D. Compilation fails at line 8.

E. Compilation fails at line 9.

F. An exception is thrown at runtime.

2. Given the following,

1. public class Switch2 {
2. final static short x = 2;
3. public static int y = 0;
4. public static void main(String [] args) {
5. for (int z=0; z < 3; z++) {
6. switch (z) {

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. case x: System.out.print("0 ");
8. case x-1: System.out.print("1 ");
9. case x-2: System.out.print("2 ");
10. }
11. }
12. }
13. }

what is the result?

A. 0 1 2

B. 0 1 2 1 2 2

C. 2 1 0 1 0 0

D. 2 1 2 0 1 2

E. Compilation fails at line 8.

F. Compilation fails at line 9.

3. Given the following,

1. public class If1 {
2. static boolean b;
3. public static void main(String [] args) {
4. short hand = 42;
5. if (hand < 50 & !b) hand++;
6. if (hand > 50) ;
7. else if (hand > 40) {
8. hand += 7;
9. hand++; }
10. else
11. --hand;
12. System.out.println(hand);
13. }
14. }

what is the result?

A. 41

B. 42

C. 50

D. 51

E. Compiler fails at line 5.

F. Compiler fails at line 6.

64 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. Given the following,

1. public class Switch2 {
2. final static short x = 2;
3. public static int y = 0;
4. public static void main(String [] args) {
5. for (int z=0; z < 4; z++) {
6. switch (z) {
7. case x: System.out.print("0 ");
8. default: System.out.print("def ");
9. case x-1: System.out.print("1 "); break;
10. case x-2: System.out.print("2 ");
11. }
12. }
13. }
14. }

what is the result?

A. 0 def 1

B. 2 1 0 def 1

C. 2 1 0 def def

D. 2 1 def 0 def 1

E. 2 1 2 0 def 1 2

F. 2 1 0 def 1 def 1

5. Given the following,

1. public class If2 {
2. static boolean b1, b2;
3. public static void main(String [] args) {
4. int x = 0;
5. if (!b1) {
6. if (!b2) {
7. b1 = true;
8. x++;
9. if (5 > 6) {
10. x++;
11. }
12. if (!b1) x = x + 10;
13. else if (b2 = true) x = x + 100;
14. else if (b1 | b2) x = x + 1000;
15. }
16. }

Self Test 65

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

17. System.out.println(x);
18. }
19. }

what is the result?

A. 0

B. 1

C. 101

D. 111

E. 1001

F. 1101

Flow Control (loops) (Sun Objective 2.2)

6. Given the following,

1. public class While {
2. public void loop() {
3. int x= 0;
4. while (1) {
5. System.out.print("x plus one is " + (x + 1));
6. }
7. }
8. }

Which statement is true?

A. There is a syntax error on line 1.

B. There are syntax errors on lines 1 and 4.

C. There are syntax errors on lines 1, 4, and 5.

D. There is a syntax error on line 4.

E. There are syntax errors on lines 4 and 5.

F. There is a syntax error on line 5.

7. Given the following,

1. class For {
2. public void test() {
3.
4. System.out.println("x = "+ x);

66 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. }
6. }
7. }

and the following output,

x = 0
x = 1

which two lines of code (inserted independently) will cause this output? (Choose two.)

A. for (int x = -1; x < 2; ++x) {

B. for (int x = 1; x < 3; ++x) {

C. for (int x = 0; x > 2; ++x) {

D. for (int x = 0; x < 2; x++) {

E. for (int x = 0; x < 2; ++x) {

8. Given the following,

1. public class Test {
2. public static void main(String [] args) {
3. int I = 1;
4. do while (I < 1)
5. System.out.print("I is " + I);
6. while (I > 1) ;
7. }
8. }

what is the result?

A. I is 1

B. I is 1 I is 1

C. No output is produced.

D. Compilation error

E. I is 1 I is 1 I is 1 in an infinite loop.

9. Given the following,

11. int I = 0;
12. outer:
13. while (true) {
14. I++;
15. inner:
16. for (int j = 0; j < 10; j++) {

Self Test 67

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

17. I += j;
18. if (j == 3)
19. continue inner;
20. break outer;
21. }
22. continue outer;
23. }
24. System.out.println(I);
25.
26.

what is the result?

A. 1

B. 2

C. 3

D. 4

10. Given the following,

1. int I = 0;
2. label:
3. if (I < 2) {
4. System.out.print("I is " + I);
5. I++;
6. continue label;
7. }

what is the result?

A. I is 0

B. I is 0 I is 1

C. Compilation fails.

D. None of the above

Exceptions (Sun Objectives 2.3 and 2.4)

11. Given the following,

1. System.out.print("Start ");
2. try {
3. System.out.print("Hello world");
4. throw new FileNotFoundException();

68 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. }
6. System.out.print(" Catch Here ");
7. catch(EOFException e) {
8. System.out.print("End of file exception");
9. }
10. catch(FileNotFoundException e) {
11. System.out.print("File not found");
12. }

and given that EOFException and FileNotFoundException are both subclasses of
IOException, and further assuming this block of code is placed into a class, which statement is
most true concerning this code?

A. The code will not compile.

B. Code output: Start Hello world File Not Found.

C. Code output: Start Hello world End of file exception.

D. Code output: Start Hello world Catch Here File not found.

12. Given the following,

1. public class MyProgram {
2. public static void main(String args[]){
3. try {
4. System.out.print("Hello world ");
5. }
6. finally {
7. System.out.println("Finally executing ");
8. }
9. }
10. }

what is the result?

A. Nothing. The program will not compile because no exceptions are specified.

B. Nothing. The program will not compile because no catch clauses are specified.

C. Hello world.

D. Hello world Finally executing

13. Given the following,

1. import java.io.*;
2. public class MyProgram {
3. public static void main(String args[]){
4. FileOutputStream out = null;

Self Test 69

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. try {
6. out = new FileOutputStream("test.txt");
7. out.write(122);
8. }
9. catch(IOException io) {

10. System.out.println("IO Error.");
11. }
12. finally {
13. out.close();
14. }
15. }
16. }

and given that all methods of class FileOutputStream, including close(), throw an
IOException, which of these is true? (Choose one.)

A. This program will compile successfully.

B. This program fails to compile due to an error at line 4.

C. This program fails to compile due to an error at line 6.

D. This program fails to compile due to an error at line 9.

E. This program fails to compile due to an error at line 13.

14. Given the following,

1. public class MyProgram {
2. public static void throwit() {
3. throw new RuntimeException();
4. }
5. public static void main(String args[]){
6. try {
7. System.out.println("Hello world ");
8. throwit();
9. System.out.println("Done with try block ");

10. }
11. finally {
12. System.out.println("Finally executing ");
13. }
14. }
15. }

which answer most closely indicates the behavior of the program?

A. The program will not compile.

70 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

B. The program will print Hello world, then will print that a RuntimeException has
occurred, then will print Done with try block, and then will print Finally
executing.

C. The program will print Hello world, then will print that a RuntimeException has
occurred, and then will print Finally executing.

D. The program will print Hello world, then will print Finally executing, then
will print that a RuntimeException has occurred.

15. Given the following,

1. public class RTExcept {
2. public static void throwit () {
3. System.out.print("throwit ");
4. throw new RuntimeException();
5. }
6. public static void main(String [] args) {
7. try {
8. System.out.print("hello ");
9. throwit();
10. }
11. catch (Exception re) {
12. System.out.print("caught ");
13. }
14. finally {
15. System.out.print("finally ");
16. }
17. System.out.println("after ");
18. }
19. }

what is the result?

A. hello throwit caught

B. Compilation fails

C. hello throwit RuntimeException caught after

D. hello throwit RuntimeException

E. hello throwit caught finally after

F. hello throwit caught finally after RuntimeException

Self Test 71

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

72 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Assertions (Sun Objectives 2.5 and 2.6)

16. Which of the following statements is true?

A. In an assert statement, the expression after the colon (:) can be any Java expression.

B. If a switch block has no default, adding an assert default is considered appropriate.

C. In an assert statement, if the expression after the colon (:) does not have a value, the
assert’s error message will be empty.

D. It is appropriate to handle assertion failures using a catch clause.

17. Which two of the following statements are true? (Choose two.)

A. It is sometimes good practice to throw an AssertionError explicitly.

B. It is good practice to place assertions where you think execution should never reach.

C. Private getter() and setter() methods should not use assertions to verify
arguments.

D. If an AssertionError is thrown in a try-catch block, the finally block will be
bypassed.

E. It is proper to handle assertion statement failures using a catch (AssertionException
ae) block.

18. Given the following,

1. public class Test {
2. public static int y;
3. public static void foo(int x) {
4. System.out.print("foo ");
5. y = x;
6. }
7. public static int bar(int z) {
8. System.out.print("bar ");
9. return y = z;
10. }
11. public static void main(String [] args) {
12. int t = 0;
13. assert t > 0 : bar(7);
14. assert t > 1 : foo(8);
15. System.out.println("done ");
16. }
17. }

what is the result?

A. bar

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 73

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

B. bar done

C. foo done

D. bar foo done

E. Compilation fails

F. An error is thrown at runtime.

19. Which two of the following statements are true? (Choose two.)

A. If assertions are compiled into a source file, and if no flags are included at runtime,
assertions will execute by default.

B. As of Java version 1.4, assertion statements are compiled by default.

C. With the proper use of runtime arguments, it is possible to instruct the VM to disable
assertions for a certain class, and to enable assertions for a certain package, at the same time.

D. The following are all valid runtime assertion flags:
-ea, -esa, -dsa, -enableassertions,
-disablesystemassertions

E. When evaluating command-line arguments, the VM gives –ea flags precedence over –da
flags.

20. Given the following,

1. public class Test2 {
2. public static int x;
3. public static int foo(int y) {
4. return y * 2;
5. }
6. public static void main(String [] args) {
7. int z = 5;
8. assert z > 0;
9. assert z > 2: foo(z);
10. if (z < 7)
11. assert z > 4;
12. switch (z) {
13. case 4: System.out.println("4 ");
14. case 5: System.out.println("5 ");
15. default: assert z < 10;
16. }
17. if (z < 10)
18. assert z > 4: z++;
19. System.out.println(z);
20. }
21. }

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

which line is an example of an inappropriate use of assertions?

A. Line 8

B. Line 9

C. Line 11

D. Line 15

E. Line 18

74 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test Answers 75

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

SELF TEST ANSWERS

Flow Control (if and switch) (Sun Objective 2.1)

1. � C. Case expressions must be constant expressions. Since x is marked final, lines 8 and 9
are legal; however y is not a final so the compiler will fail at line 7.
� A, B, D, E, and F, are incorrect based on the program logic described above.

2. � D. The case expressions are all legal because x is marked final, which means the
expressions can be evaluated at compile time. In the first iteration of the for loop case x-2
matches, so 2 is printed. In the second iteration, x-1 is matched so 1 and 2 are printed
(remember, once a match is found all remaining statements are executed until a break
statement is encountered). In the third iteration, x is matched so 0 1 and 2 are printed.
� A, B, C, E, and F are incorrect based on the program logic described above.

3. � D. In Java, boolean instance variables are initialized to false, so the if test on line 5 is
true and hand is incremented. Line 6 is legal syntax, a do nothing statement. The else-if is
true so hand has 7 added to it and is then incremented.
� A, B, C, E, and F are incorrect based on the program logic described above.

4. � F. When z == 0 , case x-2 is matched. When z == 1, case x-1 is
matched and then the break occurs. When z == 2, case x, then default, then
x-1 are all matched. When z == 3, default, then x-1 are matched. The rules for
default are that it will fall through from above like any other case (for instance when z
== 2), and that it will match when no other cases match (for instance when z == 3).
� A, B, C, D, and E are incorrect based on the program logic described above.

5. � C. As instance variables, b1 and b2 are initialized to false. The if tests on lines 5 and 6
are successful so b1 is set to true and x is incremented. The next if test to succeed is on line 13
(note that the code is not testing to see if b2 is true, it is setting b2 to be true). Since line 13
was successful, subsequent else-if’s (line 14) will be skipped.
� A, B, D, E, and F are incorrect based on the program logic described above.

Flow Control (loops) (Sun Objective 2.2)

6. � D. Using the integer 1 in the while statement, or any other looping or conditional
construct for that matter, will result in a compiler error. This is old C syntax, not valid Java.
� A, B, C, E, and F are incorrect because line 1 is valid (Java is case sensitive so While is a
valid class name). Line 5 is also valid because an equation may be placed in a String operation
as shown.

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. � D and E. It doesn’t matter whether you preincrement or postincrement the variable in a
for loop; it is always incremented after the loop executes and before the iteration expression is
evaluated.
� A and B are incorrect because the first iteration of the loop must be zero. C is incorrect
because the test will fail immediately and the for loop will not be entered.

8. � C. There are two different looping constructs in this problem. The first is a do-while loop
and the second is a while loop, nested inside the do-while. The body of the do-while is only a
single statement—brackets are not needed. You are assured that the while expression will be
evaluated at least once, followed by an evaluation of the do-while expression. Both expressions
are false and no output is produced.
� A, B, D, and E are incorrect based on the program logic described above.

9. � A. The program flows as follows: I will be incremented after the while loop is entered,
then I will be incremented (by zero) when the for loop is entered. The if statement evaluates
to false, and the continue statement is never reached. The break statement tells the
JVM to break out of the outer loop, at which point I is printed and the fragment is done.
� B, C, and D are incorrect based on the program logic described above.

10. � C. The code will not compile because a continue statement can only occur in a
looping construct. If this syntax were legal, the combination of the continue and the if
statements would create a kludgey kind of loop, but the compiler will force you to write
cleaner code than this.
� A, B, and D are incorrect based on the program logic described above.

Exceptions (Sun Objectives 2.3 and 2.4)

11. � A. Line 6 will cause a compiler error. The only legal statements after try blocks are either
catch or finally statements.
� B, C, and D are incorrect based on the program logic described above. If line 6 was
removed, the code would compile and the correct answer would be B.

12. � D. Finally clauses are always executed. The program will first execute the try block,
printing Hello world, and will then execute the finally block, printing Finally
executing.
� A, B, and C are incorrect based on the program logic described above. Remember that
either a catch or a finally statement must follow a try. Since the finally is present,
the catch is not required.

76 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

13. � E. Any method (in this case, the main() method) that throws a checked exception (in
this case, out.close()) must be called within a try clause, or the method must declare
that it throws the exception. Either main() must declare that it throws an exception, or the
call to out.close() in the finally block must fall inside a (in this case nested)
try-catch block.
� A, B, C, and D are incorrect based on the program logic described above.

14. � D. Once the program throws a RuntimeException (in the throwit() method) that
is not caught, the finally block will be executed and the program will be terminated. If a
method does not handle an exception, the finally block is executed before the exception
is propagated.
� A, B, and C are incorrect based on the program logic described above.

15. � E. The main() method properly catches and handles the RuntimeException in the
catch block, finally runs (as it always does), and then the code returns to normal.
� A, B, C, D, and F are incorrect based on the program logic described above. Remember
that properly handled exceptions do not cause the program to stop executing.

Assertions (Sun Objectives 2.5 and 2.6)

16. � B. Adding an assertion statement to a switch statement that previously had no default
case is considered an excellent use of the assert mechanism.
� A is incorrect because only Java expressions that return a value can be used. For instance, a
method that returns void is illegal. C is incorrect because the expression after the colon must
have a value. D is incorrect because assertions throw errors and not exceptions, and assertion
errors do cause program termination and should not be handled.

17. � A and B. A is correct because it is sometimes advisable to thrown an assertion error even
if assertions have been disabled. B is correct. One of the most common uses of assert
statements in debugging is to verify that locations in code that have been designed to be
unreachable are in fact never reached.
� C is incorrect because it is considered appropriate to check argument values in private
methods using assertions. D is incorrect; finally is never bypassed. E is incorrect because
AssertionErrors should never be handled.

18. � E. The foo() method returns void. It is a perfectly acceptable method, but because it
returns void it cannot be used in an assert statement, so line 14 will not compile.
� A, B, C, D, and F are incorrect based on the program logic described above.

Self Test Answers 77

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

19. � C and D. C is true because multiple VM flags can be used on a single invocation of a Java
program. D is true, these are all valid flags for the VM.
� A is incorrect because at runtime assertions are ignored by default. B is incorrect because as
of Java 1.4 you must add the argument –source 1.4 to the command line if you want the
compiler to compile assertion statements. E is incorrect because the VM evaluates all assertion
flags left to right.

20. � E. Assert statements should not cause side effects. Line 18 changes the value of z if the
assert statement is false.
� A is fine; a second expression in an assert statement is not required. B is fine because it is
perfectly acceptable to call a method with the second expression of an assert statement. C is fine
because it is proper to call an assert statement conditionally. D is fine because it is considered
good form to add a default assert statement to switch blocks that have no default case.

EXERCISE ANSWERS
Exercise 4.1: Creating a switch-case Statement

The code should look something like this:

char temp = 'c';
switch(temp) {

case 'a': {
System.out.println("A");
break;

}
case 'b': {

System.out.println("B");
break;

}
case 'c':

System.out.println("C");
break;

default:
System.out.println("default");

}

78 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exercise Answers 79

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Exercise 4-2: Creating a Labeled while Loop
The code should look something like this:

class LoopTest {
public static void main(String [] args) {

int age = 12;
outer:
while(age < 21) {

age += 1;
if(age == 16) {

System.out.println("Obtain driver's license");
continue outer;

}
System.out.println("Another year.");

}
}

}

Exercise 4-3: Propagating and Catching an Exception
The code should look something like this:

class Propagate {
public static void main(String [] args) {

try {
System.out.println(reverse("Hello"));

}
catch (Exception e) {

System.out.println("The string was blank");
}
finally {

System.out.println("All done!");
}

}
public static String reverse(String s) throws Exception {

if (s.length() == 0) {
throw new Exception();

}
String reverseStr = "";
for(int i=s.length()-1;i>=0;--i) {

reverseStr += s.charAt(i);
}
return reverseStr;

}
}

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exercise 4-4: Creating an Exception
The code should look something like this:

class BadFoodException extends Exception {}
class MyException {

public static void main(String [] args) {
try {
checkFood(args[0]);

} catch(BadFoodException e) {
e. printStackTrace();

}
}
public static void checkWord(String s) {

String [] badFoods = {"broccoli","brussel
sprouts","sardines"};

for(int i=0;i<badFoods.length;++i) {
if (s.equals(badFoods[i]))

throw new BadWFoodException();
}
System.out.println(s + " is ok with me.");

}
}

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

80 Chapter 4: Flow Control, Exceptions, and Assertions

P:\010Comp\CertPrs8\684-6\ch04.vp
Wednesday, November 13, 2002 5:18:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5
Object Orientation,
Overloading
and Overriding,
Constructors,
and Return Types

CERTIFICATION OBJECTIVES

• Benefits of Encapsulation

• Overridden and Overloaded Methods

• Constructors and Instantiation

• Legal Return Types

✓ Two-Minute Drill

Q&A Self Test

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5
Blind Folio 5:1

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The objectives in this section revolve (mostly) around object-oriented (OO) programming
including encapsulation, inheritance, and polymorphism. For the exam, you need to
know whether a code fragment is correctly or incorrectly implementing some of

the key OO features supported in Java. You also need to recognize the difference between
overloaded and overridden methods, and be able to spot correct and incorrect implementations
of both.

Because this book focuses on your passing the programmer’s exam, only the critical
exam-specific aspects of OO software will be covered here. If you’re not already well
versed in OO concepts, you could (and should) study a dozen books on the subject
of OO development to get a broader and deeper understanding of both the benefits
and the techniques for analysis, design, and implementation. But for passing the
exam, the relevant concepts and rules you need to know are covered here. (That’s
a disclaimer, because we can’t say you’ll be a “complete OO being” by reading this
chapter.) (We can say, however, that your golf swing will improve.)

We think you’ll find this chapter a nice treat after slogging your way through the
technical (and picky) details of the previous chapters. Object-oriented programming is
a festive topic, so may we suggest you don the appropriate clothing—say, a Hawaiian
shirt and a party hat. Grab a margarita (if you’re new to OO, maybe nonalcoholic is
best) and let’s have some fun!

(OK so maybe we exaggerated a little about the whole party aspect. Still, you’ll
find this section both smaller and less detailed than the previous four.) (And this
time we really mean it.)

CERTIFICATION OBJECTIVE

Benefits of Encapsulation (Exam Objective 6.1)
State the benefits of encapsulation in object-oriented design and write code that implements
tightly encapsulated classes and the relationships IS-A and HAS-A.

Imagine you wrote the code for a class, and another dozen programmers from your
company all wrote programs that used your class. Now imagine that you didn’t like
the way the class behaved, because some of its instance variables were being set (by

2 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the other programmers from within their code) to values you hadn’t anticipated.
Their code brought out errors in your code. (Relax, this is just hypothetical…) Well,
it is a Java program, so you should be able just to ship out a newer version of the
class, which they could replace in their programs without changing any of their
own code.

This scenario highlights two of the promises/benefits of OO: flexibility and
maintainability. But those benefits don’t come automatically. You have to do something.
You have to write your classes and code in a way that supports flexibility and
maintainability. So what if Java supports OO? It can’t design your code for you. For
example, imagine if you (not the real you, but the hypothetical-not-as-good-a-programmer
you) made your class with public instance variables, and those other programmers
were setting the instance variables directly, as the following code demonstrates:

public class BadOO {
public int size;
public int weight;
…

}
public class ExploitBadOO {

public static void main (String [] args) {
BadOO b = new BadOO();
b.size = -5; // Legal but bad!!

}
}

And now you’re in trouble. How are you going to change the class in a way that
lets you handle the issues that come up when somebody changes the size variable to
a value that causes problems? Your only choice is to go back in and write method
code for adjusting size (a setSize(int a) method, for example), and then
protect the size variable with, say, a private access modifier. But as soon as you
make that change to your code, you break everyone else’s!

The ability to make changes in your implementation code without breaking the
code of others who use your code is a key benefit of encapsulation. You want to hide
implementation details behind a public programming interface. By interface, we
mean the set of accessible methods your code makes available for other code to call—in
other words, your code’s API. By hiding implementation details, you can rework your
method code (perhaps also altering the way variables are used by your class) without
forcing a change in the code that calls your changed method.

Benefits of Encapsulation (Exam Objective 6.1) 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you want maintainability, flexibility, and extensibility (and of course, you do),
your design must include encapsulation. How do you do that?

■ Keep your instance variables protected (with an access modifier, often
private).

■ Make public accessor methods, and force calling code to use those methods.

■ For the methods, use the JavaBeans naming convention of
set<someProperty> and get<someProperty>.

Figure 5-1 illustrates the idea that encapsulation forces callers of our code to go
through methods rather than accessing variables directly.

We call the access methods getters and setters although some prefer the fancier
terms (more impressive at dinner parties) accessors and mutators. Personally, we don’t

4 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

FIGURE 5-1 The nature of encapsulation

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Benefits of Encapsulation (Exam Objective 6.1) 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

like the word mutate. Regardless of what you call them, they’re methods that others
must go through in order to access your instance variables. They look simple, and
you’ve probably been using them forever:

public class Box {
// protect the instance variable; only an instance
// of Box can access it
private int size;
// Provide public getters and setters
public int getSize() {

return size;
}
public void setSize(int newSize) {

size = newSize;
}

}

Wait a minute…how useful is the previous code? It doesn’t even do any validation
or processing. What benefit can there be from having getters and setters that add no
additional functionality? The point is, you can change your mind later, and add more
code to your methods without breaking your API. Even if you don’t think you really
need validation or processing of the data, good OO design dictates that you plan for
the future. To be safe, force calling code to go through your methods rather than going
directly to instance variables. Always. Then you’re free to rework your method
implementations later, without risking the wrath of those dozen programmers who
know where you live. And have been doing Tae-bo. And drink way too much
Mountain Dew.

Look out for code that appears to be asking about the behavior of a method,
when the problem is actually a lack of encapsulation. Look at the following
example, and see if you can figure out what’s going on:

class Foo {

public int left = 9;

public int right = 3;

public void setLeft(int leftNum) {

left = leftNum;

right = leftNum/3;

}

// lots of complex test code here

}

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Now consider this question: Is the value of right always going to be one-third the value
of left? It looks like it will, until you realize that users of the Foo class don’t
need to use the setLeft() method! They can simply go straight to the
instance variables and change them to any arbitrary int value.

IS-A and HAS-A Relationships
For the exam you need to be able to look at code and determine whether the code
demonstrates an IS-A or HAS-A relationship. The rules are simple, so this should be
one of the few areas where answering the questions correctly is almost a no-brainer.
(Well, at least it would have been a no-brainer if we (exam creators) hadn’t tried our
best to obfuscate the real problem.) (If you don’t know the word “obfuscate”, stop
and look it up, then write and tell us what it means.)

IS-A
In OO, the concept of IS-A is based on inheritance. IS-A is a way of saying, “this
thing is a type of that thing.” For example, a Mustang is a type of horse, so in OO
terms we can say, “Mustang IS-A Horse.” Subaru IS-A Car. Broccoli IS-A Vegetable
(not a very fun one, but it still counts). You express the IS-A relationship in Java
through the keyword extends:

public class Car {
// Cool Car code goes here

}

public class Subaru extends Car {
// Important Subaru-specific stuff goes here
// Don't forget Subaru inherits accessible Car members

}

A Car is a type of Vehicle, so the inheritance tree might start from the Vehicle class
as follows:

public class Vehicle { … }
public class Car extends Vehicle { … }
public class Subaru extends Car { … }

In OO terms, you can say the following:

■ Vehicle is the superclass of Car.

■ Car is the subclass of Vehicle.

6 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Car is the superclass of Subaru.

■ Subaru is the subclass of Vehicle.

■ Car inherits from Vehicle.

■ Subaru inherits from Car.

■ Subaru inherits from Vehicle.

■ Subaru is derived from Car.

■ Car is derived from Vehicle.

■ Subaru is derived from Vehicle.

■ Subaru is a subtype of Car.

■ Subaru is a subtype of Vehicle.

Returning to our IS-A relationship, the following statements are true:

“Car extends Vehicle” means “Car IS-A Vehicle.”
“Subaru extends Car” means “Subaru IS-A Car.”

And we can also say:

“Subaru IS-A Vehicle” because a class is said to be “a type of” anything further up
in its inheritance tree. If Foo instanceof Bar, then class Foo IS-A Bar, even if
Foo doesn’t directly extend Bar, but instead extends some other class that is a subclass
of Bar. Figure 5-2 illustrates the inheritance tree for Vehicle, Car, and Subaru. The
arrows move from the subclass to the superclass. In other words, a class’ arrow
points toward the class it extends from.

Benefits of Encapsulation (Exam Objective 6.1) 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

FIGURE 5-2

Inheritance tree
for Vehicle, Car,
and Subaru

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HAS-A
HAS-A relationships are based on usage, rather than inheritance. In other words,
class A HAS-A B if code in class A has a reference to an instance of class B. For example,
you can say the following,

A Horse IS-A Animal. A Horse HAS-A Halter.

and the code looks like this:

public class Animal { }
public class Horse extends Animal {

private Halter myHalter;
}

In the preceding code, the Horse class has an instance variable of type Halter, so
you can say that “Horse HAS-A Halter.” In other words, Horse has a reference to a
Halter. Horse code can use that Halter reference to invoke methods on the Halter,
and get Halter behavior without having Halter-related code (methods) in the Horse
class itself. Figure 5-3 illustrates the HAS-A relationship between Horse and Halter.

HAS-A relationships allow you to design classes that follow good OO practices by
not having monolithic classes that do a gazillion different things. Classes (and thus the
objects instantiated from those classes) should be specialists. The more specialized
the class, the more likely it is that you can reuse the class in other applications. If
you put all the Halter-related code directly into the Horse class, you’ll end up
duplicating code in the Cow class, Sheep class, UnpaidIntern class, and any other
class that might need Halter behavior. By keeping the Halter code in a separate,
specialized Halter class, you have the chance to reuse the Halter class in multiple
applications.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

8 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

FIGURE 5-3

HAS-A
relationship
between Horse
and Halter

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Users of the Horse class (that is, code that calls methods on a Horse instance),
think that the Horse class has Halter behavior. The Horse class might have a
tie(LeadRope rope) method, for example. Users of the Horse class should
never have to know that when they invoke the tie()method, the Horse object turns
around and delegates the call to its Halter class by invoking myHalter.tie(rope).
The scenario just described might look like this:

public class Horse extends Animal {
private Halter myHalter;
public void tie(LeadRope rope) {

myHalter.tie(rope); // Delegate tie behavior to the
// Halter object

}
}
public class Halter {

public void tie(LeadRope aRope) {
// Do the actual tie work here

}
}

In OO, we don’t want callers to worry about which class or which object is actually
doing the real work. To make that happen, the Horse class hides implementation
details from Horse users. Horse users ask the Horse object to do things (in this case,
tie itself up), and the Horse will either do it or, as in this example, ask something else
to do it. To the caller, though, it always appears that the Horse object takes care of itself.
Users of a Horse should not even need to know that there is such a thing as a Halter class.

Now that we’ve looked at some of the OO characteristics, here are some possible
scenario questions and their solutions.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Benefits of Encapsulation (Exam Objective 6.1) 9

What benefits do you gain from encapsulation? Ease of code maintenance, extensibility,
and code clarity.

What is the object-oriented relationship between
a tree and an oak?

An IS-A relationship: Oak IS-A Tree.

What is the object-oriented relationship between
a city and a road?

A HAS-A relationship: City HAS-A Road.

SCENARIO & SOLUTION

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

10 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Object-Oriented Design

IS-A and HAS-A relationships and
encapsulation are just the tip of the iceberg
when it comes to object-oriented design.
Many books and graduate theses have been
dedicated to this topic. The reason for the
emphasis on proper design is simple: money.
The cost to deliver a software application has
been estimated to be as much as 10 times
more expensive for poorly designed programs.
Having seen the ramifications of poor designs,
I can assure you that this estimate is not
far-fetched.

Even the best object-oriented designers
make mistakes. It is difficult to visualize the
relationships between hundreds, or even
thousands, of classes. When mistakes are
discovered during the implementation (code
writing) phase of a project, the amount of
code that has to be rewritten can sometimes
cause programming teams to start over
from scratch.

The software industry has evolved to aid
the designer. Visual object modeling languages,
such as the Unified Modeling Language (UML),

allow designers to design and easily modify
classes without having to write code first,
because object-oriented components are
represented graphically. This allows the designer
to create a map of the class relationships and
helps them recognize errors before coding
begins. Another recent innovation in object-
oriented design is design patterns. Designers
noticed that many object-oriented designs
apply consistently from project to project, and
that it was useful to apply the same designs
because it reduced the potential to introduce
new design errors. Object-oriented designers
then started to share these designs with each
other. Now, there are many catalogs of these
design patterns both on the Internet and in
book form.

Although passing the Java certification
exam does not require you to understand
object-oriented design this thoroughly,
hopefully this background information will
help you better appreciate why the test writers
chose to include encapsulation and is a and
has a relationships on the exam.

—Jonathan Meeks, Sun Certified Java Programmer

FROM THE CLASSROOM

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Overridden and Overloaded Methods (Exam Objective 6.2) 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

CERTIFICATION OBJECTIVE

Overridden and Overloaded Methods
(Exam Objective 6.2)

Write code to invoke overridden or overloaded methods and parental or overloaded
constructors, and describe the effect of invoking these methods.

Methods can be overloaded or overridden, but constructors can be only overloaded.
Overloaded methods and constructors let you use the same method name (or
constructor) but with different argument lists. Overriding lets you redefine a method
in a subclass, when you need new subclass-specific behavior.

Overridden Methods
Anytime you have a class that inherits a method from a superclass, you have the
opportunity to override the method (unless, as you learned earlier, the method is
marked final). The key benefit of overriding is the ability to define behavior
that’s specific to a particular subclass type. The following example demonstrates a
Horse subclass of Animal overriding the Animal version of the eat() method:

public class Animal {
public void eat() {

System.out.println("Generic Animal Eating Generically");
}

}
class Horse extends Animal {

public void eat() {
System.out.println("Horse eating hay, oats, and horse treats");

}
}

For abstract methods you inherit from a superclass, you have no choice. You must
implement the method in the subclass unless the subclass is also abstract. Abstract
methods are said to be implemented by the concrete subclass, but this is virtually the
same as saying that the concrete subclass overrides the abstract methods of the superclass.
So you should think of abstract methods as methods you’re forced to override.

The Animal class creator might have decided that for the purposes of polymorphism,
all Animal subtypes should have an eat() method defined in a unique, specific
way. Polymorphically, when someone has an Animal reference that refers not to an

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Animal instance, but to an Animal subclass instance, the caller should be able to
invoke eat() on the Animal reference, but the actual runtime object (say, a Horse
instance) will run its own specific eat() method. Marking the eat() method
abstract is the Animal programmer’s way of saying to all subclass developers, “It
doesn’t make any sense for your new subtype to use a generic eat() method, so
you have to come up with your own eat() method implementation!” An example
of using polymorphism looks like this:

public class TestAnimals {
public static void main (String [] args) {

Animal a = new Animal();
Animal b = new Horse(); //Animal ref, but a Horse object
a.eat(); // Runs the Animal version of eat()
b.eat(); // Runs the Horse version of eat()

}
}
class Animal {

public void eat() {
System.out.println("Generic Animal Eating Generically");

}
}
class Horse extends Animal {

public void eat() {
System.out.println("Horse eating hay, oats, and horse treats");

}
public void buck() { }

}

In the preceding code, the test class uses an Animal reference to invoke a method
on a Horse object. Remember, the compiler will allow only methods in class Animal
to be invoked when using a reference to an Animal. The following would not be legal
given the preceding code:

Animal c = new Horse();
c.buck(); // Can't invoke buck();

// Animal class doesn't have that method

The compiler looks only at the reference type, not the instance type. Polymorphism
lets you use a more abstract supertype (including an interface) reference to refer to
one of its subtypes (including interface implementers).

The overriding method cannot have a more restrictive access modifier than the method
being overridden (for example, you can’t override a method marked public and
make it protected). Think about it: if the Animal class advertises a public eat()

12 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

method and someone has an Animal reference (in other words, a reference declared
as type Animal), that someone will assume it’s safe to call eat() on the Animal
reference regardless of the actual instance that the Animal reference is referring to.
If a subclass were allowed to sneak in and change the access modifier on the
overriding method, then suddenly at runtime—when the JVM invokes the true
object’s (Horse) version of the method rather than the reference type’s (Animal)
version—the program would die a horrible death. (Not to mention the emotional
distress for the one who was betrayed by the rogue subclass.) Let’s modify the
polymorphic example we saw earlier:

public class TestAnimals {
public static void main (String [] args) {

Animal a = new Animal();
Animal b = new Horse(); //Animal ref, but a Horse object
a.eat(); // Runs the Animal version of eat()
b.eat(); // Runs the Horse version of eat()

}
}
class Animal {

public void eat() {
System.out.println("Generic Animal Eating Generically");

}
}
class Horse extends Animal {

private void eat() {
System.out.println("Horse eating hay, oats,

and horse treats");
}

}

If this code were allowed to compile (which it’s not, by the way—the compiler
wants you to know that it didn’t just fall off the turnip truck), the following would
fail at runtime:

Animal b = new Horse(); // Animal ref, but a Horse
// object , so far so good

b.eat(); // Meltdown!

The variable b is of type Animal, which has a public eat() method. But
remember that at runtime, Java uses virtual method invocation to dynamically select
the actual version of the method that will run, based on the actual instance. An Animal
reference can always refer to a Horse instance, because Horse IS-A(n) Animal. What

Overridden and Overloaded Methods (Exam Objective 6.2) 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

makes that superclass reference to a subclass instance possible is that the subclass is
guaranteed to be able to do everything the superclass can do. Whether the Horse instance
overrides the inherited methods of Animal or simply inherits them, anyone with an
Animal reference to a Horse instance is free to call all accessible Animal methods.
For that reason, an overriding method must fulfill the contract of the superclass.

The rules for overriding a method are as follows:

■ The argument list must exactly match that of the overridden method.

■ The return type must exactly match that of the overridden method.

■ The access level must not be more restrictive than that of the overridden method.

■ The access level can be less restrictive than that of the overridden method.

■ The overriding method must not throw new or broader checked exceptions
than those declared by the overridden method. For example, a method that
declares a FileNotFoundException cannot be overridden by a method
that declares a SQLException, Exception, or any other non-runtime
exception unless it’s a subclass of FileNotFoundException.

■ The overriding method can throw narrower or fewer exceptions. Just because
an overridden method “takes risks” doesn’t mean that the overriding subclass’
exception takes the same risks. Bottom line: An overriding method doesn’t
have to declare any exceptions that it will never throw, regardless of what
the overridden method declares.

■ You cannot override a method marked final.

■ If a method can’t be inherited, you cannot override it. For example, the
following code is not legal:

public class TestAnimals {
public static void main (String [] args) {

Horse h = new Horse();
h.eat(); // Not legal because Horse didn't inherit eat()

}
}
class Animal {

private void eat() {
System.out.println("Generic Animal Eating Generically");

}
}
class Horse extends Animal { }

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

14 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Invoking a Superclass Version of an Overridden Method
Often, you’ll want to take advantage of some of the code in the superclass version of
a method, yet still override it to provide some additional specific behavior. It’s like
saying, “Run the superclass version of the method, then come back down here and
finish with my subclass additional method code.” (Note that there’s no requirement
that the superclass version run before the subclass code.) It’s easy to do in code using
the keyword super as follows:

public class Animal {

public void eat() { }
public void printYourself() {

// Useful printing code goes here
}

}
class Horse extends Animal {

public void printYourself() {
// Take advantage of Animal code, then add some more
super.printYourself(); // Invoke the superclass

// (Animal) code
// Then come back and do
// additional Horse-specific
// print work here

}
}

Examples of Legal and Illegal Method Overrides
Let’s take a look at overriding the eat() method of Animal:

public class Animal {
public void eat() { }

}

Table 5-1 lists examples of illegal overrides of the Animal eat() method, given
the preceding version of the Animal class.

Overloaded Methods
Overloaded methods let you reuse the same method name in a class, but with different
arguments (and optionally, a different return type). Overloading a method often
means you’re being a little nicer to those who call your methods, because your code

Overridden and Overloaded Methods (Exam Objective 6.2) 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

takes on the burden of coping with different argument types rather than forcing the caller
to do conversions prior to invoking your method. The rules are simple:

■ Overloaded methods must change the argument list.

■ Overloaded methods can change the return type.

■ Overloaded methods can change the access modifier.

■ Overloaded methods can declare new or broader checked exceptions.

■ A method can be overloaded in the same class or in a subclass.

Legal Overloads
Let’s look at a method we want to overload:

public void changeSize(int size, String name, float pattern) { }

The following methods are legal overloads of the changeSize() method:

public void changeSize(int size, String name) { }
public int changeSize(int size, float pattern) { }
public void changeSize(float pattern, String name)

throws IOException { }

Be careful to recognize when a method is overloaded rather than overridden.
You might see a method that appears to be violating a rule for overriding, but
which is actually a legal overload, as follows:

16 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Illegal Override Code Problem with the Code

private void eat() { } Access modifier is more restrictive

public void eat() throws
IOException { }

Declares a checked exception not declared by
superclass version

public void eat(String food) { } A legal overload, not an override, because the
argument list changed

public String eat() { } Not an override because of the return type, but
not an overload either because there’s no change
in the argument list

TABLE 5-1 Examples of Illegal Overrides

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public class Foo {

public void doStuff(int y, String s) { }

public void moreThings(int x) { }

}

class Bar extends Foo {

public void doStuff(int y, float s) throws IOException { }

}

You might be tempted to see the IOException as the problem, seeing that
the overridden doStuff() method doesn’t declare an exception, and knowing
that IOException is checked by the compiler. But the doStuff() method is
not overridden at all! Subclass Bar overloads the doStuff() method, by varying
the argument list, so the IOException is fine.

Invoking Overloaded Methods
When a method is invoked, more than one method of the same name might exist
for the object type you’re invoking a method on. For example, the Horse class might
have three methods with the same name but with different argument lists, which
means the method is overloaded.

Deciding which of the matching methods to invoke is based on the arguments.
If you invoke the method with a String argument, the overloaded version that takes
a String is called. If you invoke a method of the same name but pass it a float, the
overloaded version that takes a float will run. If you invoke the method of the same
name but pass it a Foo object, and there isn’t an overloaded version that takes a Foo,
then the compiler will complain that it can’t find a match. The following are examples
of invoking overloaded methods:

class Adder {
public int addThem(int x, int y) {

return x + y;
}

// Overload the addThem method to add doubles instead of ints
public double addThem(double x, double y) {

return x + y;
}

}
// From another class, invoke the addThem() method
public class TestAdder {

public static void main (String [] args) {

Overridden and Overloaded Methods (Exam Objective 6.2) 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Adder add = new Adder();
int b = 27;
int c = 3;
int result = a.addThem(b,c); // Which addThem is invoked?
double doubleResult = a.addThem(22.5,89.36);
// Which addThem?

}
}

In the preceding TestAdder code, the first call to a.addThem(b,c) passes two
ints to the method, so the first version of addThem()—the overloaded version that
takes two int arguments—is called. The second call to a.addThem(22.5, 89.36)
passes two doubles to the method, so the second version of addThem()—the
overloaded version that takes two double arguments—is called.

Invoking overloaded methods that take object references rather than primitives
is a little more interesting. Say you have an overloaded method such that one version
takes an Animal and one takes a Horse (subclass of Animal). If you pass a Horse object
in the method invocation, you’ll invoke the overloaded version that takes a Horse.
Or so it looks at first glance:

class Animal { }
class Horse extends Animal { }
class UseAnimals {

public void doStuff(Animal a) {
System.out.println("In the Animal version");

}
public void doStuff(Horse h) {

System.out.println("In the Horse version");
}
public static void main (String [] args) {

UseAnimals ua = new UseAnimals();
Animal animalObj = new Animal();
Horse horseObj = new Horse();
ua.doStuff(animalObj);
ua.doStuff(horseObj);

}
}

The output is what you expect:

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Overridden and Overloaded Methods (Exam Objective 6.2) 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

in the Animal version
in the Horse version

But what if you use an Animal reference to a Horse object?

Animal animalRefToHorse = new Horse();
ua.doStuff(animalRefToHorse);

Which of the overloaded versions is invoked? You might want to say, “The one that
takes a Horse, since it’s a Horse object at runtime that’s being passed to the method.”
But that’s not how it works. The preceding code would actually print

in the Animal version

Even though the actual object at runtime is a Horse and not an Animal, the choice
of which overloaded method to call is not dynamically decided at runtime. Just
remember, the reference type (not the object type) determines which overloaded method is
invoked! To summarize, which overridden method to call (in other words, from which
class in the inheritance tree) is decided at runtime based on object type, but which
overloaded version of the method to call is based on the reference type passed at
compile time.

Polymorphism in Overloaded and Overridden Methods How does
polymorphism work with overloaded methods? From what we just looked at, it
doesn’t appear that polymorphism matters when a method is overloaded. If you pass
an Animal reference, the overloaded method that takes an Animal will be invoked,
even if the actual object passed is a Horse. Once the Horse masquerading as Animal
gets in to the method, however, the Horse object is still a Horse despite being passed
into a method expecting an Animal. So it’s true that polymorphism doesn’t determine
which overloaded version is called; polymorphism does come into play when the
decision is about which overridden version of a method is called. But sometimes, a
method is both overloaded and overridden. Imagine the Animal and Horse classes
look like this:

public class Animal {
public void eat() {

System.out.println("Generic Animal Eating Generically");

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
}
public class Horse extends Animal {

public void eat() {
System.out.println("Horse eating hay ");

}
public void eat(String s) {

System.out.println("Horse eating " + s);
}

}

Notice that the Horse class has both overloaded and overridden the eat()method.
Table 5-2 shows which version of the three eat() methods will run depending on
how they are invoked.

20 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Method Invocation Code Result

Animal a = new Animal();
a.eat();

Generic Animal Eating Generically

Horse h = new Horse();
h.eat();

Horse eating hay

Animal ah = new Horse();
ah.eat();

Horse eating hay
Polymorphism works—the actual object type (Horse), not the
reference type (Animal), is used to determine which eat()
is called.

Horse he = new Horse();
he.eat("Apples");

Horse eating Apples
The overloaded eat(String s) method is invoked.

Animal a2 = new Animal();
a2.eat("treats");

Compiler error! Compiler sees that Animal class doesn’t have an
eat() method that takes a String.

Animal ah2 = new Horse();
ah2.eat("Carrots");

Compiler error! Compiler still looks only at the reference type,
and sees that Animal doesn’t have an eat() method that takes
a string. Compiler doesn’t care that the actual object might
be a Horse at runtime.

TABLE 5-2 Overloaded and Overridden Method Invocations

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Don’t be fooled by a method that’s overloaded but not overridden by a subclass.
It’s perfectly legal to do the following:

public class Foo {

void doStuff() { }

}

class Bar extends Foo {

void doStuff(String s) { }

}

The Bar class has two doStuff() methods: the no-arg version it inherits
from Foo (and does not override), and the overloaded doStuff(String s)

defined in the Bar class. Code with a reference to a Foo can invoke only
the no-arg version, but code with a reference to a Bar can invoke either
of the overloaded versions.

Table 5-3 summarizes the difference between overloaded and overridden methods.

Overridden and Overloaded Methods (Exam Objective 6.2) 21

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Overloaded Method Overridden Method

argument list Must change Must not change

return type Can change Must not change

exceptions Can change Can reduce or eliminate.
Must not throw new or
broader checked exceptions

access Can change Must not make more
restrictive (can be less
restrictive)

invocation Reference type determines which overloaded version
(based on declared argument types) is selected. Happens
at compile time. The actual method that’s invoked is still
a virtual method invocation that happens at runtime,
but the compiler will already know the signature of the
method to be invoked. So at runtime, the argument
match will already have been nailed down, just not
the actual class in which the method lives.

Object type (in other
words, the type of the
actual instance on the heap)
determines which method
is selected. Happens at
runtime.

TABLE 5-3 Difference Between Overloaded and Overridden Methods

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The current objective (5.2) covers both method and constructor overloading, but
we’ll cover constructor overloading in the next section, where we’ll also cover the
other constructor-related topics that are on the exam. Figure 5-4 illustrates the way
overloaded and overridden methods appear in class relationships.

CERTIFICATION OBJECTIVE

Constructors and Instantiation
(Exam Objectives 1.3, 6.3, 6.2)

For a given class, determine if a default constructor will be created, and if so, state the
prototype of that constructor.

Write code to construct instances of any concrete class, including normal top-level
classes and nested classes.

Write code to invoke parental or overloaded constructor, and describe the effect of
those invocations.

Objects are constructed. You can’t make a new object without invoking a constructor.
In fact, you can’t make a new object without invoking not just the constructor of the
object’s actual class type, but also the constructor of each of its superclasses! Constructors
are the code that runs whenever you use the keyword new. We’ve got plenty to talk
about here—we’ll look at how constructors are coded, who codes them, and how
they work at runtime. So grab your hardhat and a hammer, and let’s do some object
building. (Don’t forget your lunch box and thermos.)

22 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

FIGURE 5-4

Overloaded and
overridden
methods in class
relationships

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Constructor Basics
Every class, including abstract classes, must have a constructor. Burn that into your
brain. But just because a class must have one, doesn’t mean the programmer has to
type it. A constructor looks like this:

class Foo {
Foo() { } // The constructor for the Foo class

}

Notice what’s missing? There’s no return type! Remember from Chapter 2 that a
constructor has no return type and its name must exactly match the class name.
Typically, constructors are used to initialize instance variable state, as follows:

class Foo {
int size;
String name;
Foo(String name, int size) {

this.name = name;
this.size = size;

}
}

In the preceding code example, the Foo class does not have a no-arg constructor.
That means the following will fail to compile,

Foo f = new Foo(); // Won't compile, no matching constructor

but the following will compile,

Foo f = new Foo("Fred", 43); // No problem. Arguments match Foo constructor.

So it’s very common (and desirable) for a class to have a no-arg constructor, regardless
of how many other overloaded constructors are in the class (yes, constructors can be
overloaded). You can’t always make that work for your classes; occasionally you have
a class where it makes no sense to create an instance without supplying information
to the constructor. A java.awt.Color object, for example, can’t be created by calling a
no-arg constructor, because that would be like saying to the JVM, “Make me a new
Color object, and I really don’t care what color it is…you pick.” (Imagine if the JVM
were allowed to make aesthetic decisions. What if it’s favorite color is mauve?)

Constructors and Instantiation (Exam Objectives 1.3, 6.3, 6.2) 23

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

24 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Constructor Chaining
We know that constructors are invoked at runtime when you say new on some class
type as follows:

Horse h = new Horse();

But what really happens when you say new Horse() ?

1. Horse constructor is invoked.

2. Animal constructor is invoked (Animal is the superclass of Horse).

3. Object constructor is invoked (Object is the ultimate superclass of all classes,
so class Animal extends Object even though you don’t actually type "extends
Object" in to the Animal class declaration. It’s
implicit.) At this point we’re on the top of the stack.

4. Object instance variables are given their explicit values (if any).

5. Object constructor completes.

6. Animal instance variables are given their explicit values (if any).

7. Animal constructor completes.

8. Horse instance variables are given their explicit values (if any).

9. Horse constructor completes.

Figure 5-5 shows how constructors work on the call stack.

FIGURE 5-5

Constructors on
the call stack

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Rules for Constructors
The following list summarizes the rules you’ll need to know for the exam (and to
understand the rest of this section):

■ Constructors can use any access modifier, including private. (A private
constructor means only code within the class itself can instantiate an object of
that type, so if the private-constructor class wants to allow an instance of the
class to be used, the class must provide a static method or variable that allows
access to an instance created from within the class.)

■ The constructor name must match the name of the class.

■ Constructors must not have a return type.

■ It’s legal (but stupid) to have a method with the same name as the class, but
that doesn’t make it a constructor. If you see a return type, it’s a method rather
than a constructor.

■ If you don’t type a constructor into your class code, a default constructor will
be automatically generated by the compiler.

■ The default constructor is always a no-arg constructor.

■ If you want a no-arg constructor and you’ve typed any other constructor(s)
into your class code, the compiler won’t provide the no-arg constructor (or
any other constructor) for you. In other words, if you’ve typed in a constructor
with arguments, you won’t have a no-arg constructor unless you type it in yourself !

■ Every constructor must have as its first statement either a call to an overloaded
constructor (this()) or a call to the superclass constructor (super()).

■ If you do type in a constructor (as opposed to relying on the compiler-generated
default constructor), and you do not type in the call to super(), the compiler
will insert a no-arg call to super() for you.

■ A call to super() can be either a no-arg call or can include arguments
passed to the super constructor.

■ A no-arg constructor is not necessarily the default constructor, although the
default constructor is always a no-arg constructor. The default constructor is
the one the compiler provides! While the default constructor is always a no-arg
constructor, you’re free to put in your own no-arg constructor.

Constructors and Instantiation (Exam Objectives 1.3, 6.3, 6.2) 25

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ You cannot make a call to an instance method, or access an instance variable,
until after the super constructor runs.

■ You can access static variables and methods, although you can use
them only as part of the call to super() or this(). (Example:
super(Animal.DoThings()))

■ Abstract classes have constructors, and those constructors are always called
when a concrete subclass is instantiated.

■ Interfaces do not have constructors. Interfaces are not part of an object’s
inheritance tree.

■ The only way a constructor can be invoked is from within another
constructor. In other words, you can’t write code that actually calls
a constructor as follows:

class Horse {
Horse() { } // constructor
void doStuff() {
Horse(); // calling the constructor - illegal!

}
}

Determine if a Default Constructor Will Be Created
The following example shows a Horse class with two constructors:

class Horse {
Horse() { }
Horse(String name) { }

}

Will the compiler put in a default constructor for the class above? No!
How about for the following variation of the class?

class Horse {
Horse(String name) { }

}

Now will the compiler insert a default constructor? No!
What about this class?

class Horse { }

26 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Constructors and Instantiation (Exam Objectives 1.3, 6.3, 6.2) 27

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Now we’re talking. The compiler will generate a default constructor for the
preceding class, because the class doesn’t have any constructors defined.

OK, what about this class?

class Horse {
void Horse() { }

}

It might look like the compiler won’t create one, since there already is a constructor
in the Horse class. Or is there? Take another look at the preceding Horse class.

What’s wrong with the Horse() constructor? It isn’t a constructor at all! It’s
simply a method that happens to have the same name as the class. Remember, the
return type is a dead giveaway that we’re looking at a method, and not a constructor.

How do you know for sure whether a default constructor will be
created? Because you didn’t write any constructors in your class.

How do you know what the default constructor will look like?
Because…

■ The default constructor has the same access modifier as the class.

■ The default constructor has no arguments.

■ The default constructor includes a no-arg call to the super constructor
(super()).

The Table 5-4 shows what the compiler will (or won’t) generate for your class.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Class Code (What You Type) Compiler-Generated Constructor Code (In Bold Type)

class Foo {} class Foo {
Foo() {
super();

}
}

TABLE 5-4 Compiler-Generated Constructor Code

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What happens if the super constructor has arguments? Constructors
can have arguments just as methods can, and if you try to invoke a method that takes,
say, an int, but you don’t pass anything to the method, the compiler will complain
as follows:

class Bar {
void takeInt(int x) { }

}

class UseBar {

28 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Class Code (What You Type) Compiler-Generated Constructor Code (In Bold Type)

class Foo {
Foo() { }

}

class Foo {
Foo() {
super();

}
}

public class Foo {} class Foo {
public Foo() {
super();

}
}

class Foo {
Foo(String s) { }

}

class Foo {
Foo(String s) {
super();

}
}

class Foo {
Foo(String s) {

super();
}

}

Nothing—compiler doesn’t need to insert anything.

class Foo {
void Foo() {}

}

class Foo {
void Foo() {}
Foo() {
super();
}

}
(void Foo() is a method, not a constructor)

TABLE 5-4 Compiler-Generated Constructor Code (continued)

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public static void main (String [] args) {
Bar b = new Bar();
b.takeInt(); // Try to invoke a no-arg takeInt() method

}
}

The compiler will complain that you can’t invoke takeInt() without passing
an int. Of course, the compiler enjoys the occasional riddle, so the message it spits
out on some versions of the JVM (your mileage may vary) is less than obvious:

UseBar.java:7: takeInt(int) in Bar cannot be applied to ()
b.takeInt();
^

But you get the idea. The bottom line is that there must be a match for the method.
And by match, we mean that the argument types must be able to accept the values
or variables you’re passing, and in the order you’re passing them. Which brings us
back to constructors (and here you were thinking we’d never get there), which work
exactly the same way.

So if your super constructor (that is, the constructor of your immediate
superclass/parent) has arguments, you must type in the call to super(), supplying
the appropriate arguments. Crucial point: if your superclass does not have a no-arg
constructor, you must type a constructor in your class (the subclass) because you need a
place to put in the call to super with the appropriate arguments.

The following is an example of the problem:

class Animal {
Animal(String name) { }

}

class Horse extends Animal {
Horse() {

super(); // Problem!
}

}

And once again the compiler treats us with the stunningly lucid:

Horse.java:7: cannot resolve symbol
symbol : constructor Animal ()
location: class Animal

super(); // Problem!
^

Constructors and Instantiation (Exam Objectives 1.3, 6.3, 6.2) 29

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you’re lucky (and eat all your vegetables, including broccoli), your compiler might be a
little more explicit. But again, the problem is that there just isn’t a match for what
we’re trying to invoke with super()—an Animal constructor with no arguments.

Another way to put this—and you can bet your favorite Grateful Dead t-shirt it’ll
be on the exam—is if your superclass does not have a no-arg constructor, then in your
subclass you will not be able to use the default constructor supplied by the compiler. It’s
that simple. Because the compiler can only put in a call to a no-arg super(), you
won’t even be able to compile something like the following:

class Clothing {
Clothing(String s) { }

}
class TShirt extends Clothing { }

Trying to compile this code gives us exactly the same error we got when we put
a constructor in the subclass with a call to the no-arg version of super():

Clothing.java:4: cannot resolve symbol
symbol : constructor Clothing ()
location: class Clothing
class TShirt extends Clothing { }
^

In fact, the preceding Clothing and TShirt code is implicitly the same as the following
code, where we’ve supplied a constructor for TShirt that’s identical to the default
constructor supplied by the compiler:

class Clothing {
Clothing(String s) { }

}
class TShirt extends Clothing {

// Constructor identical to compiler-supplied default constructor
TShirt() {

super();
}

}

One last point on the whole default constructor thing (and it’s probably very
obvious, but we have to say it or we’ll feel guilty for years), constructors are never
inherited. They aren’t methods. They can’t be overridden (because they aren’t
methods and only methods can be overridden). So the type of constructor(s) your
superclass has in no way determines the type of default constructor you’ll get. Some
folks mistakenly believe that the default constructor somehow matches the super

30 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

constructor, either by the arguments the default constructor will have (remember,
the default constructor is always a no-arg), or by the arguments used in the compiler-
supplied call to super().

But although constructors can’t be overridden, you’ve already seen that they can
be overloaded, and typically are.

Overloaded Constructors
Overloading a constructor means typing in multiple versions of the constructor,
each having a different argument lists, like the following examples:

class Foo {
Foo() { }
Foo(String s) { }

}

The preceding Foo class has two overloaded constructors, one that takes a string, and
one with no arguments. Because there’s no code in the no-arg version, it’s actually
identical to the default constructor the compiler supplies, but remember—since
there’s already a constructor in this class (the one that takes a string), the compiler
won’t supply a default constructor. If you want a no-arg constructor to overload the
with-args version you already have, you’re going to have to type it yourself, just as in
the Foo example.

Overloading a constructor is used typically to provide alternate ways for clients
to instantiate objects of your class. For example, if a client knows the animal name,
they can pass that to an Animal constructor that takes a string. But if they don’t know
the name, the client can call the no-arg constructor and that constructor can supply
a default name. Here’s what it looks like:

1. public class Animal {
2. String name;
3. Animal(String name) {
4. this.name = name;
5. }
6.
7. Animal() {
8. this(makeRandomName());
9. }
10.
11. static String makeRandomName() {

Constructors and Instantiation (Exam Objectives 1.3, 6.3, 6.2) 31

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

32 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

12. int x = (int) (Math.random() * 5);
13. String name = new String[] {"Fluffy", "Fido",

"Rover", "Spike",
"Gigi"}[x];

14. return name;
15. }
16.
17. public static void main (String [] args) {
18. Animal a = new Animal();
19. System.out.println(a.name);
20. Animal b = new Animal("Zeus");
21. System.out.println(b.name);
22. }
23. }

Running this code four times produces the output:

% java Animal
Gigi
Zeus

% java Animal
Fluffy
Zeus

% java Animal
Rover
Zeus

% java Animal
Fluffy
Zeus

There’s a lot going on in the preceding code. Figure 5-6 shows the call stack for
constructor invocations when a constructor is overloaded. Take a look at the call
stack, and then let’s walk through the code straight from the top.

■ Line 2 Declare a String instance variable name.

■ Lines 3–5 Constructor that takes a String, and assigns it to instance
variable name.

■ Line 7 Here’s where it gets fun. Assume every animal needs a name, but
the client (calling code) might not always know what the name should be,
so you’ll assign a random name. The no-arg constructor generates a name
by invoking the makeRandomName() method.

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Constructors and Instantiation (Exam Objectives 1.3, 6.3, 6.2) 33

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

■ Line 8 The no-arg constructor invokes its own overloaded constructor that
takes a string, in effect calling it the same way it would be called if client code
were doing a new to instantiate an object, passing it a string for the name.
The overloaded invocation uses the keyword this, but uses it as though it
were a method name, this(). So line 8 is simply calling the constructor
on line 3, passing it a randomly selected string rather than a client-code
chosen name.

■ Line 11 Notice that the makeRandomName()method is marked static!
That’s because you cannot invoke an instance (in other words, nonstatic) method
(or access an instance variable) until after the super constructor has run. And
since the super constructor will be invoked from the constructor on line 3, rather
than from the one on line 7, line 8 can use only a static method to generate
the name. If we wanted all animals not specifically named by the caller to have
the same default name, say, “Fred,” then line 8 could have read

this("Fred");

rather than calling a method that returns a string with the randomly chosen
name.

■ Line 12 Line 12 doesn’t have anything to do with constructors, but since
we’re all here to learn…it generates a random number between 0 and 5.

■ Line 13 Weird syntax, we know. We’re creating a new String object (just a
single String instance), but we want the string to be selected randomly from a
list. Except we don’t have the list, so we need to make it. So in that one line
of code we

1. Declare a String variable, name.

2. Create a String array (anonymously—we don’t assign the array itself to
anything).

3. Retrieve the string at index [x] (x being the random number generated
on line 12) of the newly created String array.

FIGURE 5-6

Overloaded
constructors on
the call stack

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

34 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

4. Assign the string retrieved from the array to the declared instance variable
name. We could have made it much easier to read if we’d just written
String[] nameList = {"Fluffy", "Fido", "Rover",
"Spike", "Gigi"};
String name = nameList[x];

But where’s the fun in that? Throwing in unusual syntax (especially for code
wholly unrelated to the real question) is in the spirit of the exam. Don’t be
startled! (OK, be startled, but then just say to yourself, “Whoa” and get on
with it.)

■ Line 18 We’re invoking the no-arg version of the constructor (causing a
random name from the list to be selected and passed to the other constructor).

■ Line 20 We’re invoking the overloaded constructor that takes a string
representing the name.

The key point to get from this code example is in line 8. Rather than calling
super(), we’re calling this(), and this() always means a call to another
constructor in the same class. OK, fine, but what happens after the call to this()?
Sooner or later the super() constructor gets called, right? Yes indeed. A call to
this() just means you’re delaying the inevitable. Some constructor, somewhere,
must make the call to super().

Key Rule: The first line in a constructor must be a call to super() or a call
to this().

No exceptions. If you have neither of those calls in your constructor, the compiler
will insert the no-arg call to super(). In other words, if constructor A() has a
call to this(), the compiler knows that constructor A() will not be the one to
invoke super().

The preceding rule means a constructor can never have both a call to super()

and a call to this(). Because each of those calls must be the very first
statement in a constructor, you can’t legally use both in the same constructor.
That also means the compiler will not put a call to super() in any
constructor that has a call to this().

Thought Question: What do you think will happen if you try to compile the
following code?

class A {
A() {

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Constructors and Instantiation (Exam Objectives 1.3, 6.3, 6.2) 35

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

this("foo");
}
A(String s) {

this();
}

}

Your compiler may not actually catch the problem (it varies depending on your
compiler, but most won’t catch the problem). It assumes you know what you’re doing.
Can you spot the flaw? Given that a super constructor must always be called, where
would the call to super() go? Remember, the compiler won’t put in a default
constructor if you’ve already got one or more constructors in your class. And when
the compiler doesn’t put in a default constructor, it still inserts a call to super()
in any constructor that doesn’t explicitly have a call to the super constructor—unless,
that is, the constructor already has a call to this(). So in the preceding code,
where can super() go? The only two constructors in the class both have calls to
this(), and in fact you’ll get exactly what you’d get if you typed the following
method code:

public void go() {
doStuff();

}

public void doStuff() {
go();

}

Now can you see the problem? Of course you can. The stack explodes! It gets higher
and higher and higher until it just bursts open and method code goes spilling out,
oozing out of the JVM right onto the floor. Two overloaded constructors both calling
this() are two constructors calling each other. Over and over and over, resulting in

% java A
Exception in thread "main" java.lang.StackOverflowError

The benefit of having overloaded constructors is that you offer flexible ways to
instantiate objects from your class. The benefit of having one constructor invoke
another overloaded constructor is to avoid code duplication. In the Animal example,
there wasn’t any code other than setting the name, but imagine if after line 4 there
was still more work to be done in the constructor. By putting all the other
constructor work in just one constructor, and then having the other constructors
invoke it, you don’t have to write and maintain multiple versions of that other

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

36 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

important constructor code. Basically, each of the other not-the-real-one overloaded
constructors will call another overloaded constructor, passing it whatever data it
needs (data the client code didn’t supply).

Constructors and instantiation become even more exciting (just when you
thought it was safe) when you get to inner classes, but we know you can only stand
to have so much fun in one chapter, so we’re holding the rest of the discussion on
instantiating inner classes until Chapter 8.

CERTIFICATION OBJECTIVE

Legal Return Types (Exam Objective 1.4)
Identify legal return types for any method given the declarations of all related methods in
this or parent classes.

This objective covers two aspects of return types: What you can declare as a return
type, and what you can actually return as a value. What you can and cannot declare
is pretty straightforward, but it all depends on whether you’re overriding an inherited
method or simply declaring a new method (which includes overloaded methods). We’ll
take just a quick look at the difference between return type rules for overloaded and
overriding methods, because we’ve already covered that in this chapter. We’ll cover a
small bit of new ground, though, when we look at polymorphic return types and the
rules for what is and is not legal to actually return.

Return Type Declarations
This section looks at what you’re allowed to declare as a return type, which depends
primarily on whether you are overriding, overloading, or declaring a new method.

Return Types on Overloaded Methods
Remember that method overloading is not much more than name reuse. The
overloaded method is a completely different method from any other method of
the same name. So if you inherit a method but overload it in a subclass, you’re not
subject to the restrictions of overriding, which means you can declare any return
type you like. What you can’t do is change just the return type. To overload a method,
remember, you must change the argument list. The following code shows an overloaded
method:

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Legal Return Types (Exam Objective 1.4) 37

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

public class Foo{
void go() { }

}
public class Bar extends Foo {

String go(int x) {
return null;

}
}

Notice that the Bar version of the method uses a different return type. That’s
perfectly fine. As long as you’ve changed the argument list, you’re overloading the
method, so the return type doesn’t have to match that of the superclass version.
What you’re not allowed to do is this:

public class Foo{
void go() { }

}
public class Bar extends Foo {

String go() { // Not legal! Can't change only the return type
return null;

}
}

Overriding and Return Types
When a subclass wants to change the method implementation of an inherited method,
the subclass must define a method that matches the inherited version exactly. As we
saw earlier in this chapter, an exact match means the arguments and return types
must be identical. Other rules apply to overriding, including those for access modifiers
and declared exceptions, but those rules aren’t relevant to the return type discussion.

