
American Red Cross
BRIAN	
 HENDERSON

Blood Donation Record Database for

Table of
Contents

Table of	
 Contents………………….… 2 Stored	
 Procedures

Executive Summary……..…………. 3 get_persons_donation_records…… 20

E/R	
 Diagram…………………..………. 4 get_blood_type_inventory_per…… 21

Create Table	
 Statements update_inventory_status…………….. 22

People	
 Table……………………….. 5 TBA 23

Donor	
 Table…………………...…… 6 Triggers

Patient	
 Table………………….……. 7 update_inventory_status_trigger… 24

Nurse	
 Table…………………………. 8 TBA 25

Pre	
 Exam	
 Table……………………. 9 Views

Donation	
 Table……………………. 10 AvailableBloodBags……………………… 26

Donation Types	
 Table……..…… 11 LocationInventories……………………… 27

Transfusion Table………………… 12 Reports/Interesting Queries

Blood	
 Bags	
 Table…………………. 13 1………………………………………………….. 28

Locations	
 Table…………………… 14 2………………………………………………….. 29

Location Codes	
 Table……....… 15 Security……………………………………………. 30

Global	
 Inventory	
 Table…..……. 16 Implementation Notes……………………. 31

Requests	
 Table……………………. 17 Known	
 Problems…………………………….. 31

Donation	
 Records	
 Table………. 18 Future	
 Enchancements……………………. 31

Transfusion	
 Records	
 Table…… 19

2

Executive Summary

3

This document outlines the design of a database to hold all the data for the American Red Cross in
regards to their blood donation division. The American Red Cross is the leading blood donation
organization in the world. Distributing to about 2,600 hospitals and healthcare facilities in the United
States alone, the American Red Cross collects and processes roughly 40% of the nation’s blood supply.
The design of this database is to show the framework for the amount of data that the American Red
Cross comes across, as well as to serve as a historical reference. This database holds all the information
required for each donation/transfusion, including the required pre-exam, a global inventory to show the
inventory stocks across all locations, which can also be queried to narrow down to the specific location.
The data implemented into this database is fictional, with some exceptions. All persons, pre-exams,
records, and some locations are fictional. This database is designed to hold large scale data. The
ultimate objective is to design a database that is not only fully functional, but also fully normalized in
third normal form that can help serve the American Red Cross for their blood donation records.

E/R
DIAGRAM

4

Persons Table

CREATE TABLE persons (
pid char(8) not null unique,
first_name text not null,
last_name text not null,
age integer not null,

primary key(pid)
);

Functional Dependencies
Pid à first_name, last_name, age

Sample Data

The people table contains all the people and their common attributes. There are
three subtypes for the people table: patient, donor, and nurse.

5

Donor Table

CREATE TABLE donor (
pid char(8) not null references persons(pid),
blood_type char(3) not null,
weightLBS integer not null,
heightIN integer not null,
gender char(1) not null,
nextSafeDonation DATE,

CONSTRAINT check_gender CHECK (gender = 'M' OR gender = 'F'),
primary key(pid)

);

Functional Dependencies
Pid à blood_type, weightLBS, heightIN, gender

Sample Data

Constraints
check_gender à Checks gender input is ’M’ or ‘F’

The donor table contains the information required to be a donor. Blood and Platelet
donors must be 110lbs and 17 years of age. Plasma donors have other requirements.

6

Patient Table

CREATE TABLE patient (
pid char(8) not null references persons(pid),
blood_type char(3) not null,
need_status text not null,
weightLBS integer not null,

CONSTRAINT check_status CHECK (need_status = 'high' OR need_status = 'low'),
primary key(pid)

);

Functional Dependencies
Pid à blood_type, need_status, weightLBS

Sample Data

Constraints
chech_status à Checks need status input to be either ‘high’

or ‘low’

The patient table contains all the patients and their information required before a
blood transfusion. The need status field indicates whether their require blood on a
high priority or a low priority.

7

Nurse Table

CREATE TABLE nurse (
pid char(8) not null references persons(pid),
years_experienced integer not null,

primary key(pid)
);

Functional Dependencies
Pid à years_experienced

Sample Data

The nurse table contains all the nurses, with the years of experience they have.

8

Pre Exam Table

CREATE TABLE pre_exam (
peid char(8) not null,
hemoglobin_gDL decimal(5,2) not null,
temperature_F decimal(5,2) not null,
blood_pressure char(8) not null,
pulse_rate_BPM integer not null,

primary key(peid)
);

Functional Dependencies
peid à hemoglobin_gDL, temperature_F, blood_pressure,

pulse_rate_BMP

Sample Data

The pre_exam table contains the respective information about a donor before a
donation, as well as a patient before a transfusion.

