
1 Introduction
This application note demonstrates the implementation of a
basic blood pressure monitor using Freescale products. The
blood pressure monitor can be implemented using any of the
Freescale medical oriented MCUs: Kinetis MK53N512 and
Flexis MM members MC9S08MM128 and MCF51MM256
embedding a 16-bit ADC, 12-bit DAC, 2 Programmable-Gain
Op-Amps, 2 TRIAMPS, Analog Comparators, and Vref
generator. The K50 family can also perform DSP instructions
for signal treatment and MCF51MM can perform multiply and
accumulate (MAC) instructions.

This document is intended to be used by biomedical engineers,
medical equipment developers, or any person related with the
practice of medicine and interested in understanding the
operation of blood pressure monitors. Nevertheless, it is
necessary to know fundamentals of electronic, analog, and
digital circuits.

2 Blood pressure
fundamentals

This section contains information about physiological
concepts of arterial pressure and blood pressure monitor
operating principle.

Freescale Semiconductor Document Number:AN4328

Application Note Rev. 2, 12/2012

Blood Pressure Monitor
Fundamentals and Design
by: Santiago Lopez

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Blood pressure fundamentals....................................1

3 Blood pressure monitor
implementation..3

4 Software model...8

5 Running blood pressure monitor demo16

6 References...29

7 Conclusions...29

A Software timer..30

B Communication protocol...32

2.1 Arterial pressure
Arterial pressure is defined as the hydrostatic pressure exerted by the blood over the arteries as a result of the heart left
ventricle contraction. Systolic arterial pressure is the higher blood pressure reached by the arteries during systole (ventricular
contraction), and diastolic arterial pressure is the lowest blood pressure reached during diastole (ventricular relaxation). In a
healthy young adult at rest, systolic arterial pressure is around 110 mmHg and diastolic arterial pressure is around 70 mmHg.

Blood flow is the blood volume that flows through any tissue in a determined period of time (typically represented as ml/min)
in order to bring tissue oxygen and nutrients transported in blood. Blood flow is directly affected by the blood pressure as
blood flows from the area with more pressure to the area with less pressure. Greater the pressure difference, higher is the
blood flow. Blood is pumped from the left ventricle of the heart out to the aorta where it reaches its higher pressure levels.
Blood pressure falls as blood moves away from the left ventricle until it reaches 0 mm Hg, when it returns to the heart’s right
atrium. Figure 1 represents pressure changes.

Figure 1. Pressure changes on blood vessels

2.2 Blood pressure monitor operating principle
Blood pressure monitor operation is based on the oscillometric method. This method takes advantage of the pressure
pulsations taken during measurements. An occluding cuff is placed on the left arm and is connected to an air pump and a
pressure sensor. Cuff is inflated until a pressure greater than the typical systolic value is reached, then the cuff is slowly
deflated. As the cuff deflates, when systolic pressure value approaches, pulsations start to appear. These pulsations represent
the pressure changes due to heart ventricle contraction and can be used to calculate the heartbeat rate. Pulsations grow in
amplitude until mean arterial pressure (MAP) is reached, then decrease until they disappear. Figure 2 shows the cuff pressure
vs. pulsations.

Blood pressure fundamentals

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

2 Freescale Semiconductor, Inc.

Figure 2. Cuff pressure vs. heartbeat signal

Oscillometric method determines the MAP by taking the cuff pressure when the pulse with the largest amplitude appears.
Systolic and diastolic values are calculated using algorithms that vary among different medical equipment developers.
Freescale Blood Pressure Monitor calculates the systolic and diastolic pressure by considering that systolic pressure is
approximately equal to the pressure measurement taken in the cuff when a pulse with 70% of the amplitude of the MAP pulse
appears while the cuff pressure is above the MAP value. Diastolic pressure is approximately equal to the cuff pressure value
registered when a pulse with 50% of the MAP pulse amplitude appears while the cuff pressure is under the MAP value.