For the exam, be sure you know that overloaded methods can change the return
type, but overriding methods cannot. Just that knowledge alone will help you through
a wide range of exam questions.

Returning a Value
You have to remember only six rules for returning a value:

1. You can return null in a method that has an object reference return type.

public Button doStuff() {
return null;

}

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

38 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

2. An array is a perfectly legal return type.

public String [] go() {
return new String[] {"Fred", "Barney", "Wilma"};

}

3. In a method with a primitive return type, you can return any value or variable
that can be implicitly converted to the declared return type.

public int foo() {
char c = 'c';
return c; // char is compatible with int

}

4. In a method with a primitive return type, you can return any value or variable
that can be explicitly cast to the declared return type.

public int foo () {
float f = 32.5f;
return (int) f;

}

5. You must not return anything from a method with a void return type.

public void bar() {
return "this is it"; // Not legal!!

}

6. In a method with an object reference return type, you can return any object
type that can be implicitly cast to the declared return type.

public Animal getAnimal() {
return new Horse(); // Assume Horse extends Animal

}

public Object getObject() {
int[] nums = {1,2,3};
return nums; // Return an int array, which is still an object

}

public interface Chewable { }
public class Gum implements Chewable { }

public class TestChewable {

// Method with an interface return type
public Chewable getChewable {

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Legal Return Types (Exam Objective 1.4) 39

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

return new Gum(); // Return interface implementer
}

}

Watch for methods that declare an abstract class or interface return type,
and know that any object that passes the IS-A test (in other words, would test
true using the instanceof operator) can be returned from that method—
for example:

public abstract class Animal { }

public class Bear extends Animal { }

public class Test {

public Animal go() {

return new Bear(); // OK, Bear "is-a" Animal

}

}

Be sure you understand the rules for casting primitives. Take a look at the
following:

public short s = (short) (90 + 900000);

The preceding code compiles fine. But look at this variation:

public short s = (short) 90 + 900000; // Illegal!

By leaving off the parentheses around the arithmetic expression, the cast
(short) applies only to the first number! So the compiler gives us

Test.java:4: possible loss of precision

found : int

required: short

short s = (short) 90 + 900000;

^

Casting rules matter when returning values, so the following code would
not compile,

public short foo() {

return (short) 90 + 900000;

}

but with parentheses around (90 + 900000), it compiles fine.

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION SUMMARY
Let’s take a stroll through Chapter 5 and see where we’ve been. You looked at how
encapsulation can save you from being ripped to shreds by programmers whose code
you could break if you change the way client code accesses your data. Protecting the
instance variables (often by marking them private) and providing more accessible
getter and setter methods represent the good OO practice of encapsulation, and
support flexibility and maintainability by hiding your implementation details from
other code.

You learned that inheritance relationships are described using IS-A, as in “Car
IS-A Vehicle,” and that the keyword extends is used to define IS-A relationships
in Java:

class Car extends Vehicle

You also learned that reference relationships are described using HAS-A, as in
“Car HAS-A Engine.” HAS-A relationships in Java often are defined by giving one
class a reference to another, usually through instance variable declarations:

class Car extends Vehicle {
private Engine eng; // Now Car has-a Engine,

// and can thus invoke
methods on it.
}

We looked at the difference between overridden and overloaded methods, learning
that an overridden method occurs when a subclass inherits a method from a superclass,
but the subclass redefines it to add more specialized behavior. We learned that at
runtime, the JVM will invoke the subclass version on an instance of a subclass, and
the superclass version on an instance of the superclass. Remember that abstract
methods must be overridden (technically abstract methods must be implemented, as
opposed to overridden, since there really isn’t anything to override in an abstract
method, but who’s counting?).

We saw that overriding methods must keep the same argument list and return
type as the overridden method, and that the access modifier can’t be more restrictive.
The overriding method also can’t throw any new or broader checked exceptions that
weren’t declared in the overridden method. You also learned that the overridden
method can be invoked using the syntax super.doSomething();.

40 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Overloaded methods let you reuse the same method name in a class, but with
different arguments (and optionally, a different return type). Whereas overriding
methods must not change the argument list, overloaded methods must. But unlike
overriding methods, overloaded methods are free to vary the return type, access
modifier, and declared exceptions any way they like.

We covered constructors in detail, learning that even if you don’t provide a
constructor for your class, the compiler will always insert one. The compiler-generated
constructor is called the default constructor, and it is always a no-arg constructor
with a no-arg call to super(). The default constructor will never be generated
if there is even a single constructor in your class (and regardless of the arguments
of that constructor), so if you need more than one constructor in your class and
you want a no-arg constructor, you’ll have to write it yourself. We also saw that
constructors are not inherited, and that you can be confused by a method that has
the same name as the class (which is legal). The return type is the giveaway that
a method is not a constructor, since constructors do not have return types.

We saw how all of the constructors in an object’s inheritance tree will always be
invoked when the object is instantiated using new. We also saw that constructors
can be overloaded, which means defining constructors with different argument lists.
A constructor can invoke another constructor of the same class using the keyword
this(), as though the constructor were a method named this(). We saw that
every constructor must have either this() or super() as the first statement.

We also looked at method return types, and saw that you can declare any return
type you like (assuming you have access to a class for an object reference return type),
unless you’re overriding a method. An overriding method must have the same return
type as the overridden method of the superclass. We saw that while overriding methods
must not change the return type, overloaded methods can (as long as they also change
the argument list).

Finally, you learned that it is legal to return any value or variable that can be
implicitly converted to the declared return type. So, for example, a short can
be returned when the return type is declared as an int. And a Horse reference
can be returned when the return type is declared an Animal (assuming Horse
extends Animal).

And once again, you learned that the exam includes tricky questions designed
largely to test your ability to recognize just how tricky the questions can be. If you
took our advice about the margarita, you might want to review the following
Two-Minute Drill again after you’re sober.

Legal Return Types (Exam Objective 1.4) 41

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

42 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

✓TWO-MINUTE DRILL
Here are some of the key points from each certification objective in Chapter 5.

Encapsulation, IS-A, HAS-A (Sun Objective 6.1)
❑ The goal of encapsulation is to hide implementation behind an interface

(or API).

❑ Encapsulated code has two features:

❑ Instance variables are kept protected (usually with the private
modifier).

❑ Getter and setter methods provide access to instance variables.

❑ IS-A refers to inheritance.

❑ IS-A is expressed with the keyword extends.

❑ “IS-A,” “inherits from,” “is derived from,” and “is a subtype of” are all
equivalent expressions.

❑ HAS-A means an instance of one class “has a” reference to an instance of
another class.

Overriding and Overloading (Sun Objective 6.2)
❑ Methods can be overridden or overloaded; constructors can be overloaded

but not overridden.

❑ Abstract methods must be overridden by the first concrete (nonabstract)
subclass.

❑ With respect to the method it overrides, the overriding method

❑ Must have the same argument list

❑ Must have the same return type

❑ Must not have a more restrictive access modifier

❑ May have a less restrictive access modifier

❑ Must not throw new or broader checked exceptions

❑ May throw fewer or narrower checked exceptions, or any unchecked
exception

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ Final methods cannot be overridden.

❑ Only inherited methods may be overridden.

❑ A subclass uses super.overriddenMethodName to call the superclass
version of an overridden method.

❑ Overloading means reusing the same method name, but with different
arguments.

❑ Overloaded methods

❑ Must have different argument lists

❑ May have different return types, as long as the argument lists are
also different

❑ May have different access modifiers

❑ May throw different exceptions

❑ Methods from a superclass can be overloaded in a subclass.

❑ Polymorphism applies to overriding, not to overloading

❑ Object type determines which overridden method is used at runtime.

❑ Reference type determines which overloaded method will be used at
compile time.

Instantiation and Constructors (Sun Objectives 6.3 and 1.3)
❑ Objects are constructed:

❑ You cannot create a new object without invoking a constructor.

❑ Each superclass in an object’s inheritance tree will have a constructor called.

❑ Every class, even abstract classes, has at least one constructor.

❑ Constructors must have the same name as the class.

❑ Constructors do not have a return type. If there is a return type, then it is
simply a method with the same name as the class, and not a constructor.

❑ Constructor execution occurs as follows:

❑ The constructor calls its superclass constructor, which calls its superclass
constructor, and so on all the way up to the Object constructor.

Two-Minute Drill 43

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ The Object constructor executes and then returns to the calling
constructor, which runs to completion and then returns to its
calling constructor, and so on back down to the completion of
the constructor of the actual instance being created.

❑ Constructors can use any access modifier (even private!).

❑ The compiler will create a default constructor if you don’t create any
constructors in your class.

❑ The default constructor is a no-arg constructor with a no-arg call to
super().

❑ The first statement of every constructor must be a call to either this()
(an overloaded constructor) or super().

❑ The compiler will add a call to super() if you do not, unless you
have already put in a call to this().

❑ Instance methods and variables are only accessible after the super
constructor runs.

❑ Abstract classes have constructors that are called when a concrete
subclass is instantiated.

❑ Interfaces do not have constructors.

❑ If your superclass does not have a no-arg constructor, you must create a
constructor and insert a call to super() with arguments matching those
of the superclass constructor.

❑ Constructors are never inherited, thus they cannot be overridden.

❑ A constructor can be directly invoked only by another constructor (using
a call to super() or this()).

❑ Issues with calls to this():

❑ May appear only as the first statement in a constructor.

❑ The argument list determines which overloaded constructor is called.

❑ Constructors can call constructors can call constructors, and so on, but
sooner or later one of them better call super() or the stack will explode.

❑ this() and super() cannot be in the same constructor. You can
have one or the other, but never both.

44 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Return Types (Sun Objectives 1.4)
❑ Overloaded methods can change return types; overridden methods cannot.

❑ Object reference return types can accept null as a return value.

❑ An array is a legal return type, both to declare and return as a value.

❑ For methods with primitive return types, any value that can be implicitly
converted to the return type can be returned.

❑ Nothing can be returned from a void, but you can return nothing. You’re
allowed to simply say return, in any method with a void return type, to
bust out of a method early. But you can’t return nothing from a method with
a non-void return type.

❑ For methods with an object reference return type, a subclass of that type can
be returned.

❑ For methods with an interface return type, any implementer of that interface
can be returned.

Two-Minute Drill 45

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

46 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Don’t even think about skipping this test. You really need to see what the questions on the
exam can be like, and check your grasp and memorization of this chapter’s topics.

Encapsulation, IS-A, HAS-A (Sun Objective 6.1)

1. Given the following,

1. public class Barbell {
2. public int getWeight() {
3. return weight;
4. }
5. public void setWeight(int w) {
6. weight = w;
7. }
8. public int weight;
9. }

which is true about the class described above?

A. Class Barbell is tightly encapsulated.

B. Line 2 is in conflict with encapsulation.

C. Line 5 is in conflict with encapsulation.

D. Line 8 is in conflict with encapsulation.

E. Lines 5 and 8 are in conflict with encapsulation.

F. Lines 2, 5, and 8 are in conflict with encapsulation.

2. Given the following,

1. public class B extends A {
2. private int bar;
3. public void setBar(int b) {
4. bar = b;
5. }
6. }
7. class A {
8. public int foo;
9. }

which is true about the classes described above?

A. Class A is tightly encapsulated.

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 47

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

B. Class B is tightly encapsulated.

C. Classes A and B are both tightly encapsulated.

D. Neither class A nor class B is tightly encapsulated.

3. Which is true?

A. Tightly encapsulated classes are typically easier to reuse.

B. Tightly encapsulated classes typically use inheritance more than unencapsulated classes.

C. Methods in tightly encapsulated classes cannot be overridden.

D. Methods in tightly encapsulated classes cannot be overloaded.

E. Tightly encapsulated classes typically do not use HAS-A relationships.

4. Which two are not benefits of encapsulation? (Choose two.)

A. Clarity of code

B. Code efficiency

C. The ability to add functionality later on

D. Modifications require fewer coding changes

E. Access modifiers become optional

5. Given the following,

1. class B extends A {
2. int getID() {
3. return id;
4. }
5. }
6. class C {
7. public int name;
8. }
9. class A {
10. C c = new C();
11. public int id;
12. }

which two are true about instances of the classes listed above? (Choose two.)

A. A is-a B

B. C is-a A

C. A has-a C

D. B has-a A

E. B has-a C

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

48 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Overriding and Overloading (Sun Objective 6.2)

6. Given the following,

class A {
public void baz() {
System.out.println("A");

}
}
public class B extends A {
public static void main(String [] args) {
A a = new B();
a.baz();

}
public void baz() {
System.out.println("B");

}
}

what is the result?

A. A

B. B

C. Compilation fails.

D. An exception is thrown at runtime.

7. Given the following,

class Foo {
String doStuff(int x) { return "hello"; }

}

which method would not be legal in a subclass of Foo?

A. String doStuff(int x) { return "hello"; }

B. int doStuff(int x) { return 42; }

C. public String doStuff(int x) { return "Hello"; }

D. protected String doStuff(int x) { return "Hello"; }

E. String doStuff(String s) { return "Hello"; }

F. int doStuff(String s) { return 42; }

8. Given the following,

1. class ParentClass {
2. public int doStuff(int x) {
3. return x * 2;

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 49

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

4. }
5. }
6.
7. public class ChildClass extends ParentClass {
8. public static void main(String [] args) {
9. ChildClass cc = new ChildClass();
10. long x = cc.doStuff(7);
11. System.out.println("x = " + x);
12. }
13.
14. public long doStuff(int x) {
15. return x * 3;
16. }
17. }

What is the result?

A. x = 14

B. x = 21

C. Compilation fails at line 2.

D. Compilation fails at line 11.

E. Compilation fails at line 14.

F. An exception is thrown at runtime.

9. Given the following,

1. class Over {
2. int doStuff(int a, float b) {
3. return 7;
4. }
5. }
6.
7. class Over2 extends Over {
8. // insert code here
9. }

which two methods, if inserted independently at line 8, will not compile? (Choose two.)

A. public int doStuff(int x, float y) { return 4; }

B. protected int doStuff(int x, float y) {return 4; }

C. private int doStuff(int x, float y) {return 4; }

D. private int doStuff(int x, double y) { return 4; }

E. long doStuff(int x, float y) { return 4; }

F. int doStuff(float x, int y) { return 4; }

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

50 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Instantiation and Constructors (Sun Objectives 6.3 and 1.3)

10. Given the following,

1. public class TestPoly {
2. public static void main(String [] args){
3. Parent p = new Child();
4. }
5. }
6.
7. class Parent {
8. public Parent() {
9. super();
10. System.out.println("instantiate a parent");
11. }
12. }
13.
14. class Child extends Parent {
15. public Child() {
16. System.out.println("instantiate a child");
17. }
18. }

what is the result?

A. instantiate a child

B. instantiate a parent

C. instantiate a child
instantiate a parent

D. instantiate a parent
instantiate a child

E. Compilation fails.

F. An exception is thrown at runtime.

11. Given the following,

1. public class TestPoly {
2. public static void main(String [] args){
3. Parent p = new Child();
4. }
5. }
6.
7. class Parent {
8. public Parent() {
9. super();

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 51

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

10. System.out.println("instantiate a parent");
11. }
12. }
13.
14. class Child extends Parent {
15. public Child() {
16. System.out.println("instantiate a child");
17. super();
18. }
19. }

what is the result?

A. instantiate a child

B. instantiate a parent

C. instantiate a child
instantiate a parent

D. instantiate a parent
instantiate a child

E. Compilation fails.

F. An exception is thrown at runtime.

12. Given the following,

1. class MySuper {
2. public MySuper(int i) {
3. System.out.println("super " + i);
4. }
5. }
6.
7. public class MySub extends MySuper {
8. public MySub() {
9. super(2);
10. System.out.println("sub");
11. }
12.
13. public static void main(String [] args) {
14. MySuper sup = new MySub();
15. }
16. }

what is the result?

A. sub
super 2

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

52 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

B. super 2
sub

C. Compilation fails at line 2.

D. Compilation fails at line 8.

E. Compilation fails at line 9.

F. Compilation fails at line 14.

13. Given the following,

1. public class ThreeConst {
2. public static void main(String [] args) {
3. new ThreeConst(4L);
4. }
5. public ThreeConst(int x) {
6. this();
7. System.out.print(" " + (x * 2));
8. }
9. public ThreeConst(long x) {
10. this((int) x);
11. System.out.print(" " + x);
12. }
13.
14. public ThreeConst() {
15. System.out.print("no-arg ");
16. }
17. }

what is the result?

A. 4

B. 4 8

C. 8 4

D. 8 4 no-arg

E. no-arg 8 4

F. Compilation fails.

14. Given the following,

1. public class ThreeConst {
2. public static void main(String [] args) {
3. new ThreeConst();
4. }

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 53

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

5. public void ThreeConst(int x) {
6. System.out.print(" " + (x * 2));
7. }
8. public void ThreeConst(long x) {
9. System.out.print(" " + x);
10. }
11.
12. public void ThreeConst() {
13. System.out.print("no-arg ");
14. }
15. }

what is the result?

A. no-arg

B. 8 4 no-arg

C. no-arg 8 4

D. Compilation fails.

E. No output is produced.

F. An exception is thrown at runtime.

15. Given the following,

1. class Dog {
2. Dog(String name) { }
3. }

if class Beagle extends Dog, and class Beagle has only one constructor, which of the following
could be the legal constructor for class Beagle?

A. Beagle() { }

B. Beagle() { super(); }

C. Beagle() { super("fido"); }

D. No constructor, allow the default constructor

16. Which two of these statements are true about constructors? (Choose two.)

A. Constructors must not have arguments if the superclass constructor does not have
arguments.

B. Constructors are not inherited.

C. Constructors cannot be overloaded.

D. The first statement of every constructor is a legal call to the super() or this()method.

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Return Types (Sun Objective 1.4)

17. Given the following,

13. int x;
14. x = n.test();
18. int test() {
19.
20. return y;
21. }

which line of code, inserted at line 19, will not compile?

A. short y = 7;

B. int y = (int) 7.2d;

C. Byte y = 7;

D. char y = 's';

E. int y = 0xface;

18. Given the following,

14. long test(int x, float y) {
15.
16. }

which two of the following lines, inserted independently, at line 15 would not compile?
(Choose two.)

A. return x;

B. return (long) x / y;

C. return (long) y;

D. return (int) 3.14d;

E. return (y / x);

F. return x / 7;

19. Given the following,

1. import java.util.*;
2. class Ro {
3. public static void main(String [] args) {
4. Ro r = new Ro();
5. Object o = r.test();
6. }

54 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7.
8. Object test() {
9.
10.
11. }
12. }

which two of the following code fragments inserted at lines 9/10 will not compile?
(Choose two.)

A. return null;

B. Object t = new Object();
return t;

C. int [] a = new int [2];
return a;

D. char [] [] c = new char [2][2];
return c[0] [1];

E. char [] [] c = new char [2][2];
return c[1];

F. return 7;

20. Given the following,

1. import java.util.*;
2. class Ro {
3. public static void main(String [] args) {
4. Ro r = new Ro();
5. Object o = r.test();
6. }
7.
8. Object test() {
9.
10.
11. }
12. }

which two of the following code fragments inserted at lines 9/10 will not compile?
(Choose two.)

A. char [] [] c = new char [2][2];
return c;

B. return (Object) 7;

Self Test 55

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

56 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

C. return (Object) (new int [] {1,2,3});

D. ArrayList a = new ArrayList();
return a;

E. return (Object) "test";

F. return (Float) 4.3;

21. Given the following,

1. class Test {
2. public static Foo f = new Foo();
3. public static Foo f2;
4. public static Bar b = new Bar();
5.
6. public static void main(String [] args) {
7. for (int x=0; x<6; x++) {
8. f2 = getFoo(x);
9. f2.react();
10. }
11. }
12. static Foo getFoo(int y) {
13. if (0 == y % 2) {
14. return f;
15. } else {
16. return b;
17. }
18. }
19. }
20.
21. class Bar extends Foo {
22. void react() { System.out.print("Bar "); }
23. }
24.
25. class Foo {
26. void react() { System.out.print("Foo "); }
27. }

what is the result?

A. Bar Bar Bar Bar Bar Bar

B. Foo Bar Foo Bar Foo Bar

C. Foo Foo Foo Foo Foo Foo

D. Compilation fails.

E. An exception is thrown at runtime.

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test Answers 57

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

SELF TEST ANSWERS

Encapsulation, IS-A, HAS-A (Sun Objective 6.1)

1. � D. If a class has an instance variable that is marked public, the class cannot be said to
be encapsulated.
� A, B, C, E, and F are incorrect based on the program logic described above. Public
getter and setter methods are compatible with the concept of encapsulation.

2. � D. Class A is clearly not encapsulated because it has a public instance variable. At first
glance class B appears to be encapsulated, however because it extends from class A it inherits
the public instance variable foo, which is not encapsulated.
� A, B, and C are incorrect based on the program logic described above.

3. � A. One of the main benefits of encapsulation is that encapsulated code is much easier to
reuse than unencapsulated code.
� B, C, D, and E are incorrect. B is incorrect because inheritance is a concept that is
independent of encapsulation. C and D are incorrect because encapsulation does not restrict the
use of overloading or overriding. E is incorrect because HAS-A relationships are independent of
encapsulation.

4. � B and E. Encapsulation tends to make code more maintainable, extensible, and debuggable,
but not necessarily any more efficient at runtime. Encapsulation is a design approach and in no
way affects any Java language rules such as the use of access modifiers.
� A, C, and D are well-known benefits of encapsulation.

5. � C and E. C is correct because class A has an instance variable, c, that is a reference to an
object of class C. E is correct because class B extends from class A, which HAS-A class C
reference, so class B, through inheritance, HAS-A class C.
� A, B, and D are incorrect based on the program logic described. A is incorrect because
class B extends from class A, not the other way around. B is incorrect because class C is not in
class A’s inheritance tree. D is incorrect because class B IS-A class A; HAS-A is not used to
describe inheritance relationships.

Overriding and Overloading (Sun Objective 6.2)

6. � B. Reference variable ‘a’ is of type A, but it refers to an object of type B. Line 9 is a
polymorphic call, and the VM will use the version of the baz() method that is in the class
that the reference variable refers to at that point.
� A, C, and D are incorrect because of the logic described above.

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

58 Chapter 5: Object Orientation, Overloading and Overriding, Constructors, and Return Types

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

7. � B. B is neither a legal override (the return type has been changed) nor a legal overload (the
arguments have not changed).
� A, C, and D are legal overrides of the doStuff() method, and E and F are legal overloads
of the doStuff() method.

8. � E. Line 14 is an illegal override of the doStuff() method in ParentClass. When you
override a method, you must leave both the arguments and the return types the same.
� A, B, C, D, and F are incorrect based on the program logic described above. If line 14 had
returned an int, then B would be correct.

9. � C and E. C is an illegal override because the private modifier is more restrictive than
doStuff()’s default modifier in class Over. E is an illegal override because you can’t change
an overridden method’s return type, or E is an illegal overload because you must change an
overloaded method’s arguments.
� A and B are simple overrides (protected is less restrictive than default). D and F are
simple overloads (swapping arguments of different types creates an overload).

Instantiation and Constructors (Sun Objectives 6.3 and 1.3)

10. � D. The class Child constructor calls the class Parent constructor implicitly before any code
in the Child constructor runs. When the class Parent constructor’s code runs, it prints the first
line of output, finishes, and returns control to the Child constructor, which prints out its line
of output and finishes. The call to super() is redundant.
� A, B, C, E, and F are incorrect based on the program logic described above.

11. � E. Line 17 will cause the compiler to fail. The call to super() must be the first statement
in a constructor.
� A, B, C, D, and F are incorrect based on the program logic described above. If line 17 were
removed, D would be correct.

12. � B. Class MySuper does not need a no-args constructor because MySub explicitly calls the
MySuper constructor with an argument.
� A is incorrect because other than the implicit calls to super(), constructors run in order
from base class to extended class, so MySuper’s output will print first. C, D, E, and F are incorrect
based on the program logic described above.

13. � E. The main() method calls the long constructor which calls the int constructor, which
calls the no-arg constructor, which runs, then returns to the int constructor, which runs, then
returns to the long constructor, which runs last.
� A, B, C, D, and F are incorrect based on the program logic described above.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

14. � E. The class elements declared in lines 5, 8, and 12 are badly named methods, not
constructors. The default constructor runs with no output, and these methods are never called.
� A, B, C, D, and F are incorrect because of the logic described above.

15. � C. Only C is correct because the Dog class does not have a no-arg constructor; therefore,
you must explicitly make the call to super(), passing in a string.
� A, B, and D are incorrect based on the program logic described above.

16. � B and D are simply stating two rules about constructors.
� A is wrong because subclass constructors do not have to match the arguments of the
superclass constructor. Only the call to super() must match. C is incorrect because
constructors can be and are frequently overloaded.

Return Types (Sun Objective 1.4)

17. � C. Byte is a wrapper object, not a primitive.
� A and D are primitives that are shorter than int so they are cast implicitly. B is a double
explicitly cast to an int. E is a valid integer initialized with a hexadecimal value.

18. � B and E. B won’t compile because the long cast only applies to x, not to the expression
x / y. (We know it’s tricky, but so is the test.) E won’t compile because the result of (y / x)
is a float.
� A, C, D, and F all return either longs or ints (which are automatically cast to longs).

19. � D and F. D is a reference to a char primitive that happens to be in an array. F returns a
primitive, not an object.
� A, B, C, and E all return objects. For A, null is always a valid object return. For C, an
array is an object that holds other things (either objects or primitives). For E, we are returning
an array held in an array, and it’s still an object!

20. � B and F are both attempting to cast a primitive to an object—can’t do it.
� A, C, D, and E all return objects. A is an array object that holds other arrays. C is an array
object. D is an ArrayList object. E is a string cast to an object.

21. � B. Line 8 is an example of a polymorphic return type. The VM will determine on a case-
by-case basis what class of object f2 refers to, Bar or Foo. This is only possible because the
classes Foo and Bar are in the same inheritance tree.
� A, C, D, and E, are incorrect based on the logic described above.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

Self Test Answers 59

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 5

P:\010Comp\CertPrs8\684-6\ch05.vp
Wednesday, November 13, 2002 5:17:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6
Blind Folio 6:1

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6
Blind Folio 6:1

6
Java.lang—The
Math Class,
Strings, and
Wrappers
CERTIFICATION OBJECTIVES

• Using the java.lang.String Class

• Using the java.lang.Math Class

• Using Wrapper Classes

• Using the equals() Method with
Strings and Wrappers and Objects

✓ Two-Minute Drill

Q&A Self Test

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

This chapter focuses on the aspects of the java.lang package that you’ll need to understand
for the exam. The java.lang package contains many of the most fundamental and
often-used classes in the Java API. The exam will test your knowledge of String and

StringBuffer basics, including the infamous immutability of String objects, and how the more
common String and StringBuffer methods work. You will be tested on many of the basic
methods included in the Math class (extremely interesting), and you will need to know all about
wrappers—those methods that allow you to encapsulate your favorite primitives into objects,
so that you can do object-like stuff with them (like put them in collections). Finally, we’ll reveal
more than you’ve ever wanted to know about how the equals() method and == operator
work when dealing with String objects and wrappers.

As always, our focus will be on the knowledge you’ll really need to pass the
exam. Undoubtedly some very wonderful methods will be overlooked in our tour
of java.lang, but we’re dedicated to helping you pass this test.

CERTIFICATION OBJECTIVE

Using the String Class (Exam Objective 8.2)
Describe the significance of the immutability of String objects.

This section covers the String and StringBuffer classes. The key concepts we’ll
cover will help you understand that once a String object is created, it can never be
changed—so what is happening when a String object seems to be changing? We’ll
find out. We’ll also cover the differences between the String and StringBuffer classes
and when to use which.

Strings Are Immutable Objects
Let’s start with a little background information about strings. Strictly speaking you
may not need this information for the test, but a little context will help you learn
what you do have to know. Handling “strings” of characters is a fundamental aspect
of most programming languages. In Java, each character in a string is a 16-bit

2 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Unicode character. Because Unicode characters are 16 bits (not the skimpy 7 or 8
bits that ASCII provides), a rich, international set of characters is easily represented
in Unicode.

In Java, strings are objects. Just like other objects, you can create an instance of a
String with the new keyword, as follows:

String s = new String();

This line of code creates a new object of class String, and assigns the reference
variable s to it. So far String objects seem just like other objects. Now, let’s give the
String a value:

s = "abcdef";

As you might expect the String class has about a zillion constructors, so you can
use a more efficient shortcut:

String s = new String("abcdef");

And just because you’ll use strings all the time, you can even say this:

String s = "abcdef";

There are some subtle differences between these options that we’ll discuss later,
but what they have in common is that they all create a new String object, with a
value of “abcdef”, and assign it to a reference variable s. Now let’s say that you want
a second reference to the String object referred to by s:

String s2 = s; // refer s2 to the same String as s

So far so good. String objects seem to be behaving just like other objects, so
what’s all the fuss about? The certification objective states: “describe the significance
of the immutability of String objects.” Ah-ha! Immutability! (What the heck is
immutability?) Once you have assigned a String a value, that value can never change—
it’s immutable, frozen solid, won’t budge, fini, done. (We’ll also talk about why later,
don’t let us forget.) The good news is that while the String object is immutable, its
reference variable is not, so to continue with our previous example:

s = s.concat(" more stuff"); // the concat() method 'appends
// a literal to the end

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Using the String Class (Exam Objective 8.2) 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Now wait just a minute, didn’t we just say that Strings were immutable? So
what’s all this “appending to the end of the string” talk? Excellent question; let’s
look at what really happened…

The VM took the value of String s (which was “abcdef”), and tacked “ more
stuff” onto the end, giving us the value “abcdef more stuff”. Since
Strings are immutable, the VM couldn’t stuff this new String into the old String
referenced by s, so it created a new String object, gave it the value “abcdef more
stuff”, and made s refer to it. At this point in our example, we have two String
objects: the first one we created, with the value “abcdef”, and the second one
with the value “abcdef more stuff”. Technically there are now three String
objects, because the literal argument to concat “ more stuff” is itself a new
String object. But we have references only to “abcdef” (referenced by s2) and
“abcdef more stuff” (referenced by s).

What if we didn’t have the foresight or luck to create a second reference variable
for the “abcdef” String before we called: s = s.concat(“ more stuff”);?
In that case the original, unchanged String containing “abcdef” would still exist
in memory, but it would be considered “lost.” No code in our program has any way
to reference it—it is lost to us. Note, however, that the original “abcdef” String
didn’t change (it can’t, remember, it’s immutable); only the reference variable s was
changed, so that it would refer to a different String. Figure 6-1 shows what happens
on the heap when you reassign a reference variable. Note that the dashed line
indicates a deleted reference.

To review our first example:

String s = "abcdef"; // create a new String object, with value "abcdef",
// refer s to it

String s2 = s; // create a 2nd reference variable referring to
// the same String

s = s.concat(" more stuff"); // create a new String object, with value
// "abcdef more stuff", refer s to it.
// (change s's reference from the old
// String to the new String. (Remember
// s2 is still referring to the original
// "abcdef" String.

4 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Let’s look at another example:

String x = "Java";
x.concat(" Rules!");
System.out.println("x = " + x);

Using the String Class (Exam Objective 8.2) 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

FIGURE 6-1

String objects
and their
reference
variables

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The output will be x = Java.
The first line is straightforward: create a new String object, give it the value

“Java”, and refer x to it. What happens next? The VM creates a second String
object with the value “Java Rules!” but nothing refers to it!!! The second
String object is instantly lost; no one can ever get to it. The reference variable x still
refers to the original String with the value “Java”. Figure 6-2 shows creating a
String object without assigning to a reference.

Let’s expand this current example. We started with

String x = "Java";
x.concat(" Rules!");
System.out.println("x = " + x); // the output is: x = Java

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

6 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

FIGURE 6-2

A String object
is abandoned
upon creation

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Now let’s add

x.toUpperCase();
System.out.println("x = " + x); // the output is still: x = Java

(We actually did just create a new String object with the value “JAVA
RULES!”, but it was lost, and x still refers to the original, unchanged String
“Java”.)

How about adding

x.replace('a', 'X');
System.out.println("x = " + x); // the output is still: x = Java

Can you determine what happened? The VM created yet another new String
object, with the value “JXvX”, (replacing the a’s with X’s), but once again this new
String was lost, leaving x to refer to the original unchanged and unchangeable String
object, with the value “Java”. In all of these cases we called various String
methods to create a new String by altering an existing String, but we never assigned
the newly created String to a reference variable.

But we can put a small spin on the previous example:

String x = "Java";
x = x.concat(" Rules!"); // Now we're assigning x to the new String
System.out.println("x = " + x); // the output will be:

// x = Java Rules!

This time, when the VM runs the second line, a new String object is created
with the value of “Java Rules!”, and x is set to reference it. But wait, there’s
more—now the original String object, “Java”, has been lost, and no one is
referring to it. So in both examples we created two String objects and only one
reference variable, so one of the two String objects was left out in the cold. See
Figure 6-3 for a graphic depiction of this sad story. The dashed line indicates a
deleted reference.

Let’s take this example a little further:

String x = "Java";
x = x.concat(" Rules!");
System.out.println("x = " + x); // the output is: x = Java Rules!

x.toLowerCase(); // no assignment, create a new, abandoned String

System.out.println("x = " + x); // no assignment, the output is
// still: x = Java Rules!x =

Using the String Class (Exam Objective 8.2) 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

x.toLowerCase(); // create a new String, assigned to x
System.out.println("x = " + x); // the assignment causes the output:

// x = java rules!

The previous discussion contains the keys to understanding Java String
immutability. If you really, really get the examples and diagrams, backwards and
forwards, you should get 80 percent of the String questions on the exam correct.
We will cover more details about Strings next, but make no mistake—in terms of
bang for your buck, what we’ve already covered is by far the most important part
of understanding how String objects work in Java.

We’ll finish this section by presenting an example of the kind of devilish String
question you might expect to see on the exam. Take the time to work it out on paper
(as a hint, try to keep track of how many objects and reference variables there are,
and which ones refer to which).

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

8 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

FIGURE 6-3

An old String
object being
abandoned

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

String s1 = "spring ";
String s2 = s1 + "summer ";
s1.concat("fall ");
s2.concat(s1);
s1 += "winter ";
System.out.println(s1 + " " + s2);

What is the output?
For extra credit, how many String objects and how many reference variables were

created prior to the println statement? Answer:

The result of this code fragment is “spring winter spring summer”.
There are two reference variables, s1 and s2. There were a total of eight String
objects created as follows: “spring”, “summer ” (lost), “spring summer”, “fall”
(lost), “spring fall” (lost), “spring summer spring” (lost), “winter” (lost), “spring
winter” (at this point “spring” is lost). Only two of the eight String objects are
not lost in this process.

Important Facts About Strings and Memory
In this section we’ll discuss how Java handles string objects in memory, and some of
the reasons behind these behaviors.

One of the key goals of any good programming language is to make efficient use
of memory. As applications grow, it’s very common that String literals occupy large
amounts of a program’s memory, and that there is often a lot of redundancy within
the universe of String literals for a program. To make Java more memory efficient,
the JVM sets aside a special area of memory called the “String constant pool.” When
the compiler encounters a String literal, it checks the pool to see if an identical String
already exists. If a match is found, the reference to the new literal is directed to the
existing String, and no new String literal object is created. (The existing String
simply has an additional reference.) Now we can start to see why making String
objects immutable is such a good idea. If several reference variables refer to the same
String without even knowing it, it would be very bad if any of them could change
the String’s value.

You might say, “Well that’s all well and good, but what if someone overrides the
String class functionality; couldn’t that cause problems in the pool?” That’s one of
the main reasons that the String class is marked final. Nobody can override the
behaviors of any of the String methods, so you can rest assured that the String objects
you are counting on to be immutable will, in fact, be immutable.

Using the String Class (Exam Objective 8.2) 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Creating New Strings
Earlier we promised to talk more about the subtle differences between the various
methods of creating a String. Let’s look at a couple of examples of how a String might
be created, and let’s further assume that no other String objects exist in the pool:

1 – String s = "abc"; // creates one String object and one reference
// variable

In this simple case, “abc” will go in the pool and s will refer to it.

2 – String s = new String("abc"); // creates two objects, and one
// reference variable

In this case, because we used the new keyword, Java will create a new String
object in normal (nonpool) memory, and s will refer to it. In addition, the literal
“abc” will be placed in the pool.

Important Methods in the String Class
The following methods are some of the more commonly used methods in the String
class, and also the ones that you’re most likely to encounter on the exam.

public char charAt(int index)

This method returns the character located at the String’s specified index.
Remember that String indexes are zero-based—for example,

String x = "airplane";
System.out.println(x.charAt(2)); // output is 'r'

public String concat(String s)

This method returns a String with the value of the String passed in to the method
appended to the end of the String used to invoke the method—for example,

String x = "taxi";
System.out.println(x.concat(" cab")); // output is "taxi cab"

The overloaded + and += operators perform functions similar to the concat()
method—for example,

String x = "library";
System.out.println(x + " card"); // output is "library card"

10 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

1. String x = "Atlantic";
2. x += " ocean"
3. System.out.println(x); // output is "Atlantic ocean"

In the preceding “Atlantic Ocean” example, notice that the value of x really did
change! Remember that the += operator is an assignment operator, so line 2 is really
creating a new String, “Atlantic Ocean”, and assigning it to the x variable. After
line 2 executes, the original String x was referring to, “Atlantic”, is abandoned.

public Boolean equalsIgnoreCase(String s)

This method returns a boolean value (true or false) depending on whether
the value of the String in the argument is the same as the value of the String used to
invoke the method. This method will return true even when characters in the String
objects being compared have differing cases—for example,

String x = "Exit";
System.out.println(x.equalsIgnoreCase("EXIT")); // returns "true"

System.out.println(x.equalsIgnoreCase("tixe")); // returns "false"

public int length()

This method returns the length of the String used to invoke the method—for
example,

String x = "01234567";
System.out.println(x.length()); // returns "8"

Arrays have an attribute (not a method), called length. You may encounter
questions in the exam that attempt to use the length() method on an array,
or that attempt to use the length attribute on a String. Both cause compiler
errors—for example,
String x = “test”;
System.out.println(x.length); // compiler error

or
String [] x = new String[3];
System.out.println(x.length());

Using the String Class (Exam Objective 8.2) 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public String replace(char old, char new)

This method returns a String whose value is that of the String used to invoke the
method, updated so that any occurrence of the char in the first argument is replaced
by the char in the second argument—for example,

String x = "oxoxoxox";
System.out.println(x.replace('x', 'X')); // output is "oXoXoXoX"

public String substring(int begin)
public String substring(int begin, int end)

The substring() method is used to return a part (or substring) of the String
used to invoke the method. The first argument represents the starting location
(zero-based) of the substring. If the call has only one argument, the substring
returned will include the characters to the end of the original String. If the call has
two arguments, the substring returned will end with the character located in the nth
position of the original String where n is the second argument. Unfortunately, the
ending argument is not zero-based, so if the second argument is 7, the last character
in the returned String will be in the original String’s 7 position, which is index 6
(ouch). Let’s look at some examples:

String x = "0123456789"; // as if by magic, the value of each char
// is the same as its index!

System.out.println(x.substring(5)); // output is "56789"
System.out.println(x.substring(5, 8)); // output is "567"

The first example should be easy: start at index 5 and return the rest of the
String. The second example should be read as follows: start at index 5 and return
the characters up to and including the 8th position (index 7).

public String toLowerCase()

This method returns a String whose value is the String used to invoke the method,
but with any uppercase characters converted to lowercase—for example,

String x = "A New Moon";
System.out.println(x.toLowerCase()); // output is "a new moon"

public String toString()

This method returns the value of the String used to invoke the method. What? Why
would you need such a seemingly “do nothing” method? All objects in Java must

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

12 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

have a toString() method, which typically returns a String that in some
meaningful way describes the object in question. In the case of a String object, what
more meaningful way than the String’s value? For the sake of consistency, here’s an
example:

String x = "big surprise";
System.out.println(x.toString()); // output – reader's exercise

public String toUpperCase()

This method returns a String whose value is the String used to invoke the method,
but with any lowercase characters converted to uppercase—for example,

String x = "A New Moon";
System.out.println(x.toUpperCase()); // output is "A NEW MOON"

public String trim()

This method returns a String whose value is the String used to invoke the method,
but with any leading or trailing blank spaces removed—for example,

String x = " hi ";

System.out.println(x + "x"); // result is " hi x"
System.out.println(x.trim() + "x"); // result is "hix"

The StringBuffer Class
The StringBuffer class should be used when you have to make a lot of modifications
to strings of characters. As we discussed in the previous section, String objects are
immutable, so if you choose to do a lot of manipulations with String objects, you
will end up with a lot of abandoned String objects in the String pool. On the other
hand, objects of type StringBuffer can be modified over and over again without
leaving behind a great effluence of discarded String objects.

A common use for StringBuffers is file I/O when large, ever-changing streams
of input are being handled by the program. In these cases, large blocks of
characters are handled as units, and StringBuffer objects are the ideal way
to handle a block of data, pass it on, and then reuse the same memory to
handle the next block of data.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Using the String Class (Exam Objective 8.2) 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

In the previous section, we saw how the exam might test your understanding of
String immutability with code fragments like this:

String x = "abc";
x.concat("def");
System.out.println("x = " + x); // output is "x = abc"

Because no new assignment was made, the new String object created with the
concat() method was abandoned instantly. We also saw examples like this:

String x = "abc";
x = x.concat("def");
System.out.println("x = " + x); // output is "x = abcdef"

We got a nice new String out of the deal, but the downside is that the old String
“abc” has been lost in the String pool, thus wasting memory. If we were using a
StringBuffer instead of a String, the code would look like this:

StringBuffer sb = new StringBuffer("abc");
sb.append("def");
System.out.println("sb = " + sb); // output is "sb = abcdef"

All of the StringBuffer methods we will discuss operate on the value of the
StringBuffer object invoking the method. So a call to sb.append(“def”);
is actually appending “def” to itself (StringBuffer sb). In fact, these method
calls can be chained to each other—for example,

StringBuffer sb = new StringBuffer("abc");
sb.append("def").reverse().insert(3, "---");
System.out.println(sb); // output is "fed---cba"

The exam will probably test your knowledge of the difference between String
and StringBuffer objects. Because StringBuffer objects are changeable, the
following code fragment will behave differently than a similar code fragment
that uses String objects:
StringBuffer sb = new StringBuffer("abc");
sb.append("def");
System.out.println(sb);

In this case, the output will be
“abcdef”

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

14 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Important Methods in the StringBuffer Class
The following method returns a StringBuffer object with the argument’s value
appended to the value of the object that invoked the method:

public synchronized StringBuffer append(String s)

As we’ve seen earlier, this method will update the value of the object that invoked
the method, whether or not the return is assigned to a variable. This method will
take many different arguments, boolean, char, double, float, int, long, and others,
but the most likely use on the exam will be a String argument—for example,

StringBuffer sb = new StringBuffer("set ");
sb.append("point");
System.out.println(sb); // output is "set point"

or

StringBuffer sb = new StringBuffer("pi = ");
sb.append(3.14159f);
System.out.println(sb); // output is "pi = 3.14159"

public synchronized StringBuffer insert(int offset, String s)

This method returns a StringBuffer object and updates the value of the StringBuffer
object that invoked the method call. In both cases, the String passed in to the second
argument is inserted into the original StringBuffer starting at the offset location
represented by the first argument (the offset is zero-based). Again, other types of
data can be passed in through the second argument (boolean, char, double, float, int,
long, etc.), but the String argument is the one you’re most likely o see:

StringBuffer sb = new StringBuffer("01234567");
sb.insert(4, "---");
System.out.println(sb); // output is "0123---4567"

public synchronized StringBuffer reverse()

This method returns a StringBuffer object and updates the value of the StringBuffer
object that invoked the method call. In both cases, the characters in the StringBuffer

Using the String Class (Exam Objective 8.2) 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

are reversed, the first character becoming the last, the second becoming the second
to the last, and so on:

StringBuffer sb = new StringBuffer("A man a plan a canal Panama");
System.out.println(sb); // output is "amanaP lanac a nalp a nam A"

public String toString()

This method returns the value of the StringBuffer object that invoked the method
call as a String:

StringBuffer sb = new StringBuffer("test string");
System.out.println(sb.toString()); // output is "test string"

That’s it for StringBuffers. If you take only one thing away from this section, it’s
that unlike Strings, StringBuffer objects can be changed.

Many of the exam questions covering this chapter’s topics use a tricky bit of
Java syntax known as chained methods. A statement with chained methods has
the general form:
result = method1().method2().method3();

In theory, any number of methods can be chained in this fashion, although
typically you won’t see more than three. Here’s how to decipher these
“handy Java shortcuts” when you encounter them:

1. Determine what the leftmost method call will return (let’s call it x).

2. Use x as the object invoking the second (from the left) method. If there
are only two chained methods, the result of the second method call is the
expression’s result.

3. If there is a third method, the result of the second method call is used
to invoke the third method, whose result is the expression’s result—
for example,
String x = "abc";

String y = x.concat("def").toUpperCase().replace('C','x'); //chained methods

System.out.println("y = " + y); // result is "ABxDEF"

Let’s look at what happened. The literal “def” was concatenated to “abc”,
creating a temporary, intermediate String (soon to be lost), with the value
“abcdef”. The toUpperCase() method created a new (soon to be lost)
temporary String with the value “ABCDEF”. The replace() method created
a final String with the value “ABxDEF”, and referred y to it.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

16 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

CERTIFICATION OBJECTIVE

Using the Math Class (Exam Objective 8.1)
Write code using the following methods of the java.lang.Math class: abs, ceil, floor, max,
min, random, round, sin, cos, tan, sqrt.

The java.lang package defines classes that are fundamental to the Java language.
For this reason, all classes in the java.lang package are imported automatically, so
there is no reason to write an import statement for them. The package defines
object wrappers for all primitive types. The class names are Boolean, Byte, Character,
Double, Float, Integer, Long, Short, and Void as well as Object, the class from
which all other Java classes inherit.

The java.lang package also contains the Math class, which is used to perform
basic mathematical operations. The Math class defines approximations for the
mathematical constants pi and e. Their signatures are as follows:

public final static double Math.PI
public final static double Math.E

Because all methods of the Math class are defined as static, you don’t need to
create an instance to use them. In fact, it’s not possible to create an instance of the
Math class because the constructor is private. You can’t extend the Math class
either, because it’s marked final.

Methods of the java.lang.Math Class
The methods of the Math class are static and are accessed like any static
method—through the class name. For these method calls the general form is

result = Math.aStaticMathMethod();

The following sections describe the Math methods and include examples of how
to use them.

Using the Math Class (Exam Objective 8.1) 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

abs()
The abs() method returns the absolute value of the argument—for example,

x = Math.abs(99); // output is 99
x = Math.abs(-99) // output is 99

The method is overloaded to take an int, a long, a float, or a double argument. In
all but two cases, the returned value is non-negative. The signatures of the abs()
method are as follows:

public static int abs(int a)
public static long abs(long a)
public static float abs(float a)
public static double abs(double a)

ceil()
The ceil() method returns the smallest integer, as a double, that is greater than
or equal to the argument and equal to the nearest integer value. In other words, the
argument is rounded up to the nearest integer equivalent.

Let’s look at some examples of this in action, just to make sure you are familiar
with the concept. All the following calls to Math.ceil() return the double
value 9.0:

Math.ceil(9.0) // result is 9.0
Math.ceil(8.8) // rises to 9.0
Math.ceil(8.02) // still rises to 9.0

Negative numbers are similar, but just remember that –9 is greater than –10.
All the following calls to Math.ceil() return the double value -9.0:

Math.ceil(-9.0) // result is –9.0
Math.ceil(-9.4) // rises to –9.0
Math.ceil(-9.8) // still rises to –9.0

There is only one ceil() method and it has the following signature:

public static double ceil(double a)

floor()
The floor() method returns the largest double that is less than or equal to the
argument and equal to the nearest integer value. This method is the antithesis of
the ceil() method.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

18 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

All the following calls to Math.floor() return the double value 9.0:

Math.floor(9.0) // result is 9.0
Math.floor(9.4) // drops to 9.0
Math.floor(9.8) // still drops to 9.0

As before, keep in mind that with negative numbers, –9 is less than –8! All the
following calls to Math.floor() return the double value –9.0:

Math.floor(-9.0) // result is –9.0
Math.floor(-8.8) // drops to –9.0
Math.floor(-8.1) // still drops to –9.0

The signature of the floor() method is as follows:

public static double floor(double a)

The floor() and ceil() methods take only doubles. There are no
overloaded methods for integral numbers, because the methods would just
end up returning the integral numbers they were passed. The whole point
of floor() and ceil() is to convert floating-point numbers (doubles),
to integers, based on the rules of the methods. It may seem strange (it does
to us) that the integer values are returned in a double sized container, but
don’t let that throw you.

max()
The max() method takes two numeric arguments and returns the greater of the
two—for example,

x = Math.max(1024, -5000); // output is 1024.

This method is overloaded to handle int, long, float, or double arguments. If the
input parameters are the same, max() returns a value equal to the two arguments.
The signatures of the max() method are as follows:

public static int max(int a, int b)
public static long max(long a, long b)
public static float max(float a, float b)
public static double max(double a, double b)

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Using the Math Class (Exam Objective 8.1) 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

min()
The min() method is the antithesis of the max() method; it takes two numeric
arguments and returns the lesser of the two—for example,

x = Math.min(0.5, 0.0); // output is 0.0

This method is overloaded to handle int, long, float, or double arguments. If the
input parameters are the same, min() returns a value equal to the two arguments.
The signatures of the min() method are as follows:

public static int min(int a, int b)
public static long min(long a, long b)
public static float min(float a, float b)
public static double min(double a, double b)

And for the record, we’re pretty impressed with our use of the word “antithesis”.

EXERCISE 6-1

Using the Math Class
In this exercise we will examine some numbers using the abs(), ceil(), and
floor() methods of the Math class. Find the absolute, ceiling, and floor values
of the following numbers: 10.5, –10.5, Math.PI, and 0.

■ Create a class and a main() method to perform the calculations.

■ Store these numbers in an array of double values.

■ Use a for loop to go through the array and perform the tests on each of these
numbers.

■ Try to determine what the results of your program will be before running it.

■ An example solution is provided at the end of the chapter.

random()
The random() method returns a random double that is greater than or equal to
0.0 and less than 1.0. The random() method does not take any parameters—
for example,

20 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

public class RandomTest {
public static void main(String [] args) {
for (int x=0; x < 15; x++)
System.out.print((int)(Math.random()*10) + " ");

}
}

The println() method multiplies the result of the call to Math.random()
by 10, and then casts the resulting double (whose value will be between 0.0 and
9.99999999…), to an integer. Here are some sample results:

6 3 3 1 2 0 5 9 3 5 6 6 0 3 5
4 9 3 6 6 8 1 1 3 0 3 2 5 3 4

The signature of the random() method is as follows:

public static double random()

round()
The round() method returns the integer closest to the argument. The algorithm
is to add 0.5 to the argument and truncate to the nearest integer equivalent. This
method is overloaded to handle a float or a double argument.

The methods ceil(), floor(), and round() all take floating-point
arguments and return integer equivalents (although again, delivered in a double
variable). If the number after the decimal point is less than 0.5, Math.round()
is equal to Math.floor(). If the number after the decimal point is greater than
or equal to 0.5, Math.round() is equal to Math.ceil(). Keep in mind that
with negative numbers, a number at the .5 mark will round up to the larger number—
for example,

Math.round(-10.5); // result is –10

The signatures of the round() method are as follows:

public static int round(float a)
public static long round(double a)

sin()
The sin() method returns the sine of an angle. The argument is a double
representing an angle in radians. Degrees can be converted to radians by using
Math.toRadians()—for example,

Math.sin(Math.toRadians(90.0)) // returns 1.0

Using the Math Class (Exam Objective 8.1) 21

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

The signature of the sin() method is as follows:

public static double sin(double a)

cos()
The cos() method returns the cosine of an angle. The argument is a double
representing an angle in radians—for example,

Math.cos(Math.toRadians(0.0)) // returns 1.0

The signature of the cos() method is as follows:

public static double cos(double a)

tan()
The tan() method returns the tangent of an angle. The argument is a double
representing an angle in radians—for example,

Math.tan(Math.toRadians(45.0)) // returns 1.0

The signature of the tan() method is as follows:

public static double tan(double a)

Sun does not expect you to be a human calculator. The certification exam
will not contain questions that require you to verify the result of calling
methods such as Math.cos(0.623). (Although we thought it would be
fun to include questions like that…)

sqrt()
The sqrt() method returns the square root of a double—for example,

Math.sqrt(9.0) // returns 3.0

What if you try to determine the square root of a negative number? After all, the
actual mathematical square root function returns a complex number (comprised of
real and imaginary parts) when the operand is negative. The Java Math.sqrt()
method returns NaN instead of an object representing a complex number. NaN is
a bit pattern that denotes “not a number.” The signature of the sqrt() method
is as follows:

public static double sqrt(double a)

22 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXERCISE 6-2

Rounding Random Numbers
In this exercise we will round a series of random numbers. The program will
generate ten random numbers from 0 through 100. Round each one of them,
then print the results to the screen. Try to do this with as little code as possible.

1. Create a class and a main() method to perform the calculations.

2. Use a for loop to go through ten iterations.

3. Each iteration should generate a random number using Math.random().
To get a number from 0 through 100 simply multiply the random number
by 100. Print this number to the screen. Without rounding it, though, you
can’t ever get to 100 (the random() method always returns something less
than 1.0).

4. Round the number using the Math.round() method. Print the rounded
number to the screen.

5. A sample solution is listed at the end of the chapter.

As a bonus, note whether the numbers look random. Is there an equal number
of even and odd numbers? Are they grouped more towards the top half of 100 or
the bottom half? What happens to the distribution as you generate more random
numbers?

toDegrees()
The toDegrees() method takes an argument representing an angle in radians
and returns the equivalent angle in degrees—for example,

Math.toDegrees(Math.PI * 2.0) // returns 360.0

The signature of the toDegrees() method is as follows:

public static double toDegrees(double a)

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Using the Math Class (Exam Objective 8.1) 23

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

toRadians()
The toRadians() method takes an argument representing an angle in degrees
and returns the equivalent angle in radians—for example,

Math.toRadians(360.0) // returns 6.283185, which is 2 * Math.PI

This method is useful for converting an angle in degrees to an argument suitable
for use with the trigonometric methods (cos(), sin(), tan(), acos(),
asin(), and atan()). For example, to determine the sin of 60 degrees:

double d = Math.toRadians(60);
System.out.println("sin 60 = " + Math.sin(d)); // "sin 60 = 0.866…"

The signature of the toRadians() method is as follows:

public static double toRadians(double a)

Table 6-1 summarizes the key static methods of the Math class.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

24 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Static Math Methods

double ceil (double a)

double floor (double a)

double random ()

double abs (double a)

float abs (float a)

int abs (int a)

long abs (long a)

double max (double a, double b)

float max (float a, float b)

int max (int a, int b)

long max (long a, long b)

double min (double a, double b)

float min (float a, float b)double sqrt (double a)

int min (int a, int b)

long min (long a, long b)

double toDegrees (double angleInRadians)

double toRadians (double angleInDegrees)

double tan (double a)

TABLE 6-1

Important Static
Math Class
Method
Signatures

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Miscellaneous Math Class Facts
The following program demonstrates some of the unusual results that can occur
when pushing some of the limits of the Math class or performing mathematical
functions that are “on the edge” (such as dividing floating-point numbers by 0).
These are some of the basic special cases. There are many more, but if you know
these you will be in good shape for the exam.

If you want to live dangerously, or you’re running out of study time before
the big day, just focus on the examples below with the **.
double d;
float p_i = Float.POSITIVE_INFINITY; // The floating point classes have
double n_i = Double.NEGATIVE_INFINITY; // these three special fields.
double notanum = Double.NaN; // They can be Float or Double

if (notanum != notanum) // ** NaN isn't == to anything, not
// even itself!

System.out.println("NaNs not equal"); // result is "NaNs not equal"

if (Double.isNaN(notanum)) // Float and Double have isNan()
// methods to test for NaNs

System.out.println("got a NaN"); // result is "got a NaN"

d = Math.sqrt(n_i); // square root of negative infinity?
if (Double.isNaN(d))
System.out.println("got sqrt NaN"); // result is "got sqrt NaN"

System.out.println(Math.sqrt(-16d)); // result is "NaN"

System.out.println(16d / 0.0); // ** result is (positive) "Infinity"
System.out.println(16d / -0.0); // ** result is (negative) "-Infinity"

// divide by 0 only works for floating point numbers
// divide by 0 with integer numbers results in ArithmeticException

System.out.println("abs(-0) = "+ Math.abs(-0)); // result is "abs(-0) = 0"

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Using the Math Class (Exam Objective 8.1) 25

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Static Math Methods

double sin (double a)

double cos (double a)

double sqrt (double a)

int round (float a)

long round (double a)

TABLE 6-1

Important Static
Math Class
Method
Signatures
(continued)

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

The exam will test your knowledge of implicit casting. For the numeric
primitives, remember that from narrowest to widest the numeric primitives
types are byte, short, int, long, float, double. Any numeric primitive can be
implicitly cast to any numeric primitive type that is wider than itself. For
instance, a byte can be implicitly cast to any other numeric primitive, but
a float can only be implicitly cast to a double. Remembering implicit casting,
and the method signatures in Table 6-1, will help you answer many of the
exam questions.

CERTIFICATION OBJECTIVE

Using Wrapper Classes (Exam Objective 8.3)
Describe the significance of wrapper classes, including making appropriate selections in
the wrapper classes to suit specified behavior requirements, stating the result of executing
a fragment of code that includes an instance of one of the wrapper classes, and writing
code using the following methods of the wrapper classes (e.g., Integer, Double, etc.):
doubleValue, floatValue, intValue, longValue, parseXxx, getXxx, toString, toHexString.

The wrapper classes in the Java API serve two primary purposes:

■ To provide a mechanism to “wrap” primitive values in an object so that the
primitives can be included in activities reserved for objects, like as being
added to Collections, or returned from a method with an object return value.

■ To provide an assortment of utility functions for primitives. Most of these
functions are related to various conversions: converting primitives to and
from String objects, and converting primitives and String objects to and
from different bases (or radix), such as binary, octal, and hexadecimal.

An Overview of the Wrapper Classes
There is a wrapper class for every primitive in Java. For instance the wrapper class
for int is Integer, for float is Float, and so on. Remember that the primitive name is

26 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

simply the lowercase name of the wrapper except for char, which maps to Character,
and int, which maps to Integer. Table 6-2 lists the wrapper classes in the Java API.

Creating Wrapper Objects
For the exam you need to understand the three most common approaches for creating
wrapper objects. Some approaches take a String representation of a primitive as an
argument. Those that take a String throw NumberFormatException if the String
provided cannot be parsed into the appropriate primitive. For example “two” can’t
be parsed into “2”. Like another class previously discussed in this chapter, wrapper
objects are immutable. Once they have been given a value, that value cannot be
changed. (Can you guess which other class we’re talking about?)

The Wrapper Constructors
All of the wrapper classes except Character provide two constructors: one that takes
a primitive of the type being constructed, and one that takes a String representation
of the type being constructed—for example,

Integer i1 = new Integer(42);
Integer i2 = new Integer("42");

or

Float f1 = new Float(3.14f);
Float f2 = new Float("3.14f");

Using Wrapper Classes (Exam Objective 8.3) 27

Primitive Wrapper Class Constructor Arguments

boolean Boolean boolean or String

byte Byte byte or String

char Character char

double Double double or String

float Float float or String

int Integer int or String

long Long long or String

short Short short or String

TABLE 6-2

Wrapper Classes
and Their
Constructor
Arguments

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

The Character class provides only one constructor, which takes a char as an
argument—for example,

Character c1 = new Character('c');

The constructors for the Boolean wrapper take either a boolean value true or
false, or a case-insensitive String with the value “true” or “false”. But a Boolean
object can’t be used as an expression in a boolean test—for instance,
Boolean b = new Boolean("false");
if (b) // won't compile, expecting a boolean not a Boolean

The valueOf() Methods
The static valueOf() methods provided in most of the wrapper classes give
you another approach to creating wrapper objects. Both methods take a String
representation of the appropriate type of primitive as their first argument, the
second method (when provided) takes an additional argument, int radix, which
indicates in what base (for example binary, octal, or hexadecimal) the first argument
is represented—for example,

Integer i2 = Integer.valueOf("101011", 2); // converts 101011 to 43 and
// assigns the value 43 to the
// Integer object i2

or

Float f2 = Float.valueOf("3.14f"); // assigns 3.14 to the Float object f2

Using Wrapper Conversion Utilities
As we said earlier, a wrapper’s second big function is converting stuff. The following
methods are the most commonly used, and are the ones you’re most likely to see on
the test.

xxxValue()
When you need to convert the value of a wrapped numeric to a primitive, use one
of the many xxxValue() methods. All of the methods in this family are no-arg
methods. As you can see by referring to Table 6-3, there are 36 xxxValue()
methods. Each of the six numeric wrapper classes has six methods, so that any
numeric wrapper can be converted to any primitive numeric type—for example,

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

28 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Integer i2 = new Integer(42); // make a new wrapper object
byte b = i2.byteValue(); // convert i2's value to a byte

// primitive
short s = i2.shortValue(); // another of Integer's xxxValue

// methods
double d = i2.doubleValue(); // yet another of Integer's

// xxxValue methods

or

Float f2 = new Float(3.14f); // make a new wrapper object
short s = f2.shortValue(); // convert f2's value to a short

// primitive
System.out.println(s); // result is 3 (truncated, not

// rounded)

Using Wrapper Classes (Exam Objective 8.3) 29

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Method
s = static
n = NFE exception Boolean Byte Character Double Float Integer Long Short

byteValue x x x x x x

doubleValue x x x x x x

floatValue x x x x x x

intValue x x x x x x

longValue x x x x x x

shortValue x x x x x x

parseXxx s,n x x x x x x

parseXxx s,n
(with radix)

x x x x

valueOf s,n x x x x x x x

valueOf s,n
(with radix)

x x x x

TABLE 6-3 Common Wrapper Conversion Methods

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

30 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

parseXxx() and valueOf()
The six parseXxx() methods (one for each numeric wrapper type) are closely
related to the valueOf() method that exists in all of the numeric wrapper
classes (plus Boolean). Both parseXxx() and valueOf() take a String as
an argument, throw a NumberFormatException if the String argument is not
properly formed, and can convert String objects from different bases (radix), when
the underlying primitive type is any of the four integer types. (See Table 6-3.)

The difference between the two methods is

■ parseXxx() returns the named primitive.

■ valueOf() returns a newly created wrapped object of the type that invoked
the method.

Some examples of these methods in action:

double d4 = Double.parseDouble("3.14"); // convert a String to a primitive
System.out.println("d4 = " + d4); // result is "d4 = 3.14"

Double d5 = Double.valueOf("3.14"); // create a Double object
System.out.println(d5 instanceof Double); // result is "true"

Method
s = static
n = NFE exception Boolean Byte Character Double Float Integer Long Short

toString x x x x x x x x

toString s
(primitive)

x x x x x x

toString s
(primitive, radix)

x x

toBinaryString s x x

toHexString s x x

toOctalString s x x

In summary, the essential method signatures for Wrapper conversion methods are

• primitive xxxValue()

• primitive parseXxx(String)

• Wrapper valueOf(String)

TABLE 6-3 Common Wrapper Conversion Methods (continued)

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The next examples involve using the radix argument, (in this case binary):

long L2 = Long.parseLong("101010", 2); // binary String to a primitive
System.out.println("L2 = " + L2); // result is "L2 = 42"

Long L3 = Long.valueOf("101010", 2); // binary String to Long object
System.out.println("L3 value = " + L3); // result is "L2 value = 42"

toString()
The class Object, the alpha class, the top dog, has a toString() method. Since
we know that all other Java classes inherit from class Object, we also know (stay
with me here) that all other Java classes have a toString() method. The idea
of the toString() method is to allow you to get some meaningful representation
of a given object. For instance, if you have a Collection of various types of objects,
you can loop through the Collection and print out some sort of meaningful
representation of each object using the toString() method, which is guaranteed
to be in every class. We’ll talk more about the toString()method in the Collections
chapter, but for now let’s focus on how the toString() method relates to the
wrapper classes which, as we know, are marked final. All of the wrapper classes
have a no-arg, nonstatic, instance version of toString(). This method returns a
String with the value of the primitive wrapped in the object—for instance,

Double d = new Double("3.14");
System.out.println("d = " + d.toString()); // result is "d = 3.14"

All of the numeric wrapper classes provide an overloaded, static
toString() method that takes a primitive numeric of the appropriate type
(Double.toString() takes a double, Long.toString() takes a long, etc.),
and, of course, returns a String with that primitive’s value—for example,

System.out.println("d = " + Double.toString(3.14); // result is "d = 3.14"

Finally, Integer and Long provide a third toString() method. It is static,
its first argument is the appropriate primitive, and its second argument is a radix.
The radix argument tells the method to take the first argument (which is radix 10
or base 10 by default), and convert it to the radix provided, then return the result
as a String—for instance,

System.out.println("hex = " + Long.toString(254,16); // result is "hex = fe"

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Using Wrapper Classes (Exam Objective 8.3) 31

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

toXxxString() (Binary, Hexadecimal, Octal)
The Integer and Long wrapper classes let you convert numbers in base 10 to other
bases. These conversion methods, toXxxString(), take an int or long, and
return a String representation of the converted number, for example,

String s3 = Integer.toHexString(254); // convert 254 to hex
System.out.println("254 in hex = " + s3); // result is "254 in hex = fe"

String s4 = Long.toOctalString(254); // convert 254 to octal
System.out.println("254 in octal = "+ s4); // result is "254 in octal = 376"

Studying Table 6-3 is the single best way to prepare for this section of the test.
If you can keep the differences between xxxValue(), parseXxx(), and
valueOf() straight, you should do well on this part of the exam.

