
Blockchain Consensus: An analysis of
Proof-of-Work and its applications.
Amitai Porat1, Avneesh Pratap2, Parth Shah3, and Vinit Adkar4

1aporat@stanford.edu
2avneeshp@stanford.edu
3parth95@stanford.edu
4vadkar@stanford.edu

ABSTRACT

Blockchain Technology, having been around since 2008, has recently taken the world by storm. Industries are
beginning to implement blockchain solutions for real world services. In our project, we build a Proof of Work based
Blockchain consensus protocol and evauluate how major applications can run on the underlying platform. We
also explore how varying network conditions vary the outcome of consensus among nodes. Furthermore, to
demonstrate some of its capabilities we created our own application built on the Ethereum blockchain platform.
While Bitcoin is by and far the first major cryptocurrency, it is limited in the capabilities of its blockchain as a
peer-to-peer currency exchange. Therefore, Ethereum blockchain was the right choice for application development
since it caters itself specifically to building decentralized applications that seek rapid deployment and security.

1 Introduction
Blockchain technology challenges traditional shared architectures which require forms of centralized governance
to assure the integrity of internet applications. It is the first truly democratized, universally accessible, shared and
secure asset control architecture. The first blockchain technology was founded shortly after the US financial collapse
in 2008, the idea was a decentralized peer-to-peer currency transfer network that people can rely on when the
traditional financial system fails. As a result, blockchain largely took off and made its way into large public interest.

We chose to investigate the power of blockchain consensus algorithms, primarily Proof of Work. We wanted
to see how this algorithm performs under a variety of network conditions as well as highlight its inner workings.
Additionally we developed an application for a potential real-life use case of blockchain technology. We built our
application on the Ethereum blockchain for a number of reasons. First, Ethereum for the time being, also relies
on Proof of Work consensus and we wanted to build on top of a blockchain that closely replicates the consensus
algorithms we examined. Second, even though it has much room left to grow, the Ethereum platform has a strong
developer community which was able to provide sufficient support to bootstrap an application in a short amount of
time.

Section 2 of this paper provides a high level overview of the proof of work consensus algorithm followed by a
detailed description of our implementation. Additionally, we discuss the system behavior under varying conditions
which we were able to control. We then discuss the performance results that we analyzed in 2.3. Beyond the
consensus algorithm implementation we built a simple graphic user interface that allows for better understanding of
network state in the simulation, which we briefly describe in 2.4. In Section 3, we discuss smart contracts, which
are an essential construct on Ethereum. The smart contract overview provides necessary the background for our
application, Lockbox, which is a secure storage service for personal information on the Ethereum blockchain.



2 Blockchain Consensus Protocol

In an open, trustless and distributed setting adversaries can act maliciously in many ways. For example, an attacker
can make multiple pseudonyms and do a sybil attack1, and hence making the typical quorum consensus techniques
popular in distributed systems unapplicable. Bitcoin2 uses proof-of-work protocol to reach consensus, which requires
a node to try and solve a hard computational problem in order to validate a batch of transactions and add them as a
new block to the blockchain. Another proposition is to use proof-of-stake3 where user votes are weighted by their
’stake’ and users might be penalized for faulty behavior. The following article4 provides an overview of some more
consensus protocols we do not discuss. We chose to examine proof-of-work due to it currently being the most widely
adopted.

To understand the consensus protocol in more depth we decided to implement a proof-of-work consensus from
scratch using Python. In a proof-of-work protocol, the complexity of the computational problem determines factors
like the number of forks in the chain and the average time to mine a block. We present an analysis of how these
parameters vary with the computational complexity. To validate our consensus protocol we implemented a simple
transaction ledger which maintains a history of transactions. We implemented both unspent transaction output
(UTXO) in Bitcoin, and Account based transactions as used in Ethereum.

Additionally, we provide a visualization tool which provides real time status of the blockchain as well as a
per-node view of the distributed ledger.

2.1 Background
Bitcoin2 uses proof-of-work to ensure that all participating nodes agree on the same branch of the blockchain. The
main idea behind the protocol is to have nodes solve a computationally expensive problem before they can suggest a
new block. The node which first solves the problem, mines the new block and broadcasts the message to the other
nodes in the network who can easily verify its correctness based on the values in the block. This is because the hash
values of new blocks in the blockchain are dependant on all previous hash values in the blockchain. If an attacker
tries to modify a single block in the history, that would change the blockhash and make the whole subsequent
blockchain invalid. In the rare case where multiple users verify a block simulatneously, the network temporarily
forks until future blocks are mined at which point all nodes will converge on the current longest list of blocks.

