Block Cipher

Encrypting a large message
Electronic Code Book (ECB)

‘ message ‘

N T
‘ ml ‘ m?2 ‘ m3 ‘ m4 ‘ m5 ‘ mb6 ‘
SecrifE »i »i #lE o i AlE

I_l I SR SR S
S R T T

Block Cipher

Decrypting a large message
Electronic Code Book (ECB)

‘ cl ‘ c2 ‘ c3 ‘ c4 ‘ c5 ‘ co ‘
Secret i l l l l l
—» D —» D ~—*D —»D —» D —*D

I_l F Y S
m | m2 | m3 [mé [ms | m6 |

N S NN NN SR

‘ message ‘

Block Cipher

En/Decrypting a large message
Electronic Code Book (ECB)

Problems:
Two same message blocks encrypt to the same cipher blocks
1. Two cipher blocks can be switched
2. One cipher block can be copied to another
ex: switch or copy salary block
3. No built-in integrity or authentication check

Possible fix: have many keys, one for each block

Recurring phrases cause repeated part-blocks of ciphertext
Plaintext patterns become obvious under codebook attack
If attacker can dupe sender into sending known plaintext...

Possible fix: send large blocks and add random bits to each

Block Cipher

Encrypting a large message
Cipher Block Chaining (CBC) — 1* attempt rl...r6 are random

‘ message ‘
‘ml‘m2‘m3‘m4‘m5‘m6‘

Gy

rl @ r2#@ B3 »@ M4 > 15 > 10 »g

R T

I_i A S SR S
G e [o |« | =] |

Block Cipher

En/Decrypting a large message
Cipher Block Chaining (CBC) - 1* attempt

Problems:

1. Not efficient — one random number for every message block

2. Attacker can rearrange blocks with predictable effect on
resulting plaintext. For example, just remove one block or
swap two blocks - result can still be decrypted and receiver
does not know the difference.

3. If an attacker knows the value of any message block mi, then
can change 1t 1n a predictable way by modifying 1.

Since random 11 are sent with the message, attacker can
modify them

mo6

mJ

m4

m3

m?2

ml

:

6 »

5aér
¢
» E

;-

¢

E

#
c4

4 »

:
@ I
¢

3 .

:
@ r
¢

2 »

l
@ T

rl

¢

~—» E

Secret ¢

e

E

¢
c3

o>

E
v
c2

o>

%E

#

¢

#
cl

c6

co6

cS

cS

4

D

c4

c2

cl

¢
#

¢

»D

'
¢

¢

~—»D

¢
¢

m?2

;
|
¢

ml

o

rl . @ rzﬂ@ 4@ 13 - 15 »

Secret

mb6

mJ

m3

m4

Block Cipher

Encrypting a large message
Cipher Block Chaining (CBC) IV 1s a random number

‘ message ‘

T

5 m6‘

‘ ml m?2 m3 m4

wi l l l

l
/ i
I_i — l l l l i

Block Cipher

Decrypting a large message
Cipher Block Chaining (CBC) IV 1s a random number

‘ message ‘

T T I I

ml m3 m4 5 mo6 ‘

T T T T

. g GL
/ i / /1 /
T T T T T T

Block Cipher

En/Decrypting a large message
Cipher Block Chaining (CBC)

Discussion:

1. Must use random IV — guarantees that same plaintext causes different ciphertext
If IV 1s not random, information 1s revealed even if message not decrypted
Examples:

commander orders troops to hold several times then attack

If salary fields are known, can determine whose salary has changed
Benefit:

attackers cannot supply chosen plaintext to the encryption algorithm

itself, even if chosen plaintext can be supplied to the CBC

Block Cipher

En/Decrypting a large message
Cipher Block Chaining (CBC)

Discussion:

1. Must use random IV — guarantees that same plaintext causes different ciphertext
If IV 1s not random, information 1s revealed even if message not decrypted
Examples:

commander orders troops to hold several times then attack

If salary fields are known, can determine whose salary has changed
Benefit:

attackers cannot supply chosen plaintext to the encryption algorithm

Itself, even if chosen plaintext can be supplied to the CBC

2. Attacker can rearrange blocks with predictable effect on resulting plaintext.
Changing c; has a predictable effect on m ;. Might decrypt to this:

| Hello| 7834 | = | &8*#| 7835 |

Block Cipher

En/Decrypting a large message
Cipher Block Chaining (CBC)

Discussion:

1. Must use random IV — guarantees that same plaintext causes different ciphertext
If IV 1s not random, information 1s revealed even if message not decrypted
Examples:

commander orders troops to hold several times then attack

If salary fields are known, can determine whose salary has changed
Benefit:

attackers cannot supply chosen plaintext to the encryption algorithm

Itself, even if chosen plaintext can be supplied to the CBC

2. Attacker can rearrange blocks with predictable effect on resulting plaintext.
Changing c; has a predictable effect on m ;. Might decrypt to this:

| Hello| 7834 | = | &8*#| 7835 |

3. Ifm..m andc ..c and IV are known, all decryptions of ¢; are known.

If enough of these are obtained, a new ciphertext can be constructed and
the decypt would be known.