CERTIFICATION OBJECTIVE

Using equals()(Exam Objective 5.2)
Determine the result of applying the boolean equals(Object) method to objects of
any combination of the classes java.lang.String, java.lang.Boolean, and java.lang.Object.

In this chapter we begin our discussion of == and the equals() method, and
in the Collections chapter we’ll dive deeper into these two mysterious comrades.
For now, we’ll limit our discussion to how == and the equals() method relate
to String, and the wrapper classes, and an overview of other object classes.

An Overview of == and the equals() Method
There are three kinds of entities in Java that we might want to compare to determine
if they’re equivalent: primitive variables, reference variables, and objects. Part of this
discussion looks at a critical question: What exactly does “equivalent” mean?

Comparing Variables
Let’s start with primitive and reference variables. You always compare primitive
variables using ==; the equals() method obviously can’t be used on primitives.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

32 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

The == operator returns a boolean value: true if the variables are equivalent,
false if they’re not. Primitive variables are stored in memory as some absolute
number of bits, depending on the type of primitive being handled (short is 16 bits,
int is 32 bits, long is 64 bits, etc.). On the other hand, we can’t know from one Java
implementation to the next how big a reference variable is—it might be 64 bits, it
might be 97 bits (probably not!)—but the key thing to remember is that wherever
a Java program might run, all of the reference variables running on a single VM will
be the same size (in bits) and format. When we use the == operator to compare two
reference variables, we’re really testing to see if the two reference variables refer to the
same object! So remember that when you compare variables (of either type, primitive
or reference), you are really comparing two sets of bit patterns.

Either bit patterns are the same, or they’re not. If primitive a holds a 5, and primitive
b holds a 5, then the bits in a and b are the same and a == b will be true. If a reference
variable c refers to object X017432 and reference variable d also refers to object
X017432, then the bits in c and d are the same, and c == d will be true.

When comparing reference variables with the == operator, you can only compare
reference variables that refer to objects that are in the same class or class hierarchy.
Attempting to use == to compare reference variables for objects in different class
hierarchies will result in a compiler error.

Key facts to remember about comparing variables:

1. The rule is the same for reference variables and primitive variables:
== returns true if the two bit patterns are identical.

2. Primitive variables must use ==; they cannot use the equals() method.
3. For reference variables, == means that both reference variables are

referring to the same object.

Comparing Objects
We saw what it means to compare reference variables (to see if they refer to the same
object), but what does it mean to compare the objects themselves? For an object as
simple as a String, it’s fairly intuitive to say that if two String objects have the same
value (in other words the same characters), we consider them equal. When you want
to determine if two objects are meaningfully equivalent, use the equals() method.
Like ==, the equals() method returns a boolean true if the objects are considered
equivalent; otherwise, it returns false. (Remember, if we want to know whether two
String reference variables refer to the same String, we must use ==.) Given the
following code sample,

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Using equals()(Exam Objective 5.2) 33

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

String x1 = "abc";
String x2 = "ab";
x2 = x2 + "c";

we might want to know, much later on in our code, whether the contents of the two
different String objects x1 and x2 are in fact the same. This is where the equals()
method comes in:

if (x1 != x2) { // comparing reference vars
System.out.println("different objects");

}
if (x1.equals(x2)) { // comparing values

System.out.println("same values");
}

In the example above we could also have written this:

if (x2.equals(x1)) { // same result

In a similar vein, it’s a pretty safe bet that when we want to compare two wrapper
objects, we’re really interested in the primitive values that they’re wrapping. However,
it’s important to know that all of the wrapper class’ equals() methods only
return true if both the primitive values and the wrapper’s classes are the same.

Double d1 = new Double("3.0");
Integer i1 = new Integer(3); // create a couple of wrappers

if (d1.equals(i1)) { // are the values equal ?
System.out.println("wraps are equal"); // no output, different classes

}

Double d2 = d1.valueOf("3.0d"); // create a third wrapper
if (d1.equals(d2)) { // are the Doubles equal ?

System.out.println("Doubles are equal"); // result is "Doubles are equal"
}

The equals() Method Revealed (or at Least a Little
Bit Revealed)
We’ll be diving in to the equals() method much more deeply in the Collections
chapter, but for now let’s just cover a few key points. The class Object, the granddaddy
of all classes (and from which all classes extend), has an equals() method. That
means every other Java class (including those in the API or those that you create)
inherits an equals() method. In java.lang, the String and wrapper classes

34 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

have overridden the equals() method to behave as we just discussed. And
remember, the String and wrapper classes are all marked final, so you can’t
override any of their methods, including the equals() method.

When you create your own classes, you’ll have to decide what it means for two
distinct objects to be meaningfully equivalent. Your class may have reference
variables that collectively represent the value of an instance. If you want to compare
instances of a class to one another, it will be up to you to override the equals()
method to define what it means for two different instances to be meaningfully equal.

Remember the following key points about the equals() method:

1. equals() is used only to compare objects.
2. equals() returns a boolean, true or false.
3. The StringBuffer class has not overridden equals().
4. The String and wrapper classes are final and have overridden equals().

CERTIFICATION SUMMARY
Strings
At the risk of being pedantic, remember that String objects are immutable, references
to Strings are not! You learned that you can make a new String by using an existing
String as a starting point, but if you don’t assign a reference variable to a new String
it will be lost to your program—you will have no way to access your new String.
Review the important methods in the String class. They’re all fairly intuitive except
for substring(), which needs a little extra brainpower. (And did we mention
how annoying—possibly evil—it is that the developers of the substring()
method didn’t follow the Java naming convention? It should have been
subString()!)

StringBuffers are not immutable—you can change them over and over again. The
StringBuffer methods are fairly intuitive, but remember that unlike String methods,
they do modify the StringBuffer object, even if you don’t assign the result to anything.

Math
As the Math class relates to the certification exam, you won’t be expected to
reproduce complicated mathematical algorithms in your head or know the cosine
of an angle. But remember that you will need to know how to calculate the result
of calling abs(), ceil(), floor(), max(), min(), and round() with

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Using equals()(Exam Objective 5.2) 35

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

any given values. Know the method signatures in Table 6-1. The exam will test
your ability to remember method signatures and follow simple algorithms. Most
questions on the Math class are quite simple as long as you’ve spent the time to
commit to memory the Math class methods and their calling signatures. Table 6-1
will really help.

While you’re at it, spend some time studying Table 6-1. It’s important to know
which methods are overridden and which are not. And just in case we’re not making
ourselves clear, we really want you to study Table 6-1.

Wrappers
Remember that wrappers have two main functions: to wrap primitives so they
can be treated like objects, and to provide utility methods for primitives (typically
conversions). All the wrapper classes have the same name, capitalized, as their
primitive counterparts except for Character and Integer. Remember that Boolean
objects can’t be used like boolean primitives. In terms of return on investment for
your studying time, make sure that you know the details of the xxxValue()
methods, the parseXxx() methods, the valueOf() methods, and the
toString() methods. Pay attention to which methods are static and which
throw NumberFormatException. Study Table 6-3. Copy it by hand, and then
place it under your pillow. Frame it and hang it on your wall.

Equals()
Compare primitives with ==. To determine if two reference variables refer to the
same object, use ==. To determine if two objects are meaningfully equivalent, use
equals(). When using == to compare reference variables, the compiler will
verify that the classes are the same or in the same inheritance hierarchy. Remember
that the StringBuffer class does not override the equals() method, which means
that there is no built-in method to determine if the contents of one StringBuffer
object are the same as the contents of another StringBuffer object.

36 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

✓TWO-MINUTE DRILL
Here are some of the key points from the certification objectives in this chapter.

Using the java.lang.String Class (Exam Objective 8.2)
❑ String objects are immutable, and String reference variables are not.

❑ If you create a new String without assigning it, it will be lost to your
program.

❑ If you redirect a String reference to a new String, the old String can be lost.

❑ String methods use zero-based indexes, except for the second argument of
substring().

❑ The String class is final—its methods can’t be overridden.

❑ When a String literal is encountered by the VM, it is added to the pool.

❑ Strings have a method named length(), arrays have an attribute named
length.

❑ StringBuffers are mutable—they can change without creating a new object.

❑ StringBuffer methods act on the invoking object, but objects can change
without an explicit assignment in the statement.

❑ StringBuffer equals() is not overridden; it doesn’t compare values.

❑ In all sections, remember that chained methods are evaluated from left to right.

Using the java.lang.Math Class (Exam Objective 8.1)
❑ The abs() method is overloaded to take an int, a long, a float, or a double.

❑ The abs() method can return a negative if the argument is the minimum
int or long value equal to the value of Integer.MIN_VALUE or
Long.MIN_VALUE, respectively.

❑ The max() method is overloaded to take int, long, float, or double arguments.

❑ The min() method is overloaded to take int, long, float, or double arguments.

❑ The random() method returns a double greater than or equal to 0.0 and
less than 1.0.

Two-Minute Drill 37

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ The random() does not take any arguments.

❑ The methods ceil(), floor(), and round() all return integer
equivalent floating-point numbers, ceil() and floor() return doubles,
round() returns a float if it was passed an int, or it returns a double if it was
passed a long.

❑ The round() method is overloaded to take a float or a double.

❑ The methods sin(), cos(), and tan() take a double angle in radians.

❑ The method sqrt() can return NaN if the argument is NaN or less
than zero.

❑ Floating-point numbers can be divided by 0.0 without error; the result is
either positive or negative infinity.

❑ NaN is not equal to anything, not even itself.

Using Wrappers (Exam Objective 8.3)
❑ The wrapper classes correlate to the primitive types.

❑ Wrappers have two main functions:

❑ To wrap primitives so that they can be handled like objects

❑ To provide utility methods for primitives (usually conversions)

❑ Other than Character and Integer, wrapper class names are the primitive’s
name, capitalized.

❑ Wrapper constructors can take a String or a primitive, except for Character,
which can only take a char.

❑ A Boolean object can’t be used like a boolean primitive.

❑ The three most important method families are

❑ xxxValue() Takes no arguments, returns a primitive

❑ parseXxx() Takes a String, returns a primitive, is static, throws NFE

❑ valueOf() Takes a String, returns a wrapped object, is static,
throws NFE

❑ Radix refers to bases (typically) other than 10; binary is radix 2, octal = 8,
hex = 16.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

38 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using equals() (Exam Objective 5.2)
❑ Use == to compare primitive variables.

❑ Use == to determine if two reference variables refer to the same object.

❑ == compares bit patterns, either primitive bits or reference bits.

❑ Use equals() to determine if two objects are meaningfully equivalent.

❑ The String and Wrapper classes override equals() to check for values.

❑ The StringBuffer class equals() is not overridden; it uses == under
the covers.

❑ The compiler will not allow == if the classes are not in the same hierarchy.

❑ Wrappers won’t pass equals() if they are in different classes.

Two-Minute Drill 39

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question.

Using the java.lang.String Class (Exam Objective 8.2)

1. Given the following,

1. public class StringRef {
2. public static void main(String [] args) {
3. String s1 = "abc";
4. String s2 = "def";
5. String s3 = s2;
6. s2 = "ghi";
7. System.out.println(s1 + s2 + s3);
8. }
9. }

what is the result?

A. abcdefghi

B. abcdefdef

C. abcghidef

D. abcghighi

E. Compilation fails.

F. An exception is thrown at runtime.

2. Given the following,

11. String x = "xyz";
12. x.toUpperCase();
13. String y = x.replace('Y', 'y');
14. y = y + "abc";
15. System.out.println(y);

what is the result?

A. abcXyZ

B. abcxyz

C. xyzabc

40 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D. XyZabc

E. Compilation fails.

F. An exception is thrown at runtime.

3. Given the following,

13. String x = new String("xyz");
14. y = "abc";
15. x = x + y;

how many String objects have been created?

A. 2

B. 3

C. 4

D. 5

4. Given the following,

14. String a = "newspaper";
15. a = a.substring(5,7);
16. char b = a.charAt(1);
17. a = a + b;
18. System.out.println(a);

what is the result?

A. apa

B. app

C. apea

D. apep

E. papp

F. papa

5. Given the following,

4. String d = "bookkeeper";
5. d.substring(1,7);
6. d = "w" + d;
7. d.append("woo");
8. System.out.println(d);

what is the result?

Self Test 41

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

42 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

A. wookkeewoo

B. wbookkeeper

C. wbookkeewoo

D. wbookkeeperwoo

E. Compilation fails.

F. An exception is thrown at runtime.

Using the java.lang.Math Class (Exam Objective 8.1)

6. Given the following,

1. public class Example {
2. public static void main(String [] args) {
3. double values[] = {-2.3, -1.0, 0.25, 4};
4. int cnt = 0;
5. for (int x=0; x < values.length; x++) {
6. if (Math.round(values[x] + .5) == Math.ceil(values[x])) {
7. ++cnt;
8. }
9. }
10. System.out.println("same results " + cnt + " time(s)");
11. }
12. }

what is the result?

A. same results 0 time(s)

B. same results 2 time(s)

C. same results 4 time(s)

D. Compilation fails.

E. An exception is thrown at runtime.

7. Which of the following are valid calls to Math.max? (Choose all that apply.) (Yeah, yeah, we
know that on the real exam you’d know how many were correct, but we just want you to work
a little harder here.)

A. Math.max(1,4)

B. Math.max(2.3, 5)

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C. Math.max(1, 3, 5, 7)

D. Math.max(-1.5, -2.8f)

8. What two statements are true about the result obtained from calling Math.random()?
(Choose two.)

A. The result is less than 0.0.

B. The result is greater than or equal to 0.0..

C. The result is less than 1.0.

D. The result is greater than 1.0.

E. The result is greater than or equal to 1.0.

F. The result is less than or equal to 1.0.

9. Given the following,

1. public class SqrtExample {
2. public static void main(String [] args) {
3. double value = -9.0;
4. System.out.println(Math.sqrt(value));
5. }
6. }

what is the result?

A. 3.0

B. –3.0

C. NaN

D. Compilation fails.

E. An exception is thrown at runtime.

10. Given the following,

1. public class Degrees {
2. public static void main(String [] args) {
3. System.out.println(Math.sin(75));
4. System.out.println(Math.toDegrees(Math.sin(75)));
5. System.out.println(Math.sin(Math.toRadians(75)));
6. System.out.println(Math.toRadians(Math.sin(75)));
7. }
8. }

at what line will the sine of 75 degrees be output?

Self Test 43

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

44 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

A. Line 3

B. Line 4

C. Line 5

D. Line 6

E. Line 3 and either line 4, 5, or 6

F. None of the above

Using Wrapper Classes (Exam Objective 8.3)

11. Given the following,

1. public class WrapTest2 {
2. public static void main(String [] args) {
3. Long b = new Long(42);
4. int x = Integer.valueOf("345");
5. int x2 = (int) Integer.parseInt("345", 8);
6. int x3 = Integer.parseInt(42);
7. int x4 = Integer.parseInt("42");
8. int x5 = b.intValue();
9. }
10. }

which two lines will cause compiler errors? (Choose two.)

A. Line 3

B. Line 4

C. Line 5

D. Line 6

E. Line 7

F. Line 8

12. Given the following,

1. public class NFE {
2. public static void main(String [] args) {
3. String s = "42";
4. try {
5. s = s.concat(".5");
6. double d = Double.parseDouble(s);
7. s = Double.toString(d);
8. int x = (int) Math.ceil(Double.valueOf(s).doubleValue());
9. System.out.println(x);

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 45

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

10. }
11. catch (NumberFormatException e) {
12. System.out.println("bad number");
13. }
14. }
15. }

what is the result?

A. 42

B. 42.5

C. 43

D. bad number

E. Compilation fails.

F. An uncaught exception is thrown at runtime.

13. Given the following,

1. public class BoolTest {
2. public static void main(String [] args) {
3. Boolean b1 = new Boolean("false");
4. boolean b2;
5. b2 = b1.booleanValue();
6. if (!b2) {
7. b2 = true;
8. System.out.print("x ");
9. }
10. if (b1 & b2) {
11. System.out.print("y ");
12. }
13. System.out.println("z");
14. }
15. }

what is the result?

A. z

B. x z

C. y z

D. x y z

E. Compilation fails.

F. An exception is thrown at runtime.

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

14. Given the following,

1. public class WrapTest3 {
2. public static void main(String [] args) {
3. String s = "98.6";
4. // insert code here
5. }
6. }

which three lines inserted independently at line 4 will cause compiler errors? (Choose three.)

A. float f1 = Float.floatValue(s);

B. float f2 = Float.valueOf(s);

C. float f3 = new Float(3.14f).floatValue();

D. float f4 = Float.parseFloat(1.23f);

E. float f5 = Float.valueOf(s).floatValue();

F. float f6 = (float) Double.parseDouble("3.14");

15. Given the following,

11. try {
12. Float f1 = new Float("3.0");
13. int x = f1.intValue();
14. byte b = f1.byteValue();
15. double d = f1.doubleValue();
16. System.out.println(x + b + d);
17. }
18. catch (NumberFormatException e) {
19. System.out.println("bad number");
20. }

what is the result?

A. 9.0

B. bad number

C. Compilation fails on line 13.

D. Compilation fails on line 14.

E. Compilation fails on lines 13 and 14.

F. An uncaught exception is thrown at runtime.

46 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 47

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Using equals() (Exam Objective 5.2)

16. Given the following,

1. public class WrapTest {
2. public static void main(String [] args) {
3. int result = 0;
4. short s = 42;
5. Long x = new Long("42");
6. Long y = new Long(42);
7. Short z = new Short("42");
8. Short x2 = new Short(s);
9. Integer y2 = new Integer("42");
10. Integer z2 = new Integer(42);
11.
12. if (x == y) result = 1;
13. if (x.equals(y)) result = result + 10;
14. if (x.equals(z)) result = result + 100;
15. if (x.equals(x2)) result = result + 1000;
16. if (x.equals(z2)) result = result + 10000;
17.
18. System.out.println("result = " + result);
19. }
20. }

what is the result?

A. result = 1

B. result = 10

C. result = 11

D. result = 11010

E. result = 11011

F. result = 11111

17. Given the following,

1. public class BoolTest {
2. public static void main(String [] args) {
3. int result = 0;
4.
5. Boolean b1 = new Boolean("TRUE");
6. Boolean b2 = new Boolean("true");

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. Boolean b3 = new Boolean("tRuE");
8. Boolean b4 = new Boolean("false");
9.
10. if (b1 == b2) result = 1;
11. if (b1.equals(b2)) result = result + 10;
12. if (b2 == b4) result = result + 100;
13. if (b2.equals(b4)) result = result + 1000;
14. if (b2.equals(b3)) result = result + 10000;
15.
16. System.out.println("result = " + result);
17. }
18. }

what is the result?

A. 0

B. 1

C. 10

D. 1100

E. 10001

F. 10010

18. Given the following,

1. public class ObjComp {
2. public static void main(String [] args) {
3. int result = 0;
4. ObjComp oc = new ObjComp();
5. Object o = oc;
6.
7. if (o == oc) result = 1;
8. if (o != oc) result = result + 10;
9. if (o.equals(oc)) result = result + 100;
10. if (oc.equals(o)) result = result + 1000;
11.
12. System.out.println("result = " + result);
13. }
14. }

what is the result?

A. 1

B. 10

48 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C. 101

D. 1001

E. 1101

19. Which two statements are true about wrapper or String classes? (Choose two.)

A. If x and y refer to instances of different wrapper classes, then the fragment x.equals(y)
will cause a compiler failure.

B. If x and y refer to instances of different wrapper classes, then x == y can sometimes be
true.

C. If x and y are String references and if x.equals(y) is true, then x == y is true.

D. If x, y, and z refer to instances of wrapper classes and x.equals(y) is true, and
y.equals(z) is true, then z.equals(x) will always be true.

E. If x and y are String references and x == y is true, then y.equals(x) will be true.

Self Test 49

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELF TEST ANSWERS

Strings (Exam Objective 8.2)

1. � C. After line 5 executes, both s2 and s3 refer to a String object that contains the value
“def”. When line 6 executes, a new String object is created with the value “ghi”, to which s2
refers. The reference variable s3 still refers to the (immutable) String object with the value
“def”.
� A, B, D, E, and F are incorrect based on the logic described above.

2. � C. Line 12 creates a new String object with the value “XYZ”, but this new object is
immediately lost because there is no reference to it. Line 13 creates a new String object
referenced by y. This new String object has the value “xyz” because there was no “Y” in the
String object referred to by x. Line 14 creates a new String object, appends “abc” to the value
“xyz”, and refers y to the result.
� A, B, D, E, and F are incorrect based on the logic described above.

3. � C. Line 13 creates two, one referred to by x and the lost String “xyz”. Line 14 creates one
(for a total of three). Line 15 creates one more (for a total of four), the concatenated String
referred to by x with a value of “xyzabc”.
� A, B, and D are incorrect based on the logic described above.

4. � B. Both substring() and charAt() methods are indexed with a zero-base, and
substring() returns a String of length arg2 – arg1.
� A, C, D, E, and F are incorrect based on the logic described above.

5. � E. In line 7 the code calls a StringBuffer method, append() on a String object.
� A, B, C, D, and F are incorrect based on the logic described above.

Math (Exam Objective 8.1)

6. � B. Math.round() adds .5 to the argument then performs a floor(). Since the code
adds an additional .5 before round() is called, it’s as if we are adding 1 then doing a
floor(). The values that start out as integer values will in effect be incremented by 1 on the
round() side but not on the ceil() side, and the noninteger values will end up equal.
� A, C, D, and E are incorrect based on the logic described above.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

50 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. � A, B, and D. The max() method is overloaded to take two arguments of type int, long,
float, or double.
� C is incorrect because the max() method only takes two arguments.

8. � B and C. The result range for random() is 0.0 to < 1.0; 1.0 is not in range.
� A, D, E, and F are incorrect based on the logic above.

9. � C. The sqrt() method returns NaN (not a number) when it’s argument is less than zero.
� A, B, D, and E are incorrect based on the logic described above.

10. � C. The Math class’ trigonometry methods expect their arguments to be in radians, not
degrees. Line 5 can be decoded: “Convert 75 (degrees) into radians, then find the sine of
that result.”
� A, B, D, E, and F are incorrect based on the logic described above.

Wrappers (Exam Objective 8.3)

11. � B and D. B is incorrect because the valueOf() method returns an Integer object. D is
incorrect because the parseInt() method takes a String.
� A, C, E, and F all represent valid syntax. Line 5 takes the String “345” to be octal number,
and converts it to an integer value 229.

12. � C. All of this code is legal, and line 5 creates a new String with a value of “42.5”. Lines 6
and 7 convert the String to a double and then back again. Line 8 is fun—Math.ceil()’s
argument expression is evaluated first. We invoke the valueOf() method that returns an
anonymous Double object (with a value of 42.5). Then the doubleValue() method is
called (invoked on the newly created Double object), and returns a double primitive (there and
back again), with a value of (you guessed it) 42.5. The ceil() method converts this to 43.0,
which is cast to an int and assigned to x. We know, we know, but stuff like this is on the exam.
� A, B, D, E, and F are incorrect based on the logic described above.

13. � E. The compiler fails at line 10 because b1 is a reference variable to a Boolean wrapper
object, not a boolean primitive. Logical boolean tests can’t be made on Boolean objects.
� A, B, C, D, and F are incorrect based on the logic described above.

14. � A, B, and D. A won’t compile because the floatValue() method is an instance
method that takes no arguments. B won’t compile because the valueOf() method returns
a wrapper object. D won’t compile because the parseFloat() method takes a String.
� C, E, and F are all legal (if not terribly useful) ways to return a primitive float.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Self Test Answers 51

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

52 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

15. � A is correct. The xxxValue() methods convert any numeric wrapper object’s value to
any primitive type. When narrowing is necessary, significant bits are dropped and the results
are difficult to calculate.
� B, C, D, E, and F are incorrect based on the logic described above.

Equals() (Exam Objective 5.2)

16. � B. Line 12 fails because == compares reference values, not object values. Line 13 succeeds
because both String and primitive wrapper constructors resolve to the same value (except for
the Character wrapper). Lines 14, 15, and 16 fail because the equals() method fails if the
object classes being compared are different and not in the same tree hierarchy.
� A, C, D, E, and F are incorrect based on the logic described above.

17. � F. Line 10 fails because b1 and b2 are two different objects. Lines 11 and 14 succeed
because the Boolean String constructors are case insensitive. Lines 12 and 13 fail because
true is not equal to false.
� A, B, C, D, and E are incorrect based on the logic described above.

18. � E. Even though o and oc are reference variables of different types, they are both referring
to the same object. This means that == will resolve to true and that the default equals()
method will also resolve to true.
� A, B, C, and D are incorrect based on the logic described above.

19. � D and E. D describes an example of the equals() method behaving transitively. By
the way, x, y, and z will all be the same type of wrapper. E is true because x and y are referring
to the same String object.
� A is incorrect—the fragment will compile. B is incorrect because x == y means that the
two reference variables are referring to the same object. C will only be true if x and y refer
to the same String. It is possible for x and y to refer to two different String objects with the
same value.

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXERCISE ANSWERS
Exercise 6-1: Using the Math Class

The following code listing is an example of how you might have written code to
complete the exercise:

class NumberInterrogation {
public static void main(String [] argh) {

double [] num = {10.5, -10.5, Math.PI, 0};
for(int i=0;i<num.length;++i) {

System.out.println("abs("+num[i]+")="+Math.abs(num[i]));
System.out.println("ceil("+num[i]+")="+Math.ceil(num[i]));
System.out.println("floor("+num[i]+")="+Math.floor(num[i]));
System.out.println();

}
}

}

Exercise 6-2: Rounding Random Numbers
The following code listing is an example of how you might have written code to
complete the exercise:

class RandomRound {
public static void main(String [] argh) {

for(int i=0;i<10;++i) {
double num = Math.random() * 100;
System.out.print("The number " + num);
System.out.println(" rounds to " + Math.round(num));

}
}

}

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

Exercise Answers 53

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 6

P:\010Comp\CertPrs8\684-6\ch06.vp
Wednesday, November 13, 2002 5:16:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7
Objects and
Collections

CERTIFICATION OBJECTIVES

• Overriding hashCode() and equals()

• Collections

• Garbage Collection

✓ Two-Minute Drill

Q&A Self Test

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7
Blind Folio 7:1

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION OBJECTIVE

Overriding hashCode() and equals()
(Exam Objective 9.2)

Distinguish between correct and incorrect implementations of hashcode methods.

You’re an object. Get used to it. You have state, you have behavior, you have a job.
(Or at least your chances of getting one will go up after passing the exam.) If you
exclude primitives, everything in Java is an object. Not just object, but Object with
a capital ‘O’. Every exception, every event, every array extends from java.lang.Object.
We’ve already talked about it in Chapter 6 when we looked at overriding equals(),
but there’s more to the story, and that more is what we’ll look at now.

For the exam, you don’t need to know every method in Object, but you will need
to know about the methods listed in Table 7-1.

Chapter 9 covers wait(), notify(), and notifyAll(). The finalize()
method is covered later in this chapter. So in this section we’ll look at just the
hashCode() and equals() methods. Oh, that leaves out toString(),
doesn’t it. OK, we’ll cover that right now because it takes two seconds.

2 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Method Description

boolean equals(Object obj) Decides whether two objects are meaningfully equivalent.

void finalize() Called by the garbage collector when the garbage collector
sees that the object cannot be referenced.

int hashCode() Returns a hashcode int value for an object, so that the object
can be used in Collection classes that use hashing, including
Hashtable, HashMap, and HashSet.

final void notify() Wakes up a thread that is waiting for this object’s lock.

final void notifyAll() Wakes up all threads that are waiting for this object’s lock.

final void wait() Causes the current thread to wait until another thread calls
notify or notifyAll on this object.

String toString() Returns a “text representation” of the object.

TABLE 7-1 Methods of Class Object Covered on the Exam

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Overriding hashCode() and equals() (Exam Objective 9.2) 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

The toString() Method Override toString() when you want a mere mortal
to be able to read something meaningful about the objects of your class. Code can
call toString() on your object when it wants to read useful details about your object.
For example, when you pass an object reference to the System.out.println()
method, the object’s toString()method is called, and the return of toString()
is what you see displayed as follows:

public class HardToRead {

public static void main (String [] args) {

HardToRead h = new HardToRead();

System.out.println(h);

}

}

Running the HardToRead class gives us the lovely and meaningful,

% java HardToRead

HardToRead@a47e0

The preceding output is what you get when you don’t override the toString()
method of class Object. It gives you the class name (at least that’s meaningful)
followed by the @ symbol, followed by the unsigned hexadecimal representation
of the object’s hashcode.

Seeing this perhaps motivates you to override the toString() method in your
classes, for example,

public class BobTest {

public static void main (String[] args) {

Bob f = new Bob("GoBobGo", 19);

System.out.println(f);

}

}

class Bob {

int shoeSize;

String nickName;

Bob(String nickName, int shoeSize) {

this.shoeSize = shoeSize;

this.nickName = nickName;

}

public String toString() {

return ("I am a Bob, but you can call me " + nickName +

". My shoe size is " + shoeSize);

}

}

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This ought to be a bit more readable:

% java BobTest
I am a Bob, but you can call me GoBobGo. My shoe size is 19

Some people affectionately refer to toString() as “the spill-your-guts method,”
because the most common implementations of toString() simply spit out the
object’s state (in other words, the current values of the important instance variables).

So that’s it for toString(). Now we’ll tackle equals() and hashCode().

Overriding equals()
You learned about the equals() method in Chapter 6, where we looked at the
wrapper classes. We discussed how comparing two object references using the ==
operator evaluates true only when both references refer to the same object (because
== simply looks at the bits in the variable, and they’re either identical or they’re not).
You saw that the String class and the wrapper classes have overridden the equals()
method (inherited from class Object), so that you could compare two different objects
(of the same type) to see if their contents are meaningfully equivalent. If two different
Integer instances both hold the int value 5, as far as you’re concerned they are equal.
The fact that the value 5 lives in two separate objects doesn’t matter.

When you really need to know if two references are identical, use ==. But when
you need to know if the objects themselves (not the references) are equal, use the
equals() method. For each class you write, you must decide if it makes sense to
consider two different instances equal. For some classes, you might decide that two
objects can never be equal. For example, imagine a class Car that has instance
variables for things like make, model, year, configuration—you certainly don’t want
your car suddenly to be treated as the very same car as someone with a car that has
identical attributes. Your car is your car and you don’t want your neighbor Billy driving
off in it just because, “hey, it’s really the same car; the equals() method said so.”
So no two cars should ever be considered exactly equal. If two references refer to one car,
then you know that both are talking about one car, not two cars that have the same
attributes. So in the case of a Car you might not ever need, or want, to override the
equals() method. Of course, you know that can’t be the end of the story.

4 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What It Means if You Don’t Override equals()
There’s a potential limitation lurking here: if you don’t override the
equals() method, you won’t be able to use the object as a key in a hashtable.
The equals() method in Object uses only the == operator for comparisons,
so unless you override equals(), two objects are considered equal only if the
two references refer to the same object.

Let’s look at what it means to not be able to use an object as a hashtable key.
Imagine you have a car, a very specific car (say, John’s red Subaru Outback as opposed
to Moe and Mary’s purple Mini) that you want to put in a HashMap (a type of
hashtable we’ll look at later in this chapter), so that you can search on a particular
car and retrieve the corresponding Person object that represents the owner. So you
add the car instance as the key to the HashMap (along with a corresponding Person
object as the value). But now what happens when you want to do a search? You want
to say to the HashMap collection, “Here’s the car, now give me the Person object
that goes with this car.” But now you’re in trouble unless you still have a reference to
the exact object you used as the key when you added it to the Collection. In other words,
you can’t make an identical Car object and use it for the search.

The bottom line is this: if you want objects of your class to be used as keys for a
hashtable (or as elements in any data structure that uses equivalency for searching
for—and/or retrieving—an object), then you must override equals() so that two
different instances can be considered the same. So how would we fix the car? You
might override the equals() method so that it compares the unique VIN (Vehicle
Identification Number) as the basis of comparison. That way, you can use one instance
when you add it to a Collection, and essentially re-create an identical instance when
you want to do a search based on that object as the key. Of course, overriding the
equals() method for Car also allows the potential that more than one object
representing a single unique car can exist, which might not be safe in your design.
Fortunately, the String and wrapper classes work well as keys in hashtables—they
override the equals() method. So rather than using the actual car instance as the
key into the car/owner pair, you could simply use a String that represents the unique
identifier for the car. That way, you’ll never have more than one instance representing a
specific car, but you can still use the car—or rather, one of the car’s attributes—as the
search key.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Overriding hashCode() and equals() (Exam Objective 9.2) 5

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Implementing an equals() Method
So let’s say you decide to override equals() in your class. It might look something
like this:

public class EqualsTest {
public static void main (String [] args) {

Moof one = new Moof(8);
Moof two = new Moof(8);
if (one.equals(two)) {
System.out.println("one and two are equal");

}
}

}
class Moof {

private int moofValue;
Moof(int val) {
moofValue = val;

}
public int getMoofValue() {

return moofValue;
}
public boolean equals(Object o) {
if ((o instanceof Moof) && (((Moof)o).getMoofValue()

== this.moofValue)) {
return true;
} else {
return false;

}
}

}

Let’s look at this code in detail. In the main method of EqualsTest, we create two
Moof instances, passing the same value (8) to the Moof constructor. Now look at the
Moof class and let’s see what it does with that constructor argument—it assigns the
value to the moofValue instance variable. Now imagine that you’ve decided two Moof
objects are the same if their moofValue is identical. So you override the equals()
method and compare the two moofValues. It is that simple. But let’s break down what’s
happening in the equals() method:

1. public boolean equals(Object o) {
2. if ((o instanceof Moof) && (((Moof)o).getMoofValue()

== this.moofValue)) {
3. return true;

6 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. } else {
5. return false;
6. }
7. }

First of all, you must observe all the rules of overriding, and in line 1 we are indeed
declaring a valid override of the equals() method we inherited from Object.

Line 2 is where all the action is. Logically, we have to do two things in order to
make a valid equality comparison:

1. Be sure that the object being tested is of the correct type! It comes in polymorphically
as type Object, so you need to do an instanceof test on it. Having two
objects of different class types be considered equal is usually not a good idea,
but that’s a design issue we won’t go into here. Besides, you’d still have to do
the instanceof test just to be sure that you could cast the object argument
to the correct type so that you can access its methods or variables in order to actually
do the comparison. Remember, if the object doesn’t pass the instanceof
test, then you’ll get a runtime ClassCastException if you try to do,
for example, this:

public boolean equals(Object o) {
if (((Moof)o).getMoofValue() == this.moofValue){

// the preceding line compiles, but it's BAD!
return true;
} else {
return false;

}
}

The (Moof)o cast will fail if o doesn’t refer to something that IS-A Moof.

2. Compare the attributes we care about (in this case, just moofValue). Only the
developers can decide what makes two instances equal. (For performance
you’re going to want to check the fewest number of attributes.)

By the way, in case you were a little surprised by the whole
((Moof)o).getMoofValue() syntax, we’re simply casting the object
reference, o, just-in-time as we try to call a method that’s in the Moof class but
not in Object. Remember without the cast, you can’t compile because the compiler
would see the object referenced by o as simply, well, an Object. And since the Object
class doesn’t have a moofvalue() method, the compiler would squawk (technical

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Overriding hashCode() and equals() (Exam Objective 9.2) 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

term). But then as we said earlier, even with the cast the code fails at runtime if the
object referenced by o isn’t something that’s castable to a Moof. So don’t ever forget
to use the instanceof test first. Here’s another reason to appreciate the short
circuit && operator—if the instanceof test fails, we’ll never get to the code
that does the cast, so we’re always safe at runtime with the following:

if ((o instanceof Moof) && (((Moof)o).getMoofValue()
== this.moofValue)) {

return true;
} else {

return false;
}

Remember that the equals(), hashCode(), and toString() methods are all
public. The following would not be a valid override of the equals() method,
although it might appear to be if you don’t look closely enough during the exam:

class Foo {

boolean equals(Object o) { }

}

}

And watch out for the argument types as well. The following method is an
overload, but not an override of the equals() method:

class Boo {

public boolean equals(Boo b) { }

}

Be sure you’re very comfortable with the rules of overriding so that you can
identify whether a method from Object is being overridden, overloaded, or
illegally redeclared in a class. The equals() method in class Boo changes the
argument from Object to Boo, so it becomes an overloaded method and won’t
be called unless it’s from your own code that knows about this new, different
method that happens to also be named equals.

So that takes care of equals().
Whoa… not so fast. If you look at the Object class in the Java API documentation,

you’ll find what we call a contract specified in the equals() method. A Java contract
is a set of rules that should be followed, or rather must be followed if you want to provide
a “correct” implementation as others will expect it to be. Or to put it another way, if you

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

8 Chapter 7: Objects and Collections

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

don’t follow the contract, you may still compile and run, but your code (or someone
else’s) may break at runtime in some unexpected way.

The equals() Contract
Pulled straight from the Java docs, the equals() contract says:

■ It is reflexive: For any reference value x, x.equals(x) should return true.

■ It is symmetric: For any reference values x and y, x.equals(y) should
return true if and only if y.equals(x) returns true.

■ It is transitive: For any reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) should
return true.

■ It is consistent: For any reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false,
provided no information used in equals comparisons on the object is
modified.

■ For any nonnull reference value x, x.equals(null) should return false.

And you’re so not off the hook yet. We haven’t looked at the hashCode()method,
but equals() and hashCode() are bound together by a joint contract that
specifies if two objects are considered equal using the equals() method, then they
must have identical hashcode values. So to be truly safe, your rule of thumb should be
if you override equals(), override hashCode() as well. So let’s switch over to
hashCode() and see how that method ties in to equals().

Overriding hashCode()
The hashcode value of an object is used by some collection classes (we’ll look at the
collections later in this chapter). Although you can think of it as kind of an object
ID number, it isn’t necessarily unique. Collections such as HashMap and HashSet
use the hashcode value of an object to determine where the object should be stored
in the collection, and the hashcode is used again to help locate the object in the
collection. For the exam you do not need to understand the deep details of how
the collection classes that use hashing are implemented, but you do need to know which
collections use them (but, um, they all have hash in the name so you should be good

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Overriding hashCode() and equals() (Exam Objective 9.2) 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

there). You must also be able to recognize an appropriate or correct implementation
of hashCode(). This does not mean legal and does not even mean efficient. It’s
perfectly legal to have a terribly inefficient hashcode method in your class, as long
as it doesn’t violate the contract specified in the Object class documentation (we’ll
look at that contract in a moment). So for the exam, if you’re asked to pick out an
appropriate or correct use of hashcode, don’t mistake appropriate for legal or efficient.

Understanding Hashcodes
In order to understand what’s appropriate and correct, we have to look at how some
of the collections use hashcodes.

Imagine a set of buckets lined up on the floor. Someone hands you a piece of paper
with a name on it. You take the name and calculate an integer code from it by using
A is 1, B is 2, etc., and adding the numeric values of all the letters in the name together.
A specific name will always result in the same code; for example, see Figure 7-1.

We don’t introduce anything random, we simply have an algorithm that will always
run the same way given a specific input, so the output will always be identical for
any two identical inputs. So far so good? Now the way you use that code (and we’ll
call it a hashcode now) is to determine which bucket to place the piece of paper into
(imagine that each bucket represents a different code number you might get). Now
imagine that someone comes up and shows you a name and says, “Please retrieve the
piece of paper that matches this name.” So you look at the name they show you, and
run the same hashcode-generating algorithm. The hashcode tells you in which bucket
you should look to find the name.

You might have noticed a little flaw in our system, though. Two different names
might result in the same value. For example, the names Amy and May have the same

10 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

FIGURE 7-1

A simplified
hashcode
example

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

letters, so the hashcode will be identical for both names. That’s acceptable, but it
does mean that when someone asks you (the bucket-clerk) for the Amy piece of paper,
you’ll still have to search through the target bucket reading each name until we find
Amy rather than May. The code tells you only which bucket to go into, but not how
to locate the name once we’re in that bucket.

In real-life hashing, it’s not uncommon to have more than one entry in a bucket.
Good hashing retrieval is typically a two-step process:

1. Find the right bucket.
2. Search the bucket for the right element.

So for efficiency, your goal is to have the papers distributed as evenly as possible
across all buckets. Ideally, you might have just one name per bucket so that when
someone asked for a paper you could simply calculate the hashcode and just grab the
one paper from the correct bucket (without having to go flipping through different
papers in that bucket until you locate the exact one you’re looking for). The least
efficient (but still functional) hashcode generator would return the same hashcode
(say, 42) regardless of the name, so that all the papers landed in the same bucket while
the others stood empty. The bucket-clerk would have to keep going to that one bucket
and flipping painfully through each one of the names in the bucket until the right
one was found. And if that’s how it works, they might as well not use the hashcodes
at all but just go to the one big bucket and start from one end and look through each
paper until they find the one they want.

This distributed-across-the-buckets example is similar to the way hashcodes are
used in collections. When you put an object in a collection that uses hashcodes, the
collection uses the hashcode of the object to decide in which bucket/slot the object
should land. Then when you want to fetch that object (or, for a hashtable, retrieve
the associated value for that object), you have to give the collection a reference to an
object which the collection compares to the objects it holds in the collection. As long as
the object (stored in the collection, like a paper in the bucket) you’re trying to search
for has the same hashcode as the object you’re using for the search (the name you show
to the person working the buckets), then the object will be found. But…and this is a
Big One, imagine what would happen if, going back to our name example, you showed
the bucket-worker a name and they calculated the code based on only half the letters
in the name instead of all of them. They’d never find the name in the bucket because
they wouldn’t be looking in the correct bucket!

Overriding hashCode() and equals() (Exam Objective 9.2) 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Now can you see why if two objects are considered equal, their hashcodes must
also be equal? Otherwise, you’d never be able to find the object since the default
hashcode method in class Object virtually always comes up with a unique number
for each object, even if the equals method is overridden in such a way that two or more
objects are considered equal. It doesn’t matter how equal the objects are if their
hashcodes don’t reflect that. So one more time: If two objects are equal, their hashcodes
must be equal as well.

Implementing hashCode()
What the heck does a real hashcode algorithm look like? People get their PhDs on
hashing algorithms, so from a computer science viewpoint, it’s beyond the scope of
the exam. The part we care about here is the issue of whether you follow the contract.
And to follow the contract, think about what you do in the equals() method.
You compare attributes. Because that comparison almost always involves instance
variable values (remember when we looked at two Moof objects and considered them
equal if their int moofValues were the same?). Your hashCode() implementation
should use the same instance variables. Here’s an example:

class HasHash {
public int x;
HasHash(int xVal) {
x = xVal;

}
public boolean equals(Object o) {
HasHash h = (HasHash) o; // Don't try at home without

// instanceof test
if (h.x == this.x) {
return true;

} else {
return false;

}
}
public int hashCode() {
return (x * 17);

}
}

Because the equals() method considers two objects equal if they have the same
x value, we have to be sure that objects with the same x value will return identical
hashcodes.

12 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A hashCode() that returns the same value for all instances whether they’re
equal or not is still a legal—even appropriate—hashCode() method! For example,

public int hashCode() {

return 1492;

}

would not violate the contract. Two objects with an x value of 8 will have
the same hashcode. But then again, so will two unequal objects, one with an
x value of 12 and the other a value of -920. This hashCode() method is
horribly inefficient, remember, because it makes all objects land in the same
bucket, but even so, the object can still be found as the collection cranks
through the one and only bucket—using equals()—trying desperately to
finally, painstakingly, locate the correct object. In other words, the hashcode
was really no help at all in speeding up the search, even though search speed
is hashcode’s intended purpose! Nonetheless, this one-hash-fits-all method
would be considered appropriate and even correct because it doesn’t violate
the contract. Once more, correct does not necessarily mean good.

Typically, you’ll see hashCode() methods that do some combination of ^-ing
(XOR-ing) the instance variables, along with perhaps multiplying them by a prime
number. In any case, while the goal is to get a wide and random distribution of objects
across buckets, the contract (and whether or not an object can be found) requires
only that two equal objects have equal hashcodes. The exam does not expect you to
rate the efficiency of a hashCode() method, but you must be able to recognize
which ones will and will not work (work meaning “will cause the object to be found
in the collection”).

Now that we know that two equal objects must have identical hashcodes, is the
reverse true? Do two objects with identical hashcodes have to be considered equal?
Think about it—you might have lots of objects land in the same bucket because
their hashcodes are identical, but unless they also pass the equals() test, they won’t
come up as a match in a search through the collection. This is exactly what you’d get
with our very inefficient everybody-gets-the-same-hashcode method. It’s legal and
correct, just slooooow.

So in order for an object to be located, the search object and the object in the
collection must have both identical hashcode values and return true for the
equals() method. So there’s just no way out of overriding both methods to be
absolutely certain that your objects can be used in Collections that use hashing.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Overriding hashCode() and equals() (Exam Objective 9.2) 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The hashCode() Contract
Now coming to you straight from the fabulous Java API documentation for class
Object, may we present (drum roll) the hashCode() contract:

■ Whenever it is invoked on the same object more than once during an execution
of a Java application, the hashCode() method must consistently return
the same integer, provided no information used in equals() comparisons
on the object is modified. This integer need not remain consistent from one
execution of an application to another execution of the same application.

■ If two objects are equal according to the equals(Object) method, then
calling the hashCode() method on each of the two objects must produce
the same integer result.

■ It is not required that if two objects are unequal according to the
equals(java.lang.Object) method, then calling the hashCode()
method on each of the two objects must produce distinct integer results.
However, the programmer should be aware that producing distinct integer
results for unequal objects may improve the performance of hashtables.

And what this means to you is…

Condition Required Not Required (But Allowed)

x.equals(y) == true x.hashCode() ==
y.hashCode()

x.hashCode() ==
y.hashCode()

x.equals(y) == true

x.equals(y) == false No hashCode()
requirements

x.hashCode() !=
y.hashCode()

x.equals(y)== false

So let’s look at what else might cause a hashCode() method to fail. What
happens if you include a transient variable in your hashCode() method?
While that’s legal (compiler won’t complain), under some circumstances an object
you put in a collection won’t be found. The exam doesn’t cover object serialization,
so we won’t go into any details here. Just keep in mind that serialization saves an
object so that it can be reanimated later by deserializing it back to full objectness.

14 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

But danger Will Robinson—remember that transient variables are not saved when an
object is serialized. A bad scenario might look like this:

class SaveMe implements Serializable{
transient int x;
int y;
SaveMe(int xVal, int yVal) {

x = xVal;
y = yVal;

}
public int hashCode() {

return (x ^ y); //Legal, but not correct to
// use a transient variable

}
public boolean equals(Object o) {

SaveMe test = (SaveMe)o;
if (test.y == y && test.x == x) { // Legal, not correct
return true;

} else {
return false;

}
}

}

Here’s what could happen using code like the preceding example:

■ Give an object some state (assign values to its instance variables).

■ Put the object in a HashMap, using the object as a key.

■ Save the object to a file using object serialization without altering any of its state.

■ Retrieve the object from the file through deserialization.

■ Use the deserialized (brought back to life on the heap) object to get the object
out of the HashMap.

Oops. The object in the collection and the supposedly same object brought back
to life are no longer identical. The object’s transient variable will come back with a
default value rather than the value the variable had at the time it was saved (or put
into the HashMap). So using the preceding SaveMe code, if the value of x is 9 when
the instance is put in the HashMap, then since x is used in the calculation of the
hashcode, when the value of x changes the hashcode changes too. And when that
same instance of SaveMe is brought back from deserialization, x == 0, regardless

Overriding hashCode() and equals() (Exam Objective 9.2) 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the value of x at the time the object was serialized. So the new hashcode calculation
will give a different hashcode, and the equals() method fails as well since x is
used as one of the indicators of object equality.

Bottom line: transient variables can really mess with your equals and hashcode
implementations. Either keep the variable nontransient or, if it must be marked
transient, then don’t use it in determining an object’s hashcode or equality.

CERTIFICATION OBJECTIVE

Collections (Exam Objective 9.1)
Make appropriate selection of collection classes/interfaces to suit specific behavior
requirements.

Can you imagine trying to write object-oriented applications without using data
structures like hashtables or linked lists? What would you do when you needed to
maintain a sorted list of, say, all the members in your Simpsons fan club? Obviously
you can do it yourself; Amazon.com must have thousands of algorithm books you
can buy. But with the kind of schedules programmers are under today (“Here’s a spec.
Can you have it all built by tomorrow morning?”), it’s almost too painful to consider.

The Collections Framework in Java, which took shape with the release of JDk1.2
(the first Java 2 version) and expanded in 1.4, gives you lists, sets, and maps to satisfy
most of your coding needs. They’ve been tried, tested, and tweaked. Pick the best
one for your job and you’ll get—at the least—reasonably good performance. And
when you need something a little more custom, the Collections Framework in the
java.util package is loaded with interfaces and utilities.

So What Do You Do with a Collection?
There are a few basic operations you’ll normally use with collections:

■ Add objects to the collection.

■ Remove objects from the collection.

■ Find out if an object (or group of objects) is in the collection.

16 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Collections (Exam Objective 9.1) 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

■ Retrieve an object from the collection (without removing it).

■ Iterate through the collection, looking at each element (object) one after
another.

Key Interfaces and Classes of the Collections Framework
For the exam, you won’t need to know much detail about the collections, but you
will need to know the purpose of the each of the key interfaces, and you’ll need to
know which collection to choose based on a stated requirement. The collections API
begins with a group of interfaces, but also gives you a truckload of concrete classes.
The core interfaces you need to know for the exam (and life in general) are the
following six:

Collection Set Sorted Set

List Map Sorted Map

Figure 7-2 shows the interface and class hierarchy for collections.
The core concrete implementation classes you need to know for the exam are the

following ten (there are others, but the exam doesn’t specifically cover them):

Map Implementations Set Implementations List Implementations

HashMap HashSet ArrayList

Hashtable LinkedHashSet Vector

TreeMap TreeSet LinkedList

LinkedHashMap

Not all collections in the Collections Framework actually implement the Collection
interface. In other words, not all collections pass the IS-A test for Collection. Specifically,
none of the Map-related classes and interfaces extend from Collection. So while
SortedMap, Hashtable, HashMap, TreeMap, and LinkedHashMap are all thought
of as collections, none are actually extended from Collection-with-a-capital-C. To
make things a little more confusing, there are really three overloaded uses of the word
“collection”:

■ collection (lowercase ‘c’), which represents any of the data structures in which
objects are stored and iterated over.

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Collection (capital ‘C’), which is actually the java.util.Collection interface
from which Set and List extend. (That’s right, extend, not implement. There
are no direct implementations of Collection.)

■ Collections (capital ‘C’ and ends with ‘s’), which is actually the java.util.Collections
class that holds a pile of static utility methods for use with collections.

You can so easily mistake “Collections” for “Collection”—be careful. Keep in
mind that Collections is a class, with static utility methods, while Collection is
an interface with declarations of the methods common to most collections
including add, remove, contains, size, and iterator.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

18 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

FIGURE 7-2 The collections class and interface hierarchy

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Collections come in three basic flavors:

Lists Lists of things (classes that implement List)

Sets Unique things (classes that implement Set)

Maps Things with a unique ID (classes that implement Map)

Figure 7-3 illustrates the structure of a List, a Set, and a Map.
But there are subflavors within those three types:

Sorted Unsorted Ordered Unordered

An implementation class can be unsorted and unordered, ordered but unsorted, or
both ordered and sorted. But an implementation can never be sorted but unordered,
because sorting is a specific type of ordering, as you’ll see in a moment. For example,

Collections (Exam Objective 9.1) 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

FIGURE 7-3

Lists, Sets,
and Maps

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a HashSet is an unordered, unsorted set, while a LinkedHashSet is an ordered (but
not sorted) set that maintains the order in which objects were inserted.

Maybe we need to be explicit about the difference between sorted and ordered,
but first we have to discuss the idea of iteration. When you think of iteration, you
may think of iterating over an array using, say, a for loop to access each element in
the array in order ([0], [1], [2], etc.). Iterating through a collection usually means
walking through the elements one after another starting from the first element.
Sometimes, though, even the concept of first is a little strange—in a Hashtable there
really isn’t a notion of first, second, third, and so on. In a Hashtable, the elements are
placed in a (as far as you’re concerned) chaotic order based on the hashcode of the key.
But something has to go first when you iterate; thus, when you iterate over a Hashtable
there will indeed be an order. But as far as you can tell, it’s completely arbitrary and
can change in an apparently random way with further insertions into the collection.

Ordered When a collection is ordered, it means you can iterate through the
collection in a specific (not-random) order. A Hashtable collection is not ordered.
Although the Hashtable itself has internal logic to determine the order (based on
hashcodes and the implementation of the collection itself), you won’t find any order
when you iterate through the Hashtable. An ArrayList, however, keeps the order
established by the elements’ index position (just like an array). LinkedHashSet keeps
the order established by insertion, so the last element inserted is the last element in
the LinkedHashSet (as opposed to an ArrayList where you can insert an element at a
specific index position). Finally, there are some collections that keep an order referred
to as the natural order of the elements, and those collections are then not just ordered,
but also sorted. Let’s look at how natural order works for sorted collections.

Sorted You know how to sort alphabetically—A comes before B, F comes before
G, etc. For a collection of String objects, then, the natural order is alphabetical. For
Integer objects, the natural order is by numeric value. And for Foo objects, the natural
order is, um, we don’t know. There is no natural order for Foo unless or until the Foo
developer provides one, through an interface that defines how instances of a class can
be compared to one another. For the exam, you don’t need to know how to define
natural order for your classes, only that you know there is such a thing as natural order
and that it’s used in sorted collections.

So, a sorted collection means a collection sorted by natural order. And natural order
is defined by the class of the objects being sorted (or a supertype of that class, of course).

20 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you decide that Foo objects should be compared to one another (and thus sorted)
using the value of their bar instance variables, then a sorted collection will order the
Foo objects according to the rules in the Foo class for how to use the bar instance
variable to determine the order. Again, you don’t need to know how to define natural
order, but keep in mind that natural order is not the same as an ordering determined
by insertion, access, or index. A collection that keeps an order (such as insertion order)
is not really considered sorted unless it uses natural order or, optionally, the ordering
rules that you specify in the constructor of the sorted collection.

Figure 7-4 highlights the key distinctions between ordered and sorted collections.

Collections (Exam Objective 9.1) 21

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

FIGURE 7-4

What it means
to be ordered
or sorted

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Now that we know about ordering and sorting, we’ll look at each of the three
interfaces, and then we’ll dive into the concrete implementations of those interfaces.

List
A List cares about the index. The one thing that List has that nonlists don’t have is
a set of methods related to the index. Those key methods include things like
get(int index), indexOf(), add(int index, Object obj), etc.
(You don’t need to memorize the method signatures.) All three List implementations
are ordered by index position—a position that you determine either by setting an
object at a specific index or by adding it without specifying position, in which case
the object is added to the end. The three List implementations are described in the
following section.

ArrayList Think of this as a growable array. It gives you fast iteration and fast
random access. To state the obvious: it is an ordered collection (by index), but not
sorted. You might want to know that as of version 1.4, ArrayList now implements
the new RandomAccess interface—a marker interface (meaning it has no methods)
that says, “this list supports fast (generally constant time) random access.” Choose
this over a LinkedList when you need fast iteration but aren’t as likely to be doing a
lot of insertion and deletion.

Vector Vector is a holdover from the earliest days of Java; Vector and Hashtable
were the two original collections, the rest were added with Java 2 versions 1.2 and 1.4.
A Vector is basically the same as an ArrayList, but Vector()methods are synchronized
for thread safety. You’ll normally want to use ArrayList instead of Vector because the
synchronized methods add a performance hit you might not need. And if you do need
thread safety, there are utility methods in class Collections that can help. Vector is
the only class other than ArrayList to implement RandomAccess.

LinkedList A LinkedList List is ordered by index position, like ArrayList, except
that the elements are doubly-linked to one another. This linkage gives you new methods
(beyond what you get from the List interface) for adding and removing from the
beginning or end, which makes it an easy choice for implementing a stack or queue.
Keep in mind that a LinkedList may iterate more slowly than an ArrayList, but it’s a
good choice when you need fast insertion and deletion.

22 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Collections (Exam Objective 9.1) 23

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Set
A Set cares about uniqueness—it doesn’t allow duplicates. Your good friend the
equals() method determines whether two objects are identical (in which case
only one can be in the set). The three Set implementations are described in the
following sections.

HashSet A HashSet is an unsorted, unordered Set. It uses the hashcode of the
object being inserted, so the more efficient your hashCode() implementation the
better access performance you’ll get. Use this class when you want a collection with
no duplicates and you don’t care about order when you iterate through it.

LinkedHashSet A LinkedHashSet is an ordered version of HashSet that maintains
a doubly-linked List across all elements. Use this class instead of HashSet when you
care about the iteration order; when you iterate though a HashSet the order is
unpredictable, while a LinkedHashSet lets you iterate through the elements in the
order in which they were inserted. Optionally, you can construct a LinkedHashSet
so that it maintains the order in which elements were last accessed, rather than the
order in which elements were inserted. That’s a pretty handy feature if you want to
build a least-recently-used cache that kills off objects (or flattens them) that haven’t
been used for awhile. (LinkedHashSet is a new collection class in version 1.4.)

TreeSet The TreeSet is one of two sorted collections (the other being TreeMap).
It uses a Red-Black tree structure (but you knew that), and guarantees that the
elements will be in ascending order, according to the natural order of the elements.
Optionally, you can construct a TreeSet with a constructor that lets you give the
collection your own rules for what the natural order should be (rather than relying
on the ordering defined by the elements’ class).

Map
A Map cares about unique identifiers. You map a unique key (the ID) to a specific
value, where both the key and the value are of course objects. You’re probably quite
familiar with Maps since many languages support data structures that use a key/value
or name/value pair. Where the keys land in the Map is based on the key’s hashcode,
so, like HashSet, the more efficient your hashCode() implementation, the better
access performance you’ll get. The Map implementations let you do things like search
for a value based on the key, ask for a collection of just the values, or ask for a collection
of just the keys.

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

24 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

HashMap The HashMap gives you an unsorted, unordered Map. When you
need a Map and you don’t care about the order (when you iterate through it), then
HashMap is the way to go; the other maps add a little more overhead. HashMap
allows one null key in a collection and multiple null values in a collection.

Hashtable Like Vector, Hashtable has been in from prehistoric Java times. For
fun, don’t forget to note the naming inconsistency: HashMap vs. Hashtable. Where’s
the capitalization of “t”? Oh well, you won’t be expected to spell it. Anyway, just as
Vector is a synchronized counterpart to the sleeker, more modern ArrayList, Hashtable
is the synchronized counterpart to HashMap. Remember that you don’t synchronize a
class, so when we say that Vector and Hashtable are synchronized, we just mean that
the key methods of the class are synchronized. Another difference, though, is that
while HashMap lets you have null values as well as one null key, a Hashtable doesn’t
let you have anything that’s null.

LinkedHashMap Like its Set counterpart, LinkedHashSet, the LinkedHashMap
collection maintains insertion order (or, optionally, access order). Although it will be
somewhat slower than HashMap for adding and removing elements, you can expect
faster iteration with a LinkedHashMap. (LinkedHashMap is a new collection class as
of version 1.4.)

TreeMap You can probably guess by now that a TreeMap is a sorted Map. And
you already know that this means “sorted by the natural order of the elements.” But
like TreeSet, TreeMap lets you pass your own comparison rules in when you construct
a TreeMap, to specify how the elements should be compared to one another when
they’re being ordered.

Look for incorrect mixtures of interfaces with classes. You can easily eliminate
some answers right away if you recognize that, for example, a Map can’t be the
collection class you choose when you need a name/value pair collection, since
Map is an interface and not a concrete implementation class. The wording on
the exam is explicit when it matters, so if you’re asked to choose an interface,
choose an interface rather than a class that implements that interface. The
reverse is also true—if you’re asked to choose an implementation class, don’t
choose an interface type.

Whew! That’s all the collection stuff you’ll need for the exam, and Table 7-2 puts
it in a nice little summary.

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:13:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Be sure you know how to interpret Table 7-2 in a practical way. For the
exam, you might be expected to choose a collection based on a particular
requirement, where that need is expressed as a scenario. For example, which
collection would you use if you needed to maintain and search on a list of parts,
identified by their unique alphanumeric serial where the part would be of type
Part? Would you change your answer at all if we modified the requirement
such that you also need to be able to print out the parts in order, by their
serial number? For the first question, you can see that since you have a Part
class, but need to search for the objects based on a serial number, you need a
Map. The key will be the serial number as a String, and the value will be the
Part instance. The default choice should be HashMap, the quickest Map for
access. But now when we amend the requirement to include getting the parts
in order of their serial number, then we need a TreeMap—which maintains the
natural order of the keys. Since the key is a String, the natural order for a String
will be a standard alphabetical sort. If the requirement had been to keep track
of which part was last accessed, then we’d probably need a LinkedHashMap.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Collections (Exam Objective 9.1) 25

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Class Map Set List Ordered Sorted

HashMap X No No

Hashtable X No No

TreeMap X Sorted By natural order or
custom comparison rules

LinkedHashMap X By insertion order
or last access order

No

HashSet X No No

TreeSet X Sorted By natural order or
custom comparison rules

LinkedHashSet X By insertion order
or last access order

No

ArrayList X By index No

Vector X By index No

LinkedList X By index No

TABLE 7-2 Collection Interface Concrete Implementation Classes

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

But since a LinkedHashMap loses the natural order (replacing it with last-
accessed order), if we need to list the parts by serial number, we’ll have to
explicitly sort the collection, using a utility method.

Now that you know how to compare, organize, access, and sort objects, there’s
only one thing left to learn in this sequence: how to get rid of objects. The last
objective in this chapter looks at the garbage collection system in Java. You simply
won’t believe how many garbage collection questions are likely to show up on your
exam, so pay close attention to this last section. Most importantly, you’ll need to
know what is and is not guaranteed and what you’re responsible for when it comes
to memory management in Java.

CERTIFICATION OBJECTIVE

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3)
State the behavior that is guaranteed by the garbage collection system.

Write code that explicitly makes objects eligible for garbage collection.
Recognize the point in a piece of source code at which an object becomes

eligible for garbage collection.

Overview of Memory Management and Garbage Collection
This is the section you’ve been waiting for! It’s finally time to dig into the wonderful
world of memory management and garbage collection.

Memory management is a crucial element in many types of applications. Consider a
program that reads in large amounts of data, say from somewhere else on a network,
and then writes that data into a database on a hard drive. A typical design would be
to read the data into some sort of collection in memory, perform some operations on
the data, and then write the data into the database. After the data is written into the
database, the collection that stored the data temporarily must be emptied of old data
or deleted and re-created before processing the next batch. This operation might be
performed thousands of times, and in languages like C or C++ that do not offer
automatic garbage collection, a small flaw in the logic that manually empties or
deletes the collection data structures can allow small amounts of memory to be

26 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

improperly reclaimed or lost. Forever. These small losses are called memory leaks,
and over many thousands of iterations they can make enough memory inaccessible
that programs will eventually crash. Creating code that performs manual memory
management cleanly and thoroughly is a nontrivial and complex task, and while
estimates vary, it is arguable that manual memory management can double the
development effort for a complex program.

Java’s garbage collector provides an automatic solution to memory management.
In most cases it frees you from having to add any memory management logic to your
application. The downside to automatic garbage collection is that you can’t completely
control when it runs and when it doesn’t.

Overview of Java’s Garbage Collector
Let’s look at what we mean when we talk about garbage collection in the land of
Java. From the 30,000 ft. level, garbage collection is the phrase used to describe
automatic memory management in Java. Whenever a software program executes (in
Java, C, C++, Lisp, etc.), it uses memory in several different ways. We’re not going
to get into Computer Science 101 here, but it’s typical for memory to be used to
create a stack, a heap, in Java’s case constant pools, and method areas. The heap is
that part of memory where Java objects live, and it’s the one and only part of
memory that is in any way involved in the garbage collection process.

A heap is a heap is a heap. For the exam it’s important to know that you can
call it the heap, you can call it the garbage collectible heap, you can call it
Johnson, but there is one and only one heap.

So, all of garbage collection revolves around making sure that the heap has as
much free space as possible. For the purpose of the exam, what this boils down to is
deleting any objects that are no longer reachable by the Java program running. We’ll
talk more about what reachable means, but let’s drill this point in. When the garbage
collector runs, its purpose is to find and delete objects that cannot be reached. If you
think of a Java program as in a constant cycle of creating the objects it needs (which
occupy space on the heap), and then discarding them when they’re no longer needed,
creating new objects, discarding them, and so on, the missing piece of the puzzle is
the garbage collector. When it runs, it looks for those discarded objects and deletes
them from memory so that the cycle of using memory and releasing it can continue.
Ah, the great circle of life.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3) 27

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When Does the Garbage Collector Run?
The garbage collector is under the control of the JVM. The JVM decides when to run
the garbage collector. From within your Java program you can ask the JVM to run
the garbage collector, but there are no guarantees, under any circumstances, that the
JVM will comply. Left to its own devices, the JVM will typically run the garbage
collector when it senses that memory is running low. Experience indicates that when
your Java program makes a request for garbage collection, the JVM will usually grant
your request in short order, but there are no guarantees. Just when you think you can
count on it, the JVM will decide to ignore your request.

How Does the Garbage Collector Work?
You just can’t be sure. You might hear that the garbage collector uses a mark and
sweep algorithm, and for any given Java implementation that might be true, but the
Java specification doesn’t guarantee any particular implementation. You might hear
that the garbage collector uses reference counting; once again maybe yes maybe no.
The important concept to understand for the exam is when does an object become
eligible for garbage collection. To answer this question fully we have to jump ahead a
little bit and talk about threads. (See Chapter 9 for the real scoop on threads.) In a
nutshell, every Java program has from one to many threads. Each thread has its own
little execution stack. Normally, you (the programmer), cause at least one thread to
run in a Java program, the one with the main() method at the bottom of the stack.
However, as you’ll learn in excruciating detail in Chapter 9, there are many really
cool reasons to launch additional threads from your initial thread. In addition to
having its own little execution stack, each thread has its own lifecycle. For now, all
we need to know is that threads can be alive or dead. With this background
information we can now say with stunning clarity and resolve that, an object is
eligible for garbage collection when no live thread can access it.

