Blockchain 2.0

Opportunities and Risks Patrick Valduriez

The Hype

BITCOIN

Harvard Business Review

Bitcoin is the 'mother of all scams' and blockchain is most hyped tech ever, Roubini tells Congress

- One of the few economists who predicted the 2008 financial crisis warns U.S. senators of the pernicious side of cryptocurrencies.
- He also criticized bitcoin's underlying technology, blockchain, calling it the most "over-hyped — and least useful — technology in human history."
- "Crypto is the mother or father of all scams and bubbles," Roubini told the U.S. Senate Committee on Banking, Housing and Community Affairs at a hearing Thursday.

Kate Rooney | @Kr00ney

Published 5:21 PM ET Thu, 11 Oct 2018 | Updated 3:09 PM ET Fri, 12 Oct 2018

Bitcoin

- Bitcoin: A Peer-to-Peer Electronic Cash System
 - Satoshi Nakamoto (pseudo), Oct. 31, 2008 (Halloween)
 - Cryptocurrency and payment system
 - Blockchain is the infrastructure
- Since then
 - Many blockchains: Etherum in 2013, Ripple in 2014, etc.
 - Increasing use for high-risk investment
 - Initial Coin Offerings
 - But also in fraudulent or illegal activities !
 - Scam, purchase on the dark web, money laundering, tax evasion, ...
 - Warnings from market authorities and beginning of regulation (China, South Korea, Japan, EU, ...)

The Currency of Tomorrow?

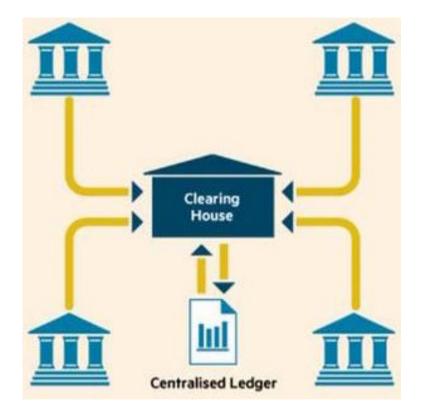
• Pros

- Low transaction fee (set by the sender to speed up processing)
- Fewer risks for merchants (no fraudulent chargebacks)
- Security and control (protection from identity theft)
- Trust through the blockchain

• Cons

- Unstable: no backing by a state or fed bank (unlike \$ and €)
- Unrelated to real economy, e.g. GPD: fosters speculation
- High volatility, e.g. between 6K and 7K\$ in 3 hours
- Small user base: 20 million bitcoin wallets
 - Versus billions of users of e-payment systems like AliPay and Paypal
- The Crypto Bubble (2017)*
 - Bitcoin price increased from \$1k to 10K, then peaked almost at \$20K in December 2017 to collapse 4 months later to below \$6k (down 70% from the peak), and close to \$6k since then

* Testimony for the Hearing of the US Senate Committee on Banking, Housing and Community Affairs On "Exploring the Cryptocurrency and Blockchain Ecosystem". Nouriel Roubini (NYU), october 2018.

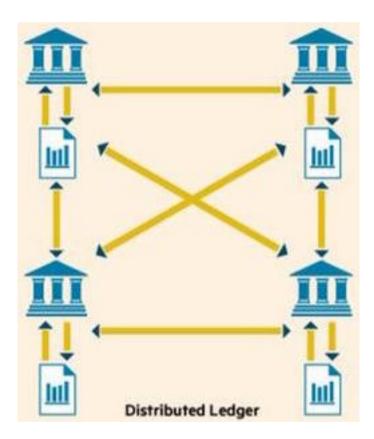

Outline

- Trust with blockchain
- Consensus protocols
- How the blockchain works
- Blockchain 2.0
- Use cases
- Opportunities and risks
- Issues

Trust in a Modern Economy

Context

- How to exchange assets safely between two parties?
- Centralized ledger
 - An account book that records all transactions
 - Controlled by a trusted central authority
 - E.g. a clearing house


Problems with Central Authority

• Single point of failure

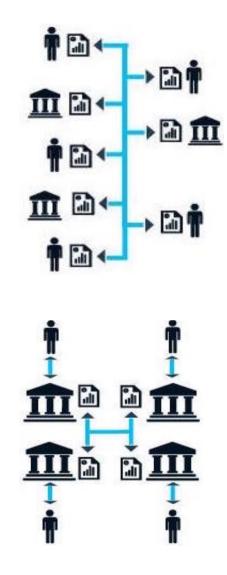
- And easy target for attackers
- Favors concentration of actors
 - Banks
 - Exploit our money to make big money
 - Web giants (GAFAM) and other intermediaries (Uber, etc.)
 - Exploit our data to make big money