Block Cipher
Entropy

Suppose the set of characters I transmit 1s {A} (1.e. one character)

What is the probability that the next character in a transmission
stream 1s the character A?

Block Cipher

Entropy

Suppose the set of characters I transmit 1s {A} (1.e. one character)

What is the probability that the next character in a transmission
stream 1s the character A?

Answer: 1 (we have complete predictability)

Block Cipher
Entropy

Suppose the set of characters I transmit 1s {A,B} (1.e. two characters)

What is the probability that the next character in a transmission
stream 1s the character A if the stream characters are randomly
selected for insertion?

Block Cipher

Entropy

Suppose the set of characters I transmit 1s {A,B} (1.e. two characters)

What is the probability that the next character in a transmission
stream 1s the character A if the stream characters are randomly

selected for insertion?

Answer: Y2 (complete uncertainly)

Block Cipher
Entropy

Suppose the set of characters I transmit 1s {A,B} (1.e. two characters)

What is the probability that the next character in a transmission
stream 1s the character A if the stream characters are randomly
selected for insertion?

Answer: Y2 (complete uncertainly)

If there are n characters inserted randomly 1n a stream
Pr(next one 1s A) = 1/n

Block Cipher
Entropy

Suppose the set of characters I transmit 1s {A,B} (1.e. two characters)

What is the probability that the next character in a transmission
stream 1s the character A if the stream characters are randomly
selected for insertion?

Answer: Y2 (complete uncertainly)

If there are n characters inserted randomly 1n a stream
Pr(next one 1s A) = 1/n

Entropy expresses the minimum number of bits needed to encode a
sequence of symbols.

Example: characters {A,B,C,D},
Pr(A) =2, Pr(B)="4, Pr(C) =Pr(D) = s
Let 1 be transmission of A, 01 be trans of B, 001 be C, 010 be D

Block Cipher

Entropy of a Symbol
Given alphabet S:{sl, S s e s sn} with probs {pl, P,y s pn} of
occuring in message M of length m. Define entropy
H(S) = —Zi p, log (p,) tor all non-zero p.
Observe: if all p, are equal, H(S) = log (1)
if plzl, all other pi:O, H(S) = 0.
if p,.= %2 and p = "2, other p.=0, H(S)=1.
2 bit of entropy if pl = 0.11002786.., p2 = 0.88997213...

It all probabilities are equal,
Pr(next character is A | prev char) = Pr(next character is A)

The higher the entropy the more secure the cryptosystem is

Block Cipher

Entropy and the xor operation

Let p, be the probability Random sequence of Os and 1s
that 1 is the next message i i
bit m. and p_1s the probability ‘_ o

1 0 L/ L X

that O 1s the next m..

Then Pr(m ®r 1s0)=(2)p, + (1/2)p0 =15
Pr(m ©r 1s1)= (1/2)pO +(2)p, ="2
H(c) =1 Unconditionally secure: H(m. | ¢)=H(m)

Regardless of correlations in the message bits, the xor operation
gives the highest entropy and greatest security!

Block Cipher

Encrypting a large message
Output Feedback Mode (OFB) 1V 1s a random number

Y Y

| v

v \ \
K »E K = F K »FE

Y Y 4
‘ discard‘ r discard discard

Block Cipher

En/Decrypting a large message
Output Feedback Mode vs Cyber Block Chaining

Discussion:

1. OFB: one-time pad can be generated in advance, encryption is
based soley on (cheap) exclusion-or operation

2. OFB: garbled cipher block affects only its corresp. message block
CBC: garbled cipher block affects two message blocks

3. OFB: portions of message can be encrypted and sent as bytes arrive
CBC: must wait for a block to arrive before encrypting

4. OFB: 1f the plaintext and ciphertext are known by attacker,

plaintext can be modified to anything by xoring ciphertext with
the known plaintext

5. OFB and CBC: if any character 1s lost 1n transmission, rest of
output may be garbled unless some sync markers are added

Block Cipher

Encrypting a large message
Cipher Feedback Mode (CFB) 1V 1s a random number

Y v
I — —
I N e R —
\ v \
K »E K »E K »FE
Y Y Y
‘ discard ‘ ‘ discard‘ ‘ discard ‘

Block Cipher

En/Decrypting a large message
Output Feedback Mode vs Cipher Feedback Mode

Discussion:

1. In OFB one-time pad can be generated before message is.
Not so for CFB

2. In 8-bit CFB loss of bytes in transmission will synchronize
after pad flushes through shift. Added bytes will also synchronize
after and extra plaintext byte plus 8 garbage bytes. Not so for
OFB or CBC where rest of transmission 1s garbled.