3 Blood pressure monitor implementation
Blood pressure monitor is implemented using Freescale medical-oriented Kinetis K53 MCUs and Flexis MM devices, which
feature the following characteristics:

• 16-bit ADC
• 12-bit DAC
• 2x programmable gain operational amplifiers (OpAmps)
• 2x transimpendance amplifiers (TRIAMPS)
• Vref generator
• Set of DSP instructions including MAC (Only K5X Family)
• Multiply and Accumulate (MAC) instruction on MCF51MM

Freescale medical-oriented MCUs reduce the Bill Of Materials (BOM) required for medical applications and provide great
processing capabilities ideal for medical equipment. Nevertheless, some external circuitry is needed for pressure sensing and
cuff control.

3.1 MED-BPM analog front end
MED-BPM Analog Front End (AFE) is a demo board designed for work as a blood pressure monitor in conjunction with a
Freescale medical-oriented MCU. MED-BPM communicates with the MCU using the medical connector, and allows for easy
prototyping and reduced time to market by using the Freescale Tower System. MED-BPM block diagram is shown below
(MED-BPM analog front end).

Blood pressure monitor implementation

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 3

Figure 3. MED-BPM block diagram

3.1.1 Medical connector
The medical connector is a standard connector in Freescale medical-oriented boards (TWR-9S08MM, TWR-MCF51MM and
TWR-K53). This connector includes the most important analog peripherals for medical applications and an I2C channel for
communication. The following table describes medical connector signals.

Table 1. Medical connector signals

1 VCC (3.3V) VSS (GND) 2

3 I2C SDA I2C SCL / PWM 4

5 ADC Differential CH + ADC Differential CH - 6

7 ADC Single Ended CH DAC Out 8

9 Op-Amp 1 Out Op-Amp 2 Out 10

11 Op-Amp 1 Input - Op-Amp 2 Input - 12

13 Op-Amp 1 Input + Op-Amp 2 Input + 14

15 TRIAMP 1 Input + TRIAMP 2 Input + 16

17 TRIAMP 1 Input - TRIAMP 2 Input - 18

Table continues on the next page...

Blood pressure monitor implementation

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

4 Freescale Semiconductor, Inc.

Table 1. Medical connector signals (continued)

19 TRIAMP 1 Out TRIAMP 2 Out 20

3.1.2 Arm cuff pressure control
MED-BPM works using an oscillometric method for blood pressure measurements. This is a noninvasive method which
requires an external arm cuff in order to occlude the patient’s arm and detect the systolic and diastolic arterial pressure. The
arm cuff is inflated using an external air pump controlled with an MCU GPIO pin, and deflated by activating an escape valve
with another GPIO pin.

Because the current provided by the USB port (500 mA) is not enough to activate the air pump and the valve (600 mA), those
external components are activated by using an external power source which provides sufficient current. An optocoupler is
needed for coupling MCU control signals with the components to activate. Figure 4 shows the coupling stage.

Figure 4. Coupling stage

Output from the optocoupler is connected to a MOSFET working as a switch, so the air pump and valve mechanisms can be
activated successfully.

3.1.3 External elements connector
After the optocoupling and switching stage, a connector for an external air pump, escape valve, and batteries is placed on the
MED-BPM board. This allows the control of external components using MCU signals. The air pump motor and escape valve
are powered using two external AA 1.5 V batteries, because USB output cannot provide enough current to drive those
devices. Figure 5 shows the placement of the connector pins.

Blood pressure monitor implementation

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 5

Figure 5. External components connector

3.1.4 Pressure sensor
The functionality of the oscillometric method is based on the measurement of the pressure variations in the arm cuff. Pressure
in the cuff is measured by using the Freescale Pressure Sensor MP3V5050 which integrates on-chip, bipolar OpAmp circuitry
and thin film resistor networks to provide a high output signal and temperature compensation. Main characteristics of the
MP3V5050 are featured in the following table

Table 2. MPV3V5050 main
chracteristics

Characteristic Value Unit

Pressure range 1–50 kPa

Supply voltage 2.7–3.3 VDC

Accuracy ±2.5 %VFSS

Sensitivity 54 mV/kPa

.