Trust with Blockchain

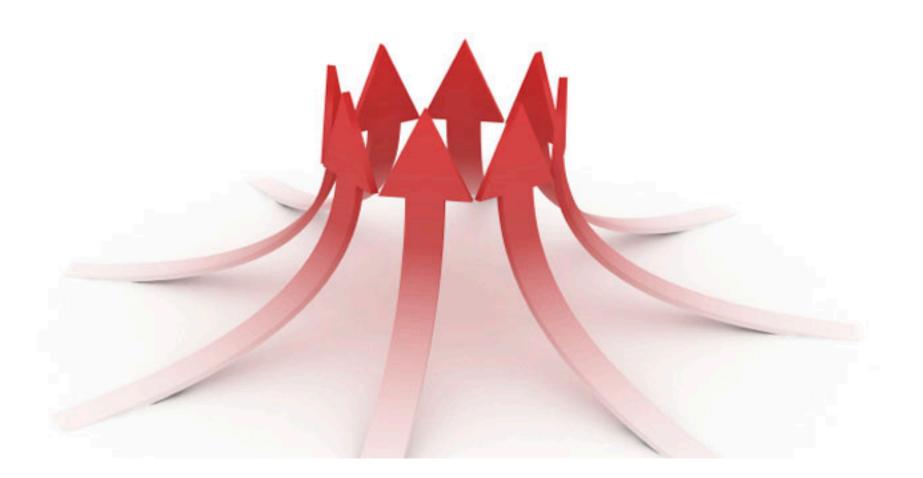
- A distributed ledger
 - Shared by all participants
 - Replicated
 - Decentralized
 - Append-only
 - No update, no delete
 - Distributed transaction validation
 - Consensus
 - Unfalsiable, verifiable

Blockchain Promises

- Increased trust in value exchange
 - Trust the data, not the participants
- No single point of failure
 - Increased security
- Efficient, consistent transactions between participants
 - Faster and cheaper than relying on a long chain of intermediaries, with incompatible systems and rules


Public versus Private Blockchain

• Public blockchain


- Open P2P network
 - Participants can join and leave without notification
- Anonymous, untrusted participants
- Large-scale distributed ledger

• Private blockchain

- Closed permissioned network
- Identified, trusted participants
- Regulated control
- Small to medium-scale distributed ledger

Background on Consensus Protocols

Consensus

- Critical applications
 - Replication, transaction validation, identity verification, etc.
- Major problem of distributed systems
 - How to reach a consensus, i.e. agree on the same value, in the presence of a number of faulty processes?
- Problem statement: given *n* processes and one leader, how to reach:
 - Agreement : all correct processes agree on the same value
 - Validity: if initiator does not fail, all correct processes agree on its value
- Types of failures
 - Crash: the easy case
 - Malicious (also called Byzantine)
 - The process gives different values to different observers
- FLP (Fischer, Lynch, Paterson) impossibility result
 - With only one crash failure, termination is not guaranteed
 - Example: coordinator failure in 2PC

The Byzantine Agreement Problem

- Suppose an army of the Byzantine Empire
 - Generals can only communicate by messengers and must establish a common plan to attack the enemy or retreat
 - A number of these generals may be traitors and vote selectively
 - Example with 5 generals: 2 support the attack and 2 are in favor of retreat; the 5th can send an attack vote to the first two and a retreat vote to the other two and then ...
- Problem formulation
 - Find an algorithm (consensus) to ensure that loyal generals can agree on a common battle plan

Paxos Algorithm

- The basis for a family of protocols
 - [Lamport 1999, ACM Turing Award 2013]
 - Used to manage large-scale distributed data
 - Google Spanner & Megastore
 - IBM SAN Volume Controller
 - Microsoft Autopilot Cluster Mgr
 - Ceph (distributed file system)
 - Neo4J (NoSQL graph DBMS)
- Inspired by the functioning of the Parliament of the Paxos Island
 - The Parliament did work, despite the regular absence of legislators and messages loss

