Speech Processing

Using Speech with Computers



Overview

* Speech vs Text
® Same but different

¢ Core Speech Technologies
* Speech Recognition
* Speech Synthesis
* Dialog Systems
* Other Speech Processing



The vocal tract

hard palate
soft palate

alveolar ridge

tongue root

tongue blade b _ epiglottis

tongue body




* Blow air through lungs
* Vibrate larynx
* Vocal tract shape defines resonance

* Obstructions modify sound
- Tongue, teeth, lips, velum (nasal passage)
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From sound to brain v

* Sound waves
®* Vibrate ear drum
® Cause fluid in cochlear to vibrate

* Spiral cochlear
~ Vibrate hairs inside cochlear
- Different frequencies vibrate different hairs
~ Converts time domain to frequency domainS



* Defined as fundamental units of speech
* If you change it, it (can) change the meaning

“pat” to “bat”
“pat” to “pam”






English (U,

y) Vowels

AA  wAshington AE fAt, bAd

AH  bUt, hUsh AO [AWn, mAll
AW  hOW, sOUth AX About, cAnoe
AY  hide, bUY EH gEt, fEAther
ER makER, sEARch EY ¢gAte, Elght
IH blt, ship Y bEAt, shEEp
OW IOne, nOse QY tOY, OYster
UH  fUIl Uw fOOl




English Consonants

¢ Stops:P,B, T, D, K, G

* Fricatives: F, V, HH, S, Z, SH, ZH
* Affricatives: CH, JH

* Nasals: N, M, NG

* Glides:L,R, Y, W

* Nofte: voiced vs unvoiced:
*PvsB, FvsV



Not all variation is Phonetic

* Phonology: linguistically discrete units
* May be a number of different ways to say them
* /r/ trill (Scottish or Spanish) vs US way

¢ Phonetics vs Phonemics
®* Phonetics: discrete units
* Phonemics: all sounds
* /t/in US English: becomes “flap”

* “water” /waoter/
* “water’”/wao dx er/



Dialect and Idiolect

¢ Variation within language (and speakers)

* Phonetic
* “Don” vs “Dawn”, “Cot” vs “Caught”
* R deletion (Haavaad vs Harvard)
* Word choice:
®* Yall Yins
* Politeness levels



Not all languages

Asperated stops (Korean, Hindl)
* Pvs PH
* English uses both, but doesn’t care
* Pot vs sPot (place hand over mouth)

* L-R in Japanese not phonological
US English dialects:
* Mary, Merry, Marry

Scottish English vs US English

* No distinction between “pull” and ‘pool”
* Distinction between: “for” and “four”



Different language dimensi

* Vowel length

* Bit vs beat

* Japanese: shujin (husband) vs shuujin (prisoner)
¢ Tones

* FO (tune) used phonetically

®* Chinese, Thai, Burmese
* Clicks

* Xhosa



Intonation
® Tune

Duration
* How long/short of each phoneme

Phrasing
* Where the breaks are

Used for:

* Style, emphasis, confidence etc
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Intonation Inforn

¢ Large pitch range (female)
¢ Authoritive since goes down at the end
* News reader

* Emphasis for Finance H*

* Final has a raise — more information to
come

* Female American newsreader from WBUR
¢ (Boston University Radio)



Words and Abov

* Words

* The things with space around them (sort of)
* Chinese, Thai, Japanese doesn’t use spaces

* Words aren't always what they seem
®* Can you pass the salt?
* Boston. Boston! Boston?
* Yeah, right

¢ Multiple ways to say the same thing:
* | want to go to Boston.
* Yes



¢ Two major components
* Acoustic Models

Language Models

¢ Accuracy various with

Speaker, language, dialect
Microphone type, environment
Speaking style:
Good Recognition:
- Head mounted mike, controlled language, careful speaker

Not so good recognition:
- Remote mike, chatting between friends, in open cafe



But not all phones are equi-probable

Find word sequences that maximizes

P(W | O)
Using Bayes’ Law POW)P(O[W)
P(O)
Combine models
— Us HMMs to provide PO | W)

— Use language model to provide

P(W)



* Three Levels

* Text analysis
- From characters to words

* Prosody and Pronunciation
~ From words to phonemes and intonation

* Waveform generation
~ From phonemes to waveforms



Text Analys:

This is a pen.