MP3V5050 delivers a voltage proportional to the input pressure. This sensor is directly connected to the amplification stage.
More information can be found on freescale.com.

3.1.5 Signal filtering and amplification
This stage is composed of three filters, one buffer circuit, and one non-inverting amplifier (Figure 6). Filters are first order
RC passive type, and the cut-off frequency is described by the following formula.

1. A signal is passed through a 10 Hz RC low-pass filter (LPF) composed of a resistor and a capacitor in order to remove
high-frequency noise.

2. Then the signal is passed through a buffer circuit consisting of a single Op-Amp in buffer mode to couple the signal to
the sensor. The output from the buffer circuit is where the arterial pressure measurements are taken.

3. The signal is then filtered again with a 2.2 Hz RC high-pass filter which removes high-frequency noise and gets a
cleaner signal for amplification.

4. This signal is amplified using a non-inverting amplifier composed by a second Op-Amp and two resistors, (100 kΩ and
1 kΩ) generating a gain of 101 so cuff oscillations can be distinguished better.

5. After this stage, the signal is filtered again with another 10 Hz RC LPF so high-frequency noise can be removed.

Figure 6 shows the filtering and amplification stage.

Blood pressure monitor implementation

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

6 Freescale Semiconductor, Inc.

http://www.freescale.com

Figure 6. Filtering and amplification circuit

3.2 Functional description
MED-BPM demo uses a variation of the oscillometric method called Ramp-Up method that takes measurements while the
cuff is inflating.

In the Ramp-Up method, an inflatable air cuff is placed on the patient’s left arm and is adjusted so it is tight around the arm.
The escape valve is closed and the air pump starts to inflate the cuff. While inflating, the main pressure in the cuff is
monitored and amplified in order to get the cuff pressure oscillations (Figure 7).

Figure 7. Pressure oscillations

These oscillations are constantly checked. On each oscillation, the main cuff pressure is measured and the oscillation
amplitude is saved. When the pressure has reached a maximum value, the motor stops inflating and valve opens in order to
deflate the cuff. While cuff is deflating calculations are performed.

Blood pressure monitor implementation

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 7

First, all the pulses are checked in order to find the one with the largest amplitude. The pulse with the largest amplitude
represents the MAP, and the main cuff pressure recorded during this pulse is registered as MAP.

Systolic and diastolic arterial pressures are calculated using the method mentioned previously in Blood pressure monitor
operating principle.

4 Software model
The MED-BPM demo is based on the Freescale USB stack and behaves as an USB CDC (Communication Device Class).
The demo works using state machines which execute one state per cycle, to avoid CPU kidnapping and emulating
parallelism.

Figure 8 shows the general software model.

Figure 8. General software model

Each state machine is a task that has to be performed by the MCU. The system can perform several tasks, completing one at
time and not running the next one until the previous one is accomplished in a FIFO (First In First Out) order. Each state
machine contains several sub-state machines allowing equal distribution of the CPU load among all the state machines. As
mentioned before, software is based on the Freescale USB Stack with PHDC. More information about this software can be
found in the USB Stack with PHDC API Reference Manual available at freescale.com.

MED-BPM software is divided in three main parts—Initialization, communication with PC, and measurement execution.

Software model

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

8 Freescale Semiconductor, Inc.

http://www.freescale.com

4.1 Initialization
The first step when running MED-BPM demo is to initialize all the peripherals needed for demo execution. On the main()
function, function Init_Sys() is called first. This function initializes the clock and interruptions for working with USB. After
this, some required peripherals for AFEs and the Software Timer are initialized for first use. USB is initialized as a CDC
(Communication Device Class) so communications with the host can start. After this, the state machines execute in an
infinite loop. The following figure depicts the initialization routine.