Figure 1. A part of Blockchain

2.2 System Overview
Our implementation allows to build networks consisting of any arbitrary number of nodes. Every node starts with a
set of neighbors which it takes as an argument, but nodes can be added and removed from this list after startup. Each
node maintains its own state of the blockchain, list of pending transactions, and a small set of neighbors. Additionally
each node serves as a miner in the network. Miners continuously attempt to solve the proof-of-work in order to mine
new blocks and be the first to extend their blockchain. When a miner successfully mines a new block, he shares
the information with his neighbors. The information sharing is done asynchronously and the miner immediately
starts trying to mine the next block. Since the information is shared asynchronously, different nodes can receive
information in different order. To replicate the network latency in the actual network, we introduce artificial latency
while sharing information in the network. The network latency between 2 nodes is proportional to the difference in
their port numbers(we have considered nodes running as separate processes on the machine and ports as proxy for
their geographic location). To share this information, each node exposes several HTTP endpoints where the nodes
can submit new information like transactions or new blockchains. These requests are also served asynchronously so
as to not hamper the mining process. On receiving a new blockchain, the nodes validate the blockchain and if the

2/6



length of the new blockchain is longer than their current version the nodes update their copy. This merge process can
uncommit some transactions and the nodes merging the blockchain, therefore, make a note of any such transactions
and reinsert them back in the list of pending transactions. Nodes also serve other HTTP endpoints to expose their
state information. These are used to implement the visualization tools built over the network.

We tested the consensus implemented by the system above by using it to maintain a distributed ledger. Different
cryptocurrencies use different types of transactions. In our implementation, we considered UTXOs approach used
by Bitcoin2 and Accounts as used in Ethereum56. Both approached provide different trade-offs. We mention some
of them in section 2.3.

2.3 Analysis of the System
Theoretically there could be thousands of nodes around the world simultaneously solving the same proof-of-work
problem. The purpose of making the problem so difficult to compute is to reduce the chances of nodes computing
at the same time and thereby reduce the chance of forks. Forks affect the reliability of blockchain, and therefore
Bitcoin2 keeps the block generation time around 10 minutes to counter it. Since this is an important concern in the
system, in our implementation we wanted to test how the system behaves when we change the complexity of the
computational problem. To provide a common ground for these tests, we kept the network latency constant for each
experiment and allowed the blockchain to grow consistently to the same length(100) before making our observations
which are summarized in 1

Problem Complexity
1

Average time to mine
a block(in seconds)

Stale blocks mined Average fork length

2.10−4 0.03 302 21.47
2.10−5 0.32 219 8.27
10−6 2.62 42 2.61

2.10−7 8.6 13 1

Table 1. Analysis for different levels of problem complexity

We see that as we increase the problem complexity the time to mine new block increases which is an expected
result but we observe that the increase is not linear. While the problem complexity increases 20 times, the increase in
avg time taken to mine a block is just over 8 folds. We reason that this is because of the higher number of collisions
and forking that occurs at lower complexity. We therefore estimate the number of stale blocks(the blocks which
were mined but were discarded due to conflicts) mined in the system and we see that in case of lower problem
complexity this number is significantly higher. When the probability of making a correct guess is 2.10−5, over 200
hundred blocks were discarded which is twice as much the final blockchain length. This means although the system
is capable of increasing the length at a faster pace, most of the work is discarded and therefore the increase in time
in not linear with problem complexity.

We also examine the average fork length in each case and fork length increases drastically as the problem
becomes simpler. Having a higher fork length results in reduced consistency in the system making it less reliable.
The above analysis provides an insight into the decision to keep the block mining time around 10 minutes in Bitcoin.
The problem is made significantly harder so as to reduce the probability of multiple nodes solving the problem at the
same time and also provide enough time for the new mined block to be distributed across the network.

As mentioned in 2.2, we tested our consensus protocol by using it to maintain a distributed ledger. We tested
the correctness by giving the same list transactions to a centralized server and reconciling the values with the one
in our distributed ledger. The different approach of UTXOs and Account lead to different transaction and state
sizes. In our small experiment with 500 valid transactions generated over 50 accounts, the UTXO state tracked a
list of around 113 unspent transactions, which is significant proportion of the input transactions, while Account
approach just needed to maintain 50 accounts. The UTXO transactions were also larger in size. But at the same
time UTXO approach provides flexibility in running 2 transactions over unrelated unspent transactions related to the
same account simultaneously providing option for more parallel transactions.