Based on that definition, the garbage collector does some magical, unknown
operations, and when it discovers an object that can’t be reached by any live thread
it will consider that object as eligible for deletion, and it might even delete it at some
point. (You guessed it, it also might not ever delete it.) When we talk about reaching
an object, we’re really talking about having a reachable reference variable that refers
to the object in question. If our Java program has a reference variable that refers to
an object, and that reference variable is available to a live thread, then that object is
considered reachable. We’ll talk more about how objects can become unreachable in
the following section.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

28 Chapter 7: Objects and Collections

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Can a Java application run out of memory? Yes. The garbage collection system
attempts to remove objects from memory when they are not used. However,
if you maintain too many live objects (objects referenced from other live objects),
the system can run out of memory. Garbage collection cannot ensure that
there is enough memory, only that the memory that is available will be managed
as efficiently as possible.

Writing Code That Explicitly
Makes Objects Eligible for Collection

In the previous section, we learned the theories behind Java garbage collection. In
this section, we show how to make objects eligible for garbage collection using actual
code. We also discuss how to attempt to force garbage collection if it is necessary,
and how you can perform additional cleanup on objects before they are removed
from memory.

Nulling a Reference
As we discussed earlier, an object becomes eligible for garbage collection when there
are no more reachable references to it. Obviously, if there are no reachable references,
it doesn’t matter what happens to the object. For our purposes it is just floating in
space, unused, inaccessible, and no longer needed.

The first way to remove a reference to an object is to set the reference variable
that refers to the object to null. Examine the following code:

1. public class GarbageTruck {
2. public static void main(String [] args) {
3. StringBuffer sb = new StringBuffer("hello");
4. System.out.println(sb);
5. // The StringBuffer object is not eligible for collection
6. sb = null;
7. // Now the StringBuffer object is eligible for collection
8. }
9. }

The StringBuffer object with the value hello is assigned the reference variable
sb in the third line. Although the rest of the code does not use the StringBuffer
object, it is not yet eligible for garbage collection. To make it eligible, we set the
reference variable sb to null, which removes the single reference that existed to
the StringBuffer object. Once line 6 has run, our happy little hello StringBuffer
object is doomed, eligible for garbage collection.

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3) 29

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

30 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Reassigning a Reference Variable
We can also decouple a reference variable from an object by setting the reference
variable to refer to another object. Examine the following code:

class GarbageTruck {
public static void main(String [] args) {

StringBuffer s1 = new StringBuffer("hello");
StringBuffer s2 = new StringBuffer("goodbye");
System.out.println(s1);
// At this point the StringBuffer "hello" is not eligible
s1 = s2; // Redirects s1 to refer to the "goodbye" object
// Now the StringBuffer "hello" is eligible for collection

}
}

Objects that are created in a method also need to be considered. When a method
is invoked, any local variables created exist only for the duration of the method. Once
the method has returned, the objects created in the method are eligible for garbage
collection. There is an obvious exception, however. If an object is returned from the
method, its reference might be assigned to a reference variable in the method that
called it; hence, it will not be eligible for collection. Examine the following code:

import java.util.Date;
public class GarbageFactory {

public static void main(String [] args) {
Date d = getDate()
doComplicatedStuff();
System.out.println("d = " + d);

}

public static Date getDate() {
Date d2 = new Date();
String now = d2.toString();
System.out.println(now);
return d2;

}
}

In the preceding example, we created a method called getDate() that returns
a Date object. This method creates two objects: a Date and a String containing the
date information. Since the method returns the Date object, it will not be eligible for
collection even after the method has completed. The String object, though, will be
eligible, even though we did not explicitly set the now variable to null.

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Isolating a Reference
There is another way in which objects can become eligible for garbage collection,
even if they still have valid references! We think of this scenario as islands of isolation.
A simple example is a class that has an instance variable that is a reference variable
to another instance of the same class. Now imagine that two such instances exist and
that they refer to each other. If all other references to these two objects are removed,
then even though each object still has a valid reference, there will be no way for any
live thread to access either object. When the garbage collector runs, it will discover
any such islands of objects and will remove them. As you can imagine, such islands
can become quite large, theoretically containing hundreds of objects. Examine the
following code:

public class Island {
Island i;
public static void main(String [] args) {

Island i2 = new Island();
Island i3 = new Island();
Island i4 = new Island();

i2.i = i3; // i2 refers to i3
i3.i = i4; // i3 refers to i4
i4.i = i2; // i4 refers to i2

i2 = null;
i3 = null;
i4 = null;

// do complicated, memory intensive stuff
}

}

When the code reaches // do complicated, the three Island objects
(previously known as i2, i3, and i4) have instance variables so that they refer to
each other, but their links to the outside world (i2, i3, and i4) have been nulled.
These three objects are eligible for garbage collection.

This covers everything you will need to know about making objects eligible for
garbage collection. Study Figure 7-5 to reinforce the concepts of objects without
references and islands of isolation.

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3) 31

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Forcing Garbage Collection
The first thing that should be mentioned here is, contrary to this section’s title,
garbage collection cannot be forced. However, Java provides some methods that allow
you to request that the JVM perform garbage collection. For example, if you are about
to perform some time-sensitive operations, you probably want to minimize the chances
of a delay caused by garbage collection. But you must remember that the methods
that Java provides are requests, and not demands; the virtual machine will do its best
to do what you ask, but there is no guarantee that it will comply.

In reality, it is possible only to suggest to the JVM that it perform garbage
collection. However, there are no guarantees the JVM will actually remove
all of the unused objects from memory. It is essential that you understand
this concept for the exam.

32 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

FIGURE 7-5 Objects eligible for garbage collection

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3) 33

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

The garbage collection routines that Java provides are members of the Runtime
class. The Runtime class is a special class that has a single object (a Singleton) for
each main program. The Runtime object provides a mechanism for communicating
directly with the virtual machine. In order to get the Runtime instance, you can use
the method Runtime.getRuntime(), which returns the Singleton. Alternatively,
for the method we are going to discuss, you can call the same method on the System
class, which has static methods that can do the work of obtaining the Singleton for
you. The simplest way to ask for garbage collection (remember—just a request) is

System.gc();

Theoretically, after calling System.gc(), you will have as much free memory
as possible. We say theoretically because this routine does not always work that way.
First, the JVM you are using may not have implemented this routine; the language
specification allows this routine to do nothing at all. Second, another thread (again,
see Chapter 9) may perform a substantial memory allocation right after you run the
garbage collection.

This is not to say that System.gc() is a useless method—it’s much better than
nothing. You just can’t rely on System.gc() to free up enough memory so that
you don’t have to worry about the garbage collector being run. The certification exam
is interested in guaranteed behavior, not probable behavior.

Now that we are somewhat familiar with how this works, let’s do a little experiment
to see if we can see the effects of garbage collection. The following program lets us
know how much total memory the JVM has available to it and how much free
memory it has. It then creates 10,000 Date objects. After this, it tells us how much
memory is left and then calls the garbage collector (which, if it decides to run, should
halt the program until all unused objects are removed). The final free memory result
should indicate whether it has run. Let’s look at the program:

1. import java.util.Date;
2. public class CheckGC {
3. public static void main(String [] args) {
4. Runtime rt = Runtime.getRuntime();
5. System.out.println("Total JVM memory: " + rt.totalMemory());
6. System.out.println("Before Memory = " + rt.freeMemory());
7. Date d = null;
8. for(int i = 0;i<10000;i++) {
9. d = new Date();

10. d = null;
11. }
12. System.out.println("After Memory = " + rt.freeMemory());
13. rt.gc(); // an alternate to System.gc()
14. System.out.println("After GC Memory = " + rt.freeMemory());

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

34 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

15. }
16. }

Now, let’s run the program and check the results:

Total JVM memory: 1048568
Before Memory = 703008
After Memory = 458048
After GC Memory = 818272

As we can see, the VM actually did decide to garbage collect (i.e. delete) the eligible
objects. In the preceding example, we suggested to the JVM to perform garbage
collection with 458,048 bytes of memory remaining, and it honored our request.
This program has only one user thread running, so there was nothing else going on
when we called rt.gc(). Keep in mind that the behavior when gc() is called
may be different for different JVMs, so there is no guarantee that the unused objects
will be removed from memory. About the only thing you can guarantee is that if you
are running very low on memory, the garbage collector will run before it throws an
OutOfMemoryException.

Cleaning Up Before Garbage Collection—the Finalize() Method
Java provides you a mechanism to run some code just before your object is deleted
by the garbage collector. This code is located in a method named finalize()
that all classes inherit from class Object. On the surface this sounds like a great idea;
maybe your object opened up some resources, and you’d like to close them before
your object is deleted. The problem is that, as you may have gathered by now, you
can’t count on the garbage collector to ever delete an object. So, any code that you put
into your class’s overridden finalize() method is not guaranteed to run. The
finalize() method for any given object might run, but you can’t count on it,
so don’t put any essential code into your finalize() method. In fact, we
recommend that in general you don’t override finalize() at all.

Tricky Little Finalize() Gotcha’s
There are a couple of concepts concerning finalize() that you need to remember.

■ For any given object, finalize() will be called only once by the
garbage collector.

■ Calling finalize() can actually result in saving an object from deletion.

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s look into these statements a little further. First of all, remember that
finalize() is a method, and any code that you can put into a normal method
you can put into finalize(). For example, in the finalize() method you
could write code that passes a reference to the object in question back to another
object, effectively uneligiblizing the object for garbage collection. If at some point
later on this same object becomes eligible for garbage collection again, the garbage
collector can still process this object and delete it. The garbage collector, however,
will remember that, for this object, finalize() already ran, and it will not run
finalize() again.

Now that we’ve gotten down and dirty with garbage collection, verify that the
following scenarios and solutions make sense to you. If they don’t, reread the last
part of this chapter. While awake.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3) 35

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

I want to allocate an object and make sure that it
never is deallocated. Can I tell the garbage collector
to ignore an object?

No. There isn’t a mechanism for marking an
object as undeletable. You can instead create a static
member of a class, and store a reference to the object
in that. Static members are considered live objects.

My program is not performing as well as I would
expect. I think the garbage collector is taking too
much time. What can I do?

First, if it really is the garbage collector (and it probably
isn’t), then the code is creating and dropping many
references to many temporary objects. Try to
redesign the program to reuse objects or require
fewer temporary objects.

I am creating an object in a method and passing it
out as the method result. How do I make sure the
object isn’t deleted before the method returns?

The object won’t be deleted until the last reference
to the object is dropped. If you return the object as
a method return value, the method that called it will
contain a reference to the object.

How do I drop a reference to an object if that object
is referred to in a member of my class?

Set the member to null. Alternatively, if you set
a reference to a new object, the old object loses one
reference. If that is the last reference, the object
becomes eligible for deletion.

I want to keep objects around as long as they don’t
interfere with memory allocation. Is there any way I
can ask Java to warn me if memory is getting low?

Prior to Java 1.2, you would have to check the
amount of free memory yourself and guess. Java 1.2
introduced soft references for just this situation.
This is not part of the Java 2 exam, however.

SCENARIO & SOLUTION

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

36 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Advanced Garbage Collection in Java 2

Up to this point, we have been discussing the
original Java memory management model. With
Java 2, the original model was augmented with
reference classes. Reference classes, which derive
from the abstract class Reference, are used for
more sophisticated memory management. (You
will not need to know the advanced management
model for the exam.) The Reference class is the
superclass for the WeakReference, SoftReference,
and PhantomReference classes found in the
java.lang.ref package.

By default, you as a programmer work with
strong references. When you hear people talking
about references (at parties, on the bus), they
are usually talking about strong references. This
was the classic Java way of doing things, and it
is what you have unless you go out of your way
to use the Reference classes. Strong references
are used to prevent objects from being garbage
collected; a strong reference from a reachable
object is enough to keep the referred-to object
in memory.

Let’s look at the other three types of
references:

■ Soft references The Java language
specification states that soft references
can be used to create memory-sensitive
caches. For example, in an image
program, when you make a change to
the image (say, an Image object), the
old Image object can stick around in

case the user wants to undo the change.
This old object is an example of a cache.

■ Weak references These are similar to
soft references in that they allow you
to refer to an object without forcing
the object to remain in memory.
Weak references are different from
soft references, however, in that they
do not request that the garbage collector
attempt to keep the object in memory.
Unlike soft references, which may stick
around for a while even after their
strong references drop, weak references
go away pretty quickly.

■ Phantom references These provide a
means of delaying the reuse of memory
occupied by an object, even if the object
itself is finalized. A phantom object is
one that has been finalized, but whose
memory has not yet been made available
for another object.

Objects are placed into one of several
categories, depending on what types of
references can be used to get to the object.
References are ordered as follows: strong, soft,
weak, and phantom. Objects are then known
as strongly reachable, softly reachable, weakly
reachable, phantom reachable, or unreachable.

■ Strongly reachable If an object has a
strong reference, a soft reference, a weak

FROM THE CLASSROOM

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION SUMMARY
As you know by now, when we come to this point in the chapter (the end), we like
to pause for a moment and review all that we’ve done. We began by looking at the
hashCode() and equals() methods, with a quick review of another important
method in class Object, toString().You learned that overriding toString() is
your opportunity to create a meaningful summary (in the form of a String) of the
state of any given instance in your classes. The toString()method is automatically
called when you ask System.out.println() to print an object.

Next you reviewed the purpose of == (to see if two reference variables refer to
the same object) and the equals() method (to see if two objects are meaningfully
equivalent). You learned the downside of not overriding equals()—you may not
be able to find the object in a collection. We discussed a little bit about how to write
a good equals() method—don’t forget to use instanceof and refer to the
object’s significant attributes. We reviewed the contracts for overriding equals()
and hashCode(). We learned about the theory behind hashcodes, the difference

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3) 37

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

reference, and a phantom reference
all pointing to it, then the object is
considered strongly reachable and
will not be collected.

■ Softly reachable An object without a
strong reference but with a soft reference,
a weak reference, and a phantom
reference, will be considered softly
reachable and will be collected only
when memory gets low.

■ Weakly reachable An object without a
strong or soft reference but with a weak
or phantom reference, is considered

weakly reachable and will be collected at
the next garbage collection cycle.

■ Phantom reachable An object without
a strong, soft, or weak reference but
with a phantom reference, is considered
phantom reachable and will be finalized,
but the memory for that object will not
be collected.

■ Unreachable What about an object
without a strong, soft, weak, or phantom
reference? Well, that object is considered
unreachable and will already have been
collected, or will be collected as soon as
the next garbage collection cycle is run.

— Bob Hablutzel

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

between legal, appropriate, and efficient hashcoding. We also saw that even though
wildly inefficient, it’s legal for a hashCode()method to always return the same value.

Next we turned to collections, where we learned about Lists, Sets, and Maps, and
the difference between ordered and sorted collections. We learned the key attributes
of the common collection classes, and when to use which. Finally, we dove into garbage
collection, Java’s automatic memory management feature. We learned that the heap
is where objects live and where all the cool garbage collection activity takes place. We
learned that in the end, the JVM will perform garbage collection whenever it wants
to. You (the programmer) can request a garbage collection run, but you can’t force it.
We talked about garbage collection only applying to objects that are eligible, and that
eligible means “inaccessible from any live thread.” Finally, we discussed the rarely useful
finalize() method, and what you’ll have to know about it for the exam. All in
all one fascinating chapter.

38 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

✓TWO-MINUTE DRILL
Here are some of the key points from Chapter 7.

Overriding hashCode() and equals()
❑ The critical methods in class Object are equals(), finalize(),

hashCode(), and toString().

❑ equals(), hashCode(), and toString() are public (finalize()
is protected).

❑ Fun facts about toString():

❑ Override toString() so that System.out.println() or other
methods can see something useful.

❑ Override toString() to return the essence of your object’s state.

❑ Use == to determine if two reference variables refer to the same object.

❑ Use equals() to determine if two objects are meaningfully equivalent.

❑ If you don’t override equals(), your objects won’t be useful hashtable/
hashmap keys.

❑ If you don’t override equals(), two different objects can’t be considered
the same.

❑ Strings and wrappers override equals() and make good hashtable/
hashmap keys.

❑ When overriding equals(), use the instanceof operator to be sure
you’re evaluating an appropriate class.

❑ When overriding equals(), compare the objects’ significant attributes.

❑ Highlights of the equals() contract:

❑ Reflexive: x.equals(x) is true.

❑ Symmetric: If x.equals(y) is true, then y.equals(x) must
be true.

❑ Transitive: If x.equals(y) is true, and y.equals(z) is true,
then z.equals(x) is true.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Two-Minute Drill 39

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

40 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

❑ Consistent: Multiple calls to x.equals(y) will return the same result.

❑ Null: If x is not null, then x.equals(null) is false.

❑ If x.equals(y) is true, then x.hashCode() == y.hashCode()
must be true.

❑ If you override equals(), override hashCode().

❑ Classes HashMap, Hashtable, LinkedHashMap, and LinkedHashSet
use hashing.

❑ A legal hashCode() override compiles and runs.

❑ An appropriate hashCode() override sticks to the contract.

❑ An efficient hashCode() override distributes keys randomly across
a wide range of buckets.

❑ To reiterate: if two objects are equal, their hashcodes must be equal.

❑ It’s legal for a hashCode() method to return the same value for all instances
(although in practice it’s very inefficient).

❑ Highlights of the hashCode() contract:

❑ Consistent: Multiple calls to x.hashCode() return the same integer.

❑ If x.equals(y) is true, then x.hashCode() == y.hashCode()
must be true.

❑ If x.equals(y) is false, then x.hashCode() ==
y.hashCode() can be either true or false, but false
will tend to create better efficiency.

❑ Transient variables aren’t appropriate for equals() and hashCode().

Collections
❑ Common collection activities include adding objects, removing objects, verifying

object inclusion, retrieving objects, and iterating.

❑ Three meanings for “collection”:

❑ collection—Represents the data structure in which objects are stored

❑ Collection—java.util.Collection—Interface from which Set
and List extend

❑ Collections—A class that holds static collection utility methods

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Two-Minute Drill 41

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

❑ Three basic flavors of collections include Lists, Sets, Maps:

❑ Lists of things: Ordered, duplicates allowed, with an index

❑ Sets of things: May or may not be ordered and/or sorted, duplicates
not allowed

❑ Maps of things with keys: May or may not be ordered and/or sorted,
duplicate keys not allowed

❑ Four basic subflavors of collections include Sorted, Unsorted, Ordered,
Unordered.

❑ Ordered means iterating through a collection in a specific, nonrandom order.

❑ Sorted means iterating through a collection in a natural sorted order.

❑ Natural means alphabetic, numeric, or programmer-defined, whichever applies.

❑ Key attributes of common collection classes:

❑ ArrayList: Fast iteration and fast random access

❑ Vector: Like a somewhat slower ArrayList, mainly due to its synchronized
methods

❑ LinkedList: Good for adding elements to the ends, i.e., stacks and queues

❑ HashSet: Assures no duplicates, provides no ordering

❑ LinkedHashSet: No duplicates; iterates by insertion order or last accessed
(new with 1.4)

❑ TreeSet: No duplicates; iterates in natural sorted order

❑ HashMap: Fastest updates (key/value pairs); allows one null key,
many null values

❑ Hashtable: Like a slower HashMap (as with Vector, due to its synchronized
methods). No null values or null keys allowed

❑ LinkedHashMap: Faster iterations; iterates by insertion order or last accessed,
allows one null key, many null values (new with 1.4)

❑ TreeMap: A sorted map, in natural order

Garbage Collection
❑ In Java, garbage collection provides some automated memory management.

❑ All objects in Java live on the heap.

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ The heap is also known as the garbage collectible heap.

❑ The purpose of garbage collecting is to find and delete objects that can’t
be reached.

❑ Only the JVM decides exactly when to run the garbage collector.

❑ You (the programmer) can only recommend when to run the garbage collector.

❑ You can’t know the G.C. algorithm; maybe it uses mark and sweep, maybe it’s
generational and/or iterative.

❑ Objects must be considered eligible before they can be garbage collected.

❑ An object is eligible when no live thread can reach it.

❑ To reach an object, a live thread must have a live, reachable reference variable
to that object.

❑ Java applications can run out of memory.

❑ Islands of objects can be garbage collected, even though they have references.

❑ To reiterate: garbage collection can’t be forced.

❑ Request garbage collection with System.gc(); (recommended).

❑ Class Object has a finalize() method.

❑ The finalize() method is guaranteed to run once and only once before
the garbage collector deletes an object.

❑ Since the garbage collector makes no guarantees, finalize()may never run.

❑ You can uneligibilize an object from within finalize().

42 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 43

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question.

HashCode and equals() (Exam Objective 9.2)

1. Given the following,

11. x = 0;
12. if (x1.hashCode() != x2.hashCode()) x = x + 1;
13. if (x3.equals(x4)) x = x + 10;
14. if (!x5.equals(x6)) x = x + 100;
15. if (x7.hashCode() == x8.hashCode()) x = x + 1000;
16. System.out.println("x = " + x);

and assuming that the equals () and hashCode() methods are property implemented, if the
output is “x = 1111”, which of the following statements will always be true?

A. x2.equals(x1)

B. x3.hashCode() == x4.hashCode()

C. x5.hashCode() != x6.hashCode()

D. x8.equals(x7)

2. Given the following,

class Test1 {
public int value;
public int hashCode() { return 42; }

}
class Test2 {
public int value;
public int hashcode() { return (int)(value^5); }

}

which statement is true?

A. class Test1 will not compile.

B. The Test1 hashCode() method is more efficient than the Test2 hashCode() method.

C. The Test1 hashCode() method is less efficient than the Test2 hashCode() method.

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

D. class Test2 will not compile.

E. The two hashcode() methods will have the same efficiency.

3. Which two statements are true about comparing two instances of the same class, given that the
equals() and hashCode() methods have been properly overridden? (Choose two.)

A. If the equals() method returns true, the hashCode() comparison == must
return true.

B. If the equals() method returns false, the hashCode() comparison != must return
true.

C. If the hashCode() comparison == returns true, the equals() method must return
true.

D. If the hashCode() comparison == returns true, the equals() method might
return true.

E. If the hashCode() comparison != returns true, the equals() method might
return true.

4. Which class does not override the equals() and hashCode() methods, inheriting them
directly from class Object?

A. java.lang.String

B. java.lang.Double

C. java.lang.StringBuffer

D. java.lang.Character

E. java.util.ArrayList

5. What two statements are true about properly overridden hashCode() and equals()
methods?

A. hashCode() doesn’t have to be overridden if equals() is.

B. equals() doesn’t have to be overridden if hashCode() is.

C. hashCode() can always return the same value, regardless of the object that invoked it.

D. If two different objects that are not meaningfully equivalent both invoke hashCode(),
then hashCode() can’t return the same value for both invocations.

E. equals() can be true even if it’s comparing different objects.

44 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 45

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

Using Collections (Exam Objective 9.1)

6. Which collection class allows you to grow or shrink its size and provides indexed access to its
elements, but whose methods are not synchronized?

A. java.util.HashSet

B. java.util.LinkedHashSet

C. java.util.List

D. java.util.ArrayList

E. java.util.Vector

7. Which collection class allows you to access its elements by associating a key with an element’s
value, and provides synchronization?

A. java.util.SortedMap

B. java.util.TreeMap

C. java.util.TreeSet

D. java.util.HashMap

E. java.util.Hashtable

8. Given the following,

12. TreeSet map = new TreeSet();
13. map.add("one");
14. map.add("two");
15. map.add("three");
16. map.add("four");
17. map.add("one");
18. Iterator it = map.iterator();
19. while (it.hasNext()) {
20. System.out.print(it.next() + " ");
21. }

what is the result?

A. one two three four

B. four three two one

C. four one three two

D. one two three four one

E. one four three two one

F. The print order is not guaranteed.

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

46 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

9. Which collection class allows you to associate its elements with key values, and allows you to
retrieve objects in FIFO (first-in, first-out) sequence?

A. java.util.ArrayList

B. java.util.LinkedHashMap

C. java.util.HashMap

D. java.util.TreeMap

E. java.util.LinkedHashSet

F. java.util.TreeSet

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3)

10. Given the following,

1. public class X {
2. public static void main(String [] args) {
3. X x = new X();
4. X x2 = m1(x);
5. X x4 = new X();
6. x2 = x4;
7. doComplexStuff();
8. }
9. static X m1(X mx) {
10. mx = new X();
11. return mx;
12. }
13. }

After line 6 runs. how many objects are eligible for garbage collection?

A. 0

B. 1

C. 2

D. 3

E. 4

11. Which statement is true?

A. All objects that are eligible for garbage collection will be garbage collected by the garbage
collector.

B. Objects with at least one reference will never be garbage collected.

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 47

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

C. Objects from a class with the finalize() method overridden will never be garbage
collected.

D. Objects instantiated within anonymous inner classes are placed in the garbage collectible heap.

E. Once an overridden finalize() method is invoked, there is no way to make that object
ineligible for garbage collection.

12. Given the following,

1. class X2 {
2. public X2 x;
3. public static void main(String [] args) {
4. X2 x2 = new X2();
5. X2 x3 = new X2();
6. x2.x = x3;
7. x3.x = x2;
8. x2 = new X2();
9. x3 = x2;
10. doComplexStuff();
11. }
12. }

after line 9 runs, how many objects are eligible for garbage collection?

A. 0

B. 1

C. 2

D. 3

E. 4

13. Which statement is true?

A. Calling Runtime.gc() will cause eligible objects to be garbage collected.

B. The garbage collector uses a mark and sweep algorithm.

C. If an object can be accessed from a live thread, it can’t be garbage collected.

D. If object 1 refers to object 2, then object 2 can’t be garbage collected.

14. Given the following,

12. X3 x2 = new X3();
13. X3 x3 = new X3();
14. X3 x5 = x3;
15. x3 = x2;
16. X3 x4 = x3;

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

48 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

17. x2 = null;
18. // insert code

what two lines of code, inserted independently at line 18, will make an object eligible for
garbage collection? (Choose two.)

A. x3 = null;

B. x4 = null;

C. x5 = null;

D. x3 = x4;

E. x5 = x4;

15. Given the following,

12. void doStuff3() {
13. X x = new X();
14. X y = doStuff(x);
15. y = null;
16. x = null;
17. }
18. X doStuff(X mx) {
19. return doStuff2(mx);
20. }

at what point is the object created in line 13 eligible for garbage collection?

A. After line 15 runs

B. After line 16 runs

C. After line 17 runs

D. The object is not eligible.

E. It is not possible to know for sure.

SELF TEST ANSWERS

Strings (Exam Objective 9.2)

1. � B. By contract, if two objects are equivalent according to the equals() method, then
the hashCode() method must evaluate them to be ==.
� A is incorrect because if the hashCode() values are not equal, the two objects must not
be equal. C is incorrect because if equals() is not true there is no guarantee of any result

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

from hashCode(). D is incorrect because hashCode() will often return == even if the
two objects do not evaluate to equals() being true.

2. � C. The so-called “hashing algorithm” implemented by class Test1 will always return the
same value, 42, which is legal but which will place all of the hash table entries into a single
bucket, the most inefficient setup possible.
� A and D are incorrect because these classes are legal. B and E are incorrect based on the
logic described above.

3. � A and D. A is a restatement of the equals() and hashCode() contract. D is true
because if the hashCode() comparison returns ==, the two objects might or might not
be equal.
� B, C, and E are incorrect. B and C are incorrect because the hashCode() method is
very flexible in its return values, and often two dissimilar objects can return the same hash code
value. E is a negation of the hashCode() and equals() contract.

4. � C. java.lang.StringBuffer is the only class in the list that uses the default methods provided
by class Object.
� A, C, D, E, and F are incorrect based on the logic described above.

5. � C and E are correct.
� A, B, and D are incorrect. A and B are incorrect because by contract hashCode() and
equals() can’t be overridden unless both are overridden. D is incorrect; hashCode()
will often return the same value when hashing dissimilar objects.

Using Collections (Exam Objective 9.1)

6. � D. All of the collection classes allow you to grow or shrink the size of your collection.
ArrayList provides an index to its elements. The newer collection classes tend not to have
synchronized methods. Vector is an older implementation of ArrayList functionality and
has synchronized methods; it is slower than ArrayList.
� A, B, C, and E are incorrect based on the logic described above; C, List is an interface.

7. � E. Hashtable is the only class listed that provides synchronized methods. If you need
synchronization great; otherwise, use HashMap, it’s faster.
� A, B, C, and D are incorrect based on the logic described above.

8. � C. TreeSet assures no duplicate entries; also, when it is accessed it will return elements
in natural order, which typically means alphabetical.
� A, B, D, E, and F are incorrect based on the logic described above.

Self Test Answers 49

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9. � B. LinkedHashMap is the collection class used for caching purposes. FIFO is another way
to indicate caching behavior. To retrieve LinkedHashMap elements in cached order, use the
values() method and iterate over the resultant collection.
� A, C, D, E, and E are incorrect based on the logic described above.

Garbage Collection (Exam Objectives 3.1, 3.2, 3.3)

10. � B. By the time line 6 has run, the only object without a reference is the one generated
as a result of line 4. Remember that “Java is pass by value,” so the reference variable x is not
affected by the m1() method.
� A, C, D, and E are incorrect based on the logic described above.

11. � D. All objects are placed in the garbage collectible heap.
� A is incorrect because the garbage collector makes no guarantees. B is incorrect because
islands of isolated objects can exist. C is incorrect because finalize() has no such mystical
powers. E is incorrect because within a finalize() method, an object’s reference can be
passed back to a live thread.

12. � C. This is an example of the islands of isolated objects. By the time line 9 has run, the
objects instantiated in lines 4 and 5 are referring to each other, but no live thread can reach
either of them.
� A, B, D, and E are incorrect based on the logic described above.

13. � C. This is a great way to think about when objects can be garbage collected.
� A and B assume guarantees that the garbage collector never makes. D is wrong because
of the now famous islands of isolation scenario.

14. � C and E. By the time line 18 is reached, x2 is null, x3 and x4 refer to the object created
in line 12, and x5 refers to the object created in line 13. Any kind of redirection of x5 will
leave the second object without a reference.
� A, B, and D are incorrect because the first object has two references; changing one of the
references will not cause the first object to become unreachable.

15. � E is correct. A copy of a reference to the line 13 object is passed to the doStuff2()
method. We don’t know what goes on in that method; it’s possible that the reference is passed
to other live objects.
� A, B, C, and D are incorrect based on the logic described above.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

50 Chapter 7: Objects and Collections

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 7

P:\010Comp\CertPrs8\684-6\ch07.vp
Wednesday, November 13, 2002 5:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8
Inner Classes

CERTIFICATION OBJECTIVES

• Inner Classes

• Method-Local Inner Classes

• Anonymous Inner Classes

• Static Nested Classes

✓ Two-Minute Drill

Q&A Self Test

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8
Blind Folio 8:1

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

Inner classes (including static nested classes) appear throughout the exam. Although there
are no official exam objectives specifically about inner classes, the objectives related to
declarations (1.2 and 4.1) and instantiation (6.3) include inner classes. More importantly,

the code used to represent questions on virtually any topic on the exam can involve inner
classes. Unless you deeply understand the rules and syntax for inner classes, you’re likely to
miss questions you’d otherwise be able to answer. As if the exam weren’t already tough enough.

This chapter looks at the ins and outs (inners and outers?) of inner classes, and
exposes you to the kinds of (often strange-looking) syntax examples you’ll see
scattered throughout the entire exam. So you’ve really got two goals for this
chapter—to learn what you’ll need to answer questions testing your inner class
knowledge, and to learn how to read and understand inner class code so that you
can correctly process questions testing your knowledge of other topics.

So what’s all the hoopla about inner classes? Before we get into it, we have to warn
you (if you don’t already know) that inner classes have inspired passionate love ‘em
or hate ‘em debates since first introduced in version 1.1 of the language. For once,
we’re going to try to keep our opinions to ourselves here and just present the facts as
you’ll need to know them for the exam. It’s up to you to decide how—and to what
extent—you should use them in your own development. We mean it. Not even our
tone will betray our true feelings about them. (OK, OK, we’ll tell you! We believe
they have some powerful, efficient uses in very specific situations, including code
that’s easier to read and maintain, but they can also be abused and lead to code that’s
as clear as a cornfield maze, and to the syndrome known as “reuseless”…code that’s
useless over and over again.)

Inner classes let you define one class within another. They provide a type of
scoping for your classes since you can make one class a member of another class. Just
as classes have member variables and methods, a class can also have member classes.
They come in several flavors, depending on how and where you define the inner
class, including a special kind of inner class known as a “top-level nested class”
(an inner class marked static), which technically isn’t really an inner class.
Because a static nested class is still a class defined within the scope of another class,
we’re still going to cover them in this chapter on inner classes.

Unlike the other chapters in this book, the certification objectives for inner classes
don’t have official exam objective numbers since they’re part of other objectives covered
elsewhere. So for this chapter, the Certification Objective headings represent the four
inner class topics discussed in this chapter, rather than four official exam objectives:

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Inner Classes

■ Method-local Inner Classes

■ Anonymous Inner Classes

■ Static Nested Classes

CERTIFICATION OBJECTIVE

Inner Classes
You’re an OO programmer, so you know that for reuse and flexibility/extensibility
you need to keep your classes specialized. In other words, a class should have code
only for the things an object of that particular type needs to do; any other behavior
should be part of another class better suited for that job. Sometimes, though, you
find yourself designing a class where you discover you need behavior that belongs in
a separate, specialized class, but also needs to be intimately tied to the class you’re
designing.

Event handlers are perhaps the best example of this (and in fact, one of the main
reasons inner classes were added to the language in the first place). If you have a
GUI class that performs some job like, say, a chat client, you might want the
chat-client–specific methods (accept input, read new messages from server, send user
input back to server, etc.) to be in the class. But how do those methods get invoked
in the first place? A user clicks a button. Or types some text in the input field. Or a
separate thread doing the I/O work of getting messages from the server has messages
that need to be displayed in the GUI. So you have chat-client–specific methods, but
you also need methods for handling the “events” (button presses, keyboard typing,
I/O available, etc.) that drive the calls on those chat-client methods. The ideal
scenario—from an OO perspective—is to keep the chat-client–specific methods in
the ChatClient class, and put the event-handling code in a separate event-handling class.

Nothing unusual about that so far; after all, that’s how you’re supposed to design
OO classes. As specialists. But here’s the problem with the chat-client scenario: the
event-handling code is intimately tied to the chat-client–specific code! Think about
it: when the user presses a Send button (indicating that they want their typed-in
message to be sent to the chat server), the chat-client code that sends the message

Inner Classes 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

needs to read from a particular text field. In other words, if the user clicks Button A,
the program is supposed to extract the text from the TextField B, of a particular
ChatClient instance. Not from some other text field from some other object, but
specifically the text field that a specific instance of the ChatClient class has a reference
to. So the event-handling code needs access to the members of the ChatClient
object, in order to be useful as a “helper” to a particular ChatClient instance.

And what if the ChatClient class needs to inherit from one class, but the
event-handling code is better off inheriting from some other class? You can’t make
a class extend from more than once class, so putting all the code (the chat-client–
specific code and the event-handling code) in one class won’t work in that case. So
what you’d really like to have is the benefit of putting your event code in a separate
class (better OO, encapsulation, and the ability to extend a class other than the class
the ChatClient extends) but yet still allow the event-handling code to have easy
access to the members of the ChatClient (so the event-handling code can, for example,
update the ChatClient’s private instance variables). You could manage it by making
the members of the ChatClient accessible to the event-handling class by, for example,
marking them public. But that’s not a good solution either.

You already know where this is going—one of the key benefits of an inner class is
the “special relationship” an inner class instance shares with an instance of the outer
class. That “special relationship” gives code in the inner class access to members of
the enclosing (outer) class, as if the inner class were part of the outer class. In fact, that’s
exactly what it means: the inner class is a part of the outer class. Not just a “part” but
a full-fledged, card-carrying member of the outer class. Yes, an inner class instance
has access to all members of the outer class, even those marked private. (Relax, that’s
the whole point, remember? We want this separate inner class instance to have an
intimate relationship with the outer class instance, but we still want to keep everyone
else out. And besides, if you wrote the outer class, then you also wrote the inner class!
So you’re not violating encapsulation; you designed it this way.)

Coding a “Regular” Inner Class
We use the term regular here to represent inner classes that are not

■ static

■ method-local

■ anonymous

4 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inner Classes 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

For the rest of this section, though, we’ll just use the term inner class and drop the
regular. (When we switch to one of the other three types in the preceding list, you’ll
know it.) You define an inner class within the curly braces of the outer class, as follows:

class MyOuter {
class MyInner { }

}

Piece of cake. And if you compile it,

%javac MyOuter.java

you’ll end up with two class files:
MyOuter.class
MyOuter$MyInner.class
The inner class is still, in the end, a separate class, so a class file is generated. But

the inner class file isn’t accessible to you in the usual way. You can’t, for example, say

%java MyOuter$MyInner

in hopes of running the main method of the inner class, because a regular inner class
can’t have static declarations of any kind. The only way you can access the inner class is
through a live instance of the outer class! In other words, only at runtime when there’s
already an instance of the outer class to tie the inner class instance to. You’ll see all
this in a moment. First, let’s beef up the classes a little:

class MyOuter {
private int x = 7;

// inner class definition
class MyInner {

public void seeOuter() {
System.out.println("Outer x is " + x);

}
} // close inner class definition

} // close outer class

The preceding code is perfectly legal. Notice that the inner class is indeed
accessing a private member of the outer class. That’s fine, because the inner
class is also a member of the outer class. So just as any member of the outer class

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

(say, an instance method) can access any other member of the outer class, private or
not, the inner class—also a member—can do the same.

OK, so now that we know how to write the code giving an inner class access to
members of the outer class, how do you actually use it?

Instantiating an Inner Class
To instantiate an instance of an inner class, you must have an instance of the outer
class to tie to the inner class. There are no exceptions to this rule; an inner class
instance can never stand alone without a direct relationship with a specific instance
of the outer class.

Instantiating an Inner Class from Within Code in the Outer Class
Most often, it is the outer class that creates instances of the inner class, since it is
usually the outer class wanting to use the inner instance as a helper object, for it’s
own personal, private use. We’ll modify the MyOuter class to instantiate an
instance of MyInner:

class MyOuter {
private int x = 7;
public void makeInner() {

MyInner in = new MyInner();
in.seeOuter();

}

class MyInner {
public void seeOuter() {

System.out.println("Outer x is " + x);
}

}
}

You can see in the preceding code that the MyOuter code treats MyInner just
as though MyInner were any other accessible class—it instantiates it using the class
name (new MyInner()), and then invokes a method on the reference variable
(in.seeOuter()). But the only reason this syntax works is because the outer
class instance method code is doing the instantiating. In other words, there’s already
an instance of the outer class—the instance running the makeInner() method. So

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

Inner Classes 7

how do you instantiate a MyInner object from somewhere outside the MyOuter
class? Is it even possible? (Well, since we’re going to all the trouble of making a whole
new subhead for it, as you’ll see next, there’s no big mystery here.)

Creating an Inner Class Object from Outside the Outer Class
Instance Code Whew. Long subhead there, but it does explain what we’re
trying to do. If we want to create an instance of the inner class, we must have an
instance of the outer class. You already know that, but think about the implications…
it means you can’t instantiate the inner class from a static method of the outer
class (because, don’t forget, in static code there is no this reference) or from any
other code in any other class. Inner class instances are always handed an implicit
reference to the outer class. The compiler takes care of it, so you’ll never see anything
but the end result—the ability of the inner class to access members of the outer class.
The code to make an instance from anywhere outside nonstatic code of the outer
class is simple, but you must memorize this for the exam!

public static void main (String[] args) {
MyOuter mo = new MyOuter();
MyOuter.MyInner inner = mo.new MyInner();
inner.seeOuter();

}

The preceding code is the same regardless of whether the main() method is
within the MyOuter class or some other class (assuming the other class has access to
MyOuter, and since MyOuter has default access, that means the code must be in
a class within the same package as MyOuter).

If you’re into one-liners, you can do it like this:

public static void main (String[] args) {
MyOuter.MyInner inner = new MyOuter().new MyInner();
inner.seeOuter();

}

You can think of this as though you’re invoking a method on the outer instance, but
the method happens to be a special inner class instantiation method, and it’s invoked
using the keyword new. Instantiating an inner class is the only scenario in which you’ll
invoke new on an instance as opposed to invoking new to construct an instance.

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

Here’s a quick summary of the differences between inner class instantiation code
that’s within the outer class (but not static), and inner class instantiation code that’s
outside the outer class:

■ From inside the outer class instance code, use the inner class name in the
normal way:

MyInner mi = new MyInner();

■ From outside the outer class instance code (including static method code
within the outer class), the inner class name must now include the outer
class name,

MyOuter.MyInner

and to instantiate, you must use a reference to the outer class,

new MyOuter().new MyInner(); or outerObjRef.new MyInner();

if you already have an instance of the outer class.

Referencing the Inner or Outer Instance
from Within the Inner Class

How does an object refer to itself normally? Using the this reference. Quick
review of this:

■ The keyword this can be used only from within instance code.
In other words, not within static code.

■ The this reference is a reference to the currently-executing object.
In other words, the object whose reference was used to invoke the
currently-running method.

■ The this reference is the way an object can pass a reference to itself to some
other code, as a method argument:

public void myMethod() {
MyClass mc = new MyClass();
mc.doStuff(this); // pass a ref to object running myMethod

}

8 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

Within an inner class code, the this reference refers to the instance of the inner
class, as you’d probably expect, since this always refers to the currently-executing
object. But what if the inner class code wants an explicit reference to the outer class
instance the inner instance is tied to? In other words, how do you reference the “outer
this”? Although normally the inner class code doesn’t need a reference to the outer class,
since it already has an implicit one it’s using to access the members of the outer
class, it would need a reference to the outer class if it needed to pass that reference to
some other code as follows:

class MyInner {
public void seeOuter() {

System.out.println("Outer x is " + x);
System.out.println("Inner class ref is " + this);
System.out.println("Outer class ref is " + MyOuter.this);

}
}

If we run the complete code as follows:

class MyOuter {
private int x = 7;
public void makeInner() {

MyInner in = new MyInner();
in.seeOuter();

}
class MyInner {

public void seeOuter() {
System.out.println("Outer x is " + x);
System.out.println("Inner class ref is " + this);
System.out.println("Outer class ref is " + MyOuter.this);

}
}

public static void main (String[] args) {
MyOuter.MyInner inner = new MyOuter().new MyInner();
inner.seeOuter();

}
}

the output is

Outer x is 7
Inner class ref is MyOuter$MyInner@113708
Outer class ref is MyOuter@33f1d7

Inner Classes 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

So the rules for an inner class referencing itself or the outer instance are as follows:

■ To reference the inner class instance itself, from within the inner class code,
use this.

■ To reference the “outer this” (the outer class instance) from within the inner
class code, use <NameOfOuterClass>.this (example, MyOuter.this).

Member Modifiers Applied to Inner Classes A regular inner class is a
member of the outer class just as instance variables and methods are, so the
following modifiers can be applied to an inner class:

■ final

■ abstract

■ public

■ private

■ protected

■ static—except static turns it into a top-level nested class rather than an
inner class.

CERTIFICATION OBJECTIVE

Method-Local Inner Classes
A regular inner class is scoped inside another class’ curly braces, but outside any
method code (in other words, at the same level as an instance variable is declared).
But you can also define an inner class within a method:

class MyOuter2 {
private String x = "Outer2";

void doStuff() {
class MyInner {

public void seeOuter() {
System.out.println("Outer x is " + x);

10 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method-Local Inner Classes 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

} // close inner class method
} // close inner class definition

} // close outer class method doStuff()

} // close outer class

The preceding code declares a class, MyOuter2, with one method,
doStuff(). But inside dostuff(), another class, MyInner, is declared, and
it has a method of its own, seeOuter()). The code above is completely useless,
however, because it never instantiates the inner class! Just because you declared the
class doesn’t mean you created an instance of it. So if you want to actually use the
inner class (say, to invoke its methods), then you must make an instance of it
somewhere within the method but below the inner class definition. The following legal
code shows how to instantiate and use a method-local inner class:

class MyOuter2 {
private String x = "Outer2";
void doStuff() {

class MyInner {
public void seeOuter() {
System.out.println("Outer x is " + x);

} // close inner class method
} // close inner class definition
MyInner mi = new MyInner(); // This line must come

//after the class
mi.seeOuter();

} // close outer class method doStuff()
} // close outer class

What a Method-Local Inner Object Can and Can’t Do
A method-local inner class can be instantiated only within the method where the inner
class is defined. In other words, no other code running in any other method—inside
or outside the outer class—can ever instantiate the method-local inner class. Like
regular inner class objects, the method-local inner class object shares a special
relationship with the enclosing (outer) class object, and can access its private
(or any other) members. However, the inner class object cannot use the local variables
of the method the inner class is in. Why not?

Think about it. The local variables of the method live on the stack, and exist only
for the lifetime of the method. You already know that the scope of a local variable is
limited to the method the variable is declared in. When the method ends, the stack

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

12 Chapter 8: Inner Classes

frame is blown away and the variable is history. But even after the method completes,
the inner class object created within it might still be alive on the heap if, for
example, a reference to it was passed into some other code and then stored in an
instance variable. Because the local variables aren’t guaranteed to be alive as long as
the method-local inner class object, the inner class object can’t use them. Unless the
local variables are marked final! The following code attempts to access a local variable
from within a method-local inner class:

class MyOuter2 {

private String x = "Outer2";

void doStuff() {

String z = "local variable";

class MyInner {

public void seeOuter() {

System.out.println("Outer x is " + x);

System.out.println("Local variable z is " + z); // Won't Compile!

} // close inner class method

} // close inner class definition

} // close outer class method doStuff()

} // close outer class

Compiling the preceding code really upsets the compiler:

MyOuter2.java:8: local variable z is accessed from within inner class;
needs to be declared final

System.out.println("Local variable z is " + z);
^

Marking the local variable z as final fixes the problem:

final String z = "local variable"; // Now inner object can use it

And just a reminder about modifiers within a method: the same rules apply to
method-local inner classes as to local variable declarations. You can’t, for example,
mark a method-local inner class public, private, protected, static,
transient, and the like. The only modifiers you can apply to a method-local
inner class are abstract and final. (But of course, never both of those at the
same time as with any other class or method.)

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Anonymous Inner Classes 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

CERTIFICATION OBJECTIVE

Anonymous Inner Classes
So far we’ve looked at defining a class within an enclosing class (a regular inner
class), and within a method (a method-local inner class). Finally, we’re going to
look at the most unusual syntax you might ever see in Java, inner classes declared
without any class name at all (hence the word anonymous). And if that’s not weird
enough, you can even define these classes not just within a method, but within an
argument to a method. We’ll look first at the plain old (as if there is such a thing as
a plain old anonymous inner class) version (actually, even the plain old version
comes in two flavors), and then at the argument-declared anonymous inner class.

Perhaps your most important job here is to learn to not be thrown when you
see the syntax. The exam is littered with anonymous inner class code; you might
see it on questions about threads, wrappers, overriding, garbage collection, and you
get the idea.

Plain Old Anonymous Inner Classes, Flavor One
Check out the following legal-but-strange-the-first-time-you-see-it code:

class Popcorn {
public void pop() {

System.out.println("popcorn");
}

}
class Food {

Popcorn p = new Popcorn() {
public void pop() {

System.out.println("anonymous popcorn");
}

};
}

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

Let’s look at what’s in the preceding code:

■ We define two classes, Popcorn and Food.

■ Popcorn has one method, pop().

■ Food has one instance variable, declared as type Popcorn.

■ That’s it for Food. Food has no methods.

And here’s the big thing to get:

■ The Popcorn reference variable refers not to an instance of Popcorn, but
to an instance of an anonymous (unnamed) subclass of Popcorn.

Let’s look at just the anonymous class code:

2. Popcorn p = new Popcorn() {
3. public void pop() {
4. System.out.println("anonymous popcorn");
5. }
6. };

Line 2 Line 2 starts out as an instance variable declaration of type Popcorn.
But instead of looking like this:

Popcorn p = new Popcorn(); // ← notice the semicolon at the end

there’s a curly brace at the end of line 2, where a semicolon would normally be

Popcorn p = new Popcorn() { // ← a curly brace rather than semicolon

You can read line 2 as saying,
“Declare a reference variable, p, of type Popcorn. Then declare a new class

which has no name, but which is a subclass of Popcorn. And here’s the curly brace
that opens the class definition…”

14 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Anonymous Inner Classes 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

Line 3 Line 3, then, is actually the first statement within the new class definition.
And what is it doing? Overriding the pop() method of the superclass Popcorn.
This is the whole point of making an anonymous inner class—to override one or
more methods of the superclass! (Or to implement methods of an interface, but we’ll
save that for a little later.)

Line 4 Line 4 is the first (and in this case only) statement within the overriding
pop() method. Nothing special there.

Line 5 Line 5 is the closing curly brace of the pop() method. Again, nothing
special there.

Line 6 Here’s where you have to pay attention: line 6 includes a curly brace closing
off the anonymous class definition (it’s the companion brace to the one on line 2), but
there’s more! Line 6 also has the semicolon that ends the statement started on line 2. The
statement where it all began. The statement declaring and initializing the Popcorn
reference variable. And what you’re left with is a Popcorn reference to a brand new
instance of a brand new, just-in-time, anonymous (no name) subclass of Popcorn.

The closing semicolon is often hard to spot. So you might see code on the
exam like this:

2. Popcorn p = new Popcorn() {

3. public void pop() {

4. System.out.println(“anonymous popcorn”);

5. }

6. } // Missing the semicolon needed to end statement on 2!!
7. Foo f = new Foo();

You’ll need to be especially careful about the syntax when inner classes are
involved, because the code on Line 6 looks perfectly natural. We’re not used
to seeing semicolons following curly braces (the only other time it happens is
with shortcut array initializations).

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

16 Chapter 8: Inner Classes

Polymorphism is in play when anonymous inner classes are involved. Remember
that, as in the preceding Popcorn example, we’re using a superclass reference
variable type to refer to a subclass object. What are the implications? You can
only call methods on an anonymous inner class reference that are defined in
the reference variable type! This is no different from any other polymorphic
references, for example,

class Horse extends Animal{

void buck() { }

}

class Animal {

void eat() { }

}

class Test {

public static void main (String[] args) {

Animal h = new Horse();

h.eat(); // Legal, class Animal has an eat() method

h.buck(); // Not legal! Class Animal doesn’t have buck()

}

}

So on the exam, you must be able to spot an anonymous inner class that—
rather than overriding a method of the superclass—defines its own new
method. The method definition isn’t the problem, though; the real issue is
how do you invoke that new method? The reference variable type (the
superclass) won’t know anything about that new method (defined in the
anonymous subclass), so the compiler will complain if you try to invoke any
method on an anonymous inner class reference that is not in the superclass
class definition.

Check out the following, illegal code:

class Popcorn {
public void pop() {

System.out.println("popcorn");
}

}
class Food {

Popcorn p = new Popcorn() {
public void sizzle() {
System.out.println("anonymous sizzling popcorn");

}
public void pop() {

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("anonymous popcorn");
}

};
public void popIt() {

p.pop(); // OK, Popcorn has a pop() method
p.sizzle(); // Not Legal! Popcorn does not have sizzle()

}
}

Compiling the preceding code gives us,

Anon.java:19: cannot resolve symbol
symbol : method sizzle ()
location: class Popcorn

p.sizzle();
^

which is the compiler’s way of saying, “I can’t find method sizzle() in class
Popcorn,” followed by, “Get a clue.”

Plain Old Anonymous Inner Classes, Flavor Two
The only difference between flavor one and flavor two is that flavor one creates an
anonymous subclass of the specified class type, whereas flavor two creates an anonymous
implementer of the specified interface type. In the previous examples, we defined a
new anonymous subclass of type Popcorn as follows:

Popcorn p = new Popcorn() {

But if Popcorn were an interface type instead of a class type, then the new
anonymous class would be an implementer of the interface rather than a subclass of
the class. Look at the following example:

interface Cookable {
public void cook();

}
class Food {

Cookable c = new Cookable() {
public void cook() {
System.out.println("anonymous cookable implementer");

}
};

}

Anonymous Inner Classes 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

The preceding code, like the Popcorn example, still creates an instance of an
anonymous inner class, but this time the new just-in-time class is an implementer
of the Cookable interface. And note that this is the only time you will ever see
the syntax,

new Cookable()

where Cookable is an interface rather than a non-abstract class type. Because
think about it, you can’t instantiate an interface, yet that’s what the code looks like
it’s doing. But of course it’s not instantiating a Cookable object, it’s creating an
instance of a new, anonymous, implementer of Cookable. So you can read this line,

Cookable c = new Cookable() {

as “Declare a reference variable of type Cookable that, obviously, will refer to
an object from a class that implements the Cookable interface. But, oh yes, we
don’t yet have a class that implements Cookable, so we’re going to make one
right here, right now. We don’t need a name for the class, but it will be a class that
implements Cookable, and this curly brace starts the definition of the new
implementing class.”

One more thing to keep in mind about anonymous interface implementers—they
can implement only one interface. There simply isn’t any mechanism to say that
your anonymous inner class is going to implement multiple interfaces. In fact, an
anonymous inner class can’t even extend a class and implement an interface at the
same time. The inner class has to choose either to be a subclass of a named class—
and not directly implement any interfaces at all—or to implement a single interface.
By directly, we mean actually using the keyword implements as part of the class
declaration. If the anonymous inner class is a subclass of a class type, it automatically
becomes an implementer of any interfaces implemented by the superclass.

Don’t be fooled by any attempts to instantiate an interface except in the case
of an anonymous inner class. The following is not legal,

Runnable r = new Runnable(); // can’t instantiate interface

whereas the following is legal, because it’s instantiating an implementer of the
Runnable interface (an anonymous implementation class):

Runnable r = new Runnable() { // curly brace instead of semicolon

public void run() { }

};

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

Argument-Defined Anonymous Inner Class
If you understood what we’ve covered so far in this chapter, then this last part will
be simple. If you are still a little fuzzy on anonymous classes, however, then you
should reread the previous sections. If they’re not completely clear, we’d like to take
full responsibility for the confusion. But we’ll be happy to share.

OK, if you’ve made it to this sentence then we’re all going to assume you
understood the previous section, and now we’re just going to add one new twist.
Imagine the following scenario. You’re typing along, creating the Perfect Class, when
you write code calling a method on a Bar object, and that method takes an object
of type Foo (an interface).

class MyWonderfulClass {

void go() {

Bar b = new Bar();

b.doStuff(AckWeDon'tHaveAFoo!); // Don't try to compile this at home

}

}

interface Foo {

void foof();

}

class Bar {

void doStuff(Foo f) { }

}

No problemo, except that you don’t have an object from a class that implements
Foo. But you can’t instantiate one, either, because you don’t even have a class that
implements Foo, let alone an instance of one. So you first need a class that
implements Foo, and then you need an instance of that class to pass to the Bar
class’ doStuff() method. Savvy Java programmer that you are, you simply define
an anonymous inner class, right inside the argument. That’s right, just where you least
expect to find a class. And here’s what it looks like:

1. class MyWonderfulClass {
2. void go() {
3. Bar b = new Bar();
4. b.doStuff(new Foo() {
5. public void foof() {
6. System.out.println("foofy");
7. } // end foof method
8. }); // end inner class def, arg, and end statement
9. } // end go()
10. } // end class
11.
12. interface Foo {

Anonymous Inner Classes 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

20 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

13. void foof();
14. }
15. class Bar {
16. void doStuff(Foo f) { }
17. }

All the action starts on line 4. We’re calling doStuff() on a Bar object, but
the method takes an instance that IS-A Foo, where Foo is an interface. So we must
make both an implementation class and an instance of that class, all right here in the
argument to doStuff(). So that’s what we do. We write

new Foo() {

to start the new class definition for the anonymous class that implements the Foo
interface. Foo has a single method to implement, foof(), so on lines 5, 6, and 7
we implement the foof() method. Then on line 8—whoa!—more strange syntax
appears. The first curly brace closes off the new anonymous class definition. But
don’t forget that this all happened as part of a method argument, so the close
parenthesis ‘)’ finishes off the method invocation, and then we must still end the
statement that began on line 4, so we end with a semicolon. Study this syntax! You
will see anonymous inner classes on the exam, and you’ll have to be very, very picky
about the way they’re closed. If they’re argument local, they end like this,

});

but if they’re just plain old anonymous classes, then they end like this:

};

Regardless, the syntax is not what you use in virtually any other part of Java, so be
careful. Any question from any part of the exam might involve anonymous inner
classes as part of the code.

CERTIFICATION OBJECTIVE

Static Nested Classes
We saved the easiest for last, as a kind of treat :)

You’ll sometimes hear static nested classes referred to as top-level nested classes, or
static inner classes, but they really aren’t inner classes at all, by the standard definition

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

Static Nested Classes 21

of an inner class. While an inner class (regardless of the flavor) enjoys that special
relationship with the outer class (or rather the instances of the two classes share a
relationship), a static nested class does not. It is simply a non-inner (also called
“top-level”) class scoped within another. So with static classes it’s really more about
name-space resolution than about an implicit relationship between the two classes.

A static nested class is simply a class that’s a static member of the enclosing class,
as follows:

class BigOuter {
static class Nested { }

}

The class itself isn’t really “static;” there’s no such thing as a static class. The
static modifier in this case says that the nested class is a static member of the outer
class. That means it can be accessed, as with other static members, without having an
instance of the outer class.

Just as a static method does not have access to the instance variables and
methods of the class, a static nested class does not have access to the instance
variables and methods of the outer class. Look for static nested classes with
code that behaves like a nonstatic (regular inner) class.

Instantiating a Static Nested Class
The syntax for instantiating a static nested class is a little different from a normal
inner class, and looks like this:

class BigOuter {
static class Nested { }

}
class Broom {

public static void main (String [] args) {
BigOuter.Nested n = new BigOuter.Nested(); //Use both class names

}
}

CERTIFICATION SUMMARY
You’re on the home stretch now; just one more chapter follows this one. You’ve
learned all about inner classes (including static nested classes), and you’re aware that
they’ll show up throughout the exam, regardless of the topic. You’re comfortable with

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

22 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

the sometimes bizarre syntax, and you know how to spot legal and illegal inner class
definitions.

We looked first at “regular” inner classes, where one class is a member of another.
You learned that coding an inner class means putting the class definition of the inner
class inside the curly braces of the enclosing (outer) class, but outside of any method
or other code block. We learned that an inner class instance shares a special relationship
with a specific instance of the outer class, and that this special relationship lets the
inner class access all members of the outer class, including those marked private.
You learned that to instantiate an inner class, you must have a reference to an instance
of the outer class.

Next we looked at method-local inner classes—classes defined inside a method.
We saw that the code for a method-local inner class looks virtually the same as the
code for any other class definition, except that you can’t apply an access modifier the
way you can to a regular inner class. You also learned why method-local inner classes
cannot use nonfinal local variables declared within the same method—the inner
class instance may outlive the stack frame, so the local variable might vanish while
the inner class object is still alive. We showed you that to use the inner class you need
to instantiate it, and that the instantiation must come after the class declaration in
the method.

We also explored the strangest inner class type of all—the anonymous inner class.
You learned that they come in two forms, normal and argument-local. Normal,
ho-hum, anonymous inner classes are created as part of a variable assignment, while
argument-local inner classes are actually declared, defined, and automatically
instantiated all within the argument to a method! We covered the way anonymous
inner classes can be either a subclass of the named class type, or an implementer of
the named interface. Finally, we looked at how polymorphism applies to anonymous
inner classes: you can invoke on the new instance only those methods defined in
the named class or interface type. In other words, even if the anonymous inner class
defines it’s own new method, no code from anywhere outside the inner class will
be able to invoke that method.

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As if we weren’t already having enough fun for one day, we pushed on to static
inner classes, which really aren’t inner classes at all. Known as static nested classes
(or top-level nested classes), a nested class marked with the static modifier is
quite similar to any other non-inner class, except that to access it, code must have
access to both the nested and enclosing class. We saw that because the class is static,
no instance of the enclosing class is needed, and thus the static nested class does not
share a special relationship with any instance of the enclosing class.

We’ve finished the inner class tour, and now it’s up to you to review the Two-Minute
Drill and take the Self Test. We can virtually guarantee that if you can’t answer these
questions correctly, you probably can’t pass the exam. On the bright side, though, a
strong knowledge of inner class syntax and behavior should get you through some
of the exam’s toughest questions. And did you know that recent studies show that
intense mental effort—like working on logic puzzles—can actually increase the
synaptic connections in your brain? This chapter’s Self-Test qualifies as “intense
mental effort,” and might be covered under some health insurance plans.

Certification Summary 23

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

✓TWO-MINUTE DRILL
Here are some of the key points from the certification objectives (which for this
chapter, means the four inner class topics).

Inner Classes

❑ A “regular” inner class is declared inside the curly braces of another class, but
outside any method or other code block.

❑ An inner class is a full-fledged member of the enclosing (outer) class, so it can
be marked with an access modifier as well as the abstract or final
modifiers (but of course, never both abstract and final together—
remember that abstract means it must be subclassed, whereas final
means it cannot be subclassed).

❑ An inner class instance shares a special relationship with an instance of the
enclosing class. This relationship gives the inner class access to all of the outer
class’ members, including those marked private.

❑ To instantiate an inner class, you must have a reference to an instance of the
outer class.

❑ From code within the enclosing class, you can instantiate the inner class
using only the name of the inner class, as follows:
MyInner mi = new MyInner();

❑ From code outside the enclosing class’ instance methods, you can instantiate
the inner class only by using both the inner and outer class names, and a
reference to the outer class as follows:
MyOuter mo = new MyOuter();
MyOuter.MyInner inner = mo.new MyInner();

❑ From code within the inner class, the keyword this holds a reference to the
inner class instance. To reference the outer this (in other words, the instance
of the outer class that this inner instance is tied to) precede the keyword
this with the outer class name as follows:
MyOuter.this;

24 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Two-Minute Drill 25

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

Method-Local Inner Classes

❑ A method-local inner class is defined within a method of the enclosing class.

❑ For the inner class to be used, you must instantiate it, and that instantiation
must happen within the same method, but after the class definition code.

❑ A method-local inner class cannot use variables declared within the method
(including parameters) unless those variables are marked final.

❑ The only modifiers you can apply to a method-local inner class are
abstract and final. (Never both at the same time, though.)

Anonymous Inner Classes

❑ Anonymous inner classes have no name, and their type must be either a
subclass of the named type or an implementer of the named interface.

❑ An anonymous inner class is always created as part of a statement, so don’t
forget to close the statement after the class definition, with a curly brace. This
is one of the rare times you’ll see a curly brace followed by a semicolon in Java.

❑ Because of polymorphism, the only methods you can call on an anonymous
inner class reference are those defined in the reference variable class (or interface),
even though the anonymous class is really a subclass or implementer of the
reference variable type.

❑ An anonymous inner class can extend one subclass, or implement one
interface. Unlike non-anonymous classes (inner or otherwise), an anonymous
inner class cannot do both. In other words, it cannot both extend a class and
implement an interface, nor can it implement more than one interface.

❑ An argument-local inner class is declared, defined, and automatically
instantiated as part of a method invocation. The key to remember is that the
class is being defined within a method argument, so the syntax will end the
class definition with a curly brace, followed by a closing parenthesis to end
the method call, followed by a semicolon to end the statement:
});

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Static Nested Classes

❑ Static nested classes are inner classes marked with the static modifier.

❑ Technically, a static nested class is not an inner class, but instead is considered
a top-level nested class.

❑ Because the nested class is static, it does not share any special relationship
with an instance of the outer class. In fact, you don’t need an instance of the
outer class to instantiate a static nested class.

❑ Instantiating a static nested class requires using both the outer and nested
class names as follows:
BigOuter.Nested n = new BigOuter.Nested();

❑ A static nested class cannot access nonstatic members of the outer class, since
it does not have an implicit reference to any outer instance (in other words,
the nested class instance does not get an outer this reference).

26 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 27

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

SELF TEST
The following questions will help you measure your understanding of the dynamic and life-altering
material presented in this chapter. Because this chapter spans so many different objectives, the
questions here are not organized in specific objective categories. Read all of the choices carefully.
Choose all correct answers for each question. Take your time. Breathe.

1. Given the following,

public class MyOuter {
public static class MyInner {

public static void foo() { }
}

}

which statement, if placed in a class other than MyOuter or MyInner, instantiates an instance
of the nested class?

A. MyOuter.MyInner m = new MyOuter.MyInner();

B. MyOuter.MyInner mi = new MyInner();

C. MyOuter m = new MyOuter();
MyOuter.MyInner mi = m.new MyOuter.MyInner();

D. MyInner mi = new MyOuter.MyInner();

2. Which two are true about a static nested class?

A. You must have a reference to an instance of the enclosing class in order to instantiate it.

B. It does not have access to nonstatic members of the enclosing class.

C. Its variables and methods must be static.

D. It can be instantiated using new MyOuter.MyInner();.

E. It must extend the enclosing class.

3. Which constructs an anonymous inner class instance?

A. Runnable r = new Runnable() { };

B. Runnable r = new Runnable(public void run() { });

C. Runnable r = new Runnable { public void run(){}};

D. Runnable r = new Runnable() {public void run{}};

E. System.out.println(new Runnable() {public void run() { }});

F. System.out.println(new Runnable(public void run() {}));

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

28 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

4. Given the following,

class Boo {
Boo(String s) { }
Boo() { }

}
class Bar extends Boo {

Bar() { }
Bar(String s) {super(s);}
void zoo() {
// insert code here
}

}

which two create an anonymous inner class from within class Bar? (Choose two.)