My cat who lives dangerously has nine lives.
He stole $100 from the bank.

He stole 1996 cattle on 25 Nov 1996.

He stole $100 million from the bank.

It's 13 St. Andrew St. near the bank.

Its a Plll 1.5Ghz, 512MB RAM, 160Gb SATA,
(no IDE) 24x cdrom and 19" LCD.

* My home pgae is
http://www.geocities.com/awb/.

® 6 O 6 ¢ o o



Waveform Generation

Formant synthesis

Random word/phrase concatenation
Phone concatenation

Diphone concatenation

Sub-word unit selection

Cluster based unit selection
Statistical Parametric Synthesis
Wavenet Neural Synthesis

S At At At At At LR LR



Pronunciation Lexicon

* List of words and their pronunciation
* ("pencil”’n (peh1nsihl))
* (“table” n (tey1 baxl))

* Need the right phoneme set

* Need other information
* Part of speech
* Lexical stress
* QOther information (Tone, Lexical accent ...)
* Syllable boundaries



Homograph Representation

* Must distinguish different pronunciations
* (‘project” n (p r aal jh eh k t))
* (‘project” v (p r ax jh eh1 k t))
* ("bass”n_music (b ey1s))
* (‘bass” n _fish (b aet s))
* ASR multiple pronunciations

®* (‘route”n (ruwt))
* (“route(2)” n (rawt))



Pronunciation of Unknown Words,

¢ How do you pronounce new words
* 4% of tokens (In news) are new

* You can’t synthesis them without
pronunciations

* You can’t recognize them without
pronunciations

¢ [ etter-to-Sounds rules
* Grapheme-to-Phoneme rules



land written

—_— e

* Hand written rules
* [LeftContext] X [RightContext] -> Y
* e.q.
*clhr]->k
* c[h]->ch
*cli]->s
*c->k



LTS: Machine Learning

* Need an existing lexicon

®* Pronunciations: words and phones

* But different number of letters and phones
* Need an alignment

* Between letters and phones
®* checked ->chehkt



LTS: alignment

o)

* checked -> ch eh k t

ch eh k ¢

¢+ Some letters go to nothing

* Some letters go to two phones
®* box -> b aa k-s
* table -> t ey b ax-l -



Find alignment aui

¢ Epsilon scattering
* Find all possible alignments
* Estimate p(L,P) on each alignment
* Find most probable alignment

¢ Hand seed
* Hand specify allowable pairs
* Estimate p(L,P) on each possible alignment
* Find most probable alignment

¢ Statistical Machine Translation (IBM model 1)

* Estimate p(L,P) on each possible alignment
* Find most probable alignment



Not everything

* 0, 1, and 2 letter cases
* e ->epsilon “moved”
* x ->Kk-s, g-z “box” “example”
® e ->y-uw ‘askew”

¢+ Some alignments aren’t sensible
*dept->dihpaartmaxnt
®*cmu->siyehmyuw



Training LTS model.

* Use CART trees
®* One model for each letter

* Predict phone (epsilon, phone, dual phone)
* From letter 3-context (and POS)

*#H##chec->ch
*##check->_
*#checke->eh
*checked->k



* Split lexicon into train/test 90%/10%
®* j.e. every tenth entry is extracted for testing

Lexicon Letter Acc Word Acc
OALD 95.80% 75.56%
CMUDICT 91.99% 57.80%
BRULEX  99.00% 93.03%
DE-CELEX 98.79% 89.38%
Thai 95.60% 68.76%




For letter V:
if (n.name is v)
return _
if (n.name is #)
if (p.p.name is t)
return £
return v
if (n.name is s)
if (p.p.p.name is n)
return £
return v
return v




But we need more t

* What about lexical stress

*praaljehkt->praajeht kt
¢ Two possibilities
* A separate prediction model

* Join model — introduce eh/eh1 (BETTER)