3/6



2.4 Visualization Tool
To monitor our network we built a visualization tool over our system. It exposes 3 endpoints to query different
pieces of information:

• Network: To see the network layout of the current system

• Blockchain Status: To see the current state of blockchain as maintained by different nodes. This tool is useful
to see forks and merges in the chain.

• Distributed Ledger: To see the ledger values maintained by different nodes. The values are color coded to
ease the viewing in case of system forks and when all the nodes are not maitaining the same consistent view.

Figure 2. Tracking blockchain in the system Figure 3. Constructing the Ledger

2.5 Future Work
Our current implementation is inspired from Bitcoin. However, Ethereum5 uses a different computational problem,
EthHash which rather than using the hashing abilities of the node focuses more on how fast the node can move data
in its memory. To provide higher transaction rates and avoid forking in the network at the same time, Ethereum
implements a simplified GHOST protocol introduced here7. It would be interesting to build a system inspired by
design choices made in Ethereum and compare the performance with the current implementation. Proof-of-work
consensus protocol is designed to be deployed in a trustless environment and it would be noteworthy to experiment
with its performance by introducing faulty nodes into the environment and running transactions over an unreliable
network.

3 Smart Contracts

A smart contract6 is a computer program stored on the decentralized blockchain network that executes the terms
defined inside of it. The contract only runs when it is invoked to do so by an external event or if some predefined
condition is met. Smart contracts can be implemented using Solidity, Serpent, or LLL which are contract-oriented
high level languages targeted for Ethereum Virtual Machine (EVM)8. EVM8 is a Turing complete software that runs
on the Ethereum network. It enables anyone to run any program written in any programming language given enough
time and memory. For our implementation we chose Solidity to write our smart contracts. Solidity is statically typed,
supports inheritance, libraries and complex user-defined types among other features. Figure 2 demonstrates how the
solidity compiler (solc) generates byte level code for input smart contract which can be deployed using the EVM.

3.1 Smart Contract Applications
Smart contracts can: a) Manage agreements between parties, b) Provide utility to other contracts through inter
contract communication c) Store information about an application, such as domain registration information or
membership records. One of the simple use case of smart contract could be sending 5 ethers from account A to
account B on a certain date. So in this case, user A would create a contract, and push the data to that contract so that
it would know how much money to send and when. At the time of execution, the smart contract would verify that A
has sufficient balance to execute before doing so.

Another more interesting application would be a crowdfunding contract. Wherein the contract would manage
some desired price goal, and in return for their contributions people receive some sort of incentive, also in the
contract. On Ethereum this frequently happens through an inital coin offering (ICO), where users submit ether to a
contract and in return receive a new cryptocurrency.

To fully understand how smart contracts work on the blockchain and how they can be used to create decentralized
applications we have implemented an application called Lockbox.

4/6



Figure 4. Steps to Deploy a smart contract on blockchain 1) create a smart contract in solidity, 2) compile and
generate byte code and 3) deploy the contract on blockchain

4 Lockbox

Lockbox is a decentralized application for storing user information. Lockbox currently stores the following
information through a smart contract: a) personal information such as SSN, license number and date of birth b)
Login details for different services and c) credit card details for different accounts.

The lockbox application implementation has 2 abstractions: The backend is written in solidity, as a smart
contract which lives on the network. The lockbox contract code has a collection of functions and state variables
which reside at a specific address in the Ethereum blockchain once the contract is deployed on the blockchain. The
frontend is implemented in Go, which provides an interface for the user and interacts with the necessary go bindings
which are generated from smart contract creation.

In our decentralized lockbox application we provide a basic option to create a lockbox for users. We also provide
two basic options to add and retrieve each kind of data/information from the blockchain network. Smart contract
enable users of lockbox to request storage and retrieval of personal data from the blockchain network and validate
storage proofs. Users can interact with the smart contract by sending transactions to the ledger that trigger function
calls in the contract. For example: when a user creates a lockbox, it triggers a lockbox create function call in the
contract and later this lockbox can be only accessed through user key. Smart contracts have a builtin ability to trace
message senders, so when a user instantiates a lockbox, he is automatically set as the administrator from within the
contract. Similarly, when an user adds or gets some information from the lockbox, it triggers lockbox add or get
function calls in the smart contract for the transaction, each time verifying that the key from the request matches the
key of the owner for the given information. This makes the storage of personal data secure as this information in the
network can only be accessed by the owner of the lockbox through owner’s user key. The security functionality is
built in to the contract, something that Ethereum emphasizes so that certain applications can be deployed rapidly.