A. Boo f = new Boo(24) { };

B. Boo f = new Bar() { };

C. Boo f = new Boo() {String s; };

D. Bar f = new Boo(String s) { };

E. Boo f = new Boo.Bar(String s) { };

5. Given the following,

1.class Foo {
2. class Bar{ }
3.}
4.class Test {
5. public static void main (String [] args) {
6. Foo f = new Foo();
7. // Insert code here
8. }
9.}

which statement, inserted at line 5, creates an instance of Bar?

A. Foo.Bar b = new Foo.Bar();

B. Foo.Bar b = f.new Bar();

C. Bar b = new f.Bar();

D. Bar b = f.new Bar();

E. Foo.Bar b = new f.Bar();

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6. Which two are true about a method-local inner class?

A. It must be marked final.

B. It can be marked abstract.

C. It can be marked public.

D. It can be marked static.

E. It can access private members of the enclosing class.

7. Which is true about an anonymous inner class?

A. It can extend exactly one class and implement exactly one interface.

B. It can extend exactly one class and can implement multiple interfaces.

C. It can extend exactly one class or implement exactly one interface.

D. It can implement multiple interfaces regardless of whether it also extends a class.

E. It can implement multiple interfaces if it does not extend a class.

8. Given the following,

public class Foo {
Foo() {System.out.print("foo");}
class Bar{

Bar() {System.out.print("bar");}
public void go() {System.out.print("hi");}

}
public static void main (String [] args) {

Foo f = new Foo();
f.makeBar();

}
void makeBar() {
(new Bar() {}).go();

}
}

what is the result?

A. Compilation fails.

B. An error occurs at runtime.

C. foobarhi

D. barhi

E. hi

Self Test 29

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

30 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

9. Given the following,

1.public class TestObj {
2. public static void main (String [] args) {
3. Object o = new Object() {
4. public boolean equals(Object obj) {
5. return true;
6. }
7. }
8. System.out.println(o.equals("Fred"));
9. }

10.}

what is the result?

A. An exception occurs at runtime.

B. true

C. fred

D. Compilation fails because of an error on line 3.

E. Compilation fails because of an error on line 4.

F. Compilation fails because of an error on line 8.

G. Compilation fails because of an error on a line other than 3, 4, or 8.

10. Given the following,

1. public class HorseTest {
2. public static void main (String [] args) {
3. class Horse {
4. public String name;
5. public Horse(String s) {
6. name = s;
7. }
8. }
9. Object obj = new Horse("Zippo");

10. Horse h = (Horse) obj;
11. System.out.println(h.name);
12. }
13. }

what is the result?

A. An exception occurs at runtime at line 10.

B. Zippo

C. Compilation fails because of an error on line 3.

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 31

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

D. Compilation fails because of an error on line 9.

E. Compilation fails because of an error on line 10.

F. Compilation fails because of an error on line 11.

11. Given the following,

1. public class HorseTest {
2. public static void main (String [] args) {
3. class Horse {
4. public String name;
5. public Horse(String s) {
6. name = s;
7. }
8. }
9. Object obj = new Horse("Zippo");
10. System.out.println(obj.name);
11. }
12. }

what is the result?

A. An exception occurs at runtime at line 10.

B. Zippo

C. Compilation fails because of an error on line 3.

D. Compilation fails because of an error on line 9.

E. Compilation fails because of an error on line 10.

12. Given the following,

public abstract class AbstractTest {
public int getNum() {

return 45;
}
public abstract class Bar {
public int getNum() {
return 38;

}
}
public static void main (String [] args) {

AbstractTest t = new AbstractTest() {
public int getNum() {
return 22;

}
};

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AbstractTest.Bar f = t.new Bar() {
public int getNum() {
return 57;
}

};
System.out.println(f.getNum() + " " + t.getNum());

}
}

what is the result?

A. 57 22

B. 45 38

C. 45 57

D. An exception occurs at runtime.

E. Compilation fails.

32 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test Answers 33

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

SELF TEST ANSWERS
1. � A. MyInner is a static nested class, so it must be instantiated using the fully-scoped name

of MyOuter.MyInner.
� B is incorrect because it doesn’t use the enclosing name in the new. C is incorrect because
it uses incorrect syntax. When you instantiate a nested class by invoking new on an instance of
the enclosing class, you do not use the enclosing name. The difference between A and C is that
C is calling new on an instance of the enclosing class rather than just new by itself. D is
incorrect because it doesn’t use the enclosing class name in the variable declaration.

2. � B and D. B is correct because a static nested class is not tied to an instance of the
enclosing class, and thus can’t access the nonstatic members of the class (just as a static method
can’t access nonstatic members of a class). D uses the correct syntax for instantiating a static
nested class.
� A is incorrect because static nested classes do not need (and can’t use) a reference to an
instance of the enclosing class. C is incorrect because static nested classes can declare and define
nonstatic members. E is wrong because…it just is. There’s no rule that says an inner or nested
class has to extend anything.

3. � E is correct. It defines an anonymous inner class instance, which also means it creates an
instance of that new anonymous class at the same time. The anonymous class is an implementer
of the Runnable interface, so it must override the run() method of Runnable.
ý A is incorrect because it doesn’t override the run() method, so it violates the rules of
interface implementation. B, C, and D use incorrect syntax.

4. � B and C. B is correct because anonymous inner classes are no different from any other
class when it comes to polymorphism. That means you are always allowed to declare a
reference variable of the superclass type and have that reference variable refer to an instance of a
subclass type, which in this case is an anonymous subclass of Bar. Since Bar is a subclass of
Boo, it all works. C uses correct syntax for creating an instance of Boo.
ý A is incorrect because it passes an int to the Boo constructor, and there is no matching
constructor in the Boo class. D is incorrect because it violates the rules of polymorphism—you
cannot refer to a superclass type using a reference variable declared as the subclass type. The
superclass is not guaranteed to have everything the subclass has. E uses incorrect syntax.

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

34 Chapter 8: Inner Classes

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

5. � B is correct because the syntax is correct—using both names (the enclosing class and the
inner class) in the reference declaration, then using a reference to the enclosing class to invoke
new on the inner class.
� A, C, D, and E all use incorrect syntax. A is incorrect because it doesn’t use a reference to
the enclosing class, and also because it includes both names in the new. C is incorrect because
it doesn’t use the enclosing class name in the reference variable declaration, and because the
new syntax is wrong. D is incorrect because it doesn’t use the enclosing class name in the
reference variable declaration. E is incorrect because the new syntax is wrong.

6. � B and E. B is correct because a method-local inner class can be abstract, although it means
a subclass of the inner class must be created if the abstract class is to be used (so an abstract
method-local inner class is probably not useful). E is correct because a method-local inner class
works like any other inner class—it has a special relationship to an instance of the enclosing
class, thus it can access all members of the enclosing class.
� A is incorrect because a method-local inner class does not have to be declared final
(although it is legal to do so). C and D are incorrect because a method-local inner class cannot
be made public (remember—you cannot mark any local variables as public), or static.

7. � C is correct because the syntax of an anonymous inner class allows for only one named
type after the new, and that type must be either a single interface (in which case the
anonymous class implements that one interface) or a single class (in which case the anonymous
class extends that one class).
� A, B, D, and E are all incorrect because they don’t follow the syntax rules described in the
response for answer C.

8. � C is correct because first the Foo instance is created, which means the Foo constructor
runs and prints “foo”. Next, the makeBar() method is invoked which creates a Bar,
which means the Bar constructor runs and prints “bar”, and finally the go() method is
invoked on the new Bar instance, which means the go() method prints “hi”.
� A, C, D, E, and F are incorrect based on the program logic described above.

9. � G. This code would be legal if line 7 ended with a semicolon. Remember that line 3 is a
statement that doesn’t end until line 7, and a statement needs a closing semicolon!
� A, B, C, D, E, and F are incorrect based on the program logic described above. If the
semicolon were added at line 7, then answer B would be correct—the program would print
“true”, the return from the equals() method overridden by the anonymous subclass
of Object.

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test Answers 35

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 8

10. � B. The code in the HorseTest class is perfectly legal. Line 9 creates an instance of the
method-local inner class Horse, using a reference variable declared as type Object. Line 10 casts
the Horse object to a Horse reference variable, which allows line 11 to compile. If line 10 were
removed, the HorseTest code would not compile, because class Object does not have a name
variable.
� A, C, D, E, and F are incorrect based on the program logic described above.

11. � E. This code is identical to the code in question 10, except the casting statement has been
removed. If you use a reference variable of type Object, you can access only those members
defined in class Object.
� A, B, C, and D are incorrect based on the program logic described above and in the
previous question.

12. � A. You can define an inner class as abstract, which means you can instantiate only
concrete subclasses of the abstract inner class. The object referenced by the variable t is an
instance of an anonymous subclass of AbstractTest, and the anonymous class overrides the
getNum() method to return 22. The variable referenced by f is an instance of an
anonymous subclass of Bar, and the anonymous Bar subclass also overrides the getNum()
method (to return 57). Remember that to instantiate a Bar instance, we need an instance of
the enclosing AbstractTest class to tie to the new Bar inner class instance. AbstractTest can’t
be instantiated because it’s abstract, so we created an anonymous subclass (non-abstract) and
then used the instance of that anonymous subclass to tie to the new Bar subclass instance.
� B, C, D, E, and F are incorrect based on the program logic described above.

P:\010Comp\CertPrs8\684-6\ch08.vp
Wednesday, November 13, 2002 5:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9
Threads

CERTIFICATION OBJECTIVES

• Defining, Instantiating, and
Starting Threads

• Preventing Thread Execution

• Synchronizing Code

• Thread Interaction

✓ Two-Minute Drill

Q&A Self Test

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9
Blind Folio 9:1

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

CERTIFICATION OBJECTIVE

Defining, Instantiating, and Starting Threads
(Exam Objective 7.1)

Write code to define, instantiate, and start new threads using both java.lang.Thread and
java.lang.Runnable.

Imagine a stockbroker application with a lot of complex behavior that the user initiates.
One of the applications is “download last stock option prices,” another is “check
prices for warnings,” and a third time-consuming operation is, “analyze historical
data for company XYZ.”

In a single-threaded runtime environment, these actions execute one after another.
The next action can happen only when the previous one is finished. If a historical
analysis takes half an hour, and the user selects to perform a download and check
afterward, the warning may come too late to, say, buy or sell stock as a result.

We just imagined the sort of application that cries out for multithreading. Ideally,
the download should happen in the background (that is, in another thread). That
way, other processes could happen at the same time so that, for example, a warning
could be communicated instantly. All the while, the user is interacting with other
parts of the application. The analysis, too, could happen in a separate thread, so the
user can work in the rest of the application while the results are being calculated.

So what exactly is a thread? In Java, “thread” means two different things:

■ An instance of class java.lang.Thread

■ A thread of execution

An instance of Thread is just…an object. Like any other object in Java, it has
variables and methods, and lives and dies on the heap. But a thread of execution is an
individual process (a “lightweight” process) that has its own call stack. In Java, there
is one thread per call stack—or, to think of it in reverse, one call stack per thread. Even
if you don’t create any new threads in your program, threads are back there running.

The main() method that starts the whole ball rolling runs in one thread, called
(surprisingly) the main thread. If you looked at the main call stack (and you can,

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

anytime you get a stack trace from something that happens after main begins, but not
within another thread) you’d see that main() is the first method on the stack—the
method at the bottom. But as soon as you create a new thread, a new stack materializes
and methods called from that thread run in a call stack that’s separate from the main()
call stack. That second new call stack is said to run concurrently with the main thread,
but we’ll refine that notion as we go through this chapter.

You might find it confusing that we’re talking about code running concurrently—as
if in parallel—yet you know there’s only one CPU on most of the machines running
Java. What gives? The JVM, which gets its turn at the CPU by whatever scheduling
mechanism the underlying OS uses, operates like a mini-OS and schedules its own
threads regardless of the underlying operating system. In some JVMs, the java threads
are actually mapped to native OS threads, but we won’t discuss that here; native
threads are not on the exam. Nor is an understanding of how threads behave in
different JVM environments required knowledge. In fact, the most important concept
to understand from this entire chapter is

When it comes to threads, very little is guaranteed.

So be very cautious about interpreting the behavior you see on one machine
as “the way threads work.” The exam expects you to know what is and is not
guaranteed behavior, so that you can design your program in such a way that it
will work regardless of the underlying JVM. That’s part of the whole point of Java.

Don’t make the mistake of designing your program to be dependent on a
particular implementation of the JVM. As you’ll learn a little later, different
JVMs can run threads in profoundly different ways. For example, one JVM
might be sure that all threads get their turn, with a fairly even amount of time
allocated for each thread in a nice, happy, round-robin fashion. But in other
JVMs, a thread might start running and then just hog the whole show, never
stepping out so others can have a turn. If you test your application on the
“nice turn-taking” JVM, and you don’t know what is and is not guaranteed in
Java, then you might be in for a big shock when you run it under a JVM with
a different thread scheduling mechanism.

The thread questions on the exam are among the most difficult. In fact, for most
people they are the toughest questions on the exam, and with four objectives for
threads you’ll be answering a lot of thread questions. If you’re not already familiar

Defining, Instantiating, and Starting Threads (Exam Objective 7.1) 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

with threads, you’ll probably need to spend some time experimenting. Also, one
final disclaimer: This chapter makes no attempt to teach you how to design a good, safe,
multithreaded application! You’re here to learn what you need to get through the thread
questions on the exam. Before you can write decent multithreaded code, however, you
really need to study more on the complexities and subtleties of multithreaded code.

With that out of the way, let’s dive into threads. It’s kind of a bad news/good news
thing. The bad news is that this is probably the most difficult chapter. The good
news is, it’s the last chapter in the Programmer’s Exam part of the book. So kick back
and enjoy the fact that once you’ve finished learning what’s in this chapter, and you’ve
nailed the self-test questions, you’re probably ready to take—and pass—the exam.

Making a Thread
A thread in Java begins as an instance of java.lang.Thread. You’ll find methods in
the Thread class for managing threads including creating, starting, and pausing them.
For the exam, you’ll need to know, at a minimum, the following methods:

start()
yield()
sleep()
run()

The action all starts from the run() method. Think of the code you want to
execute in a separate thread as “the job to do.” In other words, you have some work
that needs to be done, say, downloading stock prices in the background while other
things are happening in the program, so what you really want is that job to be executed
in its own thread. So if the work you want done is the job, the one doing the work
(actually executing the job code) is the thread. And the job always starts from a run()
method as follows:

public void run() {
// your job code goes here

}

You always write the code that needs to be run in a separate thread in a run()
method. The run() method will call other methods, of course, but the thread
of execution—the new call stack—always begins by invoking run(). So where
does the run() method go? In one of the two classes you can use to define your
thread job.

4 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can define and instantiate a thread in one of two ways:

■ Extend the java.lang.Thread class

■ Implement the Runnable interface

You need to know about both for the exam, although in the real world you’re much
more likely to implement Runnable than extend Thread. Extending the Thread class
is the easiest, but it’s usually not a good OO practice. Why? Because subclassing should
be reserved for classes that extend an existing class, because they’re a more specialized
version of the more general superclass. So the only time it really makes sense (from an
OO perspective) to extend Thread is when you have a more specialized version of a
Thread class. In other words, because you have more specialized thread-specific behavior.
Chances are, though, that the thread work you want is really just a job to be done by
a thread. In that case, you should design a class that implements the Runnable interface,
which also leaves your class free to extend from some other class.

Defining a Thread
To define a thread, you need a place to put your run() method, and as we just
discussed, you can do that by extending the Thread class or by implementing the
Runnable interface. We’ll look at both in this section.

Extending java.lang.Thread
The simplest way to define code to run in a separate thread is to

■ Extend the Thread class.

■ Override the run() method.

It looks like this:

class MyThread extends Thread {
public void run() {
System.out.println("Important job running in MyThread");

}
}

The limitation with this approach (besides being a poor design choice in most cases)
is that if you extend Thread, you can’t extend anything else. And it’s not as if you really

Defining, Instantiating, and Starting Threads (Exam Objective 7.1) 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

need that inherited Thread class behavior, because in order to use a thread you’ll need
to instantiate one anyway.

Keep in mind that you’re free to overload the run() method in your Thread
subclass:

class MyThread extends Thread {
public void run() {
System.out.println("Important job running in MyThread");

}
public void run(String s) {

System.out.println("String in run is " + s);
}

}

But know this: the overloaded run(String s) method won’t be called unless
you call it. It will not be used as the basis of a new call stack.

Implementing java.lang.Runnable
Implementing the Runnable interface gives you a way to extend from any class you
like, but still define behavior that will be run by a separate thread. It looks like this:

class MyRunnable implements Runnable {
public void run() {
System.out.println("Important job running in MyRunnable");

}
}

Regardless of which mechanism you choose, you’ve now got yourself some code
that can be run by a thread of execution. So now let’s take a look at instantiating your
thread-capable class, and then we’ll figure out how to actually get the thing running.

Instantiating a Thread
Remember, every thread of execution begins as an instance of class Thread. Regardless
of whether your run()method is in a Thread subclass or a Runnable implementation
class, you still need a Thread object to do the work.

If you extended the Thread class, instantiation is dead simple:

MyThread t = new MyThread();

6 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are some additional overloaded constructors, but we’ll look at those in
a moment.

If you implement Runnable, instantiation is only slightly less simple. To have code
run by a separate thread, you still need a Thread instance. But rather than combining
both the thread and the job (the code in the run() method) into one class, you’ve
split it into two classes—the Thread class for the thread-specific code and your Runnable
implementation class for your job-that-should-be-run-by-a-thread code.

First, you instantiate your Runnable class:

MyRunnable r = new MyRunnable();

Next, you get yourself an instance of java.lang.Thread (somebody has to run your
job…), and you give it your job!

Thread t = new Thread(r); // Pass your Runnable to the Thread

If you create a thread using the no-arg constructor, the thread will call its own
run() method when it’s time to start working. That’s exactly what you want when
you extend Thread, but when you use Runnable, you need to tell the new thread to
use your run() method rather than its own. The Runnable you pass to the Thread
constructor is called the target or the target Runnable.

You can pass a single Runnable instance to multiple Thread objects, so that the
same Runnable becomes the target of multiple threads, as follows:

public class TestThreads {
public static void main (String [] args) {
MyRunnable r = new MyRunnable();
Thread foo = new Thread(r);
Thread bar = new Thread(r);
Thread bat = new Thread(r);

}
}

Giving the same target to multiple threads means that several threads of execution
will be running the very same job.

Besides the no-arg constructor and the constructor that takes a Runnable (the target,
the instance with the job to do), there are other overloaded constructors in class Thread.
The complete list of constructors is

■ Thread()

■ Thread(Runnable target)

Defining, Instantiating, and Starting Threads (Exam Objective 7.1) 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

■ Thread(Runnable target, String name)

■ Thread(String name)

■ Thread(ThreadGroup group, Runnable target)

■ Thread(ThreadGroup group, Runnable target, String name)

■ Thread(ThreadGroup group, String name)

You need to recognize all of them for the exam! A little later, we’ll discuss some of
the other constructors in the preceding list.

So now you’ve made yourself a Thread instance, and it knows which run()method
to call. But nothing is happening yet. At this point, all we’ve got is a plain old Java
object of type Thread. It is not yet a thread of execution. To get an actual thread—
a new call stack—we still have to start the thread.

When a thread has been instantiated but not started (in other words, the start()
method has not been invoked on the Thread instance), the thread is said to be in the
new state. At this stage, the thread is not yet considered to be alive. The “aliveness” of a
thread can be tested by calling the isAlive() method on the Thread instance. In
a nutshell, a thread is considered alive at some point after it has been started (you have
to give the JVM a little time to get it set up as a thread once start() is called),
and it is considered not alive after it becomes dead. The isAlive() method is
the best way to determine if a thread has been started but has not yet completed
its run() method.

Starting a Thread
You’ve created a Thread object and it knows its target (either the passed-in
Runnable or itself if you extended class Thread). Now it’s time to get the whole thread
thing happening—to launch a new call stack. It’s so simple it hardly deserves its own
subhead:

t.start();

Prior to calling start() on a Thread instance, the thread (when we use
lowercase t, we’re referring to the thread of execution rather than the Thread class) is
said to be in the new state as we said. The new state means you have a Thread object
but you don’t yet have a true thread. So what happens after you call start()? The
good stuff:

■ A new thread of execution starts (with a new call stack).

8 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

■ The thread moves from the new state to the runnable state.

■ When the thread gets a chance to execute, its target run() method will run.

Be sure you remember the following: You start a Thread, not a Runnable. You call
start() on a Thread instance, not on a Runnable instance.

There’s nothing special about the run() method as far as Java is concerned. Like
main(), it just happens to be the name (and signature) of the method that
the new thread knows to invoke. So if you see code that calls the run() method
on a Runnable (or even on a Thread instance), that’s perfectly legal. But it
doesn’t mean the run() method will run in a separate thread! Calling a run()

method directly just means you’re invoking a method from whatever thread is
currently executing, and the run() method goes onto the current call stack
rather than at the beginning of a new call stack. The following code does not
start a new thread of execution:

Runnable r = new Runnable();

r.run(); // Legal, but does not start a separate thread

The following example demonstrates what we’ve covered so far—defining,
instantiating, and starting a thread:

class FooRunnable implements Runnable {
public void run() {

for(int x =1; x < 6; x++) {
System.out.println("Runnable running");

}
}

}
public class TestThreads {

public static void main (String [] args) {
FooRunnable r = new FooRunnable();
Thread t = new Thread(r);
t.start();

}
}

Running the preceding code prints out exactly what you’d expect:

% java TestThreads
Runnable running
Runnable running
Runnable running

Defining, Instantiating, and Starting Threads (Exam Objective 7.1) 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Runnable running
Runnable running

(If this isn’t what you expected, go back and reread everything in this objective.)
So what happens if we start multiple threads? We’ll run a simple example in a

moment, but first we need to know how to print out which thread is executing. We
can use the name method of class Thread, and have each Runnable print out the
name of the thread executing that Runnable object’s run() method. The following
example instantiates a thread and gives it a name, and then the name is printed out
from the run() method:

class NameRunnable implements Runnable {
public void run() {

System.out.println("NameRunnable running");
System.out.println("Run by " + Thread.currentThread().getName());

}
}

public class NameThread {
public static void main (String [] args) {
NameRunnable nr = new NameRunnable();
Thread t = new Thread(nr);
t.setName("Fred");
t.start();

}
}

Running this code produces the following, extra special, output:

% java NameThread
NameRunnable running
Run by Fred

To get the name of a thread you call—who would have guessed—getName() on
the thread instance. But the target Runnable instance doesn’t even have a reference to
the Thread instance, so we first invoked the static Thread.currentThread()
method, which returns a reference to the currently executing thread, and then we
invoked getName() on that returned reference.

Even if you don’t explicitly name a thread, it still has a name. Let’s look at the
previous code, commenting out the statement that sets the thread’s name:

public class NameThread {
public static void main (String [] args) {

10 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NameRunnable nr = new NameRunnable();
Thread t = new Thread(nr);
// t.setName("Fred");
t.start();

}
}

Running the preceding code now gives us:

% java NameThread
NameRunnable running
Run by Thread-0

And since we’re getting the name of the current thread by using the static
Thread.currentThread() method, we can even get the name of the
thread running our main code,

public class NameThreadTwo {
public static void main (String [] args) {
System.out.println("thread is " + Thread.currentThread().getName());

}
}

which prints out

% java NameThreadTwo
thread is main

That’s right, the main thread already has a name—main. (Once again, what are
the odds?) Figure 9-1 shows the process of starting a thread.

Starting and Running More Than One Thread
Enough playing around here; let’s actually get multiple threads going. The following
code creates a single Runnable instance, and three Thread instances. All three Thread
instances get the same Runnable instance, and each thread is given a unique name.
Finally, all three threads are started by invoking start() on the Thread instances.

class NameRunnable implements Runnable {
public void run() {

for (int x = 1; x < 4; x++) {
System.out.println("Run by " + Thread.currentThread().getName());

}
}

Defining, Instantiating, and Starting Threads (Exam Objective 7.1) 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
public class ManyNames {

public static void main (String [] args) {
NameRunnable nr = new NameRunnable(); // Make one Runnable
Thread one = new Thread(nr);
one.setName("Fred");
Thread two = new Thread(nr);
two.setName("Lucy");
Thread three = new Thread(nr);
three.setName("Ricky");
one.start();
two.start();
three.start();

}
}

12 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

FIGURE 9-1

Starting a thread

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Running this code produces the following:

% java ManyNames
Run by Fred
Run by Fred
Run by Fred
Run by Lucy
Run by Lucy
Run by Lucy
Run by Ricky
Run by Ricky
Run by Ricky

Well, at least that’s what it prints on one machine—the one we used for this
particular example. (OK, if you insist we’ll tell you—it’s a Macintosh G4 Titanium
running OSX. Yes Virginia, there is UNIX on the Mac.)

But the behavior you see above is not guaranteed. This is so crucial that you need
to stop right now, take a deep breath, and repeat after me, “The behavior is not
guaranteed.” You need to know, for your future as a Java programmer as well as for
the exam, that there is nothing in the Java specification that says threads will start
running in the order in which they were started (in other words, the order in which
start() was invoked on each thread). And there is no guarantee that once a thread
starts executing, it will keep executing until it’s done. Or that a loop will complete
before another thread begins. No siree Bob. Nothing is guaranteed in the preceding
code except this:

Each thread will start, and each thread will run to completion.

But how that happens is not just JVM dependent; it is also runtime dependent.
In fact, just for fun we bumped up the loop code so that each run() method ran
the loop 300 times rather than 3, and eventually we did start to see some wobbling:

public void run() {
for (int x = 0; x < 300; x++) {

System.out.println("Run by " + Thread.currentThread().getName());
}

}

Running the preceding code, with each thread executing its run loop 300 times,
started out fine but then became nonlinear. Here’s just a snip from the command-line

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

Defining, Instantiating, and Starting Threads (Exam Objective 7.1) 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

output of running that code. To make it easier to distinguish each thread, I put Fred’s
output in italics and Lucy’s in bold, and left Ricky’s alone:

Run by Fred
Run by Fred
Run by Fred
Run by Fred
Run by Fred
Run by Fred
Run by Fred
Run by Fred
Run by Fred
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Ricky
Run by Fred
Run by Ricky
Run by Fred
Run by Ricky
Run by Fred
Run by Ricky
... it continues on ...

Notice that Fred (who was started first) is humming along just fine for a while and
then suddenly Lucy (started second) jumps in—but only runs once! She does finish
later, of course, but not until after Fred and Ricky swap in and out with no clear
pattern. The rest of the output also shows Lucy and Ricky swapping for a while, and
then finally Lucy finishes with a long sequence of output. So even though Ricky was
started third, he actually completed second. And if we run it again, we’ll get a different
result. Why? Because its up to the scheduler, and we don’t control the scheduler! Which
brings up another key point to remember: Just because a series of threads are started in
a particular order doesn’t mean they’ll run in that order. For any group of started threads,
order is not guaranteed by the scheduler. And duration is not guaranteed. You don’t
know, for example, if one thread will run to completion before the others have a chance
to get in or whether they’ll all take turns nicely, or whether they’ll do a combination
of both. There is a way, however, to start a thread but tell it not to run until some
other thread has finished. You can do this with the join() method, which we’ll
look at a little later.

A thread is done being a thread when its target run() method completes.

14 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

When a thread completes its run() method, the thread ceases to be a thread of
execution. The stack for that thread dissolves, and the thread is considered dead. Not
dead and gone, however, just dead. It’s still a Thread object, just not a thread of execution.
So if you’ve got a reference to a Thread instance, then even when that Thread instance
is no longer a thread of execution, you can still call methods on the Thread instance,
just like any other Java object. What you can’t do, though, is call start() again.

Once a thread is dead, it can never be restarted!
If you have a reference to a Thread t, and its run() method has finished, you

can’t say t.start(); you’ll get a big fat runtime exception.
So far, we’ve seen three thread states: new, runnable, and dead. We’ll look at more

thread states before we’re done with this chapter.

The Thread Scheduler
The thread scheduler is the part of the JVM (although most JVMs map Java threads
directly to native threads on the underlying OS) that decides which thread should
run at any given moment, and also takes threads out of the run state. Assuming a
single processor machine, only one thread can actually run at a time. Only one stack
can ever be executing at one time. And it’s the thread scheduler that decides which
thread—of all that are eligible—will actually run. When we say eligible, we really mean
in the runnable state.

Any thread in the runnable state can be chosen by the scheduler to be the one
and only running thread. If a thread is not in a runnable state, then it cannot be
chosen to the currently running thread. And just so we’re clear about how little is
guaranteed here:

The order in which runnable threads are chosen to run is not guaranteed.

Although queue behavior is typical, it isn’t guaranteed. Queue behavior means
that when a thread has finished with its “turn,” it moves to the end of the line of the
runnable pool and waits until it eventually gets to the front of the line, where it can
be chosen again. In fact, we call it a runnable pool, rather than a runnable queue, to
help reinforce the fact that threads aren’t all lined up in some guaranteed order.

Although we don’t control the thread scheduler (we can’t, for example, tell a specific
thread to run), we can sometimes influence it. The following methods give us some
tools for influencing the scheduler. Just don’t ever mistake influence for control.

Expect to see exam questions that look for your understanding of what is and
is not guaranteed! You must be able to look at thread code and determine
whether the output is guaranteed to run in a particular way or is indeterminate.

Defining, Instantiating, and Starting Threads (Exam Objective 7.1) 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

16 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

Methods from the java.lang.Thread Class Some of the methods that can
help us influence thread scheduling are as follows:

public static void sleep(long millis) throws InterruptedException
public static void yield()
public final void join()
public final void setPriority(int newPriority)

Note that both sleep() and join() have overloaded versions not shown here.

Methods from the java.lang.Object Class Every class in Java inherits the
following three thread-related methods:

public final void wait()
public final void notify()
public final void notifyAll()

The wait() method has three overloaded versions (including the one listed here).
We’ll look at the behavior of each of these methods in this chapter. First, though,

we’re going to look at the different states a thread can be in. We’ve already seen three—
new, runnable, and dead—but wait! There’s more! The thread scheduler’s job is to
move threads in and out of the running state. While the thread scheduler can move
a thread from the running state back to runnable, other factors can cause a thread
to move out of running, but not back to runnable. One of these is when the thread’s
run() method completes, in which case the thread moves from the running state
directly to the dead state. Next we’ll look at some of the other ways in which a thread
can leave the running state, and where the thread goes.

Thread States
A thread can be only in one of five states (see Figure 9-2):

■ New This is the state the thread is in after the Thread instance has been
instantiated, but the start() method has not been invoked on the thread.
It is a live Thread object, but not yet a thread of execution. At this point, the
thread is considered not alive.

■ Runnable This is the state a thread is in when it’s eligible to run, but the
scheduler has not selected it to be the running thread. A thread first enters
the runnable state when the start() method is invoked, but a thread can
also return to the runnable state after either running or coming back from

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a blocked, waiting, or sleeping state. When the thread is in the runnable
state, it is considered alive.

■ Running This is it. The “big time.” Where the action is. This is the state a
thread is in when the thread scheduler selects it (from the runnable pool) to
be the currently executing process. A thread can transition out of a running
state for several reasons, including because “the thread scheduler felt like it.”
We’ll look at those other reasons shortly. Note that in Figure 9-2, there are
several ways to get to the runnable state, but only one way to get to the running
state: the scheduler chooses a thread from the runnable pool.

■ Waiting/blocked/sleeping OK, so this is really three states combined into
one, but they all have one thing in common: the thread is still alive, but is
currently not eligible to run. In other words, it is not runnable, but it might
return to a runnable state later if a particular event occurs. A thread may be
blocked waiting for a resource (like I/O or an object’s lock), in which case the
event that sends it back to runnable is the availability of the resource—for
example, if data comes in through the input stream the thread code is reading
from, or if the object’s lock suddenly becomes available. A thread may be
sleeping because the thread’s run code tells it to sleep for some period of time,
in which case the event that sends it back to runnable is that it wakes up
because its sleep time has expired. Or the thread may be waiting, because the
thread’s run code causes it to wait, in which case the event that sends it back
to runnable is that another thread sends a notification that it may no longer
be necessary for the thread to wait. The important point is that one thread
does not tell another thread to block. There is a method, suspend(), in the
Thread class, that lets one thread tell another to suspend, but the suspend()
method has been deprecated and won’t be on the exam (nor will its counterpart
resume()). There is also a stop() method, but it too has been deprecated
and we won’t even go there. Both suspend() and stop() turned out to
be very dangerous, so you shouldn’t use them and again, because they’re
deprecated, they won’t appear on the exam. Don’t study ‘em, don’t use ‘em.
Note also that a thread in a blocked state is still considered to be alive.

Defining, Instantiating, and Starting Threads (Exam Objective 7.1) 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

FIGURE 9-2

Transitioning
between
thread states

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

■ Dead A thread is considered dead when its run() method completes. It
may still be a viable Thread object, but it is no longer a separate thread of
execution. Once a thread is dead, it can never be brought back to life! (The
whole “I see dead threads” thing.) If you invoke start() on a dead Thread
instance, you’ll get a runtime (not compiler) exception. And it probably doesn’t
take a rocket scientist to tell you that if a thread is dead, it is no longer considered
to be alive.

CERTIFICATION OBJECTIVE

Preventing Thread Execution (Exam Objective 7.2)
Recognize conditions that might prevent a thread from executing.

This objective has been the source of a lot of confusion over the last few years, because
earlier versions of the objective weren’t as clear about one thing: we’re talking about
moving a thread to a nonrunnable state (in other words, moving a thread to the
blocked/sleeping/waiting state), as opposed to talking about what might stop a thread.
A thread that’s been stopped usually means a thread that’s moved to the dead state.
But Objective 7.2 is looking for your ability to recognize when a thread will get kicked
out of running but not sent back to either runnable or dead.

For the purpose of the exam, we aren’t concerned with a thread blocking on I/O
(say, waiting for something to arrive from an input stream from the server). We are
concerned with the following:

■ Sleeping

■ Waiting

■ Blocked because it needs an object’s lock

Sleeping
The sleep() method is a static method of class Thread. You use it in your code
to “slow a thread down” by forcing it to go into a sleep mode before coming back to
runnable (where it still has to beg to be the currently running thread). When a thread
sleeps, it drifts off somewhere and doesn’t return to runnable until it wakes up.

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Preventing Thread Execution (Exam Objective 7.2) 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

So why would you want a thread to sleep? Well, you might think the thread is
moving too quickly through its code. Or you might need to force your threads to
take turns, since reasonable turn-taking isn’t guaranteed in the Java specifications.
Or imagine a thread that runs in a loop, downloading the latest stock prices and
analyzing them. Downloading prices one after another would be a waste of time, as
most would be quite similar, and even more importantly—it would be an incredible
waste of precious bandwidth. The simplest way to solve this is to cause a thread to
pause (sleep) for five minutes after each download.

You do this by invoking the static Thread.sleep() method, giving it a time
in milliseconds as follows:

try {
Thread.sleep(5*60*1000); // Sleep for 5 minutes

} catch (InterruptedException ex) { }

Notice that the sleep() method can throw a checked InterruptedException
(which you’ll usually know if that were a possibility, since another thread has to
explicitly do the interrupting), so you’re forced to acknowledge the exception with
a handle or declare. Typically, you just wrap each call to sleep in a try/catch, as in
the preceding code.

Let’s modify our Fred, Lucy, Ricky code by using sleep to try to force the threads
to alternate rather than letting one thread dominate for any period of time. Where
do you think the sleep() method should go?

class NameRunnable implements Runnable {
public void run() {

for (int x = 1; x < 4; x++) {
System.out.println("Run by " + Thread.currentThread().getName());
try {
Thread.sleep(1000);

} catch (InterruptedException ex) { }
}

}
}
public class ManyNames {

public static void main (String [] args) {
NameRunnable nr = new NameRunnable(); // Make one Runnable
Thread one = new Thread(nr);
one.setName("Fred");
Thread two = new Thread(nr);
two.setName("Lucy");
Thread three = new Thread(nr);

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

three.setName("Ricky");
one.start();
two.start();
three.start();

}
}

Running this code shows Fred, Lucy, and Ricky alternating nicely:

% java ManyNames
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky

Just keep in mind that the behavior in the preceding output is still not guaranteed.
You can’t be certain how long a thread will actually run before it gets put to sleep, so
you can’t know with certainty that only one of the three threads will be in the runnable
state when the running thread goes to sleep. In other words, if there are two threads
awake and in the runnable pool, you can’t know with certainty that the least-recently-
used thread will be the one selected to run. Still, using sleep() is the best way to
help all threads get a chance to run! Or at least to guarantee that one thread doesn’t get
in and stay until it’s done. When a thread encounters a sleep call, it must go to sleep
for at least the specified number of milliseconds (unless it is interrupted before its
wake-up time, in which case it immediately throws the InterruptedException).

Just because a thread’s sleep() expires, and it wakes up, does not mean it
will return to running! Remember, when a thread wakes up it simply goes back to
the runnable state. So the time specified in sleep() is the minimum duration
in which the thread won’t run, but it is not the exact duration in which the
thread won’t run. So you can’t, for example, rely on the sleep() method
to give you a perfectly accurate timer. Although in many applications using
sleep() as a timer is certainly good enough, you must know that a sleep()

time is not a guarantee that the thread will start running again as soon as
the time expires and the thread wakes.

20 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Remember that sleep() is a static method, so don’t be fooled into thinking
that one thread can put another thread to sleep. You can put sleep() code anywhere,
since all code is being run by some thread. When the executing code (meaning the
currently running thread’s code) hits a sleep() call, it puts the currently running
thread to sleep.

EXERCISE 9-1

Creating a Thread and Putting It to Sleep
In this exercise we will create a simple counting thread. It will count to 100, pausing
one second between each number. Also, in keeping with the counting theme, it will
output a string every ten numbers.

1. Create a class and extend the Thread class. As an option, you can implement
the Runnable interface.

2. Override the run() method of Thread. This is where the code will go that
will output the numbers.

3. Create a for loop that will loop 100 times. Use the modulo operation to check
whether there are any remainder numbers when divided by 10.

4. Use the static method Thread.sleep() to pause. The long number
represents milliseconds.

Thread Priorities and Yield
To understand yield(), you must understand the concept of thread priorities.
Threads always run with some priority, represented usually as a number between 1
and 10 (although in some cases the range is less than 10). The scheduler in most
JVMs uses preemptive, priority-based scheduling. This does not mean that all JVMs use
time slicing. The JVM specification does not require a VM to implement a time-slicing
scheduler, where each thread is allocated a fair amount of time and then sent back to
runnable to give another thread a chance. Although many JVMs do use time slicing,
another may use a scheduler that lets one thread stay running until the thread completes
its run() method.

Preventing Thread Execution (Exam Objective 7.2) 21

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In most JVMs, however, the scheduler does use thread priorities in one important
way: If a thread enters the runnable state, and it has a higher priority than any of the
threads in the pool and higher than the currently running thread, the lower-priority
running thread usually will be bumped back to runnable and the highest-priority thread
will be chosen to run. In other words, at any given time the currently running thread
usually will not have a priority that is lower than any of the threads in the pool. The
running thread will be of equal or greater priority than the highest priority threads in the
pool. This is as close to a guarantee about scheduling as you’ll get from the JVM
specification, so you must never rely on thread priorities to guarantee correct behavior
of your program.

Don't rely on thread priorities when designing your multithreaded application.
Because thread-scheduling priority behavior is not guaranteed, use thread
priorities as a way to improve the efficiency of your program, but just be
sure your program doesn't depend on that behavior for correctness.

What is also not guaranteed is the behavior when threads in the pool are of equal
priority, or when the currently running thread has the same priority as threads in the
pool. All priorities being equal, a JVM implementation of the scheduler is free to do
just about anything it likes. That means a scheduler might do one of the following
(among other things):

■ Pick a thread to run, and keep it there until it blocks or completes its
run() method.

■ Time slice the threads in the pool to give everyone an equal opportunity to run.

Setting a Thread’s Priority A thread gets a default priority that is the priority
of the thread of execution that creates it. For example, in the code

public class TestThreads {
public static void main (String [] args) {
MyThread t = new MyThread();
}

}

the thread referenced by t will have the same priority as the main thread, since the
main thread is executing the code that creates the MyThread instance.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

22 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can also set a thread’s priority directly by calling the setPriority()method
on a Thread instance as follows:

FooRunnable r = new FooRunnable();
Thread t = new Thread(r);
t.setPriority(8);
t.start();

Priorities are set using a positive integer, usually between 1 and 10, and the JVM
will never change a thread’s priority. However, the values 1 through 10 are not
guaranteed, so if you have, say, ten threads each with a different priority, and the
current application is running in a JVM that allocates a range of only five priorities,
then two or more threads might be mapped to one priority. The default priority is 5.

The Thread class has three constants (static final variables) that define the range
of thread priorities:

Thread.MIN_PRIORITY (1)
Thread.NORM_PRIORITY (5)
Thread.MAX_PRIORITY (10)

So what does the static Thread.yield() have to do with all this? Not that
much, in practice. What yield() is supposed to do is make the currently running
thread head back to runnable to allow other threads of the same priority to get their
turn. So the intention is to use yield() to promote graceful turn-taking among
equal-priority threads. In reality, though, the yield() method isn’t guaranteed to
do what it claims, and even if yield() does cause a thread to step out of running
and back to runnable, there’s no guarantee the yielding thread won’t just be chosen again
over all the others! So while yield()might—and often does—make a running thread
give up its slot to another runnable thread of the same priority, there’s no guarantee.

The Join() Method
The nonstatic join() method of class Thread lets one thread “join onto the end”
of another thread. If you have a thread B that can’t do its work until another thread
A has completed its work, then you want thread B to “join” thread A. This means that
thread B will not become runnable until A has finished (and entered the dead state).

Thread t = new Thread();
t.start();
t.join();

Preventing Thread Execution (Exam Objective 7.2) 23

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The preceding code takes the currently running thread (if this were in the main()
method, then that would be the main thread) and joins it to the end of the thread
referenced by t. This blocks the current thread from becoming runnable until after
the thread referenced by t is no longer alive. You can also call one of the overloaded
versions of join that takes a timeout duration, so that you’re saying, “wait until
thread t is done, but if it takes longer than 5,000 milliseconds, then stop waiting and
become runnable anyway.” Figure 9-3 shows the effect of the join() method.

So far we’ve looked at three ways a running thread could leave the running state:

■ A call to sleep() Guaranteed to cause the current thread to stop executing
for at least the specified sleep duration (although it might be interrupted before
its specified time).

24 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

FIGURE 9-3 The join() method

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ A call to yield() Not guaranteed to do much of anything, although
typically it will cause the currently running thread to move back to runnable
so that a thread of the same priority can have a chance.

■ A call to join() Guaranteed to cause the current thread to stop executing
until the thread it joins with (in other words, the thread it calls wait() on)
completes. If the thread it’s trying to join with is not alive, however, the current
thread won’t need to back out.

Besides those three, we also have the following scenarios in which a thread might
leave the running state:

■ The thread’s run() method completes. Duh.

■ A call to wait() on an object (we don’t call wait() on a thread, as we’ll
see in a moment)

■ A thread can’t acquire the lock on the object whose method code it’s
attempting to run.

To understand the two critical execution stoppers, you need to understand the
way in which Java implements object locking to prevent multiple threads from
accessing—and potentially corrupting—the same data. Since these are covered in
the next two objectives (7.3 and 7.4), be sure you study these so you’ll recognize
when a running thread will stop (at least temporarily) running.

CERTIFICATION OBJECTIVE

Synchronizing Code (Exam Objective 7.3)
Write code using synchronized wait, notify, and notifyAll to protect against concurrent
access problems and to communicate between threads.

Can you imagine the havoc that can occur when two different threads have access
to a single instance of a class, and both threads invoke methods on that object…and
those methods modify the state of the object? In other words, what might happen if
two different threads call, say, a setter method on a single object? A scenario like that

Synchronizing Code (Exam Objective 7.3) 25

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

26 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

might corrupt an object’s state (by changing its instance variable values in an
inconsistent way), and if that object’s state is data shared by other parts of the program,
well, it’s too scary to even visualize.

But just because we enjoy horror, let’s look at an example of what might happen.
The following code demonstrates what happens when two different threads are
accessing the same account data. Imagine that two people each have a checkbook
for a single checking account (or two people each have ATM cards, but both cards
are linked to only one account).

In this example, we have a class called Account that represents a bank account. To
keep the code short, this account starts with a balance of 50, and can be used only for
withdrawals. The withdrawal will be accepted even if there isn’t enough money in
the account to cover it. The account simply reduces the balance by the amount you
want to withdraw:

class Account {
private int balance = 50;
public int getBalance() {

return balance;
}
public void withdraw(int amount) {

balance = balance - amount;
}

}

Now here’s where it starts to get fun. Imagine a couple, Fred and Lucy, who both
have access to the account and want to make withdrawals. But they don’t want the
account to ever be overdrawn, so just before one of them makes a withdrawal, he or
she will first check the balance to be certain there’s enough to cover the withdrawal.
Also, withdrawals are always limited to an amount of 10, so there must be at least 10
in the account balance in order to make a withdrawal. Sounds reasonable. But that’s
a two-step process:

1. Check the balance.

2. If there’s enough in the account (in this example, at least 10), make the
withdrawal.

What happens if something separates step 1 from step 2? For example, imagine
what would happen if Lucy checks the balance and sees that there’s just exactly
enough in the account, 10. But before she makes the withdrawal, Fred checks the
balance and also sees that there’s enough for his withdrawal. Since Lucy has verified

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Synchronizing Code (Exam Objective 7.3) 27

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

the balance, but not yet made her withdrawal, Fred is seeing “bad data.” He is seeing the
account balance before Lucy actually debits the account, but at this point that debit
is certain to occur. Now both Lucy and Fred believe there’s enough to make their
withdrawals. So now imagine that Lucy makes her withdrawal, and now there isn’t
enough in the account for Fred’s withdrawal, but he thinks there is since when he
checked, there was enough! Yikes. Here’s what the actual banking code looks like,
with Fred and Lucy represented by two threads, each acting on the same Runnable,
and that Runnable holds a reference to the one and only account instance—so, two
threads, one account.

The logic in our code example is as follows:

1. The Runnable object holds a reference to a single account.

2. Two threads are started, representing Lucy and Fred, and each thread is
given a reference to the same Runnable (which holds a reference to the
actual account).

3. The initial balance on the account is 50, and each withdrawal is exactly 10.

4. In the run() method, we loop 5 times, and in each loop we

■ Make a withdrawal (if there’s enough in the account)

■ Print a statement if the account is overdrawn (which it should never be,
since we check the balance before making a withdrawal)

5. The makeWithdrawal()method in the test class (representing the behavior
of Fred or Lucy) does the following:

■ Check the balance to see if there’s enough for the withdrawal.

■ If there is enough, print out the name of the one making the withdrawal.

■ Go to sleep for 500 milliseconds—just long enough to give the other
partner a chance to get in before you actually make the withdrawal.

■ When you wake up, complete the withdrawal and print out that you’ve
done so.

■ If there wasn’t enough in the first place, print a statement showing who
you are and the fact that there wasn’t enough.

So what we’re really trying to discover is if the following is possible: for one
partner to check the account and see that there’s enough, but before making the
actual withdrawal, the other partner checks the account and also sees that there’s

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

enough. When the account balance gets to 10, if both partners check it before
making the withdrawal, both will think it’s OK to withdraw, and the account
will overdraw by 10!

Here’s the code:

public class AccountDanger implements Runnable {
private Account acct = new Account();
public static void main (String [] args) {

AccountDanger r = new AccountDanger();
Thread one = new Thread(r);
Thread two = new Thread(r);
one.setName("Fred");
two.setName("Lucy");
one.start();
two.start();

}
public void run() {
for (int x = 0; x < 5; x++) {

makeWithdrawal(10);
if (acct.getBalance() < 0) {
System.out.println("account is overdrawn!");

}
}

}
private void makeWithdrawal(int amt) {

if (acct.getBalance() >= amt) {
System.out.println(Thread.currentThread().getName() +

" is going
to withdraw");

try {
Thread.sleep(500);

} catch(InterruptedException ex) { }
acct.withdraw(amt);
System.out.println(Thread.currentThread().getName() +

" completes
the withdrawal");

} else {
System.out.println("Not enough in account for " +

Thread.currentThread().getName() + " to withdraw " +
acct.getBalance())

}
}

}

28 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

So what happened? Is it possible that, say, Lucy checked the balance, fell asleep,
Fred checked the balance, Lucy woke up and completed her withdrawal, then Fred
completes his withdrawal, and in the end they overdraw the account? Look at the
output:

% java AccountDanger
1. Fred is going to withdraw
2. Lucy is going to withdraw
3. Fred completes the withdrawal
4. Fred is going to withdraw
5. Lucy completes the withdrawal
6. Lucy is going to withdraw
7. Fred completes the withdrawal
8. Fred is going to withdraw
9. Lucy completes the withdrawal
10. Lucy is going to withdraw
11. Fred completes the withdrawal
12. Not enough in account for Fred to withdraw 0
13. Not enough in account for Fred to withdraw 0
14. Lucy completes the withdrawal
15. account is overdrawn!
16. Not enough in account for Lucy to withdraw -10
17. account is overdrawn!
18. Not enough in account for Lucy to withdraw -10
19. account is overdrawn!

Although each time you run this code the output might be a little different, let’s
walk through this particular example using the numbered lines of output. For the
first four attempts, everything is fine. Fred checks the balance on line 1, and finds
it’s OK. At line 2, Lucy checks the balance and finds it OK. At line 3, Fred makes
his withdrawal. At this point, the balance Lucy checked for (and believes is still
accurate) has actually changed since she last checked. And now Fred checks the
balance again, before Lucy even completes her first withdrawal. By this point, even
Fred is seeing a potentially inaccurate balance, because we know Lucy is going to
complete her withdrawal. It is possible, of course, that Fred will complete his before
Lucy does, but that’s not what happens here.

On line 5, Lucy completes her withdrawal and then before Fred completes his,
Lucy does another check on the account on line 6. And so it continues until we get
to line 8, where Fred checks the balance and sees that it’s 20. On line 9, Lucy completes
a withdrawal (that she had checked for earlier), and this takes the balance to 10.
On line 10, Lucy checks again, sees that the balance is 10, so she knows she can do

Synchronizing Code (Exam Objective 7.3) 29

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a withdrawal. But she didn’t know that Fred, too, has already checked the balance on line
8 so he thinks its safe to do the withdrawal! On line 11, Fred completes the withdrawal
he approved on line 8. This takes the balance to zero. But Lucy still has a pending
withdrawal that she got approval for on line 10! You know what’s coming.

On lines 12 and 13, Fred checks the balance and finds that there’s not enough in
the account. But on line 14, Lucy completes her withdrawal and BOOM! The account
is now overdrawn by 10—something we thought we were preventing by doing a balance
check prior to a withdrawal.

Figure 9-4 shows the timeline of what can happen when two threads concurrently
access the same object.

Preventing the Account Overdraw So what can be done? The solution is
actually quite simple.

We must guarantee that the two steps of the withdrawal—checking the balance
and making the withdrawal—are never split apart. We need them to always be
performed as one operation, even when the thread falls asleep in between step 1 and
step 2! We call this an “atomic operation” (although the physics there is a little
outdated) because the operation, regardless of the number of actual statements (or
underlying byte code instructions), is completed before any other thread code that
acts on the same data.

You can’t guarantee that a single thread will stay running throughout the entire atomic
operation. But you can guarantee that even if the thread running the atomic operation
moves in and out of the running state, no other running thread will be able to act on
the same data. In other words, If Lucy falls asleep after checking the balance, we can
stop Fred from checking the balance until after Lucy wakes up and completes her
withdrawal.

30 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

FIGURE 9-4

Problems with
concurrent
access

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

So how do you protect the data? You must do two things:

■ Mark the variables private

■ Synchronize the code that modifies the variables

Remember, you protect the variables in the normal way—using an access control
modifier. It’s the method code that you must protect, so that only one thread at a
time can be executing that code. You do this with the synchronized keyword.

We can solve all of Fred and Lucy’s problems by adding one word to the code.
We mark the makeWithdrawal() method synchronized as follows:

private synchronized void makeWithdrawal(int amt) {
if (acct.getBalance() >= amt) {
System.out.println(Thread.currentThread().getName() +

" is going to withdraw");
try {
Thread.sleep(500);

} catch(InterruptedException ex) { }
acct.withdraw(amt);
System.out.println(Thread.currentThread().getName() +

" completes the withdrawal");

}
else {
System.out.println("Not enough in account for " +

Thread.currentThread().getName() + " to withdraw " +
acct.getBalance());

}
}

Now we’ve guaranteed that once a thread (Lucy or Fred) starts the withdrawal
process (by invoking makeWithdrawal()), the other thread cannot enter that
method until the first one completes the process by exiting the method. The new
output shows the benefit of synchronizing the makeWithdrawal() method:

% java AccountDanger
Fred is going to withdraw
Fred completes the withdrawal
Lucy is going to withdraw
Lucy completes the withdrawal
Fred is going to withdraw
Fred completes the withdrawal

Synchronizing Code (Exam Objective 7.3) 31

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Lucy is going to withdraw
Lucy completes the withdrawal
Fred is going to withdraw
Fred completes the withdrawal
Not enough in account for Lucy to withdraw 0
Not enough in account for Fred to withdraw 0
Not enough in account for Lucy to withdraw 0
Not enough in account for Fred to withdraw 0
Not enough in account for Lucy to withdraw 0

Notice that now the threads, Lucy and Fred, always check the account balance
and complete the withdrawal before the other thread can check the balance.

Synchronization and Locks
How does synchronization work? With locks. Every object in Java has a built-in lock
that only comes into play when the object has synchronized method code. Since
there is only one lock per object, if one thread has picked up the lock, no other thread
can enter the synchronized code (which means any synchronized method of that
object) until the lock has been released. Typically, releasing a lock means the thread
holding the lock (in other words, the thread currently in the synchronized method)
exits the synchronized method. At that point, the lock is free until some other thread
enters a synchronized method on that object.

You need to remember the following key points about locking and synchronization:

■ Only methods can be synchronized, not variables.

■ Each object has just one lock.

■ Not all methods in a class must be synchronized. A class can have both synchronized
and nonsynchronized methods.

■ If two methods are synchronized in a class, only one thread can be accessing
one of the two methods. In other words, once a thread acquires the lock on
an object, no other thread can enter any of the synchronized methods in that
class (for that object).

■ If a class has both synchronized and nonsynchronized methods, multiple
threads can still access the nonsynchronized methods of the class! If you have
methods that don’t access the data you’re trying to protect, then you don’t

32 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

need to mark them as synchronized. Synchronization is a performance hit, so
you don’t want to use it without a good reason.

■ If a thread goes to sleep, it takes its locks with it.

■ A thread can acquire more than one lock. For example, a thread can enter
a synchronized method, thus acquiring a lock, and then immediately invoke a
synchronized method on a different object, thus acquiring that lock as well.
As the stack unwinds, locks are released again. Also, if a thread acquires a lock
and then attempts to call a synchronized method on that same object, no
problem. The JVM knows that this thread already has the lock for this object,
so the thread is free to call other synchronized methods on the same object, using
the lock the thread already has.

■ You can synchronize a block of code rather than a method. Because
synchronization does hurt concurrency, you don’t want to synchronize
any more code than is necessary to protect your data. So if the scope of a
method is more than needed, you can reduce the scope of the synchronized
part to something less than a full method—to just a block. We call this,
strangely, a “synchronized block,” and it looks like this:

class SyncTest {
public void doStuff() {

System.out.println("not synchronized");
synchronized(this) {

System.out.println("synchronized");
}

}
}

When a thread is executing code from within a synchronized block, including any
method code invoked from that synchronized block, the code is said to be executing
in a synchronized context. The real question is, synchronized on what? Or, synchronized
on which object’s lock?

When you synchronize a method, the object used to invoke the method is the object
whose lock must be acquired. But when you synchronize a block of code, you specify
which object’s lock you want to use as the lock, so you could, for example, use some
third-party object as the lock for this piece of code. That gives you the ability to have
more than one lock for code synchronization within a single object.

Synchronizing Code (Exam Objective 7.3) 33

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

34 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

So What About Static Methods? Can They Be Synchronized? Static
methods can be synchronized. There is only one copy of the static data you’re trying
to protect, so you only need one lock per class to synchronize static methods—a lock
for the whole class. There is such a lock; every class loaded in Java has a corresponding
instance of java.lang.Class representing that class. It’s that java.lang.Class instance
whose lock is used to protect the static methods of the class (if they’re synchronized).

There’s nothing special you have to do to synchronize a static method:

public static synchronized void getCount() { }

EXERCISE 9-2

Synchronizing a Block of Code
In this exercise we will attempt to synchronize a block of code. Within that block of
code we will get the lock on an object so that other threads cannot modify it while
the block of code is executing. We will be creating three threads that will all attempt
to manipulate the same object. Each thread will output a single letter 100 times, and
then increment that letter by one. The object we will be using is StringBuffer. We
could synchronize on a String object, but strings cannot be modified once they are
created so we would not be able to increment the letter without generating a new
String object. The final output should have 100 As, 100 Bs, and 100 Cs all in
unbroken lines.

1. Create a class and extend the Thread class.

2. Override the run() method of Thread. This is where the synchronized
block of code will go.

3. For our three threaded objects to share the same object, we will need to create
a constructor that accepts a StringBuffer object in the argument.

4. The synchronized block of code will obtain a lock on the StringBuffer object
from step 3.

5. Within the block, output the StringBuffer 100 times and then increment
the letter in the StringBuffer. You can check Chapter 11 for StringBuffer
methods that will help with this.

6. Finally, in the main() method, create a single StringBuffer object using the
letter A, then create three instances of our class and start all three of them.

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What Happens if a Thread Can’t Get the Lock? If a thread tries to enter
a synchronized method and the lock is already taken, the thread is said to be blocked
on an object’s lock. Essentially, the thread goes into a kind of pool for that particular
object and has to sit there until the lock is released and the thread can again become
runnable/running. Just because a lock is released doesn’t mean any particular thread
will get it, however. There might be three threads waiting for a single lock, for example,
and there’s no guarantee that the thread that has waited the longest will get the lock first.

Table 9-1 lists the thread-related methods and whether the thread gives up its
locks as a result of the call.

Thread Deadlock
Perhaps the scariest thing that can happen to a Java program is deadlock. Deadlock
occurs when two threads are blocked, with each waiting for the other’s lock. Neither
can run until it gives up the lock, so they’ll sit there forever and ever and ever…
This can happen, for example, when thread A hits synchronized code, acquires a
lock B, and then enters another method (still within the synchronized code it has the
lock on) that’s also synchronized. But thread A can’t get the lock to enter this
synchronized code—lock C—because another thread D has the lock already. So
thread A goes off to the “waiting for the C lock” pool, hoping that thread D will
hurry up and release the lock (by completing the synchronized method). But thread
A will wait a very long time indeed, because while thread D picked up lock C, it then
entered a method synchronized on lock B. Obviously, thread D can’t get the lock B
because thread A has it. And thread A won’t release it until thread D releases lock C.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

Synchronizing Code (Exam Objective 7.3) 35

Give Up Locks Keep Locks
Class Defining
the Method

wait() notify() (Although the thread will
probably exit the synchronized code shortly
after this call, and thus give up its locks)

java.lang.Object

join() java.lang.Thread

sleep() java.lang.Thread

yield() java.lang.Thread

TABLE 9-1

Methods and
Lock Status

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

But thread D won’t release lock C until after it can get lock B and continue. And
there they sit. The following example demonstrates deadlock:

1. public class DeadlockRisk {
2. private static class Resource {
3. public int value;
4. }
5. private Resource resourceA = new Resource();
6. private Resource resourceB = new Resource();
7. public int read() {
8. synchronized(resourceA) { // May deadlock here
9. synchronized(resourceB) {
10. return resourceB.value + resourceA.value;
11. }
12. }
13. }
14.
15. public void write(int a, int b) {
16. synchronized(resourceB) { // May deadlock here
17. synchronized(resourceA) {
18. resourceA.value = a;
19. resourceB.value = b;
20. }
21. }
22. }
23. }

Assume that read() is started by one thread and write() is started by another.
If there are two different threads that may read and write independently, there is a
risk of deadlock at line 8 or 16. The reader thread will have resourceA, the writer
thread will have resourceB, and both will get stuck forever waiting for the other to
back down.

Code like this almost never results in deadlock because the CPU has to switch from
the reader thread to the writer thread at a particular point in the code, and the chances
of deadlock occurring are very small. The application may work fine 99.9 percent of
the time.

The preceding simple example is easy to fix; just swap the order of locking for
either the reader or the writer at lines 16 and 17 (or lines 8 and 9). More complex
deadlock situations can take a long time to figure out.

Regardless of how little chance there is for your code to deadlock, the bottom line
is: if you deadlock, you’re dead. There are design approaches that can help avoid deadlock,

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

36 Chapter 9: Threads

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

including strategies for always acquiring locks in a predetermined order. But that’s
for you to study and is beyond the scope of this book. We’re just trying to get you
through the exam. If you learn everything in this chapter, though, you’ll still know
more about threads then most Java programmers.

CERTIFICATION OBJECTIVE

Thread Interaction (Exam Objective 7.4)
Define the interaction among threads and object locks when executing synchronized wait,
notify, and notifyAll.

The last thing we need to look at is how threads can interact with one another to
communicate about—among other things—their locking status. The java.lang.Object
class has three methods—wait(), notify(), and notifyAll()—that help
threads communicate about the status of an event that the threads care about. For
example, if one thread is a mail-delivery thread and one thread is a mail-processor
thread, the mail-processor thread has to keep checking to see if there’s any mail to
process. Using the wait and notify mechanism, the mail-processor thread could check
for mail, and if it doesn’t find any it can say, “Hey, I’m not going to waste my time
checking for mail every two seconds. I’m going to go hang out over here, and when
the mail deliverer puts something in the mailbox, have him notify me so I can go
back to runnable and do some work.” In other words, wait and notify lets one thread
put itself into a “waiting room” until some other thread notifies it that there’s a reason
to come back out.

One key point to remember (and keep in mind for the exam) about wait/notify
is this:

wait(), notify(), and notifyAll() must be called from within a
synchronized context! A thread can’t invoke a wait or notify method on an object
unless it owns that object’s lock.

Here we’ll present an example of two threads that depend on each other to proceed
with their execution, and we’ll show how to use wait() and notify() to make
them interact safely and at the proper moment.

Thread Interaction (Exam Objective 7.4) 37

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Think of a computer-controlled machine that cuts pieces of fabric into different
shapes and an application that allows users to specify the shape to cut. The current
version of the application has only one thread, which first asks the user for instructions
and then directs the hardware to cut that shape, repeating the cycle afterward.

public void run(){
while(true){

// Get shape from user
// Calculate machine steps from shape
// Send steps to hardware

}
}

This design is not optimal because the user can’t do anything while the machine is
busy and while there are other shapes to define. We need to improve the situation.

A simple solution is to separate the processes into two different threads, one of
them interacting with the user and another managing the hardware. The user thread
sends the instructions to the hardware thread and then goes back to interacting with
the user immediately. The hardware thread receives the instructions from the user
thread and starts directing the machine immediately. Both threads use a common
object to communicate, which holds the current design being processed.

The following pseudocode shows this design:

public void userLoop(){
while(true){

// Get shape from user
// Calculate machine steps from shape
// Modify common object with new machine steps

}
}

public void hardwareLoop(){
while(true){

// Get steps from common object
// Send steps to hardware

}
}

The problem now is to get the hardware thread to process the machine steps as
soon as they are available. Also, the user thread should not modify them until they
have all been sent to the hardware. The solution is to use wait() and notify(),
and also to synchronize some of the code.

38 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Thread Interaction (Exam Objective 7.4) 39

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

The methods wait() and notify(), remember, are instance methods of
Object. In the same way that every object has a lock, every object can have a list of
threads that are waiting for a signal (a notification) from the object. A thread gets on
this waiting list by executing the wait() method of the target object. From that
moment, it doesn’t execute any further instructions until the notify() method of
the target object is called. If many threads are waiting on the same object, only one
will be chosen (in no guaranteed order) to proceed with its execution. If there are no
threads waiting, then no particular action is taken. Let’s take a look at some real code
that shows one object waiting for another object to notify it (take note, it is somewhat
complex):

1. class ThreadA {
2. public static void main(String [] args) {
3. ThreadB b = new ThreadB();
4. b.start();
5.
6. synchronized(b) {
7. try {
8. System.out.println("Waiting for b to complete...");
9. b.wait();

10. } catch (InterruptedException e) {}
11. }
12. System.out.println("Total is: " + b.total);
13. }
14. }
15.
16. class ThreadB extends Thread {
17. int total;
18.
19. public void run() {
20. synchronized(this) {
21. for(int i=0;i<100;i++) {
22. total += i;
23. }
24. notify();
25. }
26. }
27. }

This program contains two objects with threads: ThreadA contains the main thread
and ThreadB has a thread that calculates the sum of all numbers from 0 through 99.
As soon as line 4 calls the start() method, ThreadA will continue with the next
line of code in its own class, which means it could get to line 12 before ThreadB has
finished the calculation. To prevent this, we use the wait() method in line 9.

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice in line 6 the code synchronizes itself with the object b—this is because in
order to call wait() on the object, ThreadA must own a lock on b. For a thread to
call wait() or notify(), the thread has to be the owner of the lock for that object.
When the thread waits, it temporarily releases the lock for other threads to use, but
it will need it again to continue execution. It is common to find code such as the
following:

synchronized(anotherObject) { // this has the lock on anotherObject
try {

anotherObject.wait();
// the thread releases the lock and waits
// To continue, the thread needs the lock,
// so it may be blocked until it gets it.

} catch(InterruptedException e){}
}

The preceding code waits until notify() is called on anotherObject.

synchronized(this) {
notify();

}

This code notifies any thread currently waiting on the this object.
The lock can be acquired much earlier in the code, such as in the calling method.

Note that if the thread calling wait() does not own the lock, it will throw an
IllegalMonitorStateException. This exception is not a checked exception,
so you don’t have to catch it explicitly. You should always be clear whether a thread
has the lock of an object in any given block of code.