9

Donation Table

CREATE TABLE donation (
did char(8) not null,
pid char(8) not null references donor(pid),
peid char(8) not null references pre_exam(peid),
nurse char(8) not null references nurse(pid),
amount_donated_CC decimal(5,2) not null,
donation_type text not null references donation_types(type),

primary key(did)
);

Functional Dependencies
peid à pid, peid, nurse,

amount_donated_CC, donation_type

Sample Data

The donation table contains the basic attributes about a blood donation. The
donation type references the type of blood donation.

10

Donation Types Table

CREATE TABLE donation_types (
type text not null unique,
frequency_days integer not null,

primary key(type)
);

Functional Dependencies
type à frequency_days

Sample Data

The donation_type table contains the four different types of blood donation types, as
well as the frequency/wait time in which the donor must wait before donating that
type again.

11

Transfusion Table

CREATE TABLE transfusion (
tid char(8) not null,
pid char(8) not null references patient(pid),
peid char(8) not null references pre_exam(peid),
nurse char(8) not null references nurse(pid),
amount_recieved_CC decimal(5,2) not null,

primary key(tid)
);

Functional Dependencies
tid à pid, peid, nurse, amount_recieved_CC

Sample Data

The transfusion table contains the basic attributes about a blood transfusion.

12

Blood Bags Table

CREATE TABLE bloodbags (
bbid char(10) not null unique,
donation_type text not null references donation_types(type),
quantity_CC decimal(5,2) not null,
blood_type char(3) not null,

primary key(bbid)
);

Functional Dependencies
bbid à quantity_CC, blood_type, donation_type

Sample Data

The bloodbags table contains the basic attributes about each blood bag. Each blood
bag is labeled with: the blood type, the quantity, and the type of donation.

13

Locations Table

CREATE TABLE locations (
lid char(6) not null unique,
name text not null,
lc char(4) not null references location_codes(lc),
city text not null,

primary key(lid)
);

Functional Dependencies
lid à name, lc, city

Sample Data

The locations table contains all the locations, as well as a code to describe the type of
location.

14

Location Codes Table

CREATE TABLE location_codes (
lc char(4) not null unique,
descrip text not null,

primary key(lc)
);

Functional Dependencies
lcà descrip

Sample Data

The location_codes table contains a four character code describing the type of
location. Blood Drives are indicated with a BD in front.

15

Global Inventory Table

CREATE TABLE global_inventory (
bbid char(10) not null references bloodbags(bbid),
lid char(6) not null references locations(lid),
available boolean DEFAULT TRUE,

primary key (bbid,lid)
);

Functional Dependencies
bbid , lid à available

Sample Data

The global_inventory table contains the a global inventory of all blood bags with the
location in which they are stored.

16

Requests Table

CREATE TABLE requests (
rqid char(8) not null unique,
lid char(6) not null references locations(lid),
blood_type_requested text not null,
date_requested DATE not null,
quantity_requestedPints integer not null,

primary key(rqid)
);

Functional Dependencies
rqid à lid, blood_type_requested, date_requested,

quantity_requestedPints

Sample Data

The requests table contains attributes describing a “request” from a location.
Locations can request blood from American Red Cross.

17

Donation Records Table

CREATE TABLE donation_records (
did char(8) not null references donation(did),
lid char(4) not null references locations(lid),
donation_date DATE not null,
bbid char(10) not null references bloodbags(bbid),

primary key(did)
);

Functional Dependencies
did à lid, donation_date, bbid

Sample Data

The donation_records table provides a more detailed record of all the donations.

18

Transfusion Records Table

CREATE TABLE transfusion_records (
tid char(8) not null references transfusion(tid),
lid char(4) not null references locations(lid),
transfusion_date date not null,
bbid char(10) not null references bloodbags(bbid),

primary key(tid)
);

Functional Dependencies
tid à lid, transfusion_date, bbid

Sample Data

The transfusion_records table provides a more detailed record of all the transfusions.