Software model

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 9

Figure 9. Initialization routine

Software model

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

10 Freescale Semiconductor, Inc.

4.2 Communication with PC
The PC communicates with the device via USB. The device is configured for working as a CDC (Communication Device
Class) and behaves as a Virtual Com Port installed on the computer.

4.2.1 Command reception
Function SerialComm_PeriodicTask is the CDC Virtual Com Port routine and is called by the main program. This function is
constantly checking the USB input buffer for received data. When a data packet has been received, the function checks if the
received packet is a request according to the communication protocol. If it is, the function checks the command requested and
executes it. Figure 10 shows the flow diagram of the function SerialComm_PeriodickTask.

Software model

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 11

Figure 10. SerialComm_PeriodickTask flow diagram

4.2.2 Command execution
MED-BPM recognizes the four request commands.

• BpmStartMeasurementReq: Starts blood pressure measurements.
• BpmStopMeasurementReq: Stops blood pressure measurements.
• BpmStartLeakTestReq: Starts leakage tests on the cuff.
• BpmStopLeakTestReq: Stops leakage tests on the cuff.

Software model

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

12 Freescale Semiconductor, Inc.

When any of these commands are executed, a confirmation packet is generated according to the Communication Protocol
(see Communication protocol) indicating that the command has been received. When Start Requests are executed, a
confirmation packet also indicates if the command was successfully executed or not. Figure 11 shows a request command
flow.

Figure 11. Request command flow diagram

4.2.3 Sending packets
Function SerialComm_SendData sends the data packets to host. Data packets are stored on the output buffer when they are
created and a data counter variable increases indicating the size of the output buffer. When the function
SerialComm_SendData is called, it checks the size of the data counter variable. If it is not zero, it means that there is
information in the output buffer that needs to be sent. The function calls the CDC interface, part of the USB Stack with
PHDC to send the packet. Figure 12 shows the function’s flow diagram.

Software model

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 13

Figure 12. SerialComm_SendData flow diagram

4.3 Measurement execution
When the function BpmStartMeasurementReq is executed, the function Bpm_StartMeasurement is called. This function
initializes BPM so measurements can be performed. This function first resets all the variables to ensure the initial state, then
it initializes ADCs for working with a 12-bit resolution. Because the first ADC measurements do not represent any useful
information for arterial pressure calculation, those samples are ignored. BpmIgnoreSamplesCounter is loaded with a
predetermined quantity of samples to be ignored.

BpmActualState is set to STATE_MEASURING indicating to the BPM state machine that measurements have to be
performed. A Software Timer is now started for taking an ADC sample each 10 ms. More information about the Software
Timer can be found in Software timer. Finally, the escape valve is closed and air pump motor is activated to start
measurements.

4.3.1 State measuring
In the function Bpm_StartMeasurement, the BPM state machine is taken out of its idle state and set to State Measuring. On
the next state machine execution, the function StateMeasuring is called. Figure 13 shows the StateMeasuring flow diagram.

Software model

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

14 Freescale Semiconductor, Inc.

Figure 13. StateMeasuring flow diagram

During the ramp-up period, cuff pressure is being constantly checked and compared with a maximum reference value in
order to avoid damages to the patient from an excessive inflation. Because the first samples under 40 mmHg do not represent
any useful information to be analyzed, those samples are ignored during the first sub-state. A sample counter is previously
defined indicating the quantity of samples to be ignored.

Software model

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 15

After first samples are ignored, the program searches for oscillations on the main cuff pressure. It looks for the higher point
in each pulse by comparing the new sample with the previous one. If the new sample is bigger than the previous one, the new
sample is set as the higher point in the actual pulse until a higher sample appears. If, after five samples, the new sample is
smaller than the previous one, it is considered that the pulse is now going down and the process of looking for the lowest
point on the actual pulse starts. After both pulses have been determined, the pulse amplitude is calculated and stored into an
array with the main cuff pressure measured in that moment, in order to be analyzed later.