We ran our application on the Ethereum testnet to visualize how different operations in our lockbox application
invoke transactions and how transactions get mined by some miner in the testnet. We also validated the security
aspects of the application by experimenting the scenarios where user A attempts to add or retrieve data from user B
lockbox but remains unsuccessful. In the future we would like to see if we can separate the lockbox contract from
the registry of all lockboxes. This way we ensure that user contracts are completely independent. Overall we were
very encouraged with the tools available for development on Ethereum.

5 Conclusion

Blockchain is a technology which has the potential to serve a vast array of internet applications in the future. Due to
proof-of-work consensus, eventual consistency among all participating nodes is expected, and due to the difficulty
of mining blocks, it is rare for the blockchain to fork based on two different mining results being broadcasted
at the same time. Even in the case of a fork, there is a recovery mechanism, making proof of work safe overall.

5/6



The downside of this form of consensus is that it is very computationally expensive, and any network running the
protocol is susceptible to manipulation if a participating miner has more than 51% of the computing power.

Our aim while implementing a proof-of-work based blockchain consensus was to gain a better understanding
of the protocol. Through our work and experiments, we were able to achieve our set goal and also understand
the reason behind key design aspect in Bitcoin. While building the visualization tool, our aim was to provide a
simple interface for a user to keep track of the system and further supplement the understanding of the protocol.
Demonstrating robustness in the presence of failure is critical to any viable system, and we hope that in the future
we can analyze the different vulnerabilities of the protocol

Blockchain technology is in its early stages and there are many technical challenges that need to be overcome
before it become part of mainstream commercial technology. We have great confidence given the developer
community that already exists around Ethereum as well as the valuable technologies it introduces. The primary
power in this blockchain is the smart contract, which is able to function as a third party mediator, through code
which cannot be manipulated. We were happy with our results in successfully deploying a realistic smart contract
application on an Ethereum network, and being able to build Go API libraries on top of our application to make it
user friendly. That being said, running computations on the real ethereum network is very expensive, and that is
something that will have to be resolved before it becomes widely adopted.

Member Contributions
• Parth Shah and Vinit Adkar: Implemented the Blockchain Consensus Protocol described in 2 and performed

the analysis described in 2.3

• Parth Shah: Implemented the visualization tool described in 2.4

• Amitai Porat and Avneesh Pratap: Implemented the Lockchain application over the ethereum Platform as
described in 4

References
1. Douceur, J. R. The sybil attack. In Revised Papers from the First International Workshop on Peer-to-Peer Systems,

IPTPS ’01, 251–260 (Springer-Verlag, London, UK, UK, 2002). URL http://dl.acm.org/citation.
cfm?id=646334.687813.

2. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system,” http://bitcoin.org/bitcoin.pdf.

3. Proof of stake. https://en.bitcoin.it/wiki/Proof_of_Stake.

4. Hammerschmidt, C. Consensus in blockchain systems. URL https://medium.com/@chrshmmmr/
consensus-in-blockchain-systems-in-short-691fc7d1fefe.

5. Ethereum design rationale. https://github.com/ethereum/wiki/wiki/Design-Rationale.

6. Ethereum introduction. URL http://ethdocs.org/en/latest/introduction/index.html.

7. Sompolinsky, Y. & Zohar, A. Secure high-rate transaction processing in bitcoin. In Böhme, R. & Okamoto, T.
(eds.) Financial Cryptography, vol. 8975 of Lecture Notes in Computer Science, 507–527 (Springer, 2015). URL
http://dblp.uni-trier.de/db/conf/fc/fc2015.html#SompolinskyZ15.

8. Buterin, V. Ethereum white paper. URL https://github.com/ethereum/wiki/wiki/
White-Paper.

6/6

http://dl.acm.org/citation.cfm?id=646334.687813
http://dl.acm.org/citation.cfm?id=646334.687813
https://en.bitcoin.it/wiki/Proof_of_Stake
https://medium.com/@chrshmmmr/consensus-in-blockchain-systems-in-short-691fc7d1fefe
https://medium.com/@chrshmmmr/consensus-in-blockchain-systems-in-short-691fc7d1fefe
https://github.com/ethereum/wiki/wiki/Design-Rationale
http://ethdocs.org/en/latest/introduction/index.html
http://dblp.uni-trier.de/db/conf/fc/fc2015.html#SompolinskyZ15
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

	Introduction
	Blockchain Consensus Protocol
	Background
	System Overview
	Analysis of the System
	Visualization Tool
	Future Work

	Smart Contracts
	Smart Contract Applications

	Lockbox
	Conclusion
	References