19

Stored Procedures get_persons_donation_records

CREATE OR REPLACE FUNCTION get_persons_donation_records (char(8), REFCURSOR) returns refcursor as
$$
DECLARE

personID char(8) := $1;
results REFCURSOR := $2;

BEGIN
OPEN results FOR

SELECT dr.did, dr.lid, dr.donation_date, d.pid, d.peid,
d.nurse, d.amount_donated_CC, d.donation_type

FROM donation_records dr INNER JOIN donation d ON dr.did = d.did
WHERE personID = d.pid;

RETURN results;
END;
$$
language plpgsql;

The get_persons_donation_records stored procedure can be used to look up all the
donation records for a donor by passing through the persons ‘pid’.

select get_persons_donation_records('p4', 'results');
fetch all from results;

Sample Output

20

Stored Procedures get_blood_type_inventory_percentage

CREATE OR REPLACE FUNCTION get_blood_type_inventory_percentage (char(3), REFCURSOR) returns refcursor as
$$
DECLARE

reqType char(3) := $1;
results REFCURSOR := $2;

BEGIN
OPEN results FOR

SELECT TRUNC (
CAST (

(SELECT COUNT(gi.bbid) AS selectedBBID
FROM global_inventory gi INNER JOIN bloodbags bb ON gi.bbid = bb.bbid
WHERE bb.blood_type = reqType

AND gi.available = TRUE
) as decimal(5,2)

)
/

(SELECT COUNT(gi.bbid) AS allBBIDs
FROM global_inventory gi
WHERE gi.available = TRUE

)
* 100) AS BloodTypePercentage;

RETURN results;
END;
$$
language plpgsql;

select get_blood_type_inventory_percentage('B-', 'results');
fetch all from results;

Sample Output

The get_blood_type_inventory_percentage stored procedure can be used to look up
how much of the global inventory that is available for use is a the passed in blood type.

21

Stored Procedures update_inventory_status

CREATE OR REPLACE FUNCTION update_inventory_status()
RETURNS TRIGGER AS
$$
BEGIN

IF NEW.bbid is NOT NULL THEN
UPDATE global_inventory
SET available = FALSE
WHERE NEW.bbid = global_inventory.bbid;

END IF;
RETURN NEW;
END;
$$
LANGUAGE PLPGSQL;

The update_inventory_statys stored procedure is used to update the blood bags
inventory when a blood bag is used for transfusion.

22

Stored Procedure update_next_donation_date

CREATE OR REPLACE FUNCTION update_next_donation_date()
RETURNS TRIGGER AS
$$
DECLARE

waitDays integer;
donDate DATE := NEW.donation_date;
selectedDid char(8) := NEW.did;

BEGIN
IF selectedDid IS NOT NULL THEN

SELECT dt.frequency_days INTO waitDays
FROM donation d INNER JOIN donation_types dt ON d.donation_type = dt.type

INNER JOIN donation_records dr ON d.did = dr.did
WHERE dr.did = selectedDid;

-- update next safe donation date
UPDATE donor
SET nextSafeDonation = donDate + waitDays
WHERE donor.pid IN (SELECT donor.pid

FROM donation d INNER JOIN donation_records dr ON d.did = dr.did
INNER JOIN donor ON donor.pid = d.pid
WHERE d.did = selectedDid

);
END IF;

RETURN NEW;
END;
$$
LANGUAGE PLPGSQL;

Update_next_donation_date procedure is intended to, based of of the type of
donation give, mark the next time it would be safe to donated blood from reference
to the donation types table, where frequency is the amount of days needed to wait.

23

Trigger update_inventory_status()

CREATE TRIGGER update_inventory_status_trigger
BEFORE INSERT ON transfusion_records
FOR EACH ROW
EXECUTE PROCEDURE update_inventory_status();

When a new blood transfusion record is inserted, the trigger is called to set the blood
bag used in the transfusion to be ‘FALSE’

24

Trigger Update_next_donation_date_trigger

When a new donation record is inserted, this trigger is called to mark the date that
the donor could next donate blood safely.

25

CREATE TRIGGER update_next_safe_donation_date_trigger
BEFORE INSERT ON donation_records
FOR EACH ROW
EXECUTE PROCEDURE update_inventory_status();

Views AvailableBloodBags

DROP VIEW IF EXISTS AvailableBloodBags;
CREATE VIEW AvailableBloodBags as (
SELECT gi.bbid,

gi.lid,
bb.blood_type,
bb.donation_type,
bb.quantity_CC

FROM global_inventory gi INNER JOIN bloodbags bb
ON gi.bbid = bb.bbid

WHERE gi.available = TRUE
);

The AvailableBloodBags view contains all the bloodbags that have not been used yet.
This can be used to track the inventory of blood bags available.