Paxos Algorithm

- Principle (simplified)
 - Initialization: a leader is elected by a majority quorum
 - Replication: leader replicates new updates to the majority quorum
 - Leader failure: il the leader fails, a new leader is elected
 - To make progress, at least 1/2 of the participants should be alive

• Limitations

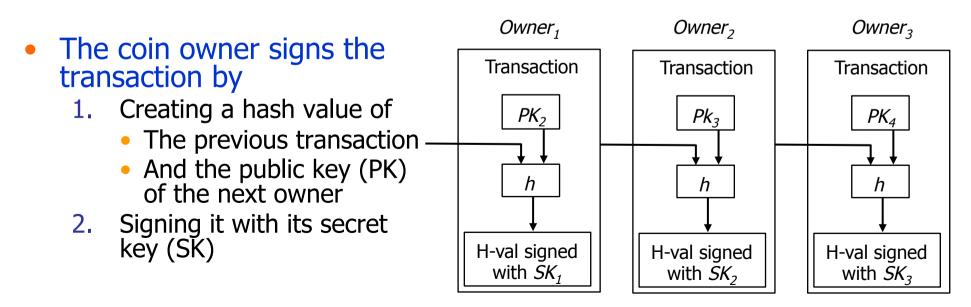
- Permissioned settings: all participants should be known a priori
 - Not appropriate for public blockchain
- Tolerates only crash failures
 - Does not deal with malicious nodes
- Progress is not guaranteed (FLP impossibility)

Practical Byzantine Fault Tolerance (PBFT)

- A three-phase protocol [Castro & Liskov 1999]
 - 1. Pre-prepare: a leader broadcasts a value to be committed by other nodes
 - 2. Prepare: the nodes broadcast the values they are about to commit
 - Commit: confirms the committed value when more than 2/3 of the nodes agree in the previous phase
- Assessment
 - Tolerates Byzantine failures
 - Permissioned settings

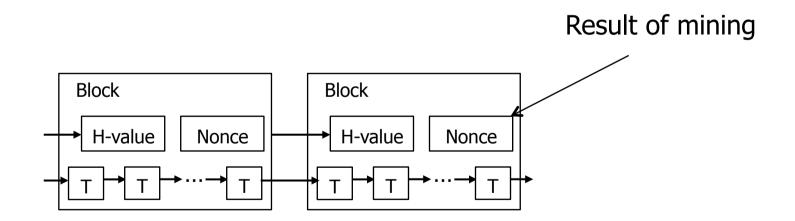
How the Blockchain Works

Blockchain Concepts

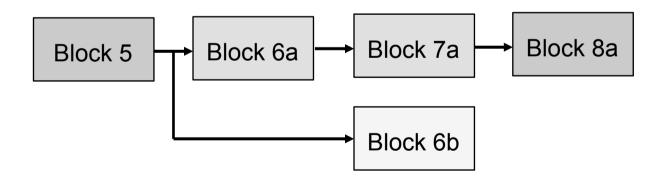

- Blockchain
 - An *immutable* distributed database, i.e. a log of blocks, which are linked and replicated on *full nodes*
- A block
 - Digital container for transactions, contracts, property titles, etc.
 - Transactions are secured using public key encryption
- The code of each new block is built on that of the preceding block
 - Guarantees that it cannot be changed or tampered
- The blockchain is viewed by all participants
 - Enables validating the entries in the blocks
 - Privacy: users are pseudonomyzed

Blockchain Protocol (Nakamoto 2008)

- **0.** Initialization (of a *full node*)
 - Synchronization with the network to obtain the blockchain (185 GB on Q3, 2018)
- 1. Two users agree on a transaction
 - Information exchange: wallet addresses, public keys, ...
- 2. Grouping with other transactions in a block and validation of the block (and of the transactions)
 - Consensus using "mining"
- **3.** Addition of the validated block in the blockchain and replication in the P2P network
- 4. Transaction confirmation


Transaction

Overview Send V Receive Transactions			
	Date	Туре	Address
1	12/18/2014 04:45	Sent to	(1HfbwN6Lvma9eDsv7mdwp529tgiyfNr7jc)
O Transaction details ?			
Status: 10336 confirmations Date: 12/18/2014 04:45 To: 1HfbwN6Lvma9eDsv7mdwp529tgiyfNr7jc Debit: -13.19683492 BTC Transaction fee: -0.0002 BTC Net amount: -13.19703492 BTC Transaction ID: f13dc48fb035bbf0a6e989a26b3ecb57b84f85e0836e777d6edf60d87a4a2d94-000			