Notice in lines 7–10 there is a try/catch block around the wait() method.
A waiting thread can be interrupted in the same way as a sleeping thread, so you have
to take care of the exception:

try{
wait();

} catch(InterruptedException e) {
// Do something about it

}

In the fabric example, the way to use these methods is to have the hardware
thread wait on the shape to be available and the user thread to notify after it has
written the steps.

40 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The machine steps may comprise global steps, such as moving the required fabric
to the cutting area, and a number of substeps, such as the direction and length of
a cut. As an example they could be

int fabricRoll;
int cuttingSpeed;
Point startingPoint;
float[] directions;
float[] lengths;
etc..

It is important that the user thread does not modify the machine steps while the
hardware thread is using them, so this reading and writing should be synchronized.

The resulting code would look like this:

class Operator extends Thread {
public void run(){

while(true){
// Get shape from user
synchronized(this){

// Calculate new machine steps from shape
notify();

}
}

}
}
class Machine extends Thread {

Operator operator; // assume this gets initialized
public void run(){

while(true){
synchronized(operator){

try {
operator.wait();

} catch(InterruptedException ie) {}
// Send machine steps to hardware

}
}

}
}

The machine thread, once started, will immediately go into the waiting state and
will wait patiently until the operator sends the first notification. At that point it is the
operator thread that owns the lock for the object, so the hardware thread gets stuck

Thread Interaction (Exam Objective 7.4) 41

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for a while. It’s only after the operator thread abandons the synchronized block that
the hardware thread can really start processing the machine steps.

While one shape is being processed by the hardware, the user may interact with
the system and specify another shape to be cut. When the user is finished with the
shape and it is time to cut it, the operator thread attempts to enter the synchronized
block, maybe blocking until the machine thread has finished with the previous machine
steps. When the machine thread has finished, it repeats the loop, going again to the
waiting state (and therefore releasing the lock). Only then can the operator thread
enter the synchronized block and overwrite the machine steps with the new ones.

Having two threads is definitely an improvement over having one, although in
this implementation there is still a possibility of making the user wait. A further
improvement would be to have many shapes in a queue, thereby reducing the
possibility of requiring the user to wait for the hardware.

There is also a second form of wait() that accepts a number of milliseconds as
a maximum time to wait. If the thread is not interrupted, it will continue normally
whenever it is notified or the specified timeout has elapsed. This normal continuation
consists of getting out of the waiting state, but to continue execution it will have to
get the lock for the object:

synchronized(a){ // The thread gets the lock on a
a.wait(2000); // The thread releases the lock and waits for notify
// But only for a maximum of two seconds, then goes back to Runnable
// The thread reacquires the lock
// More instructions here

}

When the wait() method is invoked on an object, the thread executing
that code gives up its lock on the object immediately. However, when
notify() is called, that doesn’t mean the thread gives up its lock at that
moment. If the thread is still completing synchronized code, the lock is not
released until the thread moves out of synchronized code. So just because
notify() is called doesn’t mean the lock becomes available at that moment.

Using notifyAll() When Many Threads May Be Waiting
In most scenarios, it’s preferable to notify all of the threads that are waiting on a
particular object. If so, you can use notifyAll() on the object to let all the threads

42 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Thread Interaction (Exam Objective 7.4) 43

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

rush out of the waiting area and back to runnable. This is especially important if you
have threads waiting on one object, but for different reasons, and you want to be sure
that the right thread gets notified.

notifyAll(); // Will notify all waiting threads

All of the threads will be notified and start competing to get the lock. As the lock
is used and released by each thread, all of them will get into action without a need
for further notification.

As we said earlier, an object can have many threads waiting on it, and using
notify() will affect only one of them. Which one exactly is not specified and
depends on the JVM implementation, so you should never rely on a particular thread
being notified in preference to another.

In cases in which there might be a lot more waiting, the best way to do this is by
using notifyAll(). Let’s take a look at this in some code. In this example, there
is one class that performs a calculation and many readers that are waiting to receive
the completed calculation. At any given moment many readers may be waiting.

1. class Reader extends Thread {
2. Calculator c;
3.
4. public Reader(Calculator calc) {
5. c = calc;
6. }
7.
8. public void run() {
9. synchronized(c) {

10. try {
11. System.out.println("Waiting for calculation...");
12. c.wait();
13. } catch (InterruptedException e) {}
14. }
15. System.out.println("Total is: " + c.total);
16. }
17.
18. public static void main(String [] args) {
19. Calculator calculator = new Calculator();
20. calculator.start();
21. new Reader(calculator).start();
22. new Reader(calculator).start();
23. new Reader(calculator).start();
24. }
25. }
26.

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

44 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

27. class Calculator extends Thread {
28. int total;
29.
30. public void run() {
31. synchronized(this) {
32. for(int i=0;i<100;i++) {
33. total += i;
34. }
35. notifyAll();
36. }
37. }
38. }

This program starts the calculator with its calculation, and then starts three threads
that are all waiting to receive the finished calculation (lines 18–24). Note that if the
run() method at line 30 used notify() instead of notifyAll(), there would
be a chance that only one reader would be notified instead of all the readers.

The methods wait(), notify(), and notifyAll() are methods of only
java.lang.Object, not of java.lang.Thread or java.lang.Runnable. Be sure you
know which methods are defined in Thread, which in Object, and which in
Runnable (just run(), so that’s an easy one). Of the key methods in Thread,
be sure you know which are static—sleep() and yield(), and which are not
static—join() and start(). Table 9-2 lists the key methods you’ll need to
know for the exam, with the static methods shown in italics.

Class Object Class Thread Interface Runnable

wait() start() run()

notify() yield()

notifyAll() sleep()

join()

TABLE 9-2

Key Thread
Methods

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION SUMMARY
This chapter covered the required thread knowledge you’ll need to apply on the
certification exam. Threads can be created by either extending the Thread class or
implementing the Runnable interface. The only method that must be overridden in
the Runnable interface is the run() method, but the thread doesn’t become a thread
of execution until somebody calls the Thread object’s start() method. We also
looked at how the sleep() method can be used to pause a thread, and we saw that
when an object goes to sleep, it holds onto any locks it acquired prior to sleeping.

We looked at five thread states: new, runnable, running, blocked/waiting/
sleeping, and dead. You learned that when a thread is dead, it can never be restarted
even if it’s still a valid object on the heap. We saw that there is only one way a thread
can transition to running, and that’s from runnable. However, once running, a thread
can become dead, go to sleep, wait for another thread to finish, block on an object’s
lock, wait for a notification, or return to runnable.

You saw how two threads acting on the same data can cause serious problems
(remember Lucy and Fred’s bank account?). We saw that to let one thread execute
a method but prevent other threads from running the same object’s method, we use
the synchronized keyword. To coordinate activity between different threads,
use the wait(), notify(), and notifyAll() methods.

Certification Summary 45

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

✓TWO-MINUTE DRILL
Here are some of the key points from each certification objective in Chapter 9.
Photocopy it and sleep with it under your pillow for complete absorption.

Creating, Instantiating, and Starting New Threads
❑ Threads can be created by extending Thread and overriding the public

void run() method.

❑ Thread objects can also be created by calling the Thread constructor that
takes a Runnable argument. The Runnable object is said to be the target of
the thread.

❑ You can call start() on a Thread object only once. If start() is called
more than once on a Thread object, it will throw a RuntimeException.

❑ It is legal to create many Thread objects using the same Runnable object as
the target.

❑ When a Thread object is created, it does not become a thread of execution until
its start() method is invoked. When a Thread object exists but hasn’t been
started, it is in the new state and is not considered alive.

Transitioning Between Thread States
❑ Once a new thread is started, it will always enter the runnable state.

❑ The thread scheduler can move a thread back and forth between the runnable
state and the running state.

❑ Only one thread can be running at a time, although many threads may be in
the runnable state.

❑ There is no guarantee that the order in which threads were started determines
the order in which they’ll run.

❑ There’s no guarantee that threads will take turns in any fair way. It’s up to
the thread scheduler, as determined by the particular virtual machine
implementation. If you want a guarantee that your threads will take turns
regardless of the underlying JVM, you should can use the sleep() method.
This prevents one thread from hogging the running process while another
thread starves.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

46 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Two-Minute Drill 47

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

❑ A running thread may enter a blocked/waiting state by a wait(), sleep(),
or join() call.

❑ A running thread may enter a blocked/waiting state because it can’t acquire
the lock for a synchronized block of code.

❑ When the sleep or wait is over, or an object’s lock becomes available, the
thread can only reenter the runnable state. It will go directly from waiting
to running (well, for all practical purposes anyway).

❑ A dead thread cannot be started again.

Sleep, Yield, and Join
❑ Sleeping is used to delay execution for a period of time, and no locks are

released when a thread goes to sleep.

❑ A sleeping thread is guaranteed to sleep for at least the time specified in the
argument to the sleep method (unless it’s interrupted), but there is no guarantee
as to when the newly awakened thread will actually return to running.

❑ The sleep() method is a static method that sleeps the currently executing
thread. One thread cannot tell another thread to sleep.

❑ The setPriority() method is used on Thread objects to give threads a
priority of between 1 (low) and 10 (high), although priorities are not guaranteed,
and not all JVMs use a priority range of 1-10.

❑ If not explicitly set, a thread’s priority will be the same priority as the thread
that created this thread (in other words, the thread executing the code that
creates the new thread).

❑ The yield() method may cause a running thread to back out if there are
runnable threads of the same priority. There is no guarantee that this will
happen, and there is no guarantee that when the thread backs out it will be
different thread selected to run. A thread might yield and then immediately
reenter the running state.

❑ The closest thing to a guarantee is that at any given time, when a thread is
running it will usually not have a lower priority than any thread in the runnable
state. If a low-priority thread is running when a high-priority thread enters
runnable, the JVM will preempt the running low-priority thread and put the
high-priority thread in.

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

❑ When one thread calls the join() method of another thread, the currently
running thread will wait until the thread it joins with has completed. Think
of the join() method as saying, “Hey thread, I want to join on to the end
of you. Let me know when you’re done, so I can enter the runnable state.”

Concurrent Access Problems and Synchronized Threads
❑ Synchronized methods prevent more than one thread from accessing an object’s

critical method code.

❑ You can use the synchronized keyword as a method modifier, or to start
a synchronized block of code.

❑ To synchronize a block of code (in other words, a scope smaller than the
whole method), you must specify an argument that is the object whose lock
you want to synchronize on.

❑ While only one thread can be accessing synchronized code of a particular
instance, multiple threads can still access the same object’s unsynchronized code.

❑ When an object goes to sleep, it takes its locks with it.

❑ Static methods can be synchronized, using the lock from the java.lang.Class
instance representing that class.

Communicating with Objects by Waiting and Notifying
❑ The wait() method lets a thread say, “there’s nothing for me to do here,

so put me in your waiting pool and notify me when something happens that
I care about.” Basically, a wait() call means “wait me in your pool,” or
“add me to your waiting list.”

❑ The notify() method is used to send a signal to one and only one of the
threads that are waiting in that same object’s waiting pool.

❑ The method notifyAll() works in the same way as notify(), only it
sends the signal to all of the threads waiting on the object.

❑ All three methods—wait()/notify()/notifyAll()—must be called
from within a synchronized context! A thread invokes wait()/notify()
on a particular object, and the thread must currently hold the lock on that object.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

48 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Deadlocked Threads
❑ Deadlocking is when thread execution grinds to a halt because the code is

waiting for locks to be removed from objects.

❑ Deadlocking can occur when a locked object attempts to access another locked
object that is trying to access the first locked object. In other words, both
threads are waiting for each other’s locks to be released; therefore, the locks
will never be released!

❑ Deadlocking is bad. Don’t do it.

Two-Minute Drill 49

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question. Stay focused.

If you have a rough time with these at first, don’t beat yourself up. Be positive. Repeat nice
affirmations to yourself like, “I am smart enough to understand threads.” “I can do this.” and “OK, so
that other guy knows threads better than I do, but I bet he can’t <insert something you are good at>
like me.”

1. Given the following,

1. class MyThread extends Thread {
2.
3. public static void main(String [] args) {
4. MyThread t = new MyThread();
5. t.run();
6. }
7.
8. public void run() {
9. for(int i=1;i<3;++i) {

10. System.out.print(i + "..");
11. }
12. }
13. }

what is the result?

A. This code will not compile due to line 4.

B. This code will not compile due to line 5.

C. 1..2..

D. 1..2..3..

E. An exception is thrown at runtime.

2. Which two of the following methods are defined in class Thread?

A. start()

B. wait()

C. notify()

D. run()

E. terminate()

50 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 51

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

3. The following block of code creates a Thread using a Runnable target:

Runnable target = new MyRunnable();
Thread myThread = new Thread(target);

Which of the following classes can be used to create the target, so that the preceding code
compiles correctly?

A. public class MyRunnable extends Runnable{public void run(){}}

B. public class MyRunnable extends Object{public void run(){}}

C. public class MyRunnable implements Runnable{public void run(){}}

D. public class MyRunnable implements Runnable{void run(){}}

E. public class MyRunnable implements Runnable{public void start(){}}

4. Given the following,

1. class MyThread extends Thread {
2.
3. public static void main(String [] args) {
4. MyThread t = new MyThread();
5. t.start();
6. System.out.print("one. ");
7. t.start();
8. System.out.print("two. ");
9. }
10.
11. public void run() {
12. System.out.print("Thread ");
13. }
14. }

what is the result of this code?

A. Compilation fails

B. An exception occurs at runtime.

C. Thread one. Thread two.

D. The output cannot be determined.

5. Given the following,

1. public class MyRunnable implements Runnable {
2. public void run() {
3. // some code here
4. }
5. }

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

which of these will create and start this thread?

A. new Runnable(MyRunnable).start();

B. new Thread(MyRunnable).run();

C. new Thread(new MyRunnable()).start();

D. new MyRunnable().start();

6. Given the following,

1. class MyThread extends Thread {
2.
3. public static void main(String [] args) {
4. MyThread t = new MyThread();
5. Thread x = new Thread(t);
6. x.start();
7. }
8.
9. public void run() {

10. for(int i=0;i<3;++i) {
11. System.out.print(i + "..");
12. }
13. }
14. }

what is the result of this code?

A. Compilation fails.

B. 1..2..3..

C. 0..1..2..3..

D. 0..1..2..

E. An exception occurs at runtime.

7. Given the following,

1. class Test {
2.
3. public static void main(String [] args) {
4. printAll(args);
5. }
6.
7. public static void printAll(String[] lines) {
8. for(int i=0;i<lines.length;i++){
9. System.out.println(lines[i]);

10. Thread.currentThread().sleep(1000);

52 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 53

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

11. }
12. }
13. }

the static method Thread.currentThread() returns a reference to the currently executing
Thread object. What is the result of this code?

A. Each String in the array lines will output, with a 1-second pause.

B. Each String in the array lines will output, with no pause in between because this method is
not executed in a Thread.

C. Each String in the array lines will output, and there is no guarantee there will be a pause
because currentThread() may not retrieve this thread.

D. This code will not compile.

8. Assume you have a class that holds two private variables: a and b. Which of the following
pairs can prevent concurrent access problems in that class? (Choose all that apply.)

A. public int read(int a, int b){return a+b;}
public void set(int a, int b){this.a=a;this.b=b;}

B. public synchronized int read(int a, int b){return a+b;}
public synchronized void set(int a, int b){this.a=a;this.b=b;}

C. public int read(int a, int b){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(a){this.a=a;this.b=b;}}

D. public int read(int a, int b){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(b){this.a=a;this.b=b;}}

E. public synchronized(this) int read(int a, int b){return a+b;}
public synchronized(this) void set(int a, int b){this.a=a;this.b=b;}

F. public int read(int a, int b){synchronized(this){return a+b;}}
public void set(int a, int b){synchronized(this){this.a=a;this.b=b;}}

9. Which class or interface defines the wait(), notify(), and notifyAll() methods?

A. Object

B. Thread

C. Runnable

D. Class

10. Which two are true?

A. A static method cannot be synchronized.

B. If a class has synchronized code, multiple threads can still access the nonsynchronized code.

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

54 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

C. Variables can be protected from concurrent access problems by marking them with the
synchronized keyword.

D. When a thread sleeps, it releases its locks.

E. When a thread invokes wait(), it releases its locks.

11. Which three are methods of the Object class? (Choose three.)

A. notify();

B. notifyAll();

C. isInterrupted();

D. synchronized();

E. interrupt();

F. wait(long msecs);

G. sleep(long msecs);

H. yield();

12. Given the following,

1. public class WaitTest {
2. public static void main(String [] args) {
3. System.out.print("1 ");
4. synchronized(args){
5. System.out.print("2 ");
6. try {
7. args.wait();
8. }
9. catch(InterruptedException e){}

10. }
11. System.out.print("3 ");
12. }
13. }

what is the result of trying to compile and run this program?

A. It fails to compile because the IllegalMonitorStateException of wait() is not dealt with
in line 7.

B. 1 2 3

C. 1 3

D. 1 2

E. At runtime, it throws an IllegalMonitorStateException when trying to wait.

F. It will fail to compile because it has to be synchronized on the this object.

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 55

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

13. Assume the following method is properly synchronized and called from a thread A on an object B:

wait(2000);

After calling this method, when will the thread A become a candidate to get another turn at
the CPU?

A. After thread A is notified, or after two seconds.

B. After the lock on B is released, or after two seconds.

C. Two seconds after thread A is notified.

D. Two seconds after lock B is released.

14. Which two are true?

A. The notifyAll() method must be called from a synchronized context.

B. To call wait(), an object must own the lock on the thread.

C. The notify() method is defined in class java.lang.Thread.

D. When a thread is waiting as a result of wait(), it release its locks.

E. The notify() method causes a thread to immediately release its locks.

F. The difference between notify() and notifyAll() is that notifyAll() notifies
all waiting threads, regardless of the object they’re waiting on.

15. Assume you create a program and one of your threads (called backgroundThread) does some
lengthy numerical processing. What would be the proper way of setting its priority to try to get
the rest of the system to be very responsive while the thread is running? (Choose all that apply.)

A. backgroundThread.setPriority(Thread.LOW_PRIORITY);

B. backgroundThread.setPriority(Thread.MAX_PRIORITY);

C. backgroundThread.setPriority(1);

D. backgroundThread.setPriority(Thread.NO_PRIORITY);

E. backgroundThread.setPriority(Thread.MIN_PRIORITY);

F. backgroundThread.setPriority(Thread.NORM_PRIORITY);

G. backgroundThread.setPriority(10);

16. Which three guarantee that a thread will leave the running state?

A. yield()

B. wait()

C. notify()

D. notifyAll()

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

E. sleep(1000)

F. aLiveThread.join()

G. Thread.killThread()

17. Which two are true?

A. Deadlock will not occur if wait()/notify() is used.

B. A thread will resume execution as soon as its sleep duration expires.

C. Synchronization can prevent two objects from being accessed by the same thread.

D. The wait() method is overloaded to accept a duration.

E. The notify() method is overloaded to accept a duration.

F. Both wait() and notify() must be called from a synchronized context.

G. wait() can throw a runtime exception

H. sleep() can throw a runtime exception.

18. Which two are valid constructors for Thread?

A. Thread(Runnable r, String name)

B. Thread()

C. Thread(int priority)

D. Thread(Runnable r, ThreadGroup g)

E. Thread(Runnable r, int priority)

19. Given the following,

class MyThread extends Thread {
MyThread() {
System.out.print(" MyThread");

}
public void run() {
System.out.print(" bar");

}
public void run(String s) {

System.out.println(" baz");
}

}
public class TestThreads {
public static void main (String [] args) {
Thread t = new MyThread() {
public void run() {

56 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println(" foo");
}

};
t.start();
}
}

what is the result?

A. foo

B. MyThread foo

C. MyThread bar

D. foo bar

E. foo bar baz

F. bar foo

G. Compilation fails.

20. Given the following,

public class SyncTest {
public static void main (String [] args) {
Thread t = new Thread() {
Foo f = new Foo();
public void run() {
f.increase(20);

}
};
t.start();

}
}
class Foo {
private int data = 23;
public void increase(int amt) {

int x = data;
data = x + amt;

}
}

and assuming that data must be protected from corruption, what—if anything—can you add
to the preceding code to ensure the integrity of data?

A. Synchronize the run method.

B. Wrap a synchronize(this) around the call to f.increase().

Self Test 57

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

58 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

C. The existing code will not compile.

D. The existing code will cause a runtime exception.

E. Put in a wait() call prior to invoking the increase() method.

F. Synchronize the increase() method

21. Given the following,

1. public class Test {
2. public static void main (String [] args) {
3. final Foo f = new Foo();
4. Thread t = new Thread(new Runnable() {
5. public void run() {
6. f.doStuff();
7. }
8. });
9. Thread g = new Thread() {

10. public void run() {
11. f.doStuff();
12. }
13. };
14. t.start();
15. g.start();
16. }
17. }
1. class Foo {
2. int x = 5;
3. public void doStuff() {
4. if (x < 10) {
5. // nothing to do
6. try {
7. wait();
8. } catch(InterruptedException ex) { }
9. } else {

10. System.out.println("x is " + x++);
11. if (x >= 10) {
12. notify();
13. }
14. }
15. }
16. }

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

what is the result?

A. The code will not compile because of an error on line 12 of class Foo.

B. The code will not compile because of an error on line 7 of class Foo.

C. The code will not compile because of an error on line 4 of class Test.

D. The code will not compile because of some other error in class Test.

E. An exception occurs at runtime.

F. x is 5
x is 6

Self Test 59

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELF TEST ANSWERS
1. � C. Line 5 calls the run() method, so the run() method executes as a normal method

should.
� A is incorrect because line 4 is the proper way to create an object. B is incorrect because
it is legal to call the run() method, even though this will not start a true thread of execution.
The code after line 5 will not execute until the run() method is complete. D is incorrect
because the for loop only does two iterations. E is incorrect because the program runs without
exception.

2. � A and D. Only start() and run() are defined by the Thread class.
� B and C are incorrect because they are methods of the Object class. E is incorrect because
there’s no such method in any thread-related class.

3. � C. The class correctly implements the Runnable interface with a legal public void
run() method.
� A is incorrect because interfaces are not extended; they are implemented. B is incorrect
because even though the class would compile and it has a valid public void run()
method, it does not implement the Runnable interface, so the compiler would complain when
creating a Thread with an instance of it. D is incorrect because the run() method must be
public. E is incorrect because the method to implement is run(), not start().

4. � B. When the start() method is attempted a second time on a single Thread object,
the method will throw an IllegalThreadStateException (you will not need to know this
exception name for the exam). Even if the thread has finished running, it is still illegal
to call start() again.
� A is incorrect because compilation will succeed. For the most part, the Java compiler only
checks for illegal syntax, rather than class-specific logic. C and D are incorrect because of the
logic explained above.

5. � C. Because the class implements Runnable, an instance of it has to be passed to the Thread
constructor, and then the instance of the Thread has to be started.
� A is incorrect. There is no constructor like this for Runnable because Runnable is an
interface, and it is illegal to pass a class or interface name to any constructor. B is incorrect for
the same reason; you can’t pass a class or interface name to any constructor. D is incorrect because
MyRunnable doesn’t have a start() method, and the only start() method that can start
a thread of execution is the start() in the Thread class.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

60 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6. � D. The thread MyThread will start and loop three times (from 0 to 2).
� A is incorrect because the Thread class implements the Runnable interface; therefore, in
line 5, Thread can take an object of type Thread as an argument in the constructor. B and C
are incorrect because the variable i in the for loop starts with a value of 0 and ends with a value
of 2. E is incorrect because of the program logic described above.

7. � D. The sleep() method must be enclosed in a try/catch block, or the method
printAll() must declare it throws the InterruptedException.
� A is incorrect, but it would be correct if the InterruptedException was dealt with. B
is incorrect, but it would still be incorrect if the InterruptedException was dealt with because
all Java code, including the main() method, runs in threads. C is incorrect. The sleep()
method is static, so even if it is called on an instance, it still always affects the currently
executing thread.

8. � B and F. By marking the methods as synchronized, the threads will get the lock of
the this object before proceeding. Only one thread will be either setting or reading at any given
moment, thereby assuring that read() always returns the addition of a valid pair.
� A is incorrect because it is not synchronized; therefore, there is no guarantee that the values
added by the read() method belong to the same pair. C and D are incorrect; only objects
can be used to synchronize on. E is incorrect because it is not possible to select other objects to
synchronize on when declaring a method as synchronized. Even using this is incorrect syntax.

9. � A. The Object class defines these thread-specific methods.
� B, C, and D are incorrect because they do not define these methods. And yes, the Java API
does define a class called Class, though you do not need to know it for the exam.

10. � B and E. B is correct because multiple threads are allowed to enter nonsynchronized code,
even within a class that has some synchronized methods. E is correct because a wait() call
causes the thread to give up its locks.
� A is incorrect because static methods can be synchronized; they synchronize on the lock
on the instance of class java.lang.Class that represents the class type. C is incorrect because only
methods—not variables—can be marked synchronized. D is incorrect because a sleeping
thread still maintains its locks.

11. � A, B, and F. They are all related to the list of threads waiting on the specified object.
� C, E, G, and H are incorrect answers. The methods isInterrupted() and
interrupt() are instance methods of Thread. The methods sleep() and yield() are
static methods of Thread. D is incorrect because synchronized is a keyword and the
synchronized() construct is part of the Java language.

Self Test Answers 61

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12. � D. 1 and 2 will be printed, but there will be no return from the wait call because no other
thread will notify the main thread, so 3 will never be printed. The program is essentially frozen
at line 7.
� A is incorrect; IllegalMonitorStateException is an unchecked exception so it doesn’t have
to be dealt with explicitly. B and C are incorrect; 3 will never be printed, since this program
will never terminate because it will wait forever. E is incorrect because
IllegalMonitorStateException will never be thrown because the wait() is done on args within
a block of code synchronized on args. F is incorrect because any object can be used to synchronize
on and, furthermore, there is no this when running a static method.

13. � A. Either of the two events (notification or wait time expiration) will make the thread
become a candidate for running again.
� B is incorrect because a waiting thread will not return to runnable when the lock is released,
unless a notification occurs. C is incorrect because the thread will become a candidate immediately
after notification, not two seconds afterwards. D is also incorrect because a thread will not come
out of a waiting pool just because a lock has been released.

14. � A and D. A is correct because the notifyAll() method (along with wait() and
notify()) must always be called from within a synchronized context. D is correct because a
thread blocked on a wait() call releases its locks, so another thread can get into the synchronized
code and eventually call notify() or notifyAll().
� B is incorrect because to call wait(), the thread must own the lock on the object that
wait() is being invoked on, not the other way around. C is wrong because notify() is
defined in java.lang.Object. E is wrong because notify() will not cause a thread to release
its locks. The thread can only release its locks by exiting the synchronized code. F is wrong
because notifyAll() notifies all the threads waiting on a particular locked object, not all
threads waiting on any object.

15. � C and E. In E, the constant Thread.MIN_PRIORITY is the lowest priority that a thread
can have, and the background thread should have a very low priority or the lowest. Answer C
is correct because 1 is a low (and usually the minimum) value, although for code clarity it is
recommended to use the Thread.MIN_PRIORITY.
� A and D are incorrect because there are no such variables in the Thread class. B is incorrect;
using MAX_PRIORITY would make other threads have fewer chances of getting a turn of the
CPU, even to the point of freezing until the numerical processing is finished. F is incorrect
because the thread would still compete for the CPU time and even delay other threads. G is
incorrect because 10 is the value of MAX_PRIORITY, so i would be equivalent to answer B.

62 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

16. � B, E, and F. B is correct because wait() always causes the current thread to go into the
object’s wait pool. E is correct because sleep() will always pause the currently running
thread for at least the duration specified in the sleep argument (unless an interrupted exception
is thrown). F is correct because, assuming that the thread you’re calling join() on is alive,
the thread calling join() will immediately block until the thread you’re calling join()
on is no longer alive.
� A is wrong, but tempting. The yield() method is not guaranteed to cause a thread to
leave the running state, although if there are runnable threads of the same priority as the currently
running thread, then the current thread will probably leave the running state. C and D are
incorrect because they don’t cause the thread invoking them to leave the running state. G is
wrong because there’s no such method.

17. � D and F. D is correct because the wait() method is overloaded to accept a wait duration
in milliseconds. If the thread has not been notified by the time the wait duration has elapsed,
then the thread will move back to runnable even without having been notified. F is
correct because wait()/notify()/notifyAll() must all be called from within
a synchronized, context. A thread must own the lock on the object its invoking
wait()/notify()/notifyAll() on.
� A is incorrect because wait()/notify() will not prevent deadlock. B is incorrect
because a sleeping thread will return to runnable when it wakes up, but it might not necessarily
resume execution right away. To resume executing, the newly awakened thread must still be
moved from runnable to running by the scheduler. C is incorrect because synchronization prevents
two or more threads from accessing the same object. E is incorrect because notify() is not
overloaded to accept a duration. G and H are incorrect because wait() and sleep() both
declare a checked exception (InterruptedException).

18. � A and B are both valid constructors for Thread.
� C, D, and E are not legal Thread constructors, although D is close. If you reverse the
arguments in D, you’d have a valid constructor.

19. � B is correct because in the first line of main we’re constructing an instance of an
anonymous inner class extending from MyThread. So the MyThread constructor runs and
prints “ MyThread”. The next statement in main invokes start() on the new thread instance,
which causes the overridden run() method (the run() method defined in the anonymous
inner class) to be invoked, which prints “ foo”.
� A, C, D, E, F, and G are all incorrect because of the program logic described above.

Self Test Answers 63

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

64 Chapter 9: Threads

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

20. � F is correct because synchronizing the code that actually does the increase will protect the
code from being accessed by more than one thread at a time.
� A is incorrect because synchronizing the run() method would stop other threads from
running the run() method (a bad idea) but still would not prevent other threads with other
runnables from accessing the increase() method. B is incorrect for virtually the same reason
as A—synchronizing the code that calls the increase() method does not prevent other
code from calling the increase() method. C and D are incorrect because the program
compiles and runs fine. E is incorrect because it will simply prevent the call to increase()
from ever happening from this thread.

21. � E is correct because the thread does not own the lock of the object it invokes wait() on.
If the method were synchronized, the code would run without exception.
� A, B, C, and D are incorrect because the code compiles without errors. F is incorrect because
the exception is thrown before there is any output.

EXERCISE ANSWERS
Exercise 9-1: Creating a Thread and Putting It to Sleep

The final code should look something like this:

class TheCount extends Thread {
public void run() {

for(int i = 1;i<=100;++i) {
System.out.print(i + " ");
if(i % 10 == 0)

System.out.println("Hahaha");
try {

Thread.sleep(1000);
} catch(InterruptedException e) {}

}
}

public static void main(String [] args) {
new TheCount().start();

}
}

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exercise 9-2: Synchronizing a Block of Code
Your code might look something like this when completed:

1. class InSync extends Thread {
2. StringBuffer letter;
3.
4. public InSync(StringBuffer letter) {
5. this.letter = letter;
6. }
7.
8. public void run() {
9. synchronized(letter) {
10. for(int i = 1;i<=100;++i) {
11. System.out.print(letter);
12. }
13. System.out.println();
14. // Increment the letter in StringBuffer:
15. char temp = letter.charAt(0);
16. ++temp;
17. letter.setCharAt(0, temp);
18. }
19. }
20.
21. public static void main(String [] args) {
22. StringBuffer sb = new StringBuffer("A");
23. new InSync(sb).start();
24. new InSync(sb).start();
25. new InSync(sb).start();
26. }
27. }

Just for fun, try removing lines 9 and 18 then run the program again. It will be
unsynchronized, and watch what happens.

Exercise Answers 65

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 9

P:\010Comp\CertPrs8\684-6\ch09.vp
Wednesday, November 13, 2002 5:12:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Part II
The Developer’s

Exam

CHAPTERS

10 Introduction to the SCJD

11 Coding Standards

12 Clarity and Maintainability

13 Designing the Graphical User Interface

14 Networking Issues

15 Database Issues

16 Exam Documentation

17 Final Submission and Essay

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10
Blind Folio 10:1

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6
Blind Folio 2

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

10
Introduction
to the SCJD

CERTIFICATION OBJECTIVES

• Understand the Sun Certified Java
Developer Exam Process

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10
Blind Folio 10:3

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

4 Chapter 10: Introduction to the SCJD

CERTIFICATION OBJECTIVE

Understand the Sun Certified
Java Developer Exam Process

OK, so now you know everything about the language. But can you actually build
something in it? You’ll hear that argument from some who’ve never taken (or passed)
the programmer’s exam. Obviously, they don’t understand how darn difficult the
programmer’s exam actually is, but nonetheless there is something to the claim that,
“just because you know how the compiler and VM work does not mean you can
develope software.” The Developer exam, which is unique in the IT exam world,
lets you answer that question (most often posed by a prospective employer).

In the Developer exam, you get to put your code where your mouth is by developing
a software application. In fact, the Developer exam isn’t even a multiple-choice test
but rather a project that you build, given a (somewhat sketchy) specification. You’re
told what to build, with some general guidelines, and then it’s up to you to implement
and deliver the program. You have an unlimited amount of time in which to finish
the project (as of this writing), but there is a short follow-up essay exam (taken at an
authorized testing center, just as the Programmer exam is). The follow-up questions
are largely used to verify that it was you (not your hotshot programmer brother-in-law
who owed you big time) who did the work. In other words, the follow-up exam asks
essay questions that only the project developer could answer (for example, “Justify
your design choice on…”).

First, we’ll lay out the facts of the exam—how it works, how you do it, etc., and
then we’ll dive into what you need to know to pass it. Keep in mind that the actual
knowledge you need to pass cannot be stuffed into a book this size, even if we made
the book big enough to crush a car. Being a programmer is one thing, but being a
developer is quite another. And you can’t become a developer just by memorizing
some facts. Study and memorization can work for passing the Programmer’s exam—
but that’s OK because the programmer’s exam is designed to verify that you’re smart
and that you really know the language. A prospective employer doesn’t have to train
you in Java if you’ve passed the programmer’s exam. But if your employer wants
to verify that you can follow a spec and implement a well-designed, maintainable,
correct application, then you need either previous experience successfully building
one or more Java applications or you need to pass the SCJD.

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

The next seven chapters (in other words, the rest of the book) show you what
you’ll need to know and do to pass the exam, but it’s up to you to do the heavy
lifting. And unless you’re already well-versed in some of the topics (Swing, Threads,
RMI, etc.) then you’ll need to do some outside reading and practice in those
technologies. We’re focusing here on what the exam assessors are looking for in
your finished project.

How Does It Work?
The exam has two parts, The Assignment and The Essay. You must successfully pass
both parts to become certified.

The Assignment
Once you register for the Developer’s exam, you’re given instructions for downloading
your assignment. There are many possible assignments that you might get. The
assignment is a 9- or 10-page document with instructions for completing the project.
Instructions include both the application specification and requirements for
implementation and delivery. It also includes notes about how the application
will be marked (evaluated, graded, assessed).

The Essay
Once you’ve submitted your assignment, you should immediately register for the
essay portion of the certification. You can’t register until after you’ve submitted your
completed assignment, but the sooner the better once you have submitted it. You
really want to take the essay portion while the application you just completed is still
fresh in your mind. The essay portion will feel somewhat familiar to you—it takes
place in an authorized Prometric testing center, just as the Programmer’s exam does.
You have 90 minutes to complete the essay portion, and it normally involves just a
handful (about five) questions.

The Assessment
Once you’ve submitted both your assignment and the follow-up essay, the two
pieces will be sent to the assessor for grading. It might be four weeks or so before
you learn the results.

Understand the Sun Certified Java Developer Exam Process 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 Chapter 10: Introduction to the SCJD

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

Are You a Good Candidate?
If you haven’t yet passed the Programmer’s (SCJP) exam, then stop right now and go
get certified. You must pass the Programmer’s exam before you’re allowed to register
for the Developer exam. So we figure that you’ll read the first part of the book, take
the Programmer’s exam (passing, of course), then come back at some point and start
reading this part. That means by the time you’re reading this part, this book should
already be dog-eared, marked-up, scratched, bent, and possibly dusty (from that dry
spell between taking the Programmer’s exam and going for the Developer exam).

If you got to this paragraph, then we assume you’re already a Sun Certified Java
Programmer. But are you ready for the Developer exam? Well, the good news is that
you don’t need to be ready when you register for the exam. You’ve got plenty of time
to complete the assignment once you download it. So unlike the Programmer’s
exam, you don’t have to wait until you’re at top form for passing the exam. You can
download the assignment, analyze what you’ll need to learn to complete it, and then
get to work. Sun (and most candidates) estimates that it takes between 90 and 120
hours of solid work to complete the exam, and that assumes you’re already familiar
with all the necessary technologies (networking, database, threads/locking, Swing,
etc.). Some people work for three weeks straight, as if the project were their full-time
job. Others work on it when they can, in their spare time, and might take several
months to actually finish it. Of course, there’s always the chance that you download
it and discover you’re way over your head and unlikely to get up-to-speed within a
year. But if you’ve passed the Programmer’s exam and you’re willing to commit the
time to work on it (plus whatever additional time you need to learn any required
technologies you’re not familiar with), then we say go for it…if you’ve got the
money (we’ll get to that in the next section).

Having said all that, we don’t recommend registering until you’ve read the rest of
this book. It’ll give you a better idea of what’s really involved, and you might decide
to wait a while if you’re still a beginner at some of these technologies. But if you’re
comfortable with at least three of the following, chances are you’re ready to at least
download the assignment:

■ Swing and GUI design

■ Networking issues: sockets and RMI

■ Database issues: searching and record-locking

■ Writing clear, maintainable code

■ OO design and development

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

How Much Does It Cost?
All you need is $250 (US dollars) and you’re in business…for the first part. The
SCJD is in two parts, remember: the exam assignment (the specification that you
download, implement, and submit) and the follow-up essay. The follow-up exam is
an additional $150. So you’re looking at $400 total to get your certification. There’s
no partial certification, so submitting your exam doesn’t get you anywhere unless
you successfully take the follow-up exam. In other words, you can’t be certified
without spending the $400.

How Long Does It Take?
As of this writing, there is no time limit specified for completing the assignment
once you’ve downloaded it, but we don’t advise waiting more than a year, as the
requirements could change. Plus, there’s a new requirement (although these
requirements could change at any time so check the Sun website frequently at
http://suned.sun.com for updates) that you must not use a version of Java that is
deemed “out of date.” The current definition of out of date is that your version must
not have been superceded by a new production version for more than 18 months by
the time you make your submission. What that means is that if your version has
been out for less than 18 months, you’re fine. If your version is older than 18
months (in other words, its official public release was more than 18 months ago),
then the version released directly after your version must be less than 18 months old.
So don’t take forever is what we’re saying, or you could find yourself rewriting your
application. It’s not good enough for your program to run on newer versions; you
need to indicate in your exam which version you’ve compiled and tested on.

What’s the Exam Deliverable?
Chapter 17 covers this in picky detail, but the short version is: a JAR file. As of this
writing, you must submit the entire application, including compiled working classes,
source code, and documentation in a single JAR file. Your assignment instructions
will specify exactly how you must submit it and the most important rule is that you
must not deviate in any way from the submission instructions.

Can I Develop with an IDE?
You can, but everything you submit must be your own creation. In other words,
no auto-generated code. So use an IDE as an editor but not as a GUI-building tool

Understand the Sun Certified Java Developer Exam Process 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

or something that implements your networking. And whatever you do, be sure to
test on a machine other than your development machine! When using an IDE
(or not, but there’s more of a danger when using an IDE) you can end up being
sheltered and protected from things like classpath issues, which allow your program
to run fine on your machine and then blow up (OK, just fail to run) at runtime on
another system.

How Is It Graded?
Once you’ve completed both the assignment and the essay exam, an assessor takes
both pieces and performs the assessment. Your project is first assumed to be correct
and is given a starting point value (currently 155 points, but this could change).
Then points are deducted through a variety of audits. For example, you might get
12 points deducted for issues with your coding conventions, and perhaps another 15
(out of a possible, say, 18 points) for problems with your record-locking or search
algorithm. That subtracts 27 from your starting total of 155, and leaves you with
128 points. Currently, the exam requires 124 points to pass, so you’d be good with
128. Your instructions will give you an idea of the relative importance of certain
evaluation (audit) criteria, but you won’t know the specific values for specific
violations. DISCLAIMER: the point values mentioned here are merely examples of
how the exam is graded; they are not the actual point values used in the assessment.
The only thing you will know with certainty is the relative importance of different
aspects of your project. We’ll give you one clue right now, though: code readability/
clarity and threading/locking will be extremely important. You’ll almost certainly
find these two areas carrying the most weight on your assignment instructions.

What Are the Exam Assessors Thinking?
OK, we aren’t mind readers, and for all we know the assessors are thinking about
last night’s Bellbottom Bowling party as they mark your exam. But we do know one
thing: they aren’t looking to see how clever an algorithm designer you are! If anything,
it’s just the opposite. When you think of the Developer exam, don’t think Lone
Ranger. Instead, think Team Player. And don’t even think about showing off your
programming prowess by revising the specification to do something even better and
cooler than what’s asked for. There’s a saying we have in the software world, and it
will serve you well to remember it while building your Developer project: “Code as
if the next guy to maintain it is a homicidal maniac who knows where you live.”

8 Chapter 10: Introduction to the SCJD

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Understand the Sun Certified Java Developer Exam Process 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

The exam assessors aren’t thinking like my-algorithm-is-bigger-than-yours
code mavericks. They aren’t looking for the next great breakthrough in
record-locking. They aren’t even looking for new, creative implementations.
They are looking for development that says, “I’m a thoughtful programmer. I
care about maintainability. Readability is very important to me. I want everyone
to understand what’s going on with the least amount of effort. I write careful,
correct code. My code might not be the snappiest, and it might even incur an
extra few bytes in order to make something less complex, but my logic is simple,
my code and my design are clear and implement the specification perfectly, I
didn’t reinvent the wheel anywhere, and gosh—wouldn’t you just love to have
me on your team?” If your project submission says all that about you, you’re
in great shape.

The exam assessor looks at your code first from an entirely selfish perspective by
asking, “Is this easy for me to evaluate?” Chapters 16 and 17 offer insight into what
you need to do to make the assessor’s job easier. Trust us on this one—they’d rather
be at the beach (or skiing, mountain-biking, taking a Martha Stewart crafts workshop)
than spending unnecessary time figuring out how to get your assignment working.
Beginning with the “refreshed” exam assignments at the end of 2002, the requirements
changed to make the submission rules much more strict, in order to benefit the assessor.
If at any time you neglect to follow even a single submission requirement—say, the
directory structure of your project puts the user documentation in a different
folder—you’ll be failed on the spot. The assessor won’t make any allowances for
misplaced files, even if the program still runs perfectly. Don’t make them go looking
for something.

Another aspect of making the assessor’s life easier is what you’ll learn in Chapters
11 and 12. The little things really matter! For example, while you might think—if
you indent your code four spaces—that an occasional three-space indentation here
and there is OK, what’s the harm in that? The harm is in readability, and while a
couple of inconsistencies in indentations might not be a big deal, adhering to the
Java Coding Conventions is absolutely crucial for others looking at your code…
especially the assessor.

We’ve seen people fail the exam because they put the curly braces on the line
below the method declaration rather than immediately following the declaration
(on the same line), violating the official Java Coding Conventions. While this
infraction alone probably might not cause you to fail, the points deducted for code
convention violations might be the ones that sink you where you otherwise might
have squeaked by. You don’t get to make very many mistakes in this exam. Just

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

because your manager or your co-workers are tolerant of a little sloppiness here and
there, the assessor won’t be. Reread the preceding Exam Watch, copy it down on a
post-it note, and stick it onto your bathroom mirror. Each morning, say it to
yourself, “I’m a thoughtful programmer. I care…” (except say the whole thing).

What Are the Exam Assessors NOT Thinking?
If your solution works—according to the spec—then even if the algorithms might
be tweaked just a little more for efficiency, you probably won’t be marked down—
especially if the code is clear, maintainable, and gets the job done correctly. They’re
also not looking for one particular solution. There is no one right way to implement
your assignment. There are a gazillion wrong ways, however, and we’ll be looking at
some of those throughout the rest of the book. But here’s one that’s guaranteed to
kill you (both on the exam and in the real world): deadlock. Remember, we talked
about threads in Chapter 8, and you’d better take it all very seriously. If there’s even
a chance that your design could lead to deadlock (it doesn’t have to actually cause
deadlock right before the assessor’s eyes) then you can probably kiss that $400 goodbye.

The bottom line is that they’re not looking for The Perfect Solution. But they’re
also not looking for innovative new approaches, regardless of how clever, when
well-known patterns or other solutions exist. They’re especially not looking for you
to reinvent the wheel or write your own, say, new and improved set of classes to
replace the perfectly working core library packages.

What’s the Assignment Like?
We can’t give you a real assignment from the actual exam, of course, but here are a
couple of examples to give you the flavor of what the specification might look like.
And don’t be thinking these are outlandish examples; wait ‘til you see the real ones.

WindRider Horse Cruises
WindRider Horse Cruises (WHC) offers a variety of unique vacation trips, all on
horseback. Copying the cruise ship model, WHC has 4-day, 7-day, and 14-day
cruises that include all the food, drinks, and partying you can handle. (Which, after
four straight days on a horse won’t be much.) WindRider has grown steadily from a
two-person outfit offering one cruise a month to a busy operation with several cruises
running simultaneously in different parts of the world. But while the business has

10 Chapter 10: Introduction to the SCJD

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Understand the Sun Certified Java Developer Exam Process 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

grown, their cruise booking software hasn’t kept pace. The WindRider CEO is
acting as the company’s IT director, but he has some quirks. He insists on keeping
the entire application—including the database server—homegrown. In other words,
he doesn’t want to buy or use a database server written by anyone but his trusted
friend Wilbur. Sadly, Wilbur sustained an injury while fulfilling his other
WindRider duties (training horses to tolerate the disco music) and that’s where you
come in. Your job is to build the new WindRider booking software. One restriction
is that you must use the WindRider’s existing data file format. All cruise records
must stay in that format because the accounting part of the company still has
software that requires that format, and you’re only updating the booking software.

Customers must be able to call in to one of the four booking offices and request
a cruise. A customer service representative then uses the new booking application
(the one you’re going to write) to search for and then book an appropriate cruise to
meet that customer’s needs. Although the data file lives on one machine, back at the
head office, the three other booking offices (and possibly more in the future) need
to be able to access it over a standard TCP/IP network. So there’s a danger that two
customer service agents could be trying to book the same cruise slot at the same
time. (A cruise slot is like a ‘cabin’ on a real seafaring cruise. So any given cruise
might have anywhere between 6 to 12 slots, and each slot represents a record in the
data file.) You’ll have to make sure that this doesn’t happen! Overbooking would be
a Really Bad Thing. (Especially for the horse.)

So the people who interact with the actual software are the customer service
agents. But it’s the actual cruise customers who are making the requests. For example, a
customer might phone up and say, “I’d like a 4- or 7-day Horse Cruise sometime in
August 2003, in the United States.” The customer service agent must then use the
system to perform a search for that customer’s needs. The application needs to provide
a list of all possible matching cruises and then also allow the agent to reserve (book)
a cruise slot for that customer.

You must use a Swing GUI, and WindRider’s CEO just happens to be dating a
Computer-Human Interaction specialist, so you can bet she’ll be looking for all the
right characteristics of a usable GUI.

For networking, you have the choice between RMI and using regular old Java
TCP sockets (with serialized objects). It’s really up to you to make that decision, but
you’d better be prepared to explain why you chose what you chose.

The data file format is a little ugly, not comma-delimited or anything, just a
bunch of fixed-length fields. And you must stick to this data file exactly. We’ll send
it to you so you can see exactly how it’s formatted and start working with it in your

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12 Chapter 10: Introduction to the SCJD

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

development. You can’t change a thing about what goes into a record. You can’t add
a field, can’t reformat the data…nothing. Your job is simply to build the actual
database server that accesses the data file to allow for searching, booking, adding new
cruises, etc. Oh, and don’t forget about those concurrent user issues—you must lock
these records in some way during use.

From his hospital bed, Wilbur sketched out what the database interface should
be, and you need to follow this exactly (although you can add more, but you must at
least provide these two methods in your public interface to the database server).

public void updateRecord(String[] recordData, int whichRecord) throws
LockedRecordException, NoSuchRecordException;

public int[] findByCustomerCriteria(Criteria criteriaObject);

But then you still need to add the methods for deleting, locking, etc. And you’ll
have to create the custom Exceptions and decide what should go in the Criteria class
(the thing you’re going to use to search the database).

Your job, ultimately, is to deliver the following:

■ The customer service GUI application that they use to search and book
records in the database.

■ The actual database server application—the thing that actually gets into the
data file and takes care of locking, etc. This is most likely the piece the GUI
interacts with.

■ Networking functionality so that multiple users can access this, remotely.

Confused?
That’s part of the idea. You need to think through the problems, think about new
problems not addressed in this spec, and figure out how to solve them, even in the
face of incomplete information. The real world isn’t perfect. Specs never seem to be
complete. And the person you need to ask for clarification never seems to be at his
desk when you call. Oh, and there’s nobody—and we do mean nobody—who will
reassure you that you’re on the right track by implementing a particular solution.
You’re just going to have to roll your sleeves up and answer your own “what about
<insert some scenario> ?” questions.

And boy oh boy are there issues. Both raised and unraised by this specification.
The majority of the rest of this book raises those issues and gives you a lot to think
about. We can’t give you solutions—there aren’t any right solutions, remember—and

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

it wouldn’t be ethical to work out all the issues here. That’s the whole point of the
Developer exam! The actual coding is quite straightforward and fairly simple. It’s not
like you’re writing the world’s greatest neural network or artificial life program. But
thinking about the true business issues—about what the customer might need, what
the customer service agents need, and what the business itself needs, and then planning
and implementing a solution—are what this certification is all about. You’ll thank us
one day. And don’t forget, if you get frustrated, just remember how much you like us
for getting you through the Programmer certification. Which we did, or of course
you wouldn’t be reading this far into the book!

Overview of the Developer Exam Chapters
We’re going to cover a lot of ground here, some at a high level and some a little
lower. The high-level areas are the places where you need to design solutions and
discover potential problems. Locking issues, for example, are handled at a high level.
We’ll raise issues to get you thinking, but you’ll have to come up with your own
designs—after all, we have no way of knowing what your exact assignment will be.
The lower-level areas are reserved for things you must do throughout your entire
application—such as coding standards, OO design, documentation, etc., and for
tools such as javadoc and Jar. We also cover GUI usability in some depth, but it will
be up to you to work out the implementations. The following is a chapter-by-chapter
look at what we cover in the rest of the book:

Chapter 11: Coding Standards
As we mentioned earlier, even the failure to indent properly or line up your
comments can mean the difference between passing and failing the exam. We’ll
cover the relevant parts of the Java Coding Conventions that you must be very
meticulous about in every single line in every single class in your application.

Chapter 12: Clarity and Maintainability
This is where the whole Team Work mentality (or, if you prefer, the homicidal
maniac thing) comes in. We’ll look at what makes your code easy to read and
maintain (and conversely, what makes it a pain to read and maintain), and cover
things like reducing logic complexity, appropriate error-handling, and adhering to
some fundamental OO principles.

Understand the Sun Certified Java Developer Exam Process 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

Chapter 13: GUI Usability
Don’t you just hate it when you’re working in an application that makes you type
things like “yes” or “no” rather than providing radio buttons? Or what about a
nonstandard menu—you know, without a File and Help menu? Or worse, no
menu bar at all. Or one that bombards you with dialog boxes for every little move
you make. Or things that should scroll that don’t. Or when you resize a window
and things land anywhere other than where they were before. A well-designed
GUI must be usable, useful, and not clumsy. Fortunately, there are established
human interface guidelines to help inform our design, and that’s what we’ll look
at in this chapter.

Chapter 14: Networking Issues
Hmm, what to choose…RMI or sockets? We’ll cover the main points and then—
even though there is definitely not a right choice for the exam—we’ll spend most of
the time on our personal favorite, RMI. And why laziness isn’t necessarily a bad trait
in a programmer.

Chapter 15: Database Issues
We know, we know…in the real world surely someone would just buy a database.
Heck, there are free ones out there. But for the purposes of assessing your development
skills, thinking through (and implementing) the tricky and subtle issues of concurrency
will do nicely. So pretend, for the time being, that there is no such thing as a database.
Or that you’re the first person to have to build one. We’ll look at some of the things
you’ll need to be thinking about in your design, and how crucial threads are to your
design and implementation.

Chapter 16: Exam Documentation
Remember when we said your job was to make the assessor’s life easier? (The assessor
representing both the end-user and the client and the project manager of this
application.) Now’s your chance to shine. Or not. We’ll look at everything from
status messages to comments, but most of the focus is on javadoc, which you must
provide for all repeat all classes and interfaces.

14 Chapter 10: Introduction to the SCJD

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Understand the Sun Certified Java Developer Exam Process 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

Chapter 17: Final Submission and Essay
“Real Women Ship” the saying goes (or something like that) and now it’s time for
you to call your application finished and package it up in a nice JAR and send it out.
We’ll emphasize the importance of getting your directory structures just right, and
what you’ll need to do at the command-line to run from the JAR in a particular way.

Key Points Summary
No time like the present to get started. But before we jump into code conventions,
here’s a quick summary of the points from this chapter:

■ The Developer exam is in two parts, the Assignment and the Essay.

■ You must complete (and pass) both parts to become certified.

■ The Assignment is a set of instructions for building and delivering the
application.

■ Once you’ve submitted your Assignment, you can register for the Essay
portion of the exam.

■ You’re given a minimum of one year to complete the Assignment (from the
time you register and download it).

■ Most candidates take between 90 and 120 hours to complete the Assignment.

■ You’re given 90 minutes on the Essay portion of the exam.

■ You must be a Sun Certified Java Programmer (for Java 2) in order to register
for the Developer exam.

■ The certification costs $400 total ($250 for the Assignment portion and
$150 for the Essay).

■ You can develop with an IDE, but you must not include any IDE-generated
code in your project. Every line must be coded by you.

■ The Assignment is graded by giving your application a starting number of points
and then deducting points for violations including minor things (curly braces in
the wrong place) and major things (locking doesn’t work in every situation).

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The Essay is designed largely to verify that you are the one who completed
the Assignment. You need to understand the key issues of your design and be
prepared to justify your decisions.

■ The exam Assessors are more interested in the clarity and maintainability of
your code than they are in your clever algorithms.

■ Think like a Team Player rather than a lone coding maverick, even if it
means your design and implementation are sometimes slightly less efficient,
but more easily understood by others.

16 Chapter 10: Introduction to the SCJD

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 10

P:\010Comp\CertPrs8\684-6\ch10.vp
Wednesday, November 13, 2002 5:11:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

11
Coding
Standards

CERTIFICATION OBJECTIVES

• Use Sun Java Coding Standards

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11
Blind Folio 11:1

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION OBJECTIVE

Use Sun Java Coding Standards
The Developer exam is challenging. There are a lot of complex design issues to
consider, and a host of advanced Java technologies to understand and implement
correctly. The exam assessors work under very strict guidelines. You can create the
most brilliant application ever to grace a JVM, but if you don’t cross your t’s and
dot your i’s the assessors have no choice but to deduct crucial (and sometimes
substantial) points from your project. This chapter will help you cross your t’s and
dot your i’s. Following coding standards is not hard; it just requires diligence. If you
are careful it’s no-brainer stuff, and it would be a shame to lose points because of a
curly brace in the wrong place. The Developer exam stresses things that must be
done to avoid automatic failure. The exam uses the word must frequently. When we
use the word must, we use it in the spirit of the exam, if you must you must, so just
get on with it. Let’s dive into the fascinating world of Java Coding Standards.

Spacing Standards
This section covers the standards for indenting, line-length limits, line breaking, and
white space.

Indenting
We said this was going to be fascinating didn’t we? Each level of indentation must
be four spaces, exactly four spaces, always four spaces. Tabs must be set to eight
spaces. If you are in several levels of indentation you can use a combination of tabs
and (sets of four) spaces to accomplish the correct indentation. So if you are in a
method and you need to indent 12 spaces, you can either press SPACEBAR 12 times,
or press TAB once and then press SPACEBAR four times. (Slow down coach.) We
recommend not using the TAB key, and sticking to the SPACEBAR—it’s just a bit safer.

When to Indent If you indent like this, you’ll make your assessor proud:

■ Beginning comments, package declarations, import statements, interface
declarations, and class declarations should not be indented.

2 Chapter 11: Coding Standards

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Use Sun Java Coding Standards 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

■ Static variables, instance variables, constructors, methods, and their respective
comments* should be indented one level.

■ Within constructors and methods, local variables, statements, and their
comments* should be indented another level.

■ Statements (and their comments) within block statements should be indented
another level for each level of nesting involved. (Don’t worry, we’ll give you
an example.)

The following listing shows proper indenting:

public class Indent {

static int staticVar = 7;

public Indent() { }

public static void main(String [] args) {

int x = 0;

for(int z=0; z<7; z++) {
x = x + z;
if (x < 4) {

x++;
}

}
}

}

Line Lengths and Line Wrapping
The general rule is that a line shouldn’t be longer than 80 characters. We recommend
65 characters just to make sure that a wide variety of editors will handle your code
gracefully. When a line of code is longer than will fit on a line there are some line
wrapping guidelines to follow. We can’t say for sure that these are a must, but if
you follow these guidelines you can be sure that you’re on safe ground:

■ Break after a comma.

■ Break before an operator.

* Rules about comments are coming soon!

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Align the new line a tab (or eight spaces) beyond the beginning of the line
being broken.

■ Try not to break inside an inner parenthesized expression. (Hang on, the
example is coming.)

The following snippet demonstrates acceptable line wrapping:

/* example of a line wrap */
System.out.println(((x * 42) + (z - 343) + (x % z))

+ numberOfParsecs);

/* example of a line wrap for a method */
x = doStuffWithLotsOfArgs(coolStaticVar, instanceVar,

numberOfParsecs, reallyLongShortName, x, z);

White Space
Can you believe we have to go to this level of detail? It turns out that if you don’t
parcel out your blank spaces as the standards say you should, you can lose points.
With that happy thought in mind, let’s discuss the proper use of blank lines and
blank statements.

The Proper Use of Blank Lines Blank lines are used to help readers of your
code (which might be you, months after you wrote it) to easily spot the logical
blocks within your source file. If you follow these recommendations in your source
files, your blank line worries will be over.

Use a blank line,

■ Between methods and constructors

■ After your last instance variable

■ Inside a method between the local variables and the first statement

■ Inside a method to separate logical segments of code

■ Before single line or block comments

Use two blank lines between the major sections of the source file: the package, the
import statement(s), the class, and the interface.

4 Chapter 11: Coding Standards

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Use Sun Java Coding Standards 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

The Proper Use of Blank Spaces Blank spaces are used to make statements
more readable, and less squished together. Use a blank space,

■ Between binary operators

■ After commas in an argument list

■ After the expressions in a for statement

■ Between a keyword and a parenthesis

■ After casts

The following code sample demonstrates proper form to use when indenting,
skipping lines, wrapping lines, and using spaces. We haven’t covered all of the
rules associated with the proper use of comments; therefore, this sample does not
demonstrate standard comments:

/*
* This listing demonstrates only proper spacing standards
*
* The Javadoc comments will be discussed in a later chapter
*/

package com.wickedlysmart.utilities;

import java.util.*;

/**
* CoolClass description
*
* @version .97 10 Oct 2002
* @author Joe Beets
*/
public class CoolClass {

/** Javadoc static var comment */
public static int coolStaticVar;

/** Javadoc public i-var comment */

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public long instanceVar;

/* private i-var comment */
private short reallyLongShortName;

/** Javadoc constructor comment */
public CoolClass() {
// do stuff

}

/** Javadoc comment about method */
void coolMethod() {

int x = 0;
long numberOfParsecs = 0;

/* comment about for loop */
for(z = 0; z < 7; z++) {

x = x + z;

/* comment about if test */
if (x < 4) {

x++;
}

/* example of a line wrap */
System.out.println(((x * 42) + (z - 343) + (x % z))

+ numberOfParsecs);

/* example of a line wrap for a method */
x = doStuffWithLotsOfArgs(coolStaticVar, instanceVar,

numberOfParsecs, reallyLongShortName, x, z);
}

}

/** Javadoc comment about method */
int doStuffWithLotsOfArgs(int a, long b, long c, short d, int e,

int f) {
return e * f;

}
}

How to Care for Your Curly Braces
If you format your curly braces correctly, you can distinguish your exam submittal
from all the other Larrys and Moes out there. We know that this is a passionate

6 Chapter 11: Coding Standards

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

topic for lots of folks; we’re just letting you know what your assessor will be looking
for, so please don’t attempt to drag from us what our real feelings are about
curly braces.

Curly Braces for Classes, Interfaces, Constructors, and Methods
OK, along with curly braces, we might talk a little about parentheses in this section.
The opening brace for classes, interfaces, constructors, and methods should occur
at the end of the same line as the declaration. The closing brace starts a new line
by itself, and is indented to match the beginning of the corresponding declaration;
for example,

public interface Curly {

public int iMethod(int arg);
}

class Moe implements Curly {

int id;

public Moe() {
id = 42;

}

public int iMethod(int argument) {
return (argument * 2);

}
}

Curly Braces for Flow Control (ifs and whiles, etc.)
Your flow control blocks should always be enclosed with curly braces. There are
places where the compiler will let you get away with not using curly braces, such
as for loops and if tests with only one statement in the body, but skipping the braces
is considered uncivilized (and in fact often leads to bugs when code is enhanced
later). For the exam, always use curly braces. Following is an example of how to
structure all of the flow control code blocks in Java—pin this baby to your wall!

class Flow {

static int x = 0;

Use Sun Java Coding Standards 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

static int y = 5;

public static void main(String [] args) {
for (int z = 0; z < 7; z++) { // for loop

x = x + 1;
y = y - 2;

}

if (x > 4) {
System.out.println("x > 4"); // if test
x++;

}

if (x > 5) { // if, else
System.out.println("x > 5");

} else {
System.out.println("x < 6");

}

if (x > 30) { // if, else-if, else
System.out.println("x > 30");

} else if (x > 20) {
System.out.println("x > 20");

} else {
System.out.println("x < 21");

}

do { // do loop
x++;
System.out.println("in a do loop");

} while (x < 10);

while (x < 13) { // do while loop
x++;
System.out.println("in a do while loop");

}

switch (x) { // switch block
case 12:

x++;
/* falls through */ // see comment at end

case 13:
x++;
System.out.print("x was 13");
/* falls through */

8 Chapter 11: Coding Standards

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Use Sun Java Coding Standards 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

case 14:
System.out.print("x is 14");
/* falls through */

default:
break;

}

try { // try, catch
doRiskyMethod();
x++;

} catch (Exception e) {
System.out.println("doRisky failed");

}

try { // try, catch, finally
doRiskyMethod();
x++;

} catch (Exception e) {
System.out.println("doRisky failed");

} finally {
x = 100;

}
}

static void doRiskyMethod() {
x = y;

}
}

You might want those Exceptions above to be RuntimeExceptions. javac does not
mind, but jikes will give you a warning.

One interesting thing to notice about the example above is the use of the /* falls
through */ comment in the switch statement. This comment should be used at the
end of every case block that doesn’t contain a break statement.

Our Comments About Comments
Earlier we talked about being a team player. The orientation of the exam is to see
if you can create software that is readable, understandable, and usable by other
programmers. Commenting your code correctly is one of the key ways that you can
create developer-friendly software. As you might expect, the assessors will be looking
to see if your code comments are appropriate, consistent, and in a standard form.

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This chapter will focus on implementation comments; Chapter 16 will cover javadoc
comments. There are several standard forms that your implementation comments
can take. Based on the results of extensive research and worldwide polling we will
recommend an approach, which we believe represents the most common of the
standard approaches. If you choose not to use our recommendation, the most
important thing that you can do is to pick a standard approach and stick with it.

There are several types of comments that commonly occur within source
code listings. We will discuss each of them with our recommendations and other
possible uses.

Block Comments
Use a block comment in your code when you have to describe aspects of your
program that require more than a single line. They can be used most anywhere,
as source file or method headers, within methods, or to describe key variables.
Typically, they should be preceded by a blank line and they should take the
following form:

/*
*this is a block comment
*it occupies several lines
*/

Single Line Comments
Use a single line comment in the same place you would block comments, but for
shorter descriptions. They should also be preceded by a blank line for readability,
and we recommend the following form:

/* this is a single line comment */

It is acceptable to use this alternate form:

// this is the alternate single line comment form

End of Line Comments
When you want to add a comment to the end of a line of code, use the aptly named
end of line comment. If you have several of these comments in a row, make sure to
align them vertically. We recommend the following form:

10 Chapter 11: Coding Standards

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Use Sun Java Coding Standards 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

doRiskyStuff(); // this method might throw a FileNotFoundException

doComplexStuff(); // instantiate the rete network

It is acceptable to use this alternate form:

doRiskyStuff() /* this method might throw a FileNotFoundException */

doComplexStuff(); /* instantiate the rete network */

Masking Comments
Often in the course of developing software, you might want to mask a code segment
from the compiler without removing it from the file. This technique is useful during
development, but be sure to remove any such code segments from your code before
finishing your project. Masking comments should look like this:

// if (moreRecs == true) {
// ProcessRecord();
// }
// else {
// doFileCleanUp();
// }

General Tips About Comments
It is important to use comments where the code itself may not be clear, and it is
equally important to avoid comments where the code is obvious. The following is
a classic, from the Bad Comments Hall of Fame:

x = 5; // set the variable x equal to 5

Comments should be used to provide summaries of complex code and to reveal
information about the code that would otherwise be difficult to determine. Avoid
comments that will fall out of date, i.e., write your comments as if they might have
to last forever.

Declarations Are Fun
Declarations are a huge part of Java. They are also complex, loaded with rules, and
if used sloppily can lead to bugs and poor maintainability. The following set of

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

guidelines is intended to make your code more readable, more debuggable, and
more maintainable.