SELECT *
FROM AvailableBloodBags
WHERE blood_type = 'O+';

Sample Output

The example above narrows down blood
bag information to display all the available
blood bags for blood type O+.

26

Views locationInventories.
Locations can check their inventory supply by using the locationInvetories view, and
based off of that report, they can make necessary determinations on if the location
should request more stock, and how much.

Sample Output

27

DROP VIEW IF EXISTS locationInventories;
CREATE VIEW locationInventories AS (
SELECT gi.lid,

SUM(bb.quantity_CC) AS totQuantity,
bb.blood_type,
bb.donation_type

FROM global_inventory gi INNER JOIN bloodbags bb ON gi.bbid = bb.bbid
INNER JOIN locations l ON gi.lid = l.lid

GROUP BY blood_type,
donation_type,
gi.lid

ORDER BY lid desc,
totquantity desc

);

SELECT *
FROM locationInventories
WHERE lid = ‘L10’;

The example above shows the
current inventory of the location
desired, in this case L10

Reports / Interesting Query 1

SELECT p.pid,
p.first_name,
p.last_name,
COUNT(d.pid) AS TimesDonated,
SUM(d.amount_donated_CC) AS TotalAmount

FROM persons p INNER JOIN donation d ON p.pid = d.pid
GROUP BY p.pid
ORDER by TotalAmount desc;

Return to query the total times a donor has donated and the total amount of blood
they have donated in units of CC. Orders by the total amount in descending order.

Sample Output

28

Reports / Interesting Query 2

SELECT bb.blood_type,
bb.donation_type,
SUM(quantity_cc) AS totQuantity

FROM bloodbags bb INNER JOIN global_inventory gi ON bb.bbid = gi.bbid
GROUP BY bb.blood_type,

bb.donation_type
ORDER BY totQuantity desc;

Return to query the total amount of each blood type and donation type in the global
inventory. Ordered by the total quantity descending.

Sample Output

29

Security Admin, Register, Requester

CREATE ROLE ADMIN;
GRANT ALL ON ALL TABLES IN SCHEMA PUBLIC TO ADMIN;

CREATE ROLE REGISTER;
REVOKE ALL ON ALL TABLES IN SCHEMA PUBLIC FROM REGISTER;
GRANT SELECT ON ALL TABLES IN SCHEMA PUBLIC TO REGISTER;
GRANT INSERT ON PERSONS, PATIENT, NURSE, DONOR,

PRE_EXAM, TRANSFUSION, DONATION,
BLOODBAGS, DONATION_RECORDS,
TRANSFUSION_RECORDS
TO REGISTER;

GRANT UPDATE ON PERSONS, PATIENT, NURSE, DONOR,
PRE_EXAM, TRANSFUSION, DONATION,
BLOODBAGS, DONATION_RECORDS,
TRANSFUSION_RECORDS
TO REGISTER;

Admin

Register

CREATE ROLE REQUESTER;
REVOKE ALL ON ALL TABLES IN SCHEMA PUBLIC

FROM REQUESTER;
GRANT SELECT ON REQUESTS, LOCATIONS, LOCATION_CODES,

locationInventories, availableBloodBags
TO REQUESTER;

GRANT INSERT ON REQUESTS, LOCATIONS, LOCATION_CODES,
locationInventories, availableBloodBags
TO REQUESTER;

GRANT UPDATE ON REQUESTS, LOCATIONS, LOCATION_CODES,
locationInventories, availableBloodBags
TO REQUESTER;

Requester

30

Admin - Database Administrator has full control over the DB.
Register – This role is intended for the person registering the data for each donation and transfusion.
Requester – Locations can use this role to request inventory from American Red Cross.

Implementation Notes – Known Problems – Future Enhancements

31

• Implementation Notes
• If the data implemented in this database was on a large scale, the inventory for the blood

bags would have been better in the UNITS of Pints, rather than CC. 1 Pint is approximately
473 CC, which is the standard donation quantity.

• Known Problems
• More views should be created to better target the users needs to limit interaction.
• Height and weight should be moved from donor and patient table to the pre-exam table as

donors and peoples weight can be different at different times when donating.
• Next Safe Donation date is not updated properly from the intended stored procedure.

• Future Enhancements:
• Implement checks on blood type input to make sure it is a valid blood type input
• Implement way to make sure the donor is a valid donor, meeting any requirements or

limitations for blood donors.
• Implement a way to check the global inventory