Block Management

- Transactions are placed into blocks, validated (by checking inputs/outputs, etc.) and linked by their addresses
 - Size of a bitcoin block = 1 Megabyte

Validation by the Network

- Each block is validated by network nodes, the *miners*, by a consensus protocol (see next)
- Problem: accidental fork
 - As different blocks are validated in parallel, one node can see several candidate chains at any time
 - Solution: longest chain rule

Transactions in a validated block are provisionally validated; confirmation must be awaited

Intentional Fork

- Main reasons
 - To add new features to the blockchain (protocol changes) => new software
 - To reverse the effects of hacking or catastrophic bugs
- Soft versus hard fork
 - Soft fork: backward compatible
 - The old software recognizes blocks created with new rules as valid
 - Makes it easy for attackers
 - Hard fork
 - The old software recognizes blocks created with new rules as invalid
 - Example: the battle between (new) Ethereum and Ethereum Classic
 - In 2016, after an attack against the Decentralized Autonomous Organization (DAO), a complex smart contract for venture capital, the blockchain forked but without momentum
 - Battle is more philosophical and ethical than technical

Consensus Protocol: mining

- Why not Paxos?
 - Remember: participants are unknown
- To validate a block, miner nodes compete (as in a lottery) to produce a *nonce* (number used once)
 - One of the first competing solutions is selected, e.g. the one that includes the largest number of transactions
 - The winner miner is paid, e.g. 12.5 bitcoins today (originally 50)
 - This increases the money supply
- Mining is designed to be difficult
 - The more mining power the network has, the harder it is to compute the nonce
 - This allows controlling the injection of new blocks ("inflation") in the system, on avg. 1 block every 10mn
 - Advantages powerful nodes

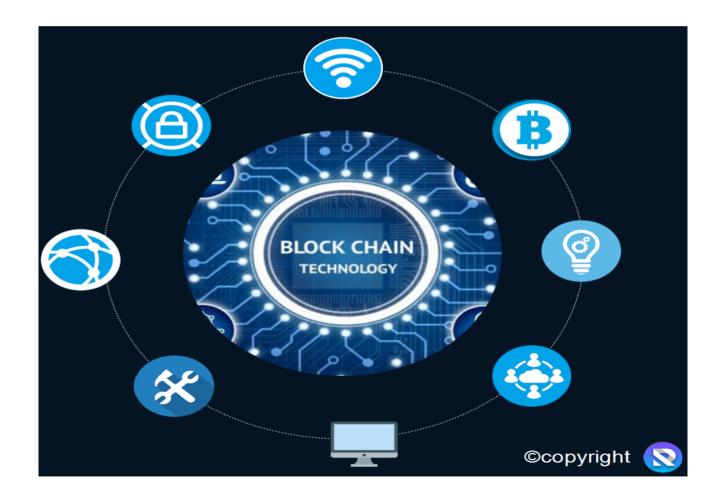
Mining Difficulty : Proof of Work (PoW)

- PoW
 - A piece of data that is difficult to calculate but easy to verify
 - First proposed to prevent DoS attacks
- Hashcash PoW

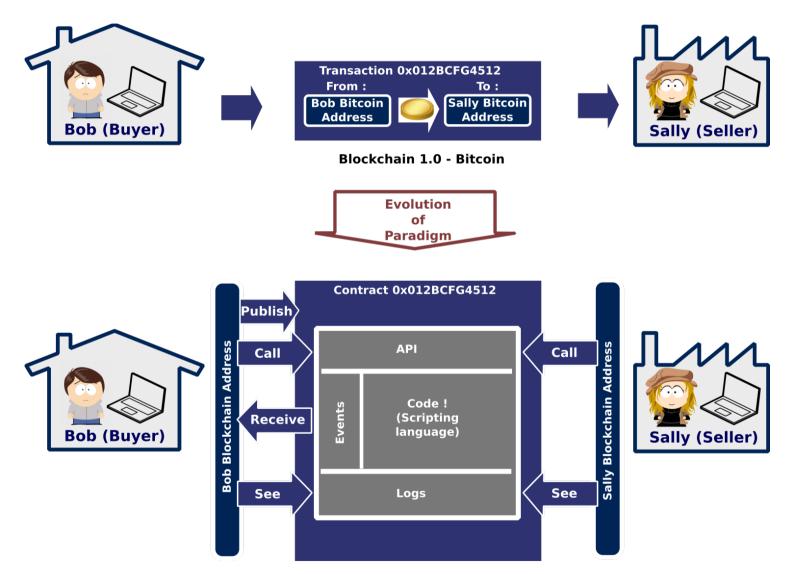
- Computed by each miner to produce the nonce
- Goal: produce a value *v* such that *h(v)*<*T* where
 - *h* is a hash function (SHA-256)
 - *T* is a target value which is shared by all nodes and reflects the size of the network
 - *v* is a 256-bit number starting with *n* zero bits
 Low probability of success : 1/2ⁿ