Sequencing Your Declarations
The elements in your Java source files should be arranged in a standard sequence.
In some cases the compiler demands it, and for the rest of the cases consistency will
help you win friends and influence people. Here goes:

■ class comments

■ package declaration

■ import statements

■ class declaration

■ static variables

■ instance variables

■ constructors

■ methods

Location and Initialization
The following guidelines should be considered when making Java declarations:

■ Within methods:

■ Declare and initialize local variables before other statements (whenever
possible).

■ Declare and initialize block variables before other block statements
(when possible).

■ Declare only one member per line.

■ Avoid shadowing variables. This occurs when an instance variable has
the same name as a local or block variable. While the compiler will allow
it, shadowing is considered very unfriendly towards the next co-worker
(remember: potentially psychopathic) who has to maintain your code.

12 Chapter 11: Coding Standards

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

Use Sun Java Coding Standards 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

Capitalization
Three guesses. You better use capitalization correctly when you declare and use
your package, class, interface, method, variable, and constant names. The rules
are pretty simple:

■ Package names The safest bet is to use lowercase when possible:
com.wickedlysmart.utilities

■ Class and Interface names Typically they should be nouns; capitalize the
first letter and any other first letters in secondary words within the name:
Customer or CustomTable

■ Method names Typically they should be verbs; the first word should be
lowercase, and if there are secondary words, the first letter of each should
be capitalized:
initialize(); or getTelescopicOrientation();

■ Variable names They should follow the same capitalization rules as
methods; you should start them with a letter (even though you can use _
or $, don’t), and only temporary variables like looping variables should
use single character names:

currentIndex; or name; or x;

■ Constant names To be labeled a constant, a variable must be declared static
and final. Their names should be all uppercase and underscores must be used
to separate words:
MAX_HEIGHT; or USED;

Key Points Summary

■ This is the easiest part of the exam, if you are careful and thorough you
should be able to do very well in this area.

■ Always indent four spaces from the previous level of indentation.

■ Break long lines at around the 65 character mark:

■ Break after a comma

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Break before an operator

■ Try not to break inside inner parens.

■ Use single blank lines between constructors, methods, logic segments, before
comments, and after your last instance variable.

■ Use blank spaces between binary operators, after commas in argument lists,
after for expressions, between a keyword and a paren.

■ Place opening curly brace on the same line as the declaration or statement.

■ Put closing curly brace on a new line.

■ Closing curly brace shares a line with else, else if, do, catch, and finally.

■ Block comments start and end with /* and */, * in the middle.

■ Single line comments use /* */

■ End of line comments use //

■ Masking comments use //

■ File declaration sequence is this: comments, package, import, class, static,
instance, constructors, methods.

■ Initialize variables at the top of blocks; avoid variable name shadowing.

■ Package names are lowercase: com.wickedlysmart.utilities.

■ Classes and interfaces have capitalized nouns for names: Inventory.

■ Methods and variables names start lowercase and capitalize secondary
words, as in
doRiskyStuff(); or currentIndex;.

■ Constant names are all caps with underscores: MAX_HEADROOM.

14 Chapter 11: Coding Standards

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 11

P:\010Comp\CertPrs8\684-6\ch11.vp
Wednesday, November 13, 2002 5:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12
Clarity and
Maintainability

CERTIFICATION OBJECTIVE

• Writing Clear and Maintainable Code

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12
Blind Folio 12:1

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION OBJECTIVE

Write Clear and Maintainable Code
Now that you’ve made your code readable, does your easy-to-read code actually
make sense? Can it be easily maintained? These are huge issues for the exam, worth
a very significant chunk of your assessment score. We’ll look at everything from class
design to error handling. Remember that you’re a Team Player. Some key areas of
code clarity are covered in more detail in the Documentation chapter, so we won’t
discuss them here. Those areas include the importance of meaningful comments
and self-documenting identifiers. The issues raised in this chapter are

■ General programming style considerations

■ Following OO design principles

■ Reinventing the wheel

■ Error-handling

General Programming Considerations
The coding conventions covered in the previous chapter are a great starting
point. But the exam is also looking for consistency and appropriateness in your
programming style. The following section lists some key points you should keep
in mind when writing your perfectly-formatted code. Some of these will be
explained in subsequent sections; several of these points are related to OO design,
for example, and we cover them in more detail in that section. Once again, this is
no time to debate the actual merits of these principles. Again, imagine you’ve come
into a project team and need to prove yourself as a, what? Yes! Team Player. The
first thing the team is looking for is whether you can follow the conventions and
standards so that everyone can work together without wanting to throw one another
out the seventh floor window and onto the cement fountain below. (Unless you’re
a dot-com company and your office now looks over an abandoned gas station.)
These points are in no particular order, so don’t infer that the first ones are more
important than the last. You can infer, however, that your exam assessor will probably
be asking if you’ve done these things appropriately.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

2 Chapter 12: Clarity and Maintainability

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Keep Variable Scope as Small as Possible
Don’t use an instance variable when a local variable will work! Not only does this
impact memory use, but it reduces the risk that an object “slips out” to some place
it shouldn’t be used, either accidentally or on purpose. Wait to declare a variable
until just before it’s used. And you should always initialize a local variable at the
time it is declared (which is just before use), with the exception of try/catch blocks.
In that case, if the variable is declared and assigned in the try/catch block, the compiler
won’t let you use it beyond that block, so if you need the variable after a try or catch
block, then you’ll have to declare it first outside the try/catch.

Another way to reduce scope is to use a for loop rather than while. Remember
from the Programmer’s exam chapters that when you declare a variable as part of
the for loop declaration (as opposed to merely initializing a variable declared prior to
the loop), then the variable’s scope ends with the loop. So you get scope granularity
that’s even smaller than a method.

Avoid Designing a Class That Has No Methods
Objects are meant to have both state and behavior; they’re not simply glorified
structs. If you need a data structure, use a Collection. There are exceptions to this,
however, that might apply to your exam assignment. Sometimes you do need an
object whose sole purpose is to carry data from one location to another—usually as
a result of a database request. A row in a table, for example, should be represented
as an object in your Java program, and it might not always need methods if its sole
job is to be, say, displayed in a GUI table. This is known as the ValueObject pattern.
Which brings us to the next issue.

Use Design Patterns
When you use familiar patterns, then you’ve got a kind of shorthand for discussing
your design with other programmers (even if that discussion is between your code/
comments and the other person. If you’ve done it right, you won’t personally be
there to talk about it, as is the case with the Developer exam). If you need a Singleton,
make a Singleton—don’t simply document that there is to be only one of these
things. On the other hand, don’t go forcing your design into a pattern just for the
sake of using a pattern. Simplicity should be your first concern, but if it’s a toss-up
between your approach and an equally complex, well-known design pattern, go for
the pattern.

Write Clear and Maintainable Code 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Reduce the Visibility of Things As Much As Possible
In general, the more public stuff you expose to the world, the less free you are to
make changes later without breaking someone else’s code. The less you expose, the
more flexibility you have for implementation changes later. And you know there are
always changes. So, making variables, methods, and classes as restricted as you can
while limiting what you expose to your “public interface,” you’ll be in good shape
down the road. Obviously there are other subtle issues about inheritance (as in, what
does a subclass get access to?), so there’s more to consider here, but in general, be
thinking about reducing your exposure (think of it as reducing your liability down
the road). This is closely related to reducing the scope of variables.

Use Overloading Rather Than Logic
If you’ve got a method that needs to behave differently depending on the kind of
thing it was actually handed, consider overloading it. Any time you see if or switch
blocks testing the type of an argument, you should probably start thinking about
overloading the method. And while you’re at it…

Avoid Long Argument Lists
If you have a ton of arguments coming into a method, perhaps you need to
encapsulate the stuff you need in that method into a class of its own type.

Don’t Invoke Potentially Overridable
Methods from a Constructor
You already know that you can’t access any nonstatic things prior to your
superconstructor running, but keep in mind that even after an object’s
superconstructor has completed, the object is still in an incomplete state until
after its constructor has finished. Polymorphism still works in a constructor. So if
B extends A, and A calls a method in its constructor that B has overridden, well,
guess what happens when somebody makes an instance of B. You got it. The B
constructor invokes its superconstructor (A’s constructor). But inside the A
constructor it invokes one of its own methods, but B has overridden that method.
B’s method runs! In other words, an object can have one of its methods invoked
even before its constructor has completed! So while B isn’t even a fully formed
object, it can still be running code and even accessing its own instance variables.
This is a problem because its instance variables have not yet been initialized to

4 Chapter 12: Clarity and Maintainability

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

anything other than default values, even if they’re given explicit values when they’re
declared. Yikes! So don’t do it. If it’s a final or private instance method, then you’re
safe since you know it’ll never be overridden.

Code to Interfaces
Polymorphism, polymorphism, polymorphism. Use polymorphic arguments, return
types, and variables whenever possible (in other words, declare a variable, return
type, or argument as an interface type rather than a specific class type). Using an
interface as the type lets you expose only the definition of what your code can do,
and leaves the implementation flexible and extensible. And maintainable. And all
the other good OO things-that-end-with-ble. But if you can’t…

Use Abstract Classes When You
Need Functionality to Be Inherited
If you really must have implementation code and/or instance variables, then use an
abstract class and use that class as the declared polymorphic variable, argument, and
return type.

Make Objects You’re Finished
with Eligible for Garbage Collection
You already know how to do this. Either explicitly set the reference variable to null
when you have no more use of the object, or reassign a different object to that
reference variable (thus abandoning the object originally referenced by it). At the
same time…

Don’t Make More Objects Than You Need To
Just because there’s a garbage collector doesn’t mean you won’t have “memory issues.”
If you keep too many objects around on the heap, ineligible for garbage collection
(but you won’t, having read the preceding point), then you can still run out of
memory. More likely, though, is just the problem that your performance might be
slightly degraded by the overhead of both making all those objects and then having
the garbage collector reclaim them. Don’t do anything to alter your design just to
shave a few objects, but pay attention in your implementation code. In some cases,
you might be able to simply reuse an existing object by resetting its state.

Write Clear and Maintainable Code 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Avoid Deeply Nested and Complex Logic
Less is more when it comes to branching. In fact, your assessor may be applying the
Cyclomatic Complexity measure to your code, which considers code to be complex
not based on lines of code, but rather on how many branch points there are. (It’s
actually much more complex than that. Ironically, the test for code complexity is
itself a rather complex formula.) The bottom line is, whenever you see a nested if
or anything other than very simple logic flow in a method, you should seriously
consider redesigning that method or splitting functionality into separate methods.

Use Getters and Setters That Follow
the JavaBean Naming Convention
That means you should use set<yourPropertyName> for methods that can modify
a property (normally a property maps directly to an instance variable, but not
necessarily) and get<yourPropertyName> for methods that can read a property.
For example, a String variable name would have the following getter/setter methods:

setName(String name)
String getName()

If the property is a boolean, then you have a choice (yes, you actually have a
choice) of whether to call the read method get<property> or is<property>. For
example, a boolean instance variable motorOn can have the following getter/setter
methods:

setMotorOn(boolean state)
boolean getMotorOn()
boolean isMotorOn()

The beauty of adhering to the JavaBeans naming convention is that, hey, you
have to name it something and if you stick with the convention, then most
Java-related tools (and some technologies) can read your code and automatically
detect that you have editable properties, for example. It’s cool; you should do it.

Don’t Be a Procedural Programmer in an OO World
The two dead giveaways that you haven’t really made the transition to a complete
object “being,” are when you use the following:

■ Really Big Classes that have methods for everything.

6 Chapter 12: Clarity and Maintainability

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Lots of static methods. In fact, all methods should be nonstatic unless you
have a truly good reason to make them static. This is OO. We don’t have
global variables and functions. There’s no “start here and then keep executing
linearly except when you branch, of course…”. This is OO, and that means
objects all the way down.

Make Variables and Methods As Self-Explanatory As Possible
Don’t use variable names like x and y. What the heck does this mean: int x = 27;
27 what? Unless you really think you can lock up job security by making sure
nobody can understand your code (and assuming the homicidal maniac who tries
won’t find you), then you should make your identifiers as meaningful as possible.
They don’t have to be paragraphs. In fact, if it takes a paragraph to explain what
a variable represents, perhaps you need to think about your design again. Or at
the least, use a comment. But don’t make them terse! Take a lesson from the core
APIs. They could have called ArInBException, but instead they called it
ArrayIndexOutOfBoundsException. Is there any question about what
that exception represents? Of course, the big Sun faux pas was the infamous
NullPointerException. But despite the use of the forbidden word pointer,
everybody knows what it means when they get it. But there could be some confusion
if it were called NPTException or even NullException.

Use the Core APIs!
Do not reinvent the wheel, and do not—or you’ll automatically fail for certain—
use any libraries other than code you developed and the core Java APIs. Resist any
temptation to think that you can build something faster, cleaner, more efficient, etc.
Even if that’s true, it isn’t worth giving up the benefit of using standard classes that
others are familiar with, and that have been extremely, heavily tested in the field.

Make Your Own Exception Classes If You
Can’t Find One That Suits Your Needs
If there isn’t a perfect checked Exception class for you in java.lang, then create
your own. And make it specific enough to be meaningful to the catcher. In other
words, don’t make a BadThingHappenedException and throw it for every
possible business error that occurs in your program.

Write Clear and Maintainable Code 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Do Not Return Error Codes!
This is Java. This is OO. If you really need to indicate an exceptional condition,
use an Exception! If you really want to annoy an assessor, use error codes as return
values from some of your methods. Even one method might do the trick.

Make Your Exceptions with a String Constructor Argument
Doing so gives you a chance to say more about what happened to cause the exception.
When you instantiate an Exception, call the constructor that takes a String (or the
one that takes another lower-level exception if you’re doing exception chaining).
When you create your own Exception class, be sure to put in a constructor that
takes a String.

Follow Basic OO Design Principles
In the preceding section, some of the key points touched on areas we’ll dig a bit
deeper into here. You don’t have to be the World’s Best OO Designer, but you do
need to follow the basic principles on which the benefits of OO depend. Obviously
we can’t make this a “How to Be a Good OO Designer in 10 Easy Pages.” You need
a lot more study and practice, which we assume you’ve already done. This should be
old news by now, but you can bet that your assessor will be looking at these issues,
so a refresher won’t hurt. We’re hitting the highlights of areas where you might get
points deducted from your assignment.

Hide Implementation Details
This applies in so many places, but coding with interfaces and using encapsulation
is the best way to do it. If you think of your code as little self-contained, pluggable
components, then you don’t want anyone who uses one of your components to have
to think about how it does what it does. It all comes down to inputs and outputs.
A public interface describes what a method needs from you, and what it will return
back to you. It says nothing about how that’s accomplished. You get to change your
implementation (even the class doing the implementing) without affecting calling
code. Implementation details can also be propagated through exceptions, so be
careful that you don’t use an interface but then put implementation-specific exceptions
in the throws clause! If a client does a “search,” they shouldn’t have to catch an
SQLException, for example. If your implementation code happens to be doing
database work that can generate SQLExceptions (like JDBC code would), the client

8 Chapter 12: Clarity and Maintainability

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

should not have to know that. It’s your job to catch that implementation-specific
exception and throw something more meaningful—a business-specific exception—
back to client code.

Use Appropriate Class Granularity
A class should be of the right, you know, granularity. It shouldn’t be too big or too
tiny. Rarely is the problem a class that’s too small; however, most not-quite-OO
programmers make classes that are too big. A class is supposed to represent a thing
that has state and behaviors. Keep asking yourself, as you write each method, if that
behavior might not be better suited for some other thing. For example, suppose you
have a Kitchen class that does all sorts of Kitchen things. Like Oven things and
Refrigerator things, etc. So now you’ve got Kitchen things (Kitchen being a room)
and Refrigerator things and Oven things all in the same class. That’s three different
things. Classes (and thus the objects instantiated from them) really should be
specialists. They should do the kinds of behaviors that a thing of that type should
do, and no more. So rather than having the Kitchen class include all the code for
Refrigerator and Oven behaviors, have the Kitchen class use a Refrigerator and
Oven in a HAS-A relationship.

This keeps all three classes simple, and reusable. And that solves your naming
problem, so that you don’t have to name your do-everything Kitchen class
KitchenFridgeOven.

Another possible cause of a Big Class is that you’ve got too many inner classes
defined. Too many meaning some of the inner classes should have been either
top-level classes (for reuse) or simply methods of the enclosing class. Make sure
your inner or nested classes really need to be included.

Limit Subclassing
If you need to make a new subclass to add important functionality, perhaps that
functionality should really be in the parent class (thus eliminating the need for the
subclass—you just need to fix the superclass). When you feel the need to extend a
class, always look at whether the parent class should change, or whether you need
composition (which means using HAS-A rather than IS-A relationships). Look in
the core Java API for a clue about subclassing versus composition: the core API
inheritance hierarchy is really wide but very shallow. With a few exceptions (like
GUI components), most class hierarchies are no more than two to three levels deep.

Write Clear and Maintainable Code 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Use Appropriate Method Granularity
Just as classes should be specialists, so too should methods. You’ll almost certainly
be docked points for your assignment if your methods are long (although in some
cases, especially in your Swing GUI code, long methods aren’t necessarily a reflection
of bad design). In most cases, though, the longer the method the more complex,
because often a long method is a reflection of a method doing too much. You’re
all programmers so we don’t have to hammer the point about smaller modular
functionality—much easier to debug, modify, reuse, etc. Always see if it makes sense
to break a longer method up into smaller ones. But while in a deadline crunch you
might get away with long methods in the real world (feeling guilty of course), it
won’t fly for your Developer assignment.

Use Encapsulation
Your assignment will be scrutinized for this most fundamental OO principle. Expect
the assessor to look at the way in which you’ve controlled access to the state of your
object. In other words, the way you’ve protected your instance variables with setters
and getters. No need to discuss it here, just do it. Allow access to your data (except
for constants, of course) only through more accessible methods. Be careful about
your access modifiers. Having a nice set of accessor methods doesn’t matter if you’ve
left your variables wide-open for direct access. Again, make things as private and
scope-limited as you can.

Isolate Code That Might Change
from Code That Won’t Have To
When you design your classes, be sure to separate out the functionality that might
change into separate classes. That way, you restrict the places where you’ll have to
track down and make modifications as the program evolves.

Don’t Reinvent the Wheel
Why would you want to? Well, most people end up doing it for one of two reasons:

■ They believe they can do it better.

■ They didn’t know there already was a wheel.

You need to be certain that you

10 Chapter 12: Clarity and Maintainability

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Get it out of your head that you can do it better, regardless of whether you
actually can. A better mousetrap (to completely mix metaphors here) isn’t
what’s required. A solid, maintainable design is.

■ Always look for an existing solution first!

Use Core APIs
Always always always check the core APIs, and know that occasionally you might
find the class you’re looking for in a package other than where you’d expect it. So be
sure to really search through the APIs, even digging into packages and classes you
might think are a little off the path. Sometimes a solution can be where you least
expect it, so stay open to approaches that aren’t necessarily the ones you would
normally take. Flipping through a reference API book can help. A method might
catch your eye and even if it turns out not to be your solution, it might spark an
idea about a different solution.

In some cases, you might not find exactly what you’re looking for, but you might
find a class you can extend, thus inheriting a bunch of functionality that you now
won’t have to write and test (subject to the warnings about subclassing we
mentioned previously).

Using core API’s (besides being essential for the exam) lets you take advantage of
a ton of expertise and testing, plus you’re using code that hundreds of thousands of
other Java developers are familiar with.

Use Standard Design Patterns
We can’t tell you which ones you’ll actually need for your assignment; that depends
on both your assignment and your particular approach. But there are plenty of
standard design patterns that let you take advantage of the collective experience of
all those who’ve struggled with your issue before you (although usually at a fairly
abstract level—that’s usually where most patterns do their work). So while the core
APIs let you take advantage of someone else’s implementation code, design patterns
let you take advantage of someone else’s approach to a problem.

If you put a gun to our heads, though, we’d probably have to say that Singleton
should be way up on your list of things to consider when developing your assignment.
But you might also take a look at MVC (for your client GUI), Façade, Decorator,
Observer, Command, Adapter, Proxy, and Callback, for starters. Pick up a book on
design patterns (the classic reference is known as the “Gang of Four” (GOF) book,

Write Clear and Maintainable Code 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides) and take time to step back and
look at where your program might be trying to do something well-solved by a design
pattern. The patterns don’t tell you how to construct your algorithms and implement
your code line by line, but they can guide you into a sound and maintainable
design. Perhaps most importantly, as design patterns are becoming more and more
well-known, developers have a common vocabulary to discuss design trade-offs and
decisions.

We believe that the use of design patterns has recently become more important in
the exam assessment than it has been in the past, due in large part to their growth
in popularity.

Handle Errors Appropriately
You’ll be evaluated for appropriate and clear error-handling throughout your
project. You might do really well with it in your GUI and then fall down in your
server, but it matters everywhere in your program.

Don’t Return Error Codes
This is Java. Using error codes as return values, rather than using exceptions, is a
Really Bad Idea. We’re pretty sure your exam assessor knows that.

Don’t Send Out Excessive Command-Line Messages
Don’t be too verbose with your command-line messages, and be sure not to leave
debugging messages in! Your command-line messages should include only what’s
necessary to verify the startup of your programs and a very minimal amount of status
messages that might be crucial if the program fails. But in general, if something goes
wrong that you know could go wrong, you should be handling it with exceptions.

Whatever you do, don’t use command-line messages to send alert messages to the
user! Use a proper dialog box if appropriate.

Use Dialog Boxes Where Appropriate
On the other hand, don’t use dialog boxes for every possible message the user might
need to know about. If you need to display information to the user that isn’t of an
urgent nature (urgent being things like a record-locking problem or if you need to

12 Chapter 12: Clarity and Maintainability

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

offer a “Are you sure you want to Quit?” option). In many cases, a dialog box is
what you’ll use to alert the user when something in your program has caught an
exception, and you need user input to deal with it appropriately. The use of dialog
boxes from a usability perspective will be covered in more detail in Chapter 13.

Throw Checked Exceptions Appropriately
There’s a correct time and place for throwing checked exceptions, and being
reluctant to throw them can be just as bad as throwing them carelessly.

■ Use runtime exceptions for programming errors.

■ Use checked exceptions for things that your code might recover from
(possibly with help from the user).

■ Checked exceptions are only for truly exceptional conditions.

■ Do not use exceptions for flow control! Well, not if you hope to do well
both on the exam and in real life.

Remember, checked exceptions sure don’t come for free at runtime; they’ve got
overhead. Use them when, but only when, you need them.

Create and Throw Your Own Exceptions When Appropriate
Make use of standard exceptions when they make sense, but never hesitate to create
your own if appropriate. If there’s a reasonable chance that an exceptional condition
can be recovered from, then use a checked exception and try to handle it. Normally,
the exceptions that you create can be thought of as Business Exceptions—in other
words, things like “RecordLockedException” or “InsufficientSearchCriteriaException”.
The more specific your exception, the more easily your code can handle it, and
you get the benefit of providing specific catch blocks, thus keeping the granularity
of your catch blocks useful. The opposite of that strategy would be to simply have
everything in one big try block that catches Exception (or worse, Throwable!).

Catch Low-Level Implementation Exceptions
and Throw a Higher-Level Business Exception
Say you catch an SQLException (not likely on the Developer exam). Do you throw
this back to a client? Of course not. For a client, it falls into the category of “too

Write Clear and Maintainable Code 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

much information.” The client should not know—or care—that the database server
happens to be using SQL. Instead, throw back to the client a more meaningful
custom business exception that he or she can deal with. That more meaningful
business exception is defined in your public interface, so the client is expecting it as
a possibility. But simply passing a low-level exception all the way to a client reflects
a poor design, since it couples the client with implementation details of the
server—that’s never a good idea in an OO design.

Make Your Exception Classes with a String Constructor
(As Well As a no-arg) for Providing Additional Meaning
Every Exception class you develop should have both a no-arg constructor and a
constructor that takes a String. Exception inherits a getMessage() method
from Throwable, and it returns the String of that message, so you can pass that
message back to your super constructor and then the catcher can query it for more
information. The message’s main use, however, is to provide more information in
the stack trace. So the more detailed your message (usually about the state of key
parts of the system at the time the Exception occurs), the more helpful it will be in
diagnosing the problem.

Never, Ever, Ever Eat an Exception
By eat we mean the following horrible practice:

try {
doRiskyThing();

} catch(Exception e) {}

See what’s missing? By catching the exception and then not handling it in any way,
it goes completely unnoticed, as if it never occurred. You should at the least print
the stack trace. Putting something like this in your exam project might be the
death blow.

Announce ALL Your Exceptions (Not
Their Superclasses) in Method Declarations
Your method should declare the exact, specific Exception types that it can throw,
as opposed to declaring a supertype. The following code shows an example:

14 Chapter 12: Clarity and Maintainability

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Write Clear and Maintainable Code 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

class MyException extends Exception { }
class FooException extends MyException { }
class BooException extends MyException { }
public class TestException {

public void go() throws MyException { // Usually BAD to do this
boolean x = true;
if(x) {
throw new FooException();
} else {
throw new BooException();

}
}

}

In the preceding code, class TestException declares a method go() that
declares a MyException. But in reality, it might throw a BooException or
it might throw a FooException. This is perfectly legal, of course, since both
exceptions are subclasses of the declared exception. But why bother throwing two
different exceptions if you don’t declare it? Surely you don’t want to force the
catcher to insert logic to figure out what kind of exception they got? This doesn’t
mean that catch code won’t sometimes do this, but it should be up to the
catcher, not the thrower, to make that choice.

Key Points Summary
That wraps up our look at clarity and maintenance issues, and here’s a list of the key
points. Cut it out and tape it to your wall next to all the other incredibly valuable
pages you’ve ripped from this book and taped to your wall. We’re thinking of just
offering wallpaper so you can leave your book intact.

General Programming Considerations

■ Avoid designing a class that has no methods.

■ Use design patterns.

■ Reduce the visibility of things as much as possible.

■ Use overloading rather than logic.

■ Avoid long argument lists.

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Don’t invoke potentially overridable methods from a constructor.

■ Code to interfaces.

■ Use abstract classes when you need implementation functionality.

■ Make objects you’re finished with eligible for garbage collection.

■ Don’t make more objects than you need to.

■ Avoid deeply nested and complex logic.

■ Use getters and setters that follow the JavaBean naming convention.

■ Don’t be a procedural programmer in an OO world.

■ Make variable and method names as self-explanatory as possible.

■ Make your own Exception classes if you can’t find one in the API to
suit your needs.

■ Don’t return error codes.

■ Make your exceptions with a String message.

Follow Basic OO Design Principles

■ Hide implementation details.

■ Use appropriate class granularity.

■ Use appropriate method granularity.

■ Use encapsulation.

Don’t Reinvent the Wheel

■ Use core APIs.

■ Use standard design patterns.

Handle Errors Appropriately

■ Don’t return error codes.

■ Don’t send out excessive command-line messages.

■ Use dialogs boxes where appropriate.

16 Chapter 12: Clarity and Maintainability

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Throw checked exceptions appropriately.

■ Create and throw your own exceptions when appropriate.

■ Catch low-level implementation exceptions and throw a high-level business
exception instead.

■ Make your own custom exception classes have a String constructor (to take
a detail message).

■ Never, ever, eat an exception.

■ Announce all your exceptions, not just their supertypes.

Write Clear and Maintainable Code 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 12

P:\010Comp\CertPrs8\684-6\ch12.vp
Wednesday, November 13, 2002 5:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

13
Designing
the Graphical
User Interface

CERTIFICATION OBJECTIVE

• Creating a Usable and Extensible GUI

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13
Blind Folio 13:1

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 Chapter 13: Designing the Graphical User Interface

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

CERTIFICATION OBJECTIVE

Creating a Usable and Extensible GUI
There are several key aspects of GUI design that you need to consider when designing
and implementing the GUI for your project. At a high level, they can be broken
down into two main areas of focus:

1. Designing the GUI to be usable and friendly from the end user’s perspective.

2. Designing and implementing the GUI to be reliable, and maintainable from
the programmer’s perspective.

This chapter will focus almost entirely on the first point—ease of use for the end
user. We start with a very brief overview of the technical issues you probably want to
address in implementing your GUI for this project. After that brief overview, we
dive into the topic of usability.

An Overview of Technical Considerations for Your GUI
Most of your GUI work on the exam assignment will be focused on usability. But
for the final review, you might be asked to justify not just the user-friendliness, but
also the technical considerations you took into account when designing and building
your GUI. This section gives you a brief overview of some of the technical issues you
need to keep in mind.

Required Technologies
Your instruction packet will probably require you to use certain technologies to
implement your GUI for this project. If, for instance, your instructions indicate
that you are to use Java Swing components and specifically the JTable component,
not only do you have to use them, but you also need to use them appropriately.
Before jumping in to implementing your GUI, you need to understand the strengths
and weaknesses of the technologies you are using. In addition, each of the required
technologies is meant to be used in a certain fashion—for instance, if you’re going
to use a JTable, you’ll want to use the appropriate models and listeners. The bottom
line is, don’t use a widget until you really understand how Sun intended for you to
use it.

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Usable and Extensible GUI 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

Model–View–Controller
Your exam instructions will probably say that the GUI you build should be
flexible and relatively easy to extend. If so, you’ll probably end up considering
the Model–View–Controller (MVC) design pattern. We recommend that you
do consider the MVC approach. If you are familiar with it, so much the better.
If you are not, this is a good opportunity to study it. The MVC pattern has
plenty of benefits:

■ It’s very popular, and you’re bound to run into it sooner or later.

■ It anticipates that end users will ask for iteration after iteration of changes to
the GUI design, and it reduces the development impact of those iterations.
(You know how those end users are!)

■ It scales well to large teams.

■ It anticipates Java’s “write once run anywhere” philosophy, reducing the
effort required to port your GUI layer to additional environments such as
browsers or mobile devices.

Event Handling, Listeners, and Inner Classes
If you’re instructed to use Swing (and we can virtually guarantee you will be), you
must understand the Listener paradigm. Be certain that you understand how Swing
components are meant to handle events, and how components relate to their models
and their listeners. In addition, you should understand how inner classes are used to
help implement these capabilities.

Introduction to Usability Design
Traditionally, the assessors for the developer’s exam have given a good deal of weight
to the quality of the GUI. To pass the exam, your GUI should embody a host of
wonderful attributes, including

■ It should follow presentation standards.

■ It should be easy to learn and easy to use.

■ It should behave as GUIs are expected to behave.

The rest of this chapter covers key aspects of usability design and implementation
for the GUI portion of your project. As an added bonus, this chapter discusses GUI

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 Chapter 13: Designing the Graphical User Interface

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

design aspects that will be applicable across most of the GUI projects you encounter.
Once again, we are approaching this topic with our infamous 80/20 perspective;
this chapter provides the core information you need to design GUIs that are easy to
learn, easy to use, and ergonomically friendly. There are eight steps to designing a
great GUI:

1. Understand the business function and build use-cases.

2. Follow the general principals of good screen design.

3. Choose the appropriate widgets for your GUI.

4. Create the basic page layout(s).

5. Create appropriate menus and navigational elements.

6. Create crisp and informative GUI messages.

7. Use colors responsibly.

8. Test your GUI iteratively.

1. Use-Cases and the Business Function
The Sun developer’s exam is by its nature an artificial exercise. We all understand
that there are no real end users and no real business with real issues being addressed
here. The rest of this section is written assuming that you’re creating a solution for
a real scenario. So, for the exam, you’ll just have to pretend that you are the user,
the business manager, etc. Even though you’re a one-person band, you can follow
this process—at least for the exam.

Interviews, Observation, and Iteration
A GUI will always be better if it’s designed with the help of the end-user community.
No matter how many businesses you’ve helped to automate, or how many killer
GUIs you’ve built in the past, end-user input is essential. Although there are many
ways of interacting with the end user, the three ways that offer the best return are

■ Observing the end user performing the process that you hope to automate.
From now on we’ll just call it the process.

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Interviewing the end user about the process that he or she performs—what
information is used, what decisions are made, what steps are taken, and what
is created.

■ Reviewing your results, and refining your implementation, with the user, over
and over again at every stage of development.

Creating Use-Cases
A very effective approach to designing a GUI is to create “use-cases” with the user as
you work through the observation and interview stages. Use-cases let you encapsulate
the transactions that the end user performs over and over again in his or her job.

Let’s say that you’re creating a system to help customer service representatives
(CSRs) at a company that sells PCs over the phone. After talking with the CSRs
and watching them work, you might discover that they perform the following tasks
over and over again in the context of working with their clients:

■ Create a new customer record.

■ Modify information in an existing customer record.

■ Place a new order.

■ Modify an existing order.

■ Cancel an order.

Each of these activities can be considered a use-case. Once you’ve generated a list
of use-cases for your application, the next step is to flesh them out. We like to use
4 × 6 cards for this. Each use-case is listed on its own card, and then for each card
we add the following headings:

■ Find How do you find the information you need to perform the use-case?

■ Display What information is needed for the use-case to be completed?

■ Verification What processes support verifying that the use-case is
completed properly?

■ Finalization What processes and information are necessary to complete
the use-case?

Creating a Usable and Extensible GUI 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The next step is to work with the end users to answer the four questions listed on
each use-case card. When the cards have been completed and reviewed, they form
the basis for designing the GUI.

Screen Mockups
The next step is to use your deck of 4 × 6 cards to generate hand-drawn screen
mockups. Don’t worry about making these mockups look good—that’s handled
later. Just get them down on paper quickly; they’re just temporary. It’s tempting to
get ahead of yourself here and want to jump in and start writing code. Avoid the
temptation! If done correctly, this first whack at screen design will produce screens
that will absolutely not be what you’ll want the final system to look like. In this
phase, you want to quickly sketch out a rough screen for every heading on every card.
If we’ve done the math right, that means you’ll have four mock screens for every
use-case; Find, Display, Verification, and Finalization.

It’s hard not to get ahead of yourself here, because you’ll quickly realize that a lot
of these mockup screens look a whole lot like each other. That’s a good thing. By
reviewing these mockups with the end users, you’ll discover that with just a little
tweaking you can solve many different use-case steps with a single display. In our
previous example, we had five use-cases, so it might seem reasonable to expect that
you can represent all 20 different use-case steps with three or four displays.

2. Principles of Good Screen Design
Once we’ve got a rough idea what the system’s individual displays ought to look
like, it’s time to move to the next level of design. At this stage in the design, our
goal is to create mockup displays that do more than simply satisfy the requirements
of the use-cases. We also want to design screens that will be easy to learn, easy to
use, and will not irritate the end users over time. Here is a list of principles that will
assist you in creating screens that your users (and assessors) will love.

Balance and Clutter
Well-designed displays tend to be balanced. By balanced, we mean that the content
is approximately balanced left to right and top to bottom. Another attribute of
good-looking displays is that they avoid the feeling of being cluttered. We return to
the issue of clutter again later, but for now we mean that the screen elements should

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

6 Chapter 13: Designing the Graphical User Interface

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

be neatly aligned. Figure 13-1 shows some examples of cluttered and poorly balanced
displays, and then an orderly and well-balanced display.

Logical Groups and Workflow
Often a display can be thought of as many individual elements that can be placed
into a few logical groups. For instance customer name, street address, city, state,
and ZIP code are all individual elements, but it’s natural for users to view these
individual elements as a group, thought of as “customer address.” Grouping
elements together in a natural way is a good practice—there will be less mental
strain on the user, data entry errors will be reduced if the display’s tab sequence
produces the shortest possible “travel” between elements, well-ordered groups tend
to be more visually appealing, and, finally, natural groups are easier to learn.

Creating a Usable and Extensible GUI 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

FIGURE 13-1 The dos and don’ts of an orderly and balanced display

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You should also consider conditioned scanning patterns. In Western cultures,
information is typically presented from left to right, and from the top down. These
sequences are not universally recognized, however, so you should consider local
cultural factors when designing a display.

Navigation and Commands
Good GUI displays typically let the user issue a variety of commands to the system.
For now, we split GUI commands into two broad categories: commands that cause
an action to take place within the current display (action commands), and commands
that make the system jump to a new display (navigational commands). A good rule
of thumb is that action commands can occur wherever related elements are being
displayed, but that navigational commands will appear only in the menu bar or
toolbar, or at the bottom of the display.

When designing screen commands, simple language is the best. As a developer
you know, for instance, that displaying the contents of a customer record on a
display may actually require several programming steps. You don’t want a button
that says: “Create a search string, query the database, verify that good data was
received, and, finally, display the result.” Instead, you probably want something
like a command button that says: “Find Customer.” We’ll talk more about good
messages in a later section.

3. Choosing Your Widgets, JTable, and What Army?
We already mentioned that you’ll probably have to use standard Swing components
to implement your GUI, and that specifically you’ll have to use the JTable component
for a key part your main display. In addition, the second part of the exam (the
follow-up essay) may ask you to describe why you made the widget (component)
selections you made. Swing is a very rich GUI toolkit, and the instructions leave you
with a lot of leeway in deciding which Swing components you should use for most
of your application. In this section we describe many of the more common Swing
components that are available, and when you should consider using them.

■ JLabel Labels are strings of text used to identify other widgets. They are
typically placed to the left or above the widget being labeled.

■ JButton Buttons are rectangular-shaped widgets that are used to initiate
actions by the system. A button can be used to initiate either an action

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

8 Chapter 13: Designing the Graphical User Interface

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

command or a navigational command. The nature of the command controlled
by the button is typically displayed as a “label” inside the boundary of the
button.

■ JTextField and JTextArea Text fields and text areas are rectangular-shaped
widgets that are used to either display textual data supplied by the system or
as an area into which the user can type in data. Use a text field when you
need no more than a single line, and a text area when the amount of data
might exceed a single line. Text areas can have scroll bars (via the support
widget called JScroll Pane), while text fields cannot. Text fields and text areas
are typically festooned with a label placed above or to the left of the widget.

■ JRadioButton This widget is named after the buttons found in car radios
back in the good ol’ days. These mechanical arrays of buttons were designed
so that each one, when pressed, would tune the radio to a particular station.
One of the key features of these radio buttons was that only one button
could be depressed (in other words, be active) at a time. When an inactive
button was pressed, the currently active button would be undepressed, and
functionally move to the inactive state. The radio button widget works in
much the same way; use it when you want the user to choose one and only
one option from a list of options.

■ JCheckBox This widget is often associated with radio buttons. It has a
slightly different look and feel, and a different (albeit related) functionality.
Like a radio button, the check box widget presents the user with a list of
options. Unlike the radio button widget, the check box widget allows the
user to select as many or as few choices as she or he wants. So, radio buttons
are mutually exclusive, but check boxes are not.

■ JList This widget presents the user with a list of entries, set inside a rectangle
that can have a scroll bar. The entries are arranged in rows, one entry per
row, so that the user can use a vertical scroll bar to search the list if there are
more entries than can be displayed at one time. The list widget allows the
user to select as few or as many entries as she or he wants.

■ JComboBox This widget is part text field, part list (a combo, get it?). When
not selected, the combo box resembles a text field with a down arrow button
appended to its right end. The user can choose to key data into the field portion
of the widget (like a text field), or choose the down arrow, which will cause a
temporary list-like widget to appear. The user can select an option from this

Creating a Usable and Extensible GUI 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

temporary list in the same fashion that a normal list selection is made. Once
the selection is chosen, it is placed into the text area of the widget and the list
portion disappears.

■ JSlider These widgets present a (typically horizontal) control that lets the
user adjust the setting of any system feature whose possible values can be mapped
to a range. Typical uses for sliders would be to control display brightness, or
for volume (sound) control.

■ JProgressBar These widgets present a (typically horizontal) display that allows
the system to interactively indicate the progress of some system function that
takes a noticeable time to complete. This widget is used to give feedback to
the user so that she or he will know the system is still working, and roughly
how much longer before the system will be finished with its task.

■ JTabbedPane This widget allows the developer to pack a lot of display
functionality into a small space. The analogy is that of looking at the tabs
at the top of an open file drawer. When a tab is selected, an entire window
of display elements associated with that tab is displayed to the user. When
another tab is selected, the current tab display disappears and is replaced
with a new set of elements. This widget is typically used when you need to
support many infrequently used display elements. Application preferences
or parameters are typically accessed via a tabbed pane widget.

■ JTree This complex widget allows the system developer to create a traversable
tree structure similar to what is presented by the Macintosh Finder or the
Windows Explorer applications. This widget allows for arbitrarily large data
structures to be represented and accessed. Trees are often used to represent
directory structures on a hard drive or for a computer network, or any other
data structure that involves nested lists of information.

■ JTable This very complex widget is used to display and update arbitrarily
large tables of information. In this usage, a table is typically a two-dimensional
array of rows and columns. Generally, a table is structured so that each row
of elements represents a collection of related information (often a row from a
database). In this scheme, each column represents an element in the collection.
You’ll probably be required to use JTable in your project.

■ JMenuBar Almost all good GUI displays include a menu bar widget. This
(usually horizontal) widget is most commonly found at the top of the screen

10 Chapter 13: Designing the Graphical User Interface

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

directly under the title bar. The menu bar lets the developer arrange a wide
variety of commands and system settings into logical groups. Menu bars are
a part of almost every GUI display, and we look at them more closely in a
few sections.

■ JToolBar The toolbar widget is typically located directly beneath the menu
bar. It displays a series of icons, each of which acts like a button, initiating
an action or navigational instruction for the system.

Figure 13-2 illustrates the look and feel of this wonderful array of GUI widgets.

4. Screen Layout for Your Project
Now that we’ve developed our use-cases, mocked up some trial screens, equipped
ourselves with an arsenal of Swing widgets (or components to be proper), and

Creating a Usable and Extensible GUI 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

FIGURE 13-2

Explosion at the
widget factory

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12 Chapter 13: Designing the Graphical User Interface

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

learned a little something about layout principals, it’s time to put all of these
pieces together! Hooray! Wait, wait, it’s still not quite time to warm up your
compiler—we’re going to do a little more work with paper and pencil first. This
phase of the design is concerned with designing the main portion of your GUI
displays. The idea is to take the rough displays you designed in phase 1 and apply
the rules of phase 2 and the widgets of phase 3 to these displays. When you’re
working on this phase, the following tips will help you create solid screen layouts:

■ Remember, the user’s eye will flow from left to right and from top to bottom.
As much as possible, the standard path through the display should follow this
natural flow.

■ Try to make the display as visually pleasing as possible:

■ Don’t jam too many elements into a single screen. White space and
borders help keep a display looking clean, orderly, and less overwhelming.

■ Group related elements. You’ll often want to place a labeled border
around such a group.

■ Imagine invisible gridlines running vertically and horizontally through
the display and align your groups and elements along these gridlines
whenever possible.

■ While other arrangements are acceptable, it’s almost never wrong to right-justify
text field labels and left-justify their respective text fields around the same
vertical line. (See Figure 13-3.)

■ Place your menu bar and toolbar (if applicable) at the top of the screen
(more in the next section).

Figure 13-3 illustrates examples of many of the concepts we’ve been discussing.
Notice that the name and address elements are grouped logically, and that they are
aligned along a vertical line. The client preferences are accessible through a tabbed
pane; this example shows a typical use for a set of radio buttons. On the lower
left we’ve aligned two related combo boxes, and the navigational buttons are
horizontally aligned in the bottom right of the display.

5. Menus and Navigation
Just about any standard application has menus and navigation buttons to let the user
make choices and move to other windows. You’ll need to pay particular attention to

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Usable and Extensible GUI 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

your menus and navigation features; no matter how attractive and easy-to-use you
believe your GUI to be, you’ll still have points deducted if you don’t follow standard
conventions.

Menus and Menu Bars
Menus are a powerful (and necessary) part of almost all GUIs. We focus our attention
on the most common implementation of menus, the menu bar. An application’s
main menu bar is almost always located at the top of the display—sometimes
directly under an application’s title bar, and sometimes separate from the application’s
main window and docked to the top of the display.

You’re familiar with the standard menu bar. Several of its more consistent entries
are typically located toward the left end of the bar and include File, Edit, and View.
Each entry in the menu bar represents a collection of related capabilities. Clicking
on one of the entries on the menu bar will cause a specially formatted widget (a
menu) that resembles a list widget to appear beneath the menu bar entry. The entries

FIGURE 13-3

An example of
design elements

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

in these lists each represent a system capability. The most common capabilities
available through menu entries are

■ A navigational command such as Close (close the current document),
Print (move to the Print display to initiate a print session), or Exit (end
the application)

■ An action command such as Spell Check (invoke the built in spell checker)
or Copy (copy the currently highlighted data to the clipboard)

■ Alter a system setting or parameter, such as Show Toolbar (displays the
application’s toolbar by default) or View Normal (display the current data
in the default mode).

Within a menu, entries should be grouped in logical subsets, and each subset is
typically delineated with a horizontal line or a double space. Menu commands should
be left-justified, and it is common and appropriate to display keyboard shortcut
commands, whenever they are available, to the right of the menu entry. Each
application will have its own unique set of menus on the menu bar, but several
of the menus will be very consistent from application to application. These most
consistent menus are the File and the Edit. File will vary a bit from application to
application, but it will almost always include commands (menu items), for New,
Open, Save, Print, Close, and Exit. These commands refer to the current document
or project as a whole. Edit can vary also, but will typically include commands for
Undo, Redo, Cut, Copy, Paste, Clear, Select, and Find. These editing commands
are used to modify portions of the active document or project. Not to give anything
away here, but not having a standard menu bar with standard menus and menu items
will cost you big time on your exam score.

Navigational Buttons
The second most common way to provide navigational capabilities within a GUI is
through the use of navigational buttons. Navigational buttons are typically placed
on the bottom (or sometimes the right side) of the active window. Navigational
buttons typically act on the entire active window; examples include the Save button
on a File dialog window, or the Print button on a Print dialog window. In both cases,
activating the button causes a system action to take place, followed by a navigation
to a different window in the application. Sometimes a navigational button will serve
a solely navigational function such as Close, which closes the current window and
returns the user back to the previous window.

14 Chapter 13: Designing the Graphical User Interface

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6. Messages, Feedback, and Dialog Boxes
Messages and feedback are essential ways of communicating with your user, and
your exam assessor will pay close attention to the way you handle keeping the user
informed. The clarity, conciseness, and attitude of your messages can have a huge
effect on whether users perceive your application as friendly and easy to use.

Messages and Feedback
Messages and other feedback are the primary ways that you (as the developer) have
to respond to the user as she or he is using your application. Use messages to provide
warnings when something has gone wrong or might be about to go wrong. Use
messages to offer more information about activities that the system is performing
(such as “37 occurrences found”), and use messages to display the status of an
operation (“Search complete, no matches found”).

Feedback tends to supply the user with information that the system has generated;
for instance, if you key in a customer number and initiate a search, when the system
returns with the customer’s name and address that information is considered feedback.
You also use feedback to tell the user that a lengthy operation is in progress, or that
there’s a problem with a current activity. Feedback can also be as subtle and useful
as the blinking cursor bar that lets the user know where he or she currently is on
the display.

Here are some tips for messages and feedback that will make your users smile:

■ Try to use short, positive words and phrases.

■ Use active voice whenever possible: “Print the file by choosing Print now”,
as opposed to “The file will be printed by choosing Print”.

■ Minimize the use of jargon or abbreviations in your messages.

■ Ranges should be listed from smaller to larger and from now into the future.

■ Action verbs should come first: “Display active customers” instead of “Active
customer display”.

■ If the user selects an option that you think will require more than a few
seconds to complete, give the user some sort of indication of status and
progress. A system that locks up and gives the user no idea of whether
progress is being made or an error has occurred is considered rude and
unfriendly.

Creating a Usable and Extensible GUI 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ If the user makes a mistake that can be caught immediately, it is appropriate
to give them some sort of instant feedback such as warning noise or a
blinking element.

Dialog Boxes
One of the nice usability features of a GUI is that the user has a great deal of
flexibility in terms of sequencing tasks. For the most part, all elements on the screen
are available to him or her at all times. However, when you create your use-cases and
your mockup screens, you might run into situations that call for a strict sequence
of events to take place. Counter to the normal GUI flexibility, there will be times
when, for a particular action to take place, you have to follow a fixed path. An
obvious case is when the user chooses to save his or her work. When the save request
is made, no other work on the active project should take place until the save is either
completed or abandoned. We use the term nonmodal to describe a GUI’s typical
openness. With a fixed-path situation like the save operation described above, the
term is, not surprisingly, modal. In the GUI world, a modal sequence is one that
can’t be interrupted.

We know you’re familiar with the typical sequence of events when you go to save
some work, say a text document or perhaps a spreadsheet. When you make the save
request, the system typically displays a small window in the center of the screen,
known as a dialog box. Once the save file dialog box has been displayed, no other
application actions can take place until the dialog box has been dismissed. This
locking out of other actions is called modal behavior. When you create a dialog
box, you have the choice to make it either modal or nonmodal. Always make it
nonmodal as the default. However, there are times when a dialog box really should
be modal—but use this only when absolutely necessary. Another good example of
an appropriate use for a modal dialog box is when the user wants to open a network
connection. Once the request is made, no other activity in the program can be allowed
until the dialog box is answered.

Think carefully about whether each of your user dialog boxes should be modal
or nonmodal. Most importantly, use dialog boxes only when you need to ask or tell
the user something important. Few things annoy an end user more than a barrage
of dialog boxes for every little thing when a simple display message will do. On the
other hand, urgent, critical messages should use dialog boxes. When the user chooses
to quit, for example, the system should give him or her a chance to cancel that request.
Never take drastic action without first confirming it with the user!

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

16 Chapter 13: Designing the Graphical User Interface

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. How to Use Colors in Your GUI
The use of colors in GUIs is a controversial topic. Used correctly, colors can add
aesthetic value and provide visual clues as to how to use and interpret an application.
Used incorrectly, colors can be visually distracting, irritating, and confusing. In
addition, poor color selections can make attractive displays ugly. In general, it is best
to design your displays in monochrome and add only small color highlights. More
ambitious color designs should be attempted only when you have the time to study
the subject thoroughly. Here are some tips that will give your application good,
conservative color usage:

■ Begin by designing your displays in monochrome.

■ Generally backgrounds should use lighter colors than foregrounds.

■ When finding colors that work well together, start by choosing the
background colors first, and then finding foreground colors to match those.

■ Choose colors that are understated rather than bold. Bold colors might make
striking first impressions, but they will age quickly and badly. (Remember,
you don’t want to irritate your end users, or the assessor!)

■ Choose just a few colors to accent your application.

■ Try to use color to support themes or logical connections.

■ Avoid relying on cultural meanings for colors, red may mean “stop” in the
Americas, but it has very different meanings in other parts of the world.

■ Reds, oranges, and yellows tend to connote action.

■ Greens, blues, and purples tend to connote stability.

■ When users see different elements of the same color, they will associate those
elements to each other, so be careful!

8. How to Test Your GUI
In this section we’re going to talk about two different kinds of testing:

■ Design testing, which occurs during the design phase of the project

■ Code testing, which occurs once the coding phase is complete

Creating a Usable and Extensible GUI 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18 Chapter 13: Designing the Graphical User Interface

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

There are other distinctions that are often drawn in the arena of testing, unit
testing, system testing, regression testing, and so on. We’re going to stay at a higher
level and discuss design testing and code testing.

Testing Your GUI’s Design
In general, the more people you show your GUI design to, the better your ultimate
GUI will be. A difficulty in GUI design is that as the designer, you become too
close to the application, and it becomes difficult for you to take the perspective of
a new user. So, the best way to test a GUI design is to run it by users, let them ask
questions, ask them questions, gauge their reactions. Do they seem to use the
displays naturally, or do they stumble around looking for the correct sequences?
Here are some tips to help you get the most out of your design testing:

■ Test your design iteratively, in many stages:

■ Walk through the design when it’s on paper.

■ Your paper designs should include use-case flows, and incorporate dialog
boxes and warnings.

■ Show users your displays when all that exists are the widgets, with no real
logic working.

■ Prototype particularly crucial aspects of the application, and do usability
testing on those key segments before the rest of the application is complete.

■ Get feedback as frequently as possible—you won’t be the one using this
system, and the people who will should have a strong voice in its design.

■ The corollary is don’t do too much work without getting some feedback.
The process should be one of constant refinement, and as such you don’t
want to invest too much time in a design that the users dislike.

■ Make your widgets do the right thing:

■ If you are using a component that can scroll, make it scroll.

■ Avoid using lists or combo boxes for entries that have extensive ranges. For
example, don’t use a list for entering a user’s year of birth.

■ As a corollary, if the only valid entries for a field come from a list
somewhere (like a database), show the user the list if they want to see it
(maybe a combo box)—don’t make the user guess (for instance, a list of
sales territories).

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Usable and Extensible GUI 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

■ When finding and opening a file, use a modal dialog box.

■ Keep your navigation buttons in a well-aligned group.

Testing Your GUI’s Code
Testing GUI code can be extremely challenging. By their very nature, GUIs are
flexible in their behaviors; even simple GUIs offer billions of possible paths through
their features. So how do you test all of these paths? Well, you really can’t, but you
can hit the high points, and there are approaches that will help you produce a solid
application with a finite amount of testing. The key is to approach your testing from
several radically different perspectives; the following tips will help you to create a
robust and effective test plan:

■ One avenue of testing must be use-case testing:

■ Have the users run through the system using copies of live work orders
and scenarios.

■ If certain scenarios are missing from a set of live work orders, create
simulated work orders to test the remaining system features/use-cases.

■ If possible, have the users test the system in parallel with their live
activities. You will want to create duplicate databases for these parallel
tests, and for sure there will be overhead, but parallel testing is a very
effective way to test not only for bugs, but also to verify that the system
can handle all of the scenarios that the users will run across.

■ As the developer, it can be hard to really put your system through its paces,
but if you pay attention to your own gut reactions, you can determine those
areas where you are afraid to try to break things. Wherever you hesitate to
tread, tread heavily.

■ Enter invalid data everywhere.

■ Test the limits of any data ranges that might exist.

■ Force shutdowns of your system at critical stages to determine if transactions
are properly encapsulated.

Key Points Summary
Some fun facts to remember when designing and implementing your project’s GUI
are shown next.

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

20 Chapter 13: Designing the Graphical User Interface

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

Technical GUI Considerations

■ Issues with Swing and JTable

■ MVC and why it helps extensibility

■ The event-handling model

■ Inner classes

Usability Key Points

■ Use standard GUI presentation styles.

■ Make it easy to learn and easy to use.

■ Make it behave as standard GUIs are expected to behave.

■ Develop use-cases to help define the scope of your GUI’s capabilities.

■ Document the four phases of each use-case: Find, Display, Verification,
Finalization.

■ The first several iterations of screen design should be with pencil and paper.

When designing screens, keep the following points in mind:

■ Screens should be balanced and clutter-free.

■ Elements should be grouped logically.

■ Standard workflow should tend to go left to right, top to bottom.

■ Action commands should be placed near their logical counterparts.

■ Navigation commands should be placed in the menu or tool bars, or at
the bottom of the screen (perhaps on the right side).

■ Choice of widgets is important—they should match their standard use.

■ Your project will probably call for you to use a JTable.

■ Try to align your screen elements along invisible vertical and horizontal lines.

■ When aligning labels and text fields, right-justify the labels and left-justify
the fields—they will converge on a vertical line.

■ When designing your menus, keep them as standard and predictable as
possible; there are de facto standards that should be respected.

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Usable and Extensible GUI 21

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

Feedback Principles

■ Use short phrases, and positive, short words.

■ Minimize the use of jargon and abbreviations.

■ Ranges should be described from small to large, now to future.

■ Forewarn the user when the system embarks on time-intensive functions.
For really slow processes, use a status indicator.

■ For the most part your GUI should be nonmodal; consider using dialog
boxes when the system becomes, temporarily, modal.

Using Color

■ The basic design should be monochrome.

■ Backgrounds should be lighter than foregrounds.

■ When matching colors, start with the background color.

■ Avoid bold colors—they don’t age well.

■ Choose just a few colors to accent your application, then use them sparingly.

■ It’s OK to use colors to support themes or logical connections.

■ Remember that users will make logical connections when colors match, even
if there aren’t any logical connections to be made.

Testing Tips

■ Include users in the design process.

■ Design and review incrementally.

■ Consider walkthroughs with no logic behind the widgets.

■ Consider walkthroughs of prototypes of key components.

■ Test all the use-cases.

■ Test in parallel with live systems.

■ Focus on testing the areas you are most afraid to test.

■ Test with invalid data, and data at the limits of ranges.

■ Test by forcing shutdowns at critical stages.

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Well, that wraps up our guide to user-friendly GUI design. Now all you need to
do is learn Swing. Be prepared to spend some time—a lot of time—fiddling with
layout managers and the subtleties of JTable. And although you can develop Swing
applications without really understanding Swing's underlying MVC architecture,
you might be asked to discuss it in your follow-up essay, so you might as well dig
in and learn it all. You won't, however, need to become expert in every single
component (widget) in the Swing package. As long as you’re familiar enough with all
the components to determine which ones best suit your desired behavior (really the
user’s desired behavior), you’ll be in good shape for the exam even if you don’t know
anything else about the components you don’t use in your final project.

22 Chapter 13: Designing the Graphical User Interface

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 13

P:\010Comp\CertPrs8\684-6\ch13.vp
Wednesday, November 13, 2002 5:10:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

14
Networking
Issues

CERTIFICATION OBJECTIVE

• Understand Networking Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 14
Blind Folio 14:1

P:\010Comp\CertPrs8\684-6\ch14.vp
Wednesday, November 13, 2002 5:09:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 Chapter 14: Networking Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 14

CERTIFICATION OBJECTIVE

Understand Networking Issues
It is better to know some of the questions than all of the answers.

–James Thurber

Good questions outrank easy answers.
–Paul A Samuelson

If you don’t ask the right questions, you don’t get the right answers. A question asked in
the right way often points to its own answer. Asking questions is the ABC of diagnosis.
Only the inquiring mind solves problems.

–Edward Hodnett

Clever as you are, I bet you’ve figured out where this is heading…the Developer
exam is about you figuring out solutions to the problem/specification you’re given as
your assignment. So, any attempt on our part to offer suggested potential solutions
would, in our humble opinion, be defeating the whole point of the certification.
However, given that this is a book about preparing for the exam, we can offer you
questions. Things to think about. But we will start with a briefing on the core
technologies involved: Serialization, Sockets, and RMI. There’s far more to learn
about these than we could possibly say here, so we’re not even going to attempt to
give you a crash-course. We’re assuming that you’re familiar with the technologies,
and that you’ll do whatever research and experimentation you need to learn to use
them correctly. We will, however, do a simple review and then look at issues you’ll
need to consider when you build your project.

RMI and Sockets
As of this writing, the Developer exam expects you to know about networking.
Well, not just know but actually develop a network server that allows remote clients
to get information from a database (which you will also write).

Normally, building a simple network server presents you with two choices: RMI
or Sockets. If your assignment asks you to make a choice, rest assured that there is
not one right answer. You will need to think through the tradeoffs, make a choice,
and document your decision.

P:\010Comp\CertPrs8\684-6\ch14.vp
Wednesday, November 13, 2002 5:09:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

One simple way to look at the difference is this:

Sockets are low-level, RMI is high-level.

In other words, RMI is a higher-level system that uses Sockets underneath. Whichever
you choose, you’ll need to be very comfortable with it, and you’ll need to justify
your choice.

Serialization
Somehow you’re going to have to move a client request—made on one machine—
across a wire to another machine. For your assignment, that “machine” might be
only a virtual machine running on the same physical computer, but the Big Issues
are the same whether the two machines (the client and the server) are on the same
physical box or not. Two JVM’s might as well be on two different boxes, with one
key exception—the classpath. If two instances of a JVM are started on the same
computer, they may well have access to the same stuff, and sometimes that masks a
problem with your application. So, whatever you do, test test test on two different
physical machines if you can.

What form is the client request? Well, remember from Chapter 10 when we
looked at the Horse Cruise system. A client might want to request a cruise based on
a certain date or horse criteria (easy horse, short horse, fast horse, etc.), or perhaps
both. Ultimately, that request can take any form before you ship it from the client
to the server; that’s up to you, but let’s say you’re going to use a String. That String
needs to be packaged up, shipped out, and land at the other end. When it’s picked
up at the other end, the other end has to know how to use it.

So we’re really looking at two issues: how to pack and unpack it for shipping, and
then how to make sure it makes sense to the program on the other end (the server).
The packing and unpacking is easy—Serialization. Whatever object(s) you ship over
the wire, they can be sent simply as flattened objects (serialized) and then they get
brought back to life (deserialized) on the other end, and once again become real
objects on the heap. So the object traveled from one heap to another. Well, it wasn’t
even the object that traveled, but a copy of the object.

OK, so the client makes a request for, say, a Horse Cruise on such and such a
date. Now what? We put the client request into a String, serialize it, and ship it out
(we haven’t yet said whether this would be through RMI or straight Sockets) and
the server picks it up, deserializes it, and uses it as an object. Now what? The client
obviously needs a result from the request. Whatever that result actually is, you’ll stuff

Understand Networking Issues 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 14

P:\010Comp\CertPrs8\684-6\ch14.vp
Wednesday, November 13, 2002 5:09:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

it in an object (or group of objects) and ship it back following the same process—
serialize it, ship it to the client, client deserializes it and uses it in some meaningful
way (most likely, presenting the Horse Cruise search results in a GUI).

So now we know what form the request and result take (serialized objects), but we
still need to know how to ship it from point A to point B (in other words, from client
to server and from server to client). That leaves us with only one real question: do
we use Sockets or RMI?

Sockets
Given that Sockets are simply the end-points of a connection between two devices,
you aren’t limited to shipping only serialized objects over the wire. In fact, the
Socket has no idea what’s coming—it just sees a stream of bytes. When the server
gets the bytes, it’s up to your server code to figure out what those bytes are supposed
to mean. Are they in fact serialized objects? Then deserialize them…but in what
order are they coming over? The server needs to know. And if they’re not serialized
objects, the server needs to know exactly what is in those bytes, in exactly which
order, so it can do the appropriate read and get the bytes into some form a little
more useful (Strings, numbers, etc.). And for that, you’ll need a protocol. The client
code developer and the server code developer will have to get together in advance
and come to an agreement on what these bytes mean, in other words, how they’re
supposed to be interpreted. Of course, in the Developer exam, you’re writing both
the client and the server, so you only have to agree with yourself.

RMI
The beauty of RMI is that the protocol is already agreed on by both ends—it’s just
objects moving from one place to another (copied into the new location, but we’re
just going to say moved because it’s easier to think about). In other words, we’ve
already decided on the protocol for what the bytes mean, and the protocol is serialized
objects. And since we’ve established that, then the client and server don’t even have
to do the serialization/deserialization—RMI takes care of it.

The tradeoffs, then, are already shaping up: using Sockets lets you have whatever
protocol you want, but you have to do all the heavy lifting, while using RMI restricts
the protocol to serialization. But with that flexibility removed, RMI can do most
of the heavy lifting. By heavy lifting, we mean things like establishing the Socket
connections, packing up the bytes, sending an output stream from one place to
another, then receiving it and unpacking it and so on.

4 Chapter 14: Networking Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 14

P:\010Comp\CertPrs8\684-6\ch14.vp
Wednesday, November 13, 2002 5:09:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RMI is much simpler than Sockets. But simplicity never comes for free, of course,
so it’s also a little slower. You have to decide in all of this which is most important,
but here’s a hint: think Team Work. Again, there’s no right answer; the assessor isn’t
going to prefer one over the other, because it depends on your goal and need (or in
some cases, all things being equal, just which you prefer). But whichever you choose,
you need to justify in your documentation (and possibly on the essay portion of the
exam) why you chose one over the other.

The rest of this document looks at some of the things you’ll need to think about
when implementing your solution. They are in no particular order, so don’t infer any
relative importance from the order in which they’re listed.

Questions to Ask Yourself
Ask yourself these questions as you design and implement your Exam solution.

■ Serialization sends the entire object graph from point A to point B, for all
instance variables that are not marked transient. Is your object large? Do
you really need all that data to be shipped?

■ Have you marked everything transient except the state you truly need on the
other end?

■ Have you investigated leaving most of the state transient and then reconstructing
it by stepping into the deserialization process? The process of implementing
your own private readObject() method can help. (Think of a private
readObject() as kind of like a constructor, except instead of constructing
an object for the first time, the private readObject() is involved in
reconstructing the object following serialization.)

■ Are the superclasses of your serialized class also serializable? If not, they’ll
need a no-argument constructor, so be certain that this fits your design.

■ Do you have any final transient variables? Be careful! If you use blank finals,
you’re in big trouble because the variable will come back to life with a default
value since the constructor won’t run when deserializing an object. And since
it’s final, you’ll be stuck with that value.

■ Have you thought about versioning issues? When an object is serialized,
remember, the class needs to be present at the location where the object is
being deserialized. What happens if the class has been modified? Will the

Understand Networking Issues 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 14

P:\010Comp\CertPrs8\684-6\ch14.vp
Wednesday, November 13, 2002 5:09:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

object still be usable if it was serialized from one version of the class and
deserialized using a different version? Consider declaring an explicit serial
version ID in all your serializable classes to reduce versioning issues.

■ What happens if your database schema changes? Will your protocol have to
change as well? Will your remote interface need to change?

■ Have you looked for relevant design patterns? Not that we’re suggesting
anything, but have you looked into, oh, I don’t know, say, the Command
and Proxy patterns?

■ Have you thought about how the client should get the stub class? When the
client does a lookup in the RMI registry, remember, it’s the stub object that
gets shipped, and the client will need it. Dynamic code downloading is by far
the coolest and most flexible, but unless your project specification appears to
need it, it may well be more work than you need to provide.

■ Have you thought about how the classes for your return types and arguments
will get shipped? Are you certain that both the client and server will have all
the classes they need for objects that will be shipped across from requests and
results? Remember, if you’ve followed the rules for maintainability, you’re
most likely using interface types in your code, even though at runtime you’ll
be deserializing objects from classes that implement the interface…so the
class of the implementation object needs also to be on the machine that’s
deserializing the object.