3. No block rearrangement attack on CFB although sections can be
rearranged at the cost of garbling the splice points.

4. CFB: one DES operation for every byte of ciphertext (costly)

Block Cipher

Encrypting a large message

Counter Mode (CTR)
| v | v+ | | ve2
Y v v
K »E K »E K »E

Block Cipher

En/Decrypting a large message
Counter Mode (CTR)

Discussion:
1. Like OFB, one-time pad is generated before the message 1s.
Encryption 1s simple with exclusive-or

2. Like CBC, can decrypt beginning from any point in the ciphertext.
Useful for encrypting random access files.

3. If different data is used with same key and IV, exclusive-oring the
ciphertexts of the messages gives the exclusive-or of the plaintexts.
This 1s also a problem with OFB.

Generating Message Integrity Check (MIC)

Suppose message 1s sent in the clear

T T A A I
A S R
it /10T TN
A
cl ‘ c2 ‘ c3 ‘ c4 ‘ cS ‘ residue ‘

Only send the residue as the check on the ciphertext and the
plaintext message (no confidentiality)

Generating Message Integrity Check (MIC)

Integrity plus confidentiality

‘ ml m?2 m3 m4 m5 ‘ mo6 ‘

l l l

v eg |
. /l/ !
I_a | i i |

K [0 [o o]

‘CBC residue‘

Generating Message Integrity Check (MIC)

Integrity plus confidentiality

‘ ml ‘ m2 ‘ m3 ‘ m4 ‘ mS ‘ mb6 ‘
vt o+ o+ o
371/ /T /]

K / |

—» E —» E ~—» E —» E —» E —» E
VAR VAR VAR VAR

cl ‘ c2 ‘ c3 ‘ c4 ‘ cS ‘ c6 ‘

‘CBC res'idue‘

Huh? Send last block twice? Tamperer merely sends tampered
message and just repeats its last block!!

Generating Message Integrity Check (MIC)

Integrity plus confidentiality

‘ ml m3 ‘ m4 ‘ m3S ‘ cS

. ge
i

T -
dj*///
I_l l i l

c6 1s the residue.

Generating Message Integrity Check (MIC)

Integrity plus confidentiality

‘ ml m3 ‘ m4 ‘ m3S ‘ cS

. gB
i

T -
d**///
I_i) i l

c6 1s the residue. But actually c6 1s 0!!

Generating Message Integrity Check (MIC)
Cyclic redundancy check

11010011101100 000 Data + padding
1011 Divisor

01100011101100 000 Result

Generating Message Integrity Check (MIC)
Cyclic redundancy check

11010011101100 00O

1011
01100011101100 00O Modified data
1011 Divisor

00111011101100 000 Result

Generating Message Integrity Check (MIC)
Cyclic redundancy check

11010011101100 00O
1011

01100011101100 000

1011
00111011101100 0O0O Modified data
1011 Divisor

00010111101100 000 Result

Generating Message Integrity Check (MIC)
Cyclic redundancy check

11010011101100 00O
1011

01100011101100 000
1011

00111011101100 000

1011
00010111101100 0O0O Modified data
1011 Divisor

00000001101100 00O Result

Generating Message Integrity Check (MIC)
Cyclic redundancy check

11010011101100 000
1011
01100011101100 000

1011
00111011101100 000

1011
00010111101100 000

1011
00000001101100 000 Modified data
1011 Divisor

00000000110100 000 Result

Generating Message Integrity Check (MIC)
Cyclic redundancy check

00000000110100 0OO Modified data
1011 Divisor

00000000011000 00O Result

Generating Message Integrity Check (MIC)
Cyclic redundancy check

00000000110100 00O

1011
00000000011000 000 Modified data
1011 Divisor

00000000001110 00O Result

Generating Message Integrity Check (MIC)
Cyclic redundancy check

00000000110100 000
1011

00000000011000 00O

1011
00000000001110 00O Modified data
1011 Divisor

00000000000101 00O Result

Generating Message Integrity Check (MIC)
Cyclic redundancy check

00000000110100 000
1011

00000000011000 00O
1011

00000000001110 00O

1011
00000000000101 000 Result
101 100 Divisor

00000000000000 100 CRC

Generating Message Integrity Check (MIC)

Integrity plus confidentiality

‘ ml m3 ‘ m4 m5 ‘ CRC ‘

11
R »E/E »/
I_i l

c6 1s the residue. CRC i1s used.

Generating Message Integrity Check (MIC)

To use CBC for both message integrity and encryption, use
different keys for the residue and ciphertext!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