The 51% Attack

- Also called Goldfinger attack
 - Enables the attacker to invalidate valid transactions and double spend funds
- How
 - By holding more than 50% of the total computing power for mining
 - Miners coalition
 - It then becomes possible to modify a received chain (e.g. by removing a transaction) and produce a longer chain that will be selected by the majority
- Solution: monitoring by the community
 - In January 2014, Ghash.io reached 42%, then dropped to 9% after the Bitcoin community alert


Transaction Confirmation

- A provisionally validated transaction in a candidate block ensures that it has been verified and is viable
- Each new block accepted in the chain after the validation of the transaction is considered as a confirmation
 - A transaction is considered mature after 6 confirmations (1 hour on average)
 - New bitcoins (mining products) are only valid after 120 confirmations, to avoid the 51% attack


Public Blockchain Limitations

- Complexity and low scalability
 - Difficult evolution of operating rules
 - Increasing chain size
 - Low number of transactions per second (TPS)
 - 5-7 TPS for Bitcoin versus 25K TPS for VISA
 - Unpredictable duration of transactions, from minutes to days
- Cost
 - High energy consumption
 - Favors concentration of miners
- Users are pseudonymized, not anonymized
 - Making a transaction with a user reveals all its other transactions
- Lack of control and regulation
 - Hard for states to watch and tax transactions

Blockchain 2.0

Evolution of Paradigm

Blockchain 2.0 - e.g. Ethereum, ...

Evolution of Paradigm

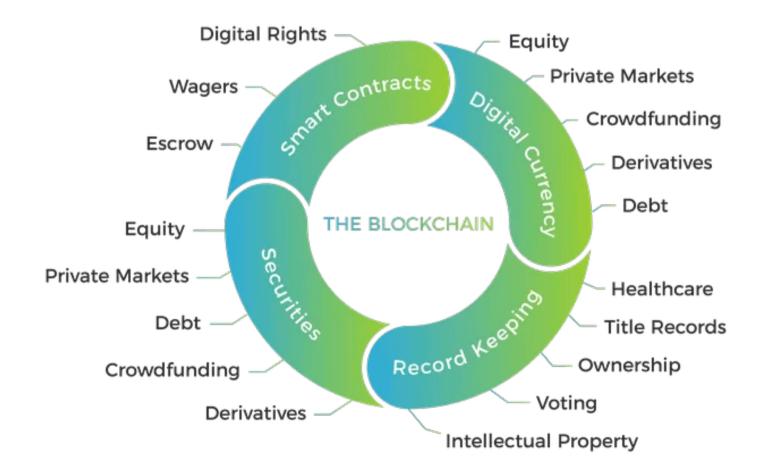
- Beyond Bitcoin and other cryptocurrencies
 - Recording and exchange of assets without powerful intermediaries
 - Example: smart contracts
- Positioning in the internet
 - TCP/IP: the communication protocol
 - Blockchain: the value-exchange protocol?

Blockchain 2.0 Technology

- Programmable blockchain, e.g. Etherum
 - Allows application developpers to build APIs on the Blockchain protocol
 - APIs to allocate digital resources (bandwidth, storage, etc.) to the connected devices, e.g. FileCoin
 - Micropayment APIs tailored to the type of transaction (e.g. tipping a blog versus tipping a car share driver)
- Private blockchain
 - Efficient transaction validation since participants are trusted
 - No need to produce a PoW
 - Efficient management, e.g. in the cloud