■ How should you start the RMI registry? You can start it from the command-line,
or you can start it programmatically, but you’ll need to decide what’s right
(unless your assignment instructions/specification explicitly requires one way
over the other).

■ How should you shut down the registry?

■ What happens if you need a remote object to stop being available to a client,
while everything is still running? Have you looked into different options for
binding and unbinding objects in the registry?

■ How does the server know when a client is finished with an object? Does it
even need to?

■ What happens if a client crashes after it locked a record. How will you know
the client is gone versus just taking a long time? Will you use a timeout

6 Chapter 14: Networking Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 14

P:\010Comp\CertPrs8\684-6\ch14.vp
Wednesday, November 13, 2002 5:09:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mechanism like a distributed lease that the client has to renew periodically to
say, “I’m still alive!”? What about the state of the record?

■ Have you looked at the java.rmi.server.Unreferenced interface
to see if it does anything you can use?

■ Have you considered bandwidth limitations if a client request turns up a lot
of results?

■ If you’re using Sockets, do you have any potential issues with
platform-specific line endings?

■ How will the server know that a particular client asking to update a record is
in fact the same client that got the lock on that record? In other words, how
will you identify the client to the server in a unique way? Don’t count on
using the thread ID; remember that RMI makes no guarantees that it will
keep the same thread for each request from a particular client.

■ For that unique client ID, can you use something like web browsers use like a
cookie mechanism? If so, how can you guarantee that one client won’t have
the same ID# as another client? Have you considered how you might
generate your own unique identifiers? Would random() alone do the trick?

There’s a class you can look at in the Jini distribution,
com.sun.jini.reggie.RegistrarImpl.java, that generates
universally unique identifiers.

■ Have you considered the possibility of distributed deadlock?

■ How will you provide thread-safety in your server? Will it be at the remote
object level or in your actual database? Remember, RMI doesn’t guarantee
that more than one thread won’t be accessing your remote object.

■ Have you thought about how much caffeine you’ll need to complete this
project?

■ Have you begun to forget why you even wanted to be a Sun Certified Java
Developer? (That’s natural. We all go through that.)

For the tricky networking issues you’ll encounter as you get into the specifics
of your project, the best resource we can suggest is the Big Moose Saloon at
javaranch.com. The saloon is a threaded discussion board with more than 16,000

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 14

Understand Networking Issues 7

P:\010Comp\CertPrs8\684-6\ch14.vp
Wednesday, November 13, 2002 5:09:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

posts in the Developer Certification section. Anything you might struggle with has
already been struggled with by dozens of others who are willing to offer guidance.

Key Points Summary
We’re not going to summarize the points we made under the Questions to Ask
Yourself heading; they’re already bullet points. But here’s a quick summary of the
key points around RMI and Sockets:

■ Your exam assignment will require networking. Most likely you’ll be asked
to choose between RMI and Sockets.

■ Sockets are low-level, RMI is high-level.

■ RMI uses Sockets to do its work.

■ To move an object from one JVM to another, you need to serialize it.

■ Serialization flattens an object by packaging up the object’s state.

■ An object’s serializable state consists of all nontransient instance variables.

■ Sockets are the end-points of a connection between two networked devices.

■ You can send a stream of bytes between Socket connections, but you’ll need
an agreed-upon protocol to know what those bytes mean.

■ RMI uses serialization as the protocol, so you don’t need to read and
manipulate the bytes in your code.

■ RMI is simpler to implement than using plain Sockets.

■ Sockets offer more flexibility in protocol than does RMI.

■ Ask yourself all the questions on the “Ask Yourself” list.

8 Chapter 14: Networking Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 14

P:\010Comp\CertPrs8\684-6\ch14.vp
Wednesday, November 13, 2002 5:09:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

15
Database Issues

CERTIFICATION OBJECTIVE

• Understand Database Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 15
Blind Folio 15:1

P:\010Comp\CertPrs8\684-6\ch15.vp
Wednesday, November 13, 2002 5:09:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION OBJECTIVE

Understand Database Issues
Judge a man by his questions rather than his answers.

–Voltaire

A prudent question is one-half of wisdom.
–Francis Bacon

You’re on your own for the other half.
–The Authors

As with the previous chapter, this chapter asks—you got it—questions. Some will
seem obvious, some won’t. But this is the area where your solution to the problem
is going to have the greatest impact on your score. You’re going to be asked to build
a database. From scratch. And since there will be concurrent clients (or at least the
possibility of concurrent clients), you’ll have to be certain—dead certain—that you
correctly manage record locking.

How you implement your searching, updating, and locking mechanism is entirely
up to you. Again, there is definitely no One Right Answer for your solutions to
these issues. But however you choose to do it, be certain that the logic is sound. For
example, even if you never experience deadlock during testing, if there’s even the
slightest possibility (no matter how remote the chance) that it could happen, you
could easily fail the exam even if nearly everything else in your application is perfect.

The two biggest issues are locking and searching, but locking is where the Big
Money really is. We’ll start with a brief overview of the key concepts, followed by
yet another inspiring list of thought-provoking questions.

Building a Database
If you remember from Chapter 10, you’re the one who has to build the database;
the client’s too cheap or neurotic to invest in a commercial database, even a free one.
So what is a database? That depends on your assignment, but for the purposes of
the exam, software-that-lets-you-access-a-set-of-records will do. You have some data,
in some file format somewhere, with a known schema, and your job is to write an

2 Chapter 15: Database Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 15

P:\010Comp\CertPrs8\684-6\ch15.vp
Wednesday, November 13, 2002 5:09:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Understand Database Issues 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 15

application that allows that data to be searched and modified. You might also need
to add and delete records.

So the concept is simple: the client makes a request, based on some search criteria,
and your database returns a result. Sometimes the client might want to, say, book a
Horse Cruise, in which case one or more records will have to be updated. And you
might need to insert a new cruise or delete a cancelled cruise. Regardless of the
actual scenario, the Really Big Issue is

How do I protect the data from concurrent access?

In other words, how do I lock the records?

Your locking design and implementation decisions (and execution) are the
most important parts of your Developer assignment. Spend the greatest
percentage of your time making sure you have a sound solution. Be sure
you’ve met any requirements in your assignment document that pertain to
locking and unlocking. If part of your assignment specification is vague or
ambiguous, you need to make an interpretation (your best guess about
what to do) and then document your assumption and strategy.

And remember, the clients could be either local or remote (in other words, on
the same machine as the database or on a machine somewhere else on the network),
so you’ll have to think of issues related to both of those scenarios. Locking is crucial,
but fortunately the Developer exam isn’t asking you to implement a complete
distributed transaction system using the two-phase commit protocol. In fact, this is
much simpler than transactions, but it will require you to understand the fundamental
issues surrounding concurrent access to data. Remember the bank account example
from Chapter 9? The one where the husband and wife both shared the same account?
If you’re not absolutely clear about how to handle synchronization, then reread that
chapter. In order to correctly implement your locking strategy, you’re going to need
a solid grasp on synchronization, wait(), notify(), and notifyAll(). So,
ready for some questions? Once again, these are in no particular order.

Questions to Ask Yourself
We’ve split these into two categories, searching and locking. But there’s a lot about
searching that also falls into the category of GUI issues (Chapter 13). Specifically,
you’ll need to be certain that your end-users know how to build a search query, and
that’s discussed in Chapter 13.

P:\010Comp\CertPrs8\684-6\ch15.vp
Wednesday, November 13, 2002 5:09:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Searching

■ How easy is it for clients to perform a search? Assuming the GUI itself is
user-friendly (and we have a lot to say about that in Chapter 13), what
about the criteria?

■ How are the search criteria items represented? A String? A CriteriaObject?

■ How does a client know exactly what they can base a search on?

■ Does your search support boolean matches? Does it need to?

■ The database won’t necessarily be indexed, so have you thought about other
ways to make the search as efficient as possible?

Don’t sacrifice clarity and simplicity for a small performance gain. If the
performance gain is big, then redesign so that you can have a reasonably
efficient algorithm that is also clear and maintainable.

■ Have you documented your search algorithm?

If you find yourself writing a lot of documentation to explain your search
algorithm, there’s probably something wrong with the design.

■ Is the documentation of your search algorithm easy to read and understand?

■ When the client submits a search query, is a specific piece of the search
criteria explicitly matched to a particular field? Or do you search all fields
for each search?

■ If you’re using 1.4, have you investigated whether regular expressions
would help?

■ What happens if nothing matches the client’s search criteria?

■ Will it need to be an exact match?

■ Could there be a scenario in which too many records match the search
criteria?

■ Have you considered bandwidth issues when designing and implementing
the format of the search criteria requests and server results? Are you shipping
things over the wire that are bigger than they need to be?

■ Is your search capability flexible for the end-user?

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 15

4 Chapter 15: Database Issues

P:\010Comp\CertPrs8\684-6\ch15.vp
Wednesday, November 13, 2002 5:09:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Is your search capability flexible for future changes to the program?

■ How much code, if any, would have to change if the database schema
changes? Have you isolated the places where changes can occur to avoid
maintenance problems?

■ Are you absolutely certain that you’ve met the searching requirements
defined in your assignment specification? Go back and reread them.
Sloooooooowly.

Locking

■ Are you absolutely certain that your locking scheme works in all possible
scenarios?

■ Does your exam assignment specify a particular kind of locking with respect
to reads and writes?

■ What happens when a client attempts to get a record and the record is
already locked? What does the client experience?

This is crucial. Think long and hard about what you want to happen.

■ How will you keep track of which records are locked?

■ How will you keep track of who locked each record? Do you need to
know that?

■ How will you uniquely identify clients in such a way that you can know
which client locked which record? Is it the server’s responsibility or the
client’s?

■ Have you considered whether the ID of a thread is appropriate to uniquely
identify a client?

■ Have you considered whether a Math.random() number is appropriate
to uniquely identify a client?

■ If a client makes a request on a locked record, how will you verify that it’s
the same client who holds the lock?

■ What happens if a client attempts to use a locked record when that client is
not the client holding the lock?

Understand Database Issues 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 15

P:\010Comp\CertPrs8\684-6\ch15.vp
Wednesday, November 13, 2002 5:09:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Is it possible to have a record locked for too long a time? How much time is
too long?

■ Is there anything you can or should do about the duration of a lock?

■ What happens if a client goes down without releasing a lock?

■ Does the server need a way to know a client went down? (As opposed to
simply taking their sweet time or if they’re on a painfully slow connection.)

■ Is there any possibility of a deadlock? Where two or more clients are waiting
for each other’s locks?

Check for this more than you check for anything else.

■ Are you correctly using wait(), notify(), and notifyAll()?

■ Are you clear about the implications of notify() versus notifyAll()?

If not, go back and read Chapter 9.

■ Are you relying on a nondeterministic thread mechanism such as priorities
and/or yielding to guarantee your threads will behave properly?

■ Are you synchronizing on the right objects?

■ Are you sure?

■ Are you really really really sure?

■ Is everything that needs to be thread-safe, thread-safe?

■ Have you made sure that things that don’t need to be thread-safe, aren’t?
(You already know that synchronization carries a performance hit.)

■ Have you selected appropriate data structures for implementing your
lock scheme?

■ Are you absolutely certain that you’ve met the locking requirements
defined in your assignment specification?

■ Would you like to revise your answers to the last two questions from
Chapter 14?

6 Chapter 15: Database Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 15

P:\010Comp\CertPrs8\684-6\ch15.vp
Wednesday, November 13, 2002 5:09:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

16
Exam
Documentation

CERTIFICATION OBJECTIVE

• Understand the Sun Certified Java
Developer Exam Documentation
Requirements

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16
Blind Folio 16:1

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16
Blind Folio 16:1

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

CERTIFICATION OBJECTIVE

Understand the Sun Certified Java Developer
Exam Documentation Requirements

We know that you all know the benefits of thorough, accurate, and understandable
documentation. There may be some of you out there who wish that documentation
wasn’t an integral part of a programmer’s job. There may be others of you who are
thrilled to write documentation, to exercise a different part of your brain, to help
your fellow programmers, to capture (hey you, in the back, stop laughing!) your
company’s technical assets. Well, whatever your inclination, you’re going to have
to write good, solid documentation to support your project if you want to have any
chance of passing this exam. It turns out that proper documentation plays as big a
role in determining your exam score as many of the software aspects themselves.

The assessors will be expecting several pieces of documentation when you submit
your exam. They are discussed briefly in the exam packet you receive from Sun; we
will go into them more thoroughly in this chapter. The five areas of project
documentation that we will cover are

■ Developer’s Documentation

■ End User Documentation

■ javadoc

■ The Developer Choices File

■ Comments and the Version File

Developer’s Documentation
This area of the project’s documentation is the most open ended. Your assessor is
most interested in the final results of your project; these optional documents represent
the design work that you did as you were working on the project. Documentation
that you might consider providing in this section includes UML diagrams, schema
documentation, algorithm documentation, flow diagrams, prototype plans, and test
results. Given that the rest of the standalone documentation is to be submitted via
ASCII text files or HTML, we recommend the same here.

2 Chapter 16: Exam Documentation

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

End User Documentation
Your assessor is going to wear at least two hats when reviewing your project. (This
makes her appear taller than she really is.) Initially, she will review your project from
the standpoint of an end user. Once the end user review is complete, she will put on
her ‘techie’ hat and dive into your code and technical documentation. But (and this
is a big but), if she can’t get through the end user portion easily and with no problems,
she probably has no choice but to fail the project. It won’t matter how unbelievably
fabulous your code is, she’ll never see it if the end user experience is challenging.

The actual end user documentation should be pretty easy; all it has to do is
describe how to install, launch, and run your project. You will probably be told
exactly how the application must be installed and launched, and from the end user’s
perspective, those tasks will have to be incredibly easy and relatively option free, so
there won’t be much to document. The key will be to document how to use the
programs once they have been launched. When documenting the GUIs, the most
important concepts to remember are

■ Keep it simple.

■ Keep it concise.

The GUIs themselves, if designed properly, should be very easy to use, so there
is no need to go on and on.

The end user documentation can take several forms. The install and launch
documentation must be provided in either an ASCII text file or as HTML. Make
sure to follow the naming conventions described in your instructions! The GUI
documentation can be added to either of these files, or it can be provided as
online help.

javadoc and You
One of Java’s more wonderful features is javadoc. While we’re sure that all of you
are well versed in the use of javadoc, and use it religiously, we are bound to review
it here on the off chance that this bit of Java technology has somehow eluded you.

An Overview of javadoc
When you crank up your browser to look at the Java API documentation (let’s
say you’ve forgotten what arguments the setInitialContextFactory

Understand the Sun Certified Java Developer Exam Documentation Requirements 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

Builder() method takes), you are really looking at the output of the javadoc
utility. Most likely, that online documentation was created by the guy who actually
wrote that method for that class (in this case the NamingManager class). javadoc is a
utility for programmers to use to help other programmers use their programs. (We’ll
get off our soapbox in a minute.)

Every programmer should use javadoc. Even if you’re a one-man shop, someday
you’ll want to refresh your memory on how a certain method works, and the very
javadoc that you wrote months earlier will be right there to help you out. If you
work with other programmers, then javadoc is truly a miracle. When you add javadoc
comments to your code as you are creating it, you have an instant answer for anyone
who wants to bug you about how your code works. (If the cute programmer in the
cubicle next to you wants help, you can always provide additional assistance.) Likewise,
if you’re trying to update a class that was written by somebody else, you’ll be grateful
for their javadoc documentation, especially if for some reason that programmer is no
longer around.

At a high level, javadoc comments are nothing more than specially formatted
comments that you add in certain, very specific places in your code. When you run
the javadoc utility on your Java files, it takes those comments, and the appropriate
adjacent code, and creates HTML-based API documentation, just like you see on
your browser.

If you’ve never used javadoc (gasp!), we recommend trying some experiments once
you’ve read through more of this chapter. It’s very useful to write a little code,
produce some javadoc, and compare the two. With a little practice your javadoc
comments will look just like those created by those ‘think-tank’ boys at Sun. Earlier,
we promised to get off our soapbox; consider us officially off.

A Summary of the Project’s javadoc Requirements
To pass the developer’s exam, your code must include javadoc comments. Once your
code is properly commented, you must then run the javadoc utility against it and
include the resulting javadoc files in the docs directory for your project. Specifically,
your javadoc comments might document some of the classes and interfaces you are
submitting, including class, interface, constructor, method, constant, and exception
comments. Your instructions will specify which elements you must document.

A Brief Tutorial on the Use of javadoc
It has often been said that if you know 20 percent of a certain technology you can
accomplish 80 percent of everything that you ever have to do with it. That said,

4 Chapter 16: Exam Documentation

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

we’re going to describe for you what is, in our humble opinion, the most crucial
20 percent of the commands provided by the javadoc utility. If you want to know
more about javadoc we recommend starting with these two links:

http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/javadoc.html, and
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html

The Structure of a Comment As you will soon see, a single comment
can grow to quite a large size. Comments can contain a wide variety of elements,
but there are some restrictions to the order in which you can place these elements.
To begin, the first line must start with /** (the / must be in column 1), all of the
rows that contain descriptive content start with an * in column 2, and the closing
delimiter is */ with the * in column 2. Finally, remember that the member
declaration follows immediately after the javadoc comment. This format will hold
true for any multiline javadoc comment used in documenting classes, interfaces,
constructors, methods, instance variables, or exceptions; for example,

/**
* the descriptive section
* of a multiline javadoc comment
*/
public class Test {

A comment can contain two main sections: the description section followed by
the tag section. Both sections are optional. When used, the descriptive section can
contain any free form text following the column 2 *, and can span multiple lines.

The tag section of the comment begins with the first occurrence of a ‘@’ that
starts a new line of the comment (ignoring the leading *). There are two types of
tags: standalone and inline. A standalone tag has the general form @tag. An inline
tag has the general form { @tag }. Inline tags can be included in the descriptive
section of the comment, but once a standalone tag has been encountered in a
comment, no more descriptive text can be used in that comment; for example,

/**
* the descriptive section
* we're still in the descriptive section
* {@link doStuff doStuff} and
* after this line the tag section will begin:
* @author Joe Beets (the leading @ marked the beginning
* of the tag section

Understand the Sun Certified Java Developer Exam Documentation Requirements 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

* @version 2.1
*/

Launching javadoc, and Exciting javadoc Capabilities
We’re not forgetting our orientation toward 80/20, and at the same time we want
to let you know about some of javadoc’s other capabilities. Think of this as a
high-level briefing.

■ Doclets javadoc’s output format is determined by a ‘doclet’. The default,
standard doclet is built-in to javadoc, and produces the HTML API
documentation normally associated with javadoc. If you want to create
custom output you can subclass the standard doclet, or you can write
your own doclet. For the adventurous, you can create XML or RTF; we
know one guy who used javadoc to capture all his favorite beef jerky recipes.
A good placed to start your doclet odyssey is at:

http://java.sun.com/j2se/1.4/toolodocs/javadoc/overview.html

■ Command-line Cornucopia Let’s look at a few simple examples of
calling javadoc:

To run javadoc against all the java files in the current directory,

% javadoc *.java (we tried to start with an easy one.)

To run javadoc on a package called com.testpkg, first move to the parent
directory of the fully qualified package (in other words, the directory
containing the package), then

% javadoc –d /home/html-dest com.testpkg

In this case we used the –d flag to indicate the destination directory for the
HTML output. So the command line reads, “Run javadoc, put the output in
a directory called home/html-dest, and run the utility against all of the java
files in the com.testpkg package.”

■ Other Capabilities javadoc has a wide range of command line options, in
fact, a huge range of command-line options…so many that there is a facility
that allows you to store your command-line options in a file. Let’s cover
some of options you might find useful for your project:

■ -windowtitle Allows you to specify the description that appears
in the title bar of your browser window. See Figure 16-1.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

6 Chapter 16: Exam Documentation

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ -header Allows you to specify a description that appears in the top
right of your class documentation. See Figure 16-1.

■ -footer Allows you to specify a description that appears in the lower
right ‘footer’ area of your class documentation. See Figure 16-2.

■ -bottom Allows you to specify a description that appears in the
bottom of your class documentation. See Figure 16-2.

The following collection of command-line arguments allow you to specify
which classes and members are documented, based on their access modifiers:

■ -public Documents only public classes and members.

■ -protected This is the option if you don’t specify a command-line
argument. It documents only protected and public classes and members.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

Understand the Sun Certified Java Developer Exam Documentation Requirements 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

FIGURE 16-1

Example of a
custom title bar
and header

FIGURE 16-2

Example of a
custom footer
and bottom

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

■ -package Documents package level (default), protected, and public
classes and members.

■ -private Documents all classes and members. (private means
"everything," including things marked private.)

Here are some more potentially useful command line arguments:

■ -help Displays online help—a good way to access all of these options.

■ -source 1.4 Enables javadoc to handle assertions if you have used
them in your code. Use it for documenting code that you’ve compiled
using the -source 1.4 flag.

The World’s Shortest Review of HTML Tags
Inside your javadoc comments you can format your text using standard HTML
tags. The following (exhaustive) list of tags should be enough for you to properly
document your project.

■ The anchor tag will allow you to link your
javadoc to a URL, for example, <a href=“http://www.wickedlysmart.com/
newindex.html”>Go to Wickedly Smart

■ <code> </code> This tag will tell the javadoc utility to use code style
font (probably courier) for the enclosed content, perfect for indicating code
snippets in your comments.

■ <pre> </pre> This tag will tell the javadoc utility to maintain the
formatting of the enclosed content. This is very useful if you want to include
a multiline code snippet in your javadoc and maintain the formatting
(indenting, spacing, etc.).

The following code snippet was run through the javadoc utility, and Figure 16-3
shows a portion of the API style documentation that was generated. Notice that
the javadoc utility ignored the formatting of the paragraph documentation, but
preserved the formatting of the code snippet inside of the <pre> tag. Also notice
how the <a href> tag was formatted to produce a live link to a website.

/**
* An example of HTML tags in a javadoc comment.

8 Chapter 16: Exam Documentation

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

*
* The <code>Byte</code> class wraps a primitive type
* <code>byte</code> in an object. An object of type
* <code>Byte</code> contains a single field whose type
* is <code>byte</code>.
*
* <pre>
* int doStuff() {
* if (x < y) {
* x = 42;
* }
* }</pre>
*
* @see Go to Wickedly Smart
*/

public class Tags { }

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

Understand the Sun Certified Java Developer Exam Documentation Requirements 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

FIGURE 16-3 Common HTML tags enhancing javadoc API output

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Useful javadoc Tags for Classes and Interfaces
Here are some useful javadoc tags for classes and interfaces:

■ @author You can provide from zero to many author tags in your class
comments. Although, given the nature of the exam, we’d advise zero or one.
There are no formatting rules for the content after these tags. By default,
author information is not included in the final API documentation; it will
only be seen by people reading your source code. If you want to include the
author information in your final javadoc output, you must run javadoc with
the –author flag.

■ @version This tag allows you to tie into Source Code Control Systems,
which will automatically provide accurate versioning and date updates. Given
that this is a one-person project, we recommend that if you use this tag, you
insert your own manual version and date information. By default, version
information is not included in the final API documentation; it will only be
seen by people reading your source code. If you want to include the version
information in your final javadoc output, you must run javadoc with the
–version flag.

Useful Tags for All javadoc Comments
Here are some useful tags for all javadoc comments:

■ @see This tag allows you to add a “See Also” entry to your javadoc. These
entries are extremely flexible; you saw one in action in Figure 16-3, providing
an intro to a URL link. @see can also be used to preface character strings
(for instance referring to a reference book), or it can be used to preface other
members in the same or other classes. Figure 16-4 shows the @see tag used
in several different ways. There are many more wonderful possibilities that
the @see tag offers, but we’re sticking to our 80/20 guns.

■ @link This tag is similar to @see; however, it creates an inline link
with a label. These inline links allow online users of your API documentation
to navigate quickly through your content using the hypertext links you have
created with @link.

The following code snippet shows an example of how to use the links we just
discussed. Figure 16-4 illustrates how the code sample was converted into javadoc.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

10 Chapter 16: Exam Documentation

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this case javadoc was run with two flags, -version and -author; without
these flags the final output would not have included that information.

/**
* An example of class and interface tags
* link to testMethod {@link TestJD2#testMethod testMethod}
*
* @author Joe Beets
* @version 1.02
*
* @see "The Fortran Coloring Book"
*/
public class ClassTags { }

Useful Tags for Constructors and Methods
Here are some useful tags for constructors and methods:

■ @param This tag allows you to add method or constructor argument
names and a description for the argument to the ‘Parameters’ section of
the javadoc.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

Understand the Sun Certified Java Developer Exam Documentation Requirements 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

FIGURE 16-4 Class and interface tags in action

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ @return This tag allows you to add a method return description to the
‘Returns’ section of the javadoc.

■ @exception This tag has the same functionality as the @throws
tag. They allow you to add a ‘Throws’ subheading to the javadoc for the
constructor or method being documented. These tags take the exception
class name and a description of the exception.

The following code example and Figure 16-5 demonstrate method and
constructor tags in action:

/**
* link to {@link TestJD#jdMethod jdMethod}
* @param custId takes an int representing the customer ID
* @return returns the answer to everything
* @throws FooException throws a Foo exception
*/
public int method1(int z) throws FooException {

javadoc Comments for Classes
The javadoc comment for the class must directly precede the class declaration. This
comment is used to describe the purpose of the class and its capabilities. It may also
describe, at a high level, how the class is implemented. The Java API often includes
a class comment that can run several pages long. That level of detail is probably not
necessary, but it’s a good idea to provide a paragraph or two of explanation. Later
on in the class you will be documenting your constructors and methods, so this is

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

12 Chapter 16: Exam Documentation

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

FIGURE 16-5

Method and
constructor
tags in action

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

not the appropriate place for that documentation. The following is an example of a
class level javadoc comment:

/**
* The <code>Byte</code> class wraps a primitive type <code>byte</code>
* in an object. An object of type <code>Byte</code> contains a single
* field whose type is <code>byte</code>.
*
* In addition, this class provides several methods for converting a
* <code>byte</code> to a <code>String</code> and a <code>String</code>
* to a <code>byte</code>, as well as other constants and methods
* useful when dealing with a <code>byte</code>.
*
* @author Joe Beets
* @version .997
*
*/

public class ByteSample {

There are several things to notice in the above example. First, notice the use of the
tags <code> and </code>. These tags tell javadoc to use a different font (probably
a courier font) for the content between the tags, to indicate a code snippet. The
next things to notice are the @author and @version tags whose purposes were
described in the previous “Useful Tags for Constructors and Methods” section.

javadoc Comments for Interfaces
The javadoc comment for an interface must directly precede the interface declaration.
This comment is used to describe the purpose of the interface. The Java API often
includes an interface comment that can run several pages long. That level of detail
is probably not necessary, but it’s a good idea to provide a paragraph or two of
explanation. The following is an example of an interface level javadoc comment:

/**
* The <code>Runnable</code> interface should be implemented by any class
* whose instances are intended to be executed by a thread. The class
* must define a method of no arguments called <code>run</code>.
*
* This interface is designed to provide a common protocol for objects
* that wish to execute code while they are active. For example,
* <code>Runnable</code> is implemented by class <code>Thread</code>.
* Being active simply means that a thread has been started and has not
* yet been stopped.
*
*
* @author Joe Beets

Understand the Sun Certified Java Developer Exam Documentation Requirements 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

* @version .997
*
*/
public interface RunnableSample {

javadoc for Constructors
The javadoc comment for a constructor must directly precede the constructor
declaration. This comment is used to describe the purpose of the constructor. When
creating a comment for a constructor, it’s a good idea to provide a paragraph or
two of explanation. The following is an example of a constructor comment from
the Java API:

/**
* Constructs a newly allocated <code>Byte</code> object that represents
* the <code>byte</code> value indicated by the <code>String</code>
* parameter. The string is converted to a <code>byte</code> value in
* exactly the same manner used by the <code>parseByte</code> method
* for radix 10.
*
* @param s the <code>String</code> to be converted to <code>Byte</code>
* @throws NumberFormatException If the <code>String</code> does not
* contain a parseable <code>byte</code>.
*/
public Byte(String s) { }

javadoc for Methods
The javadoc comment for a method must directly precede the method’s declaration.
This comment is used to describe the purpose of the method. When creating a
comment for a method it’s a good idea to provide a paragraph or two of explanation.
The following is an example of a method comment from the Java API:

/**
* Returns a new <code>String</code> object representing the specified
* <code>byte</code>. The radix is assumed to be 10.
*
* @param b the <code>byte</code> to be converted
* @return the string representation of the specified <code>byte</code>
*/

public static String toString(byte b) {

javadoc for Exceptions
The javadoc comment for an exception must directly precede the declaration of the
method that throws the exception. This comment is a part of the overall comment
for the method in question. This comment is used to describe the class of the

14 Chapter 16: Exam Documentation

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

exception thrown along with a description of why the exception might be thrown.
The Java API often includes an exception comment that can run a page long. That
level of detail is probably not necessary, but it’s a good idea to provide a paragraph
or two of explanation. After a brief discussion of using javadoc for variables, we will
give an example of a method that throws an exception and the javadoc to support
that. In this case, we used @exception and in an earlier example we used
@throws; they work the same way. Finally, see Figure 16-6 to see how this javadoc
looks in a browser.

javadoc for Variables
The javadoc comment for a variable must directly precede the variable declaration.
This comment is used to describe the purpose of the variable. The most common
reason to use javadoc for a variable is for constants (static final variables).
Constants are often used to represent minimum or maximum values. When
documenting a constant it’s a good idea to provide a sentence or two of explanation.
The following code listing and Figure 16-6 show an exception throwing method
and a related constant.

/** Minimum allowable Radix is 2 */
public static final int MIN_RADIX = 2;

/**
* Parses the string argument as a signed byte in the radix specified
* by the second argument. The characters in the string must all be
* digits, of the specified radix. The resulting <code>byte</code>
* value is returned.
* <pre>
* An exception of type <code>NumberFormatException</code>
* is thrown if any of the following situations occur:
* - The first argument is <code>null</code> or is
* a string of zero length.
* - The radix is either smaller than {@link Tags#MIN_RADIX
* Character.MIN_RADIX}
* - Any character of the string is not a digit</pre>
* @param s the <code>String</code> containing the <code>byte</code>
* representation to be parsed
* @param radix the radix to use while parsing s
* @return the <code>byte</code> value represented by the string
* argument in the specified radix
* @exception NumberFormatException If the string does not contain a
* parseable <code>byte</code>.
*
*/

public static byte parseByte(String s, int radix) throws
NumberFormatException

Understand the Sun Certified Java Developer Exam Documentation Requirements 15

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Developer’s Choices Document
One of the key pieces of documentation you must provide when you submit your
project is the document that reviews and justifies the choices you made during the
design phase of your project. This document is affectionately referred to as the
‘Choices’ document. Your instruction packet will tell you exactly what this document
must be named and where it must be located. The intention of this document is to
briefly explain and justify the thinking you did while designing and implementing
your application. In Chapters 14 and 15 we gave you lists of things to think about
while designing your application. Those lists can give you good clues as to what to
talk about in this document. You will have to make sure that a lot of situations are

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

16 Chapter 16: Exam Documentation

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

FIGURE 16-6 Documenting exceptions and constants

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

handled correctly when you design this application. In some cases, there is no perfect
solution, and you will have to consider the tradeoffs and weigh the pros and cons
of several possible solutions to a problem. This is the place to review those tradeoffs
and pros and cons!

As is hinted at in the instruction packet, the assessors are looking for solutions
that are understandable and maintainable. If you come up with a new search algorithm
that is 3 percent faster than a well-known solution, you’d better be careful. Your
solution had better be really clear and really easy to understand, or you might be
penalized for a solution that is a bit slower, but is well known and clear. That said,
you will probably have to think about database implementation issues, networking
issues (RMI vs. sockets), record-locking issues, and GUI design issues in the course
of this project. You may well have other design issues also. Without creating a masters
thesis, describe them all in the ‘Choices’ document.

The Return of Comments and the Versions File
We’re almost finished with javadoc, but there are still a couple of issues to look at.
Besides correctness of your javadoc, your documentation should be clear and helpful.
Remember, the easier it is for the assessor to figure out what your code is doing, the
better your chances for a good score on the exam.

Just a Little More About Comments
We spent a lot of time in this chapter discussing the nuts and bolts of javadoc. Now
let’s spend just a little time discussing the style of the comments that you should
create. There is a definite art to proper code commenting—we wish we could say it
was a science, but it’s not. The key points to remember for this exam are

■ Make sure your code comments and clear and concise.

■ Make sure the comment you are about to type is necessary.

Keep in mind that the best Java code is to a large degree self-documenting. If you
find yourself documenting a lot of your code, think about these things:

■ Are your variable names self-descriptive?

■ Are your method names self-descriptive?

■ Do you find yourself explaining why you wrote your code a certain way?

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

Understand the Sun Certified Java Developer Exam Documentation Requirements 17

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Do you just really love to type?

■ Remember some of the best Java code you’ve ever read, how little commenting
it needed, and how clear it was.

■ Is excessive commenting making up for a muddy design?

Lest We Forget, the Versions File
Not much to say here really. In the interest of being complete, we somewhat
redundantly offer this advice. The instruction packet will probably ask you to
provide a very small document in which you will list the version of the JDK that
you used, and on which host platform(s) you developed and tested your project.
Do as you’re told. :)

Key Points Summary
Here, in a handy portable format, are the highlights from this chapter:

■ You’ll probably want to include these six forms of documentation
(plus anything else the instructions ask for):

■ The Developer’s Documentation—design docs.

■ End User Documentation—how to install and run the application.

■ javadoc—the programmer’s technical inline comments.

■ The Choices Document—the architect’s design choices and tradeoffs.

■ Inline code comments—in addition to the javadoc.

■ The Version file—SDK version used and hardware platform(s) used.

■ Developer’s documents are probably optional documents; include them
if they briefly and clearly aid in understanding your project.

■ End User documents; keep them simple and concise.

javadoc highlights:

■ It’s how the Java API was created.

■ It generates HTML.

■ It’s mandatory for your project.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

18 Chapter 16: Exam Documentation

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Comments can have a descriptive section and a tag section.

■ Tags can be inline {@tag}, or standalone @tag.

■ javadoc has a huge arguments library.

■ You can store your command line arguments in a file.

■ You can use HTML tags in your javadoc.

■ Not all javadoc tags can be used for all class members.

■ You can document the following members in javadoc:

■ Classes

■ Interfaces

■ Constructors

■ Variables

■ Methods

■ Exceptions

■ The Choices document describes architectural decisions that you make:

■ Database design

■ Networking design

■ GUI design

■ Record-locking design

■ Keep your code comments clear and concise.

■ Try to make your variable and method names self-documenting.

■ Are your comments propping up a muddy design?

■ Don’t forget your Versions file.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

Understand the Sun Certified Java Developer Exam Documentation Requirements 19

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\684-6\ch16.vp
Wednesday, November 13, 2002 5:08:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

17
Final Submission
and Essay

CERTIFICATION OBJECTIVE

• Preparing the Final Submission

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17
Blind Folio 17:1

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 Chapter 17: Final Submission and Essay

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

CERTIFICATION OBJECTIVE

Preparing the Final Submission
You’ve built your project, and now the Big Day is finally here. Submission time.
Your exam instructions include very specific details for submission, and you must
follow them exactly. Pay attention: any deviation from the submission instructions can
mean automatic failure. For example, if your instructions say that you must be able
to run your application with a specific command,

java -jar runme.jar server

you had better have a JAR named runme.jar, and it better take a command-line
argument “server”, and it better include a manifest that specifies the class within
runme.jar that holds the main() method.

In this short chapter we’ll look at a typical submission requirement, and walk through
how to build the final JAR along with a project checklist. Finally, we’ll look at some
examples of the kinds of essay questions you might see on your follow-up exam.

File Organization
Imagine the following submission instructions; yours will probably be very similar:

■ All project files must be delivered in one, top-level Java Archive (JAR) file.

■ The top-level, project JAR must be named project.jar.

■ The project JAR must contain the following files and directories:

■ An executable JAR named runme.jar that contains the complete set
of classes.

■ The code directory, which must hold the source code for your project,
with all source files organized within directories reflecting the package
structure of the classes.

■ A version file named versionInfo.txt. This must be a plain ASCII text file
describing the specific version of J2SDK that you used (example: java
version “1.3.1”).

■ A copy of the data file, exactly as specified in the schema instructions,
named db.db.

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The docs directory, which must hold all project documentation including:

■ A design decision document named designChoices.txt, an ASCII text file
documenting design decisions.

■ End-user documentation for the server and client, unless you have used
an online help system within your application. The help documents
may consist of multiple HTML files but must begin with a HTML file
user guide.

■ javadoc HTML files for all classes and interfaces. All public classes,
interfaces, and members must be documented.

■ Developer documentation, optional.

Figure 17-1 illustrates the directory structure that matches the sample instructions
above.

Preparing the Final Submission 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

FIGURE 17-1 Sample directory structure for project submission

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating the Executable JAR
An executable JAR is a JAR file that contains at least two things:

■ A class file with a main() method.

■ A manifest file that specifies which class in the JAR has the main()
method. (Remember, you might have dozens of classes in your application
JAR file.)

Creating the Manifest You can let the jar tool create both a manifest file
(MANIFEST.MF) and the manifest directory (META-INF), but you’ll need to
put your information into the manifest file. The jar tool has a command that lets
you specify your own text file as a place to find text that will be merged into the real
manifest file. In other words, you won’t actually create the manifest file yourself but
you’ll build a text file that has the stuff you want to add to the “official” manifest file
the jar tool will create. This is not the only way to make your manifest file, but it’s
usually the simplest, and the end-result is the same: the MANIFEST.MF file will
declare that you have a class with a main() method.

Assume the following structure for the examples we’re going to walk through:

■ Main class name, suncertify.db.ExamProject You have a class
named ExamProject, in the suncertify.db package, and it holds the
main() method for your application.

■ Working directory, /project This is the directory one level above your
package structure.

■ Manifest file name, Manifest.MF This is not the real manifest file but
rather your text file that holds the text you want to merge into the real
manifest file that the jar tool will create.

■ Manifest file contents The manifest file you’ll write (as an ASCII text file)
contains just a single line:
Main-Class: suncertify.db.ExamProject

Be certain to insert a carriage return at the end of that single line! If there is
not a newline below the main line, the manifest file will not work correctly.
And be certain to include the fully-qualified name of the main class
(suncertify.db.ExamProject as opposed to just ExamProject).

4 Chapter 17: Final Submission and Essay

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

Creating the JAR We’ve got our application classes in their appropriate
directory structure (matching the package structure). We’ve got our manifest file,
Manifest.MF. We’re in a working directory that is one level above the package,
so if you listed the contents of the current directory it would include a directory
named suncertify (the first directory in the package hierarchy).

So let’s run the jar tool:

jar -cvmf Manifest.MF runme.jar suncertify/db

This creates a JAR file, named runme.jar, in your current directory. It
includes all files that are in the suncertify/db directory (the package) and
it also includes the directories themselves (suncertify and db). Plus, it takes
the manifest file (Manifest.MF), reads its contents, and puts them into the
real manifest file named MANIFEST.MF, that it puts in a directory named
META-INF. At the command-line, you’ll see the following when you run the
jar command as follows:

jar -cvmf Manifest.MF runme.jar suncertify/db
added manifest
adding: suncertify/db/(in = 0) (out= 0)(stored 0%)
adding: suncertify/db/ExamProject.class(in = 617) (out= 379)(deflated 38%)

Of course in your real project, you’ll have more than one class. Using the
preceding jar command, you’ll see the manifest being added, the directory
structure being added (in this case, suncertify/db), and all files in the db
directory (in this case, just the ExamProject.class).

More Fun with jar Tool What does that -cvmf mean? What else can you do
with jar tool? The main purpose of the jar tool is to create archive files based on the
ZIP format. It’s a handy way to deliver an application, especially when it contains,
for example, 4,234 classes. You could deliver all 4,243 to your end-users, but just
one file is a little simpler. JAR files are also handy when you’re shipping something
over a network, where one fat file will ship faster than a ton of individual ones.

You can do all the things you’d expect to do with an archive format: make one,
extract files from one, and look inside one (to display, but not extract, the contents).
Table 17-1 lists examples of the basic jar tool commands. Assume that the JAR
file name will be MyJar.jar and the class file we’ll put in the JAR is
MyClass.class.

Preparing the Final Submission 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The key jar tool switches are described here:

c Create a new JAR file

v Verbose—print out messages while JARring

t List the contents of a file (in other words, display a table)

f Stands for archive file name

m Manifest—you are specifying your own text file whose contents should be put into the
real manifest file.

Running the Executable JAR
Now that you’ve made your JAR file and it’s got your complete package structure—
with your main class in its appropriate directory (matching the package hierarchy)—
and you’ve got a manifest inside that says which of your classes in the JAR has the
main() method, it’s a snap to run it from the command-line:

java -jar runme.jar

This works only if…

■ Inside runme.jar there’s a manifest.

■ Inside the manifest, it specifies which class has a main() method, using the
Main-Class entry:
Main-Class: suncertify.db.ExamProject

■ The manifest Main-Class entry specifies the fully-qualified name of the class
(in other words, you must include the package structure).

6 Chapter 17: Final Submission and Essay

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

To create a JAR jar -cf MyJar.jar MyClass.class

To extract the contents of a JAR jar -xf MyJar.jar

To view the contents of a JAR jar -tf MyJar.jar

To create a JAR with your own manifest jar -cmf myManifest.mf MyJar.jar
MyClass.class

To create a JAR that contains all files within a
directory

jar -cf MyJar.jar suncertify/db

TABLE 17-1 Basic jar Tool Commands

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The ExamProject class is located inside the directory structure matching the
package hierarchy. In other words, immediately inside the JAR there is a
suncertify directory that contains a db directory, and the db directory
contains the ExamProject.class file.

What About Command-Line Arguments? Your project’s main application
will almost certainly need command-line arguments. They might be used to pass
host names and/or port numbers, or a variety of other configuration information.
Most likely, though, your instructions will restrict you to a very small list of
command-line arguments. For example, you might be instructed to use something
like the following:

■ Use server to have the application launch the network server.

■ Use client to have the application launch the GUI client.

■ The default—no argument—tells the application to run in standalone mode.
(Standalone mode means your GUI must access the database without going
through the network server. In other words, without RMI or sockets.)

Passing arguments to the command-line of your main class looks like this:

java -jar runme.jar server

So anything you type after the JAR name is a command-line argument that gets
passed straight on through to the main() method of your main class. In the
example above, the ExamProject main() method would get the string server at
args[0].

Running javadoc on Your Package Chapter 16 describes the details of
javadoc, but we thought a little reminder about running javadoc on your package
might be helpful here. For this example, assume that

■ Your class files are in the suncertify/db directory.

■ Your working directory is one level above the start of the package (in other
words, one level above the suncertify directory).

■ You have created a directory called javadocs and placed it within the
docs directory.

Preparing the Final Submission 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To create javadocs for all classes in the suncertify.db package and have
them placed in the docs/javadocs directory (where they’ll need to be in our
sample packaging instructions), run the following command from the directory one
level above both docs and suncertify:

javadoc -d ./docs/javadocs suncertify.db

The Follow-Up Essay
Immediately after submitting your project (which means uploading it to the location
you’re given in your instructions), you should schedule your follow-up essay exam!
We can’t emphasize strongly enough that you should take your follow-up exam at
the earliest possible moment. The fresher the project is in your mind, the easier it
will be. You take the follow-up exam just as you did the Programmer’s exam—in a
Prometric Testing Center, where you answer questions in a computer application.

Rather than multiple-choice questions, however, your follow-up consists solely
of essay questions. One of the main purposes of the follow-up is to see that indeed
you are the one who wrote the application. So, you’ll get questions related to the
design and implementation decisions you had to make along the way. Once you’ve
completed your essay exam, the results of the essay along with your submitted
project are sent to an assessor and the fun begins. Well, for the assessor anyway. You,
on the other hand, have to sit there pulling your hair out until you get your results.
Which could take as long as six weeks! Unlike the Programmer’s exam, where the results
show up instantly, before you even leave the testing center, the Developer exam is
marked by a real, live (which is a good thing, we’re told…dead assessors have too
many issues) human being. They’ll use your essay questions to understand what’s
really happening.

Follow-Up Essay Questions
You never know what kind of questions you’re going to get. Be prepared to describe
anything that you might have had to consider in your design or implementation.
The following questions don’t necessarily reflect the actual exam questions, but
they do suggest what you need to think about when preparing. We recommend
that you relax about the follow-up! You’ve done the crucial work by designing and
building your application, and assuming you—and not your cousin Chad who owes
you—did the project yourself, you shouldn’t have any trouble with the follow-up.
Remember, there is NO ONE RIGHT ANSWER. There is, however, a wrong

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

8 Chapter 17: Final Submission and Essay

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

answer: the answer that contradicts the design, structure, and implementation of
your application. As long as you’re consistent, however, you should have nothing
to fear from this part of the exam. The following questions can help you prepare
for the follow-up:

■ How did you decide which GUI components to use in your client
application?

■ Describe your design tradeoffs, and final decision, for choosing RMI
or Sockets.

■ Describe your event-handling mechanism and why you chose to do it
that way.

■ Describe your overall locking scheme and why you chose that approach.

■ What design patterns did you use on this application?

■ What aspects of your design allow for future modifications?

■ Describe your threading and synchronization decisions.

Once you’ve submitted your follow-up assignment and taken your follow-up
essay exam, take a deep breath, relax, and consider a refreshing alcoholic beverage.
Or three. You’re done! Now all that’s left is the staggeringly torturous, endless,
agonizingly slow, wait for the results. And after that, and after you’ve recovered from
the “no more certifications for me no matter what you hear me say” phase, you can
start planning your next certification effort.

In the meantime, don’t count your chickens until you’ve reviewed the following
key points summary. And then you’re done. (Well, except for re-reading the threads
chapter.) (Not to mention learning the exotic subtleties of the JTable.)

Key Points Summary

■ Follow your project submission instructions perfectly.

■ Your project will probably require you to package up all files in a single JAR.

■ Your application should be (your instructions will confirm this) an
executable JAR.

■ You will need to submit both source code and class files.

Preparing the Final Submission 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Class files will be in the executable JAR, while source code will be in a
specific directory, probably named “code”.

■ Your instructions will give you the exact layout of the top-level project JAR
including where to place the documentation, code, design choices document,
and user guide.

■ To create an executable JAR, you need a class with a main() method
and a manifest with a Main-Class entry.

■ The Main-Class entry indicates which class in the JAR has the main()
method that should be executed, and it looks like the following:
Main-Class: suncertify.db.ExamProject

■ The jar tool will create a manifest; you will create a text file and specify to the
jar tool that it should take your text file and incorporate its contents into the
real manifest.

■ The real manifest is META-INF/MANIFEST.MF.

■ To run the jar tool on all the classes in a package, place them in a new JAR
named runme.jar and include your own manifest file information, using
the following command:
jar -cvmf Manifest.MF runme.jar suncertify/db

■ To run the executable JAR, use the following command-line:
java -jar runme.jar

■ You can also pass command-line arguments to the main() method in the
main class by placing them after the JAR name as follows:
java -jar runme.jar standalone

■ The purpose of the follow-up essay is designed to verify that you are the one
who actually developed the assignment application.

■ Schedule your follow-up essay exam as soon as you upload/submit your
assignment.

■ The fresher the project is in your mind, the better for taking the follow-up
essay exam.

■ For the follow-up essay, be prepared to describe and defend choices you
made while designing and implementing your application.

10 Chapter 17: Final Submission and Essay

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ It’s completely natural to (on many occasions) regret the decision to try for
this certification in the first place. The feeling will pass. When it does, get
busy, it’ll be back.

■ We wish you luck, success, caffeine, and plenty of sleep.

■ When you’ve received your certification, tell us! Drop a success-story to
certified@wickedlysmart.com.

Preparing the Final Submission 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 17

P:\010Comp\CertPrs8\684-6\ch17.vp
Wednesday, November 13, 2002 5:22:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Glossary

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 1
Blind Folio 1:1

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Abstract class An abstract class is a type of class that is not allowed to be
instantiated. The only reason it exists is to be extended. Abstract classes contain
methods and variables common to all the subclasses, but the abstract class itself is
of a type that will not be used directly. Even a single abstract method requires that
a class be marked abstract.

Abstract method An abstract method is a method declaration that contains no
functional code. The reason for using an abstract method is to ensure that subclasses
of this class will include an implementation of this method. Any concrete class (that
is, a class that is not abstract, and therefore capable of being instantiated) must
implement all abstract methods it has inherited.

Access modifier An access modifier is a modifier that changes the visibility of a
class or member of a class (method, variable, or nested class).

Anonymous inner classes Anonymous inner classes are local inner classes
that do not have a class name. You create an anonymous inner class by creating an
instance of a new unnamed class that is either a subclass of a named class type or
an implementer of a named interface type.

API Application programmers interface. This term refers to a set of related classes
and methods that work together to provide a particular capability. The API
represents the parts of a class that are exposed (through access controls) to code
written by others.

Array Arrays are homogenous data structures implemented in Java as objects.
Arrays store one or more of a specific type and provide indexed access to the store.

Automatic variables Also called method local or stack variables. Automatic
variables are variables that are declared within a method and discarded when the
method has completed.

Base class A base class is a class that has been extended. If class D extends class
B, class B is the base class of class D.

2 Glossary

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Blocked state A thread that is waiting for a resource, such as a lock, to become
available is said to be in a blocked state. Blocked threads consume no processor
resources.

Boolean expression An expression that results in a value of true or false.
Typically, this involves a comparison (e.g., x > 2) or a boolean condition such as
(x < 5 && y > 3), but can also involve a method with a boolean return type.

boolean primitives A primitive boolean value can be defined only as either
true or false.

Call stack A call stack is a list of methods that have been called in the order in
which they were called. Typically, the most recently called method (the current
method) is thought of as being at the top of the call stack.

Casting Casting is the conversion of one type to another type. Typically, casting
is used to convert an object reference to either a subtype (for example, casting an
Animal reference to a Horse), but casting can also be used on primitive types to
convert a larger type to a smaller type, such as from a long to an int.

char A char is a 16-bit unsigned primitive data type that holds a single Unicode
character.

Character literals Character literals are represented by a single character in
single quotes, such as ‘A’.

Child class See Derived class.

Class A class is the definition of a type. It is the blueprint used to construct
objects of that type.

Class members Class members are things that belong to a class including
methods (static and nonstatic), variables (static and nonstatic), and nested classes
(static and nonstatic). Class members can have any of the four access control levels
(public, protected, default (package), and private).

Class members 3

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Class methods A class method, often referred to as a static method, may be
accessed directly from a class, without instantiating the class first.

Class variable See static variable.

Collection A collection is an object used to store other objects. Collections are
also commonly referred to as containers. Two common examples of collections are
HashMap and ArrayList.

Collection interface The collection interface defines the public interface that
is common to Set and List collection classes. Map classes (such as HashMap and
Hashtable) do not implement Collection, but are still considered part of the
collection framework.

Collection framework Three elements (interfaces, implementations, and
algorithms) create what is known as the collection framework, and include Sets
(which contain no duplicates), Lists (which can be accessed by an index position),
and Maps (which can be accessed by a unique identifier).

Comparison operators Comparison operators perform a comparison on two
parameters and return a boolean value indicating if the comparison is true. For
example, the comparison 2<4 will result in true while the comparison 4==7 will
result in false.

Constructor A method-like block of code that is called when the object is
created (instantiated) Typically, constructors initialize data members and acquire
whatever resources the object may require. It is the code that runs before the object
can be referenced.

continue statement The continue statement causes the current iteration of
the innermost loop to cease and the next iteration of the same loop to start if the
condition of the loop is met. In the case of using a continue statement with a for
loop, you need to consider the effects that the continue has on the loop iterator
(the iteration expression will run immediately after the continue statement.)

4 Glossary

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Deadlock Also called deadly embrace. Threads sometimes block while waiting
to get a lock. It is easy to get into a situation where one thread has a lock and wants
another lock that is currently owned by another thread that wants the first lock.
Deadlock is one of those problems that are difficult to cure, especially because things
just stop happening and there are no friendly exception stack traces to study. They
might be difficult, or even impossible, to replicate because they always depend on
what many threads may be doing at a particular moment in time.

Deadly embrace See Deadlock.

Decision statement The if and switch statements are commonly referred to
as decision statements. When you use decision statements in your program, you
are asking the program to calculate a given expression to determine which course
of action is required.

Declaration A declaration is a statement that declares a class, interface, method,
package, or variable in a source file. A declaration can also explicitly initialize a
variable by giving it a value.

Default access A class with default access needs no modifier preceding it in the
declaration. Default access allows other classes within the same package to have
visibility to this class.

Derived class A derived class is a class that extends another class. If class D
extends class B, then class D “derives” from class B and is a derived class.

do-while loop The do-while loop is slightly different from the while statement
in that the program execution cycle will always enter the body of a do-while at least
once. It does adhere to the rule that you do not need brackets around the body if it
contains only one statement.

Encapsulation Encapsulation is the process of grouping methods and data
together and hiding them behind a public interface. A class demonstrates good
encapsulation by protecting variables with private or protected access, while
providing more publicly accessible setter and/or getter methods.

Encapsulation 5

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exception Exception has two common meanings in Java. First, an Exception
is an object type. Second, an exception is shorthand for “exceptional condition,”
which is an occurrence that alters the normal flow of an application.

Exception handling Exception handling allows developers to easily detect errors
without writing special code to test return values. Better, it lets us handle these errors
in code that is nicely separated from the code that generated them and handle an
entire class of errors with the same code, and it allows us to let a method defer
handling its errors to a previously called method. Exception handling works by
transferring execution of a program to an exception handler when an error, or
exception, occurs.

Extensibility Extensibility is a term that describes a design or code that can
easily be enhanced without being rewritten.

final class The final keyword restricts a class from being extended by another
class. If you try to extend a final class, the Java compiler will give an error.

final method The final keyword applied to a method prevents the method
from being overridden by a subclass.

final variables The final keyword applied to a variable makes it impossible
to reinitialize a variable once it has been assigned a value. For primitives, this means
the value may not be altered once it is initialized. For objects, the data within the
object may be modified, but the reference variable may not be changed to reference
a different object or null.

Finalizer Every class has a special method, called a finalizer, which is called
before an object is reclaimed by the Java VM garbage collector. The JVM calls the
finalizer for you as appropriate; you never call a finalizer directly. Think of the
finalizer as a friendly warning from the virtual machine. Your finalizer should
perform two tasks: performing whatever cleanup is appropriate to the object, and
calling the superclass finalizer. Finalizers are not guaranteed to be called just because
an object becomes eligible for garbage collection, or before a program shuts down,
so you should not rely on them.

6 Glossary

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Floating-point literals Floating-point literals are defined as double by default,
but if you want to specify in your code a number as float, you may attach the suffix
F to the number.

Floating-point numbers Floating-point numbers are defined as a number, a
decimal symbol, and more numbers representing the fraction. Unless a method or
class is marked with the strictfp modifier, floating-point numbers adhere to the IEEE
754 specification.

for loop A for loop is used when a program needs to iterate a section of code a
known number of times. There are three main parts to a for statement. They are the
declaration and initialization of variables, the boolean test expression, and the iteration
expression. Each of the sections are separated by a semicolon.

Garbage collection The process by which memory allocated to an object that
is no longer reachable from a live thread is reclaimed by the Java VM.

Guarded region A section of code within a try/catch that is watched for errors
to be handled by a particular group of handlers.

HashMap class The HashMap class is roughly equivalent to Hashtable, except
that it is not synchronized and it permits null values (and one null key) to be stored.

Heap Java manages memory in a structure called a heap. Every object that Java
creates is allocated in the heap, which is created at the beginning of the application
and managed automatically by Java.

Hexadecimal literals Hexadecimal numbers are constructed using 16 distinct
symbols. The symbols used are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Identifiers Identifiers are names that we assign to classes, methods, and variables.
Java is a case-sensitive language, which means identifiers must have consistent
capitalization throughout. Identifiers can have letters and numbers, but a number
may not begin the identifier name. Most symbols are not allowed, but the dollar
sign ($) and underscore (_) symbols are valid. See also Reference variable.

Identifiers 7

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if statement An if statement tests an expression for a boolean result. This is
achieved by using one or more of Java’s relational operators (>, ==, etc.) inside the
parentheses of the statement to compare two or more variables.

import statement Import statements allow us to refer to classes without
having to use a fully qualified name for each class. Import statements do not make
classes accessible; all classes in the classpath are accessible. They simply allow you
to type the class name in your code rather than the fully qualified (in other words,
including the package) name.

Inheritance Inheritance is an object-oriented concept that provides for the
reuse and modification of an existing type in such a way that many types can be
manipulated as a single type. In Java, inheritance is achieved with the extends
keyword.

Inner classes Inner classes are a type of class and follow most of the same rules
as a normal class. The main difference is an inner class is declared within the curly
braces of a class or even within a method. Inner classes are also classes defined at a
scope smaller than a package. See also Anonymous inner classes; Local inner classes;
Member inner classes. Static inner classes are not actually inner classes, but are
considered top-level nested classes.

Instance Once the class is instantiated, it becomes an object. A single object is
referred to as an “instance” of the class from which it was instantiated.

Instance variable An instance variable is belongs to an individual object.
Instance variables may be accessed from other methods in the class, or from methods
in other classes (depending on the access control). Instance variables may not be
accessed from static methods, however, because a static method could be invoked
when no instances of the class exist. Logically, if no instances exist, then the instance
variable will also not exist, and it would be impossible to access the instance variable.

instanceof comparison operator The instanceof comparison operator is
available for object variables. The purpose of this operator is to determine whether
an object is of a given class or interface type (or any of the subtypes of that type).

8 Glossary

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This comparison may not be made on primitive types and will result in a compile-time
error if it is attempted.

Interface An interface defines a group of methods, or a public interface, that
must be implemented by any class that implements the interface. An interface
allows an object to be treated as a type declared by the interface implemented.

Iterator An iterator provides the necessary behavior to get to each element
in a collection without exposing the collection itself. In classes containing and
manipulating collections, it is good practice to return an iterator instead of the
collection containing the elements you want to iterate over. This shields clients
from internal changes to the data structures used in your classes.

Java source file A file that contains computer instructions written in the Java
programming language. A Java source file must meet strict requirements; otherwise,
the Java compiler will generate errors. Source files must end with a .java extension,
and there may be only one public class per source code file.

Java Virtual Machine (JVM) A program that interprets and executes Java
bytecode (in most cases, the bytecode that was generated by a Java compiler.) The
Java VM provides a variety of resources to the applications it is executing, including
memory management, network access, hardware abstraction, and so on. Because it
provides a consistent environment for Java applications to run in, the Java VM is the
heart of the “write once run anywhere” strategy that has made Java so popular.

javac Javac is the name of the java compiler program. This Java compiler
processes the source file to produce a bytecode file.

java.lang package The java.lang package defines classes used by all Java
programs. The package defines class wrappers for all primitive types such as Boolean,
Byte, Character, Double, Float, Integer, Long, and Short, as well as String, Thread,
and Object. Unlike classes in any other package, classes in the java.lang package may
be referred to by just their class name, without having to use an import statement.

JVM See Java Virtual Machine.

JVM 9

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Keywords Keywords are special reserved words in Java that cannot be used as
identifiers for classes, methods, and variables.

Local inner classes You can define inner classes within the scope of a method,
or even smaller blocks within a method. We call this a local inner class, and they are
often also anonymous classes. Local inner classes cannot use local variables of the
method unless those variables are marked final.

Local variable A local variable is a variable declared within a method. These are
also known as automatic variables. Local variables, including primitives, must be
initialized before you attempt to use them (though not necessarily on the same line
of code).

Members Elements of a class, including methods, variables, and nested classes.

Method A section of source code that performs a specific function, has a name,
may be passed parameters, and may return a result. Methods are found only within
classes.

Method local variables See Automatic variables.

Modifier A modifier is a keyword in a class, method, or variable declaration that
modifies the behavior of the element. See also Access modifier.

notify() method The methods wait() and notify() are instance methods
of an object. In the same way that every object has a lock, every object has a list of
threads that are waiting for a signal related to the object. A thread gets on this list
by executing the wait() method of the object. From that moment, it does not
execute any further instructions until some other thread calls the notify()
method of the same object.

Object Once the class is instantiated it becomes an object (sometimes referred to
as an instance).

10 Glossary

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Overloaded methods Methods are overloaded when there are multiple
methods in the same class with the same names but with different parameter lists.

Overridden methods Methods in the parent and subclasses with the same
name, parameter list, and return type are overridden.

Package A package is an entity that groups classes together. The name of the
package must reflect the directory structure used to store the classes in your package.
The subdirectory begins in any directory indicated by the class path environment
variable.

Parent class A parent class is a class from which another class is derived.
See also Base class.

Primitive literal A primitive literal is merely a source code representation of
the primitive data types.

Primitives Primitives can be a fundamental instruction, operation, or statement.
They must be initialized before you attempt to use them (though not necessarily on
the same line of code).

Private members Private members are members of a class that cannot be
accessed by any class other than the class in which it is declared.

public access The public keyword placed in front of a class allows all classes
from all packages to have access to a class.

public members When a method or variable member is declared public, it
means all other classes, regardless of the package that they belong to, can access the
member (assuming the class itself is visible).

Reference The term reference is shorthand for reference variable. See Reference
variable.

Reference 11

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Reference variable A reference variable is an identifier that refers to a primitive
type or an object (including an array). A reference variable is a name that points to a
location in the computer’s memory where the object is stored. A variable declaration
is used to assign a variable name to an object or primitive type. A reference variable
is a name that is used in Java to reference an instance of a class.

Runtime exceptions A runtime exception is an exception that does not need
to be handled in your program. Usually, runtime exceptions indicate a program bug.
These are referred to as unchecked exceptions, since the Java compiler does not force
the program to handle them.

Shift operators Shift operators shift the bits of a number to the right or left,
producing a new number. Shift operators are used on integer types only.

SortedMap interface A data structure that is similar to map except the objects
are stored in ascending order according to their keys. Like map, there can be no
duplicate keys and the objects themselves may be duplicated. One very important
difference with SortedMap objects is that the key may not be a null value.

Source file A source file is a plaintext file containing your Java code. A source
file may only have one public class or interface and an unlimited number of default
classes or interfaces defined within it, and the filename must be the same as the
public class name. See also Java source file.

Stack trace If you could print out the state of the call stack at any given time,
you would produce a stack trace.

static nested classes Static nested classes are the simplest form of inner classes.
They behave much like top-level classes except that they are defined within the
scope of another class, namely the enclosing class. Static nested classes have no
implicit references to instances of the enclosing class and can access only static
members and methods of the enclosing class. Static nested classes are often used
to implement small helper classes such as iterators.

12 Glossary

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Thread 13

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

static methods The static keyword declares a method that belongs to an
entire class (as opposed to belonging to an instance). A class method may be accessed
directly from a class, without instantiating the class first.

static variable Also called a class variable. A static variable, much like a static
method, may be accessed from a class directly, even though the class has not been
instantiated. The value of a static variable will be the same in every instance of the
class.

String literal A string literal is a source code representation of a value of a string.

String objects An object that provides string manipulation capabilities. The
String class is final, and thus may not be subclassed.

Superclass In object technology, a high-level class that passes attributes and
methods (data and processing) down the hierarchy to subclasses. A superclass is a
class from which one or more other classes are derived.

switch statement The expression in the switch statement can only evaluate to
an integral primitive type that can be implicitly cast to an int. These types are byte,
short, char, and int. Also, the switch can only check for an equality. This means
that the other relational operators like the greater than sign are rendered unusable.
See also Decision statement.

Synchronized methods The synchronized keyword indicates that a
method may be accessed by only one thread at a time.

Thread An independent line of execution. The same method may be used in
multiple threads. As a thread executes instructions, any variables that it declares
within the method (the so-called automatic variables) are stored in a private area
of memory, which other threads cannot access. This allows any other thread to
execute the same method on the same object at the same time without having its
automatic variables unexpectedly modified.

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Time-slicing A scheme for scheduling thread execution.

transient variables The transient keyword indicates which variables are
not to have their data written to an ObjectStream. You will not be required to know
anything about transient for the exam, other than that it is a keyword that can be
applied only to variables.

Unchecked exceptions See Runtime exceptions.

Variable access Variable access refers to the ability of one class to read or alter
(if it is not final) a variable in another class.

Visibility Visibility is the accessibility of methods and instance variables to other
classes and packages. When implementing a class, you determine your methods’
and instance variables’ visibility keywords as public, protected, package,
or default.

14 Glossary

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Glossary

P:\010Comp\CertPrs8\684-6\gloss.vp
Wednesday, November 13, 2002 5:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	Java 2 Sun Certified Programmer & Developer

	Part 1 - The Programmer's Exam
	1- Language Fundamentals
	Two-minute Drill
	Self Test
	Answers

	2- Declarations and Access Control
	Two-minute Drill
	Self Test
	Answers

	3-
Operators and Assignments
	Two-minute Drill
	Self Test
	Answers

	4-
Flow Control, Exceptions and Assertions
	Two-minute Drill
	Self Test
	Answers

	5- Object Orientation, Overloading and Averriding, Constructors and Return Types
	Two-minute Drill
	Self Test
	Answers

	6- java.lang - The Math Class, Strings and Wrappers
	Two-minute Drill
	Self Test
	Answers

	7- Objects and Collections

	Two-minute Drill
	Self Test

	Answers

	8- Inner Classes

	Two-minute Drill
	Self Test

	Answers

	9- Threads

	Two-minute Drill
	Self Test

	Answers

	Part 2 - The Developer's Exam

	10- Introduction to the SCJD

	Key Points Summary

	11-
Coding Standards
	Key Points Summary

	12- Clarity and Maintainability

	Key Points Summary

	13-
Design the Graphical User Interface
	Key Points Summary

	14-
Networking Issues
	Questions to Ask Yourself

	Key Points Summary

	15-
Database Issues
	Questions to Ask Yourself

	16- Exam Documentation

	Key Points Summary

	17- Final Submission and Essay

	The Follow-Up Essay

	Key Points Summary

	Glossary