LTP+S LTPS
LnoS 96.36% 96.27%
Letter --- 95.80%
WnoS 76.92% 74.69%
Word 63.68% 74.56%




Does it really work

* 40K words from Time Magazine
® 1775 (4.6%) not in OALD
* LTS gets 70% correct (test set was 74%)

Occurs %

Names 1360 /6.6
Unknown 351 19.8
US Spelling 57 3.2

Typos / 0.4




Speech Synthesis Tec

¢ Unit selection
¢ Statistical parameter synthesis

* Automated voice building
* Database design
* Language portability

* Voice conversion



Unit Selection

* Target cost and Join cost [Hunt and Black 96]

— Target cost is distance from desired unit to actual
unit in the databases

* Based on phonetic, prosodic metrical context

— Join cost 1s how well the selected units join




* Cluster units [Donovan et al 96, Black et al 97]

if |V'| > |U| Adist{(V,U)
Adist(U, V) =« wpsu Ul n Wi(abs(Fy;(U) — F(é*\VMUDJ'(V)))

== SD, *n*|U|

|U| = number of frames in U

F,,(U) = parameter y of frame z of unit U
SD; = standard deviation of parameter j
W, = weight for parameter j

W D) = duration penalty




Unit Selection Issues

Cost metrics
— Finding best weights, best techniques etc

Database design
— Best database coverage

Automatic labeling accuracy
— Finding errors/confidence

Limited domain:
— Target the databases to a particular application
— Talking clocks ¢ ¢ &
— Targeted domain synthesis ¢



Unit Selection: «
large carefully labelled database
quality good when good examples available
quality will sometimes be bad
no control of prosody
Parametric Synthesis:  «f
smaller less carefully labelled database
quality consistent
resynthesis requires vocoder, (buzzy)

can (must) control prosody
model size much smaller than Unit DB



* Probabilistic Models
argmax(P(O|W))
* Simplification

argmaz(P(og|W), P(o1|W), ..., Plo,|W))

* Generative model
— Predict acoustic frames from text



Spoken Dialog Systems

Information giving

* Flights, buses, stocks weather

* Driving directions

* News

Information navigators

* Read your mail

* Search the web

* Answer questions

Provide personalities

®* Game characters (NPC), toys, robots, chatbots

Speech-to-speech translation
* Cross-lingual interaction



Dialog
* System initiative

* Form-filling paradigm
* Can switch language models at each turn
* Can "know” which is likely to be said
¢ Mixed initiative
* Users can go where they like
* System or user can lead the discussion
¢ Classifying:
* Users can say what they like

* But really only “N” operations possible
* E.g. AT&T? “How may | help you?”

* Non-task oriented



System Ir

¢ Let’s Go Bus Information
®* 412 268 3526
* Provides bus information for Pittsburgh
¢ ¢
¢ Tell Me
* Company getting others to build systems

* Stocks, weather, entertainment
®* 1800 555 8355



—{ Recognition ]—{Interpretation~

A\ 4

éialog Manage}
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SDS Components

* Interpretation

* Parsing and Information Extraction

* (Ignore politeness and find the departure stop)
* Generation

* From SQL table output from DB
®* Generate “nice” text to say



Siri-like Assist

* Advantages
* Hard to type/select things on phone
* Can use context (location, contacts, calendar)

¢ Target common tasks
* Calling, sending messages, calendar
* Fall back on google lookup



SPDA: Scope .

* “Call John”

¢ “Call John, Bill and Mary and setup a meeting
sometime next week about Plan B that’s fits my

schedule”

“Make a reservation at a local Chinese restaurant
for 4 at 8pm.”

* "You should call your mom as its her birthday”

* “I have sent flowers to your mom as its her
birthday”



CALO (D

¢ Cognitive Assistant that Learns Online
* DARPA project (2003-2008)
* Led by SRI (involved many sites, including CMU)

¢ Personal Assistant that Learns (Pal)
* Answers questions
* [earn from experience
* Take initiative
* Spin-off company -> SIRI
* Aquired by Apple in April 2010
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