Blockchain 2.0 Development

- Support from all major industry players
 - Finance services: Mastercard, VISA, ...
 - Audit firms: EY, KPMG, PwC, Deloitte
 - Consulting firms: Accenture, Capgemini,
 - Web giants: Amazon, Google
 - Software suppliers: IBM, Oracle, Microsoft, SAP
 - Technology platform companies: Cisco, Fujitsu, IBM, Intel, NEC, Red Hat, VMware
- New blockchain ISVs
 - Blockchain, ConsenSys, Digital Asset, R3, Onchain


Smart Contracts

- "Code is law", Lawrence Lessig, Harvard Law School
- Smart contract (Nick Szabo, 1993)
 - Self-executing contract, with code that embeds the terms and conditions of a contract
 - Early application: digital rights management schemes
- Deployment in the blockchain 2.0 (e.g. Etherum)
 - Participants can be unknown to each other
 - Contracts can be with many third parties, e.g. IoT devices, at low cost
- Challenges
 - Bug-free code, which requires code certification
 - Compliance with mandatory regulation, which requires collaboration between programmers and lawyers

Hyperledger Project (Linux Foundation)

- Started in 2015 (IBM, Intel, Cisco, ...)
- Open source blockchains and related tools
- Major frameworks
 - Hyperledger Fabric (IBM, digital Asset): a permissioned blockchain infrastructure
 - Smart contracts, configurable consensus (PBFT, ...) and membership services
 - Sawtooth (Intel): a new consensus "Proof of Elapsed Time" that builds on trusted execution environments
 - Hyperledger Iroha (Soramitsu): based on Hyperledger Fabric, with a focus on mobile applications

Blockchain Use Cases

Blockchain 2.0 Apps

- Critical characteristics of the applications
 - Asset and value are exchanged (transactions)
 - Multiple participants, unknown to each other
 - Trust is critical
- Top use cases
 - Financial services, micropayments
 - Digital rights using smart contracts
 - Digital identity
 - Supply chain management
 - Internet of Things (IoT)
- POCs in many industries
 - Publishing, retail, music, healthcare, rental, real estate, government, energy, agriculture, etc.

Diamond Supply Chain Management

• Problems

- How to trace diamonds, in an era of "blood diamonds"?
- Complex and multi-tiered diamond and jewelry supply chain
- Objective of TrustChain
 - Provide trusted products with documented authenticity, guaranteeing quality and environmental responsibility
- Solution (IBM Hyperledger)
 - A permissioned blockchain that establishes a single shared view of information without compromising detail, privacy, or confidentiality

Opportunities and Risks

Opportunities

Disruptive technology

- For recording transactions and verifying records
- The ability to program applications and business logic in the blockchain opens up many possibilities for developers
 - E.g. smart contracts
- Disruptive power
 - The goal of cypherpunk activists
 - It may establish a sense of democracy and equality for individuals and small businesses in countries with nontransparent, unsecure jurisdictions

Risks

• Market disruption

 Massive disintermediation of the current system, replacing all procedures that deal with transactions with a system where participants trade directly

Public blockchain

- Consumer protection: significant volatility of Bitcoin and other cryptocurrencies (no government backup)
- Increasing use for fraudulent or illegal activities
- Security concerns: if a private key is lost or stolen, an individual has no recourse
- Lack of control and regulation, and hard for states to agree on what to do

Research Issues

• Scalability of the public blockchain

- Alternatives to PoW : proof of stake, proof of hold, proof of use, proof of stake/time, ...
- New generation blockchains, e.g. Bitcoin-NG [Usenix 2016]
- Smart contracts
 - Code certification and verification
- Blockchain interoperability
 - Blockchain Interoperability Alliance (BIA), to promote crossblockchain transactions
- Blockchain and big data
 - Blockchain-generated data analysis, e.g. fraud prevention based on real-time transactions
 - Blockchain-based DBMS, e.g. BigchainDB

Ethical Issues

INE OPERUM OUDTOUDT REPERTA SI I NAM STOTEM OF I D N LAW 4 Blockchain can have strong (good or bad) RAGAE CONSTIN APUD MARTINUM NIJHOFF

BENEDICTI DE SPINOZA

ETHICA

- impact on the world
 - People, society, economy, environment, ...
 - Remember: the public blockchain is great for crooks and criminals
- This raises ethical issues that we cannot simply ignore
 - See the recent panel: A Debate on Data and Algorithmic Ethics (VLDB 2018)

About Trust Again

Whoever is careless with the truth in small matters cannot be trusted with important matters. Albert Einstein