When the maximum allowable pressure in the cuff is reached, the air pump motor is stopped and escape valve is opened.
While cuff is being deflated, calculations are performed into the MCU. The first step is to determine the MAP by finding the
pulse with the biggest amplitude previously stored in the array. The main cuff pressure measured during this pulse is
considered to be the MAP. After this, systolic arterial pressure is determined by finding a pulse with a main cuff pressure
above the MAP and with amplitude of a 70% of the MAP pulse. Diastolic pressure is determined by finding a pulse with a
main cuff pressure under the MAP and with amplitude of a 50% of the MAP pulse. Finally, ADC values are converted into
mmHg in order to be sent to the GUI to be displayed.

5 Running blood pressure monitor demo
The Blood Pressure Monitor Demo was developed for running on the Freescale Tower System. The following steps will
guide users on how to run the Blood Pressure Monitor Demo.

5.1 Tower system configuration
The Freescale Tower System is a modular development platform which allows rapid prototyping, a shorter time to market,
and tool reuse. The Blood Pressure Monitor Demo requires five boards to work, 2 x TWR-ELEV boards, 1 x TWR-SER, 1 x
MED-BPM AFE and a TWR Controller module which can be TWR-K53N512, TWR-MCF51MM or a TWR-S08MM128.
MED-BPM AFE can only be connected to microcontroller modules that include a medical connector. The other Tower
modules can be used together with other modules. More information about the Freescale Tower System can be found on
freescale.com/tower.

The following image shows the elements needed to run the Blood Pressure Monitor demo.

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

16 Freescale Semiconductor, Inc.

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=TOWER_HOME

Figure 14. Elements required to run BPM demo

The blue box contains the air pump, the escape valve, and 2 X AA batteries for driving motor and valve because the USB
port cannot provide sufficient current for those devices. Figure 15 shows the elements in the blue box.

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 17

Figure 15. External control elements

The Blood Pressure Monitor demo works using TWR-K53N51, TWR-MCF51MM, and TWR-S08MM128 controller
modules. The following image shows the three controller boards.

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

18 Freescale Semiconductor, Inc.

Figure 16. Controller boards

5.1.1 Jumper configuration
To run the blood pressure monitor properly, the following jumper configurations must be made on the boards.

TWR-SER jumper configuration
• J10 → 1-2
• J16 → 3-4

TWR-K53N512 jumper configuration
• J1 → Open
• J3 → Open
• J4 → 1-2
• J11 → 1-2
• J15 → 1-2
• J17 → 1-2
• J18 → 1-2

TWR-MCF51MM and TWR-9S08MM128 jumper configuration
• J1 → 1-2
• J2 → 1-2

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 19

• J10 → 2-3
• J11 → 1-2
• J12 → Open
• J18 → 1-2, 9-10, 11-12 and 13-14 Open

5.1.2 System assembly
The Tower system must be assembled by connecting the controller module and the TWR-SER board to the TWR-ELEV
boards. The side of the Controller and TWR-SER boards marked as “Primary” must be connected to the Primary Elevator
and the other side to the Secondary Elevator. The MED-BPM board must be connected to the Controller Board’s medical
connector. The following image shows the tower system assembled.

Figure 17. Tower system assembled

Connect the external components to the MED-BPM so they can be controlled by the MCU. Batteries, Air Pump motor and
valve cables must be connected to the MED-BPM board as shown in Figure 5 on the external elements connector. A single
air tube is connected to the cuff, the air pump, and the escape valve. This tube must be connected to the pressure sensor in
order to be constantly measuring the pressure values on the system. Once the system has been completely assembled, it will
look like Figure 18.

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

20 Freescale Semiconductor, Inc.

Figure 18. Blood Pressure Monitor demo assembled

5.2 Loading application
Software for Blood Pressure Monitor demo was developed on IAR Workbench for ARM® 6.10 for the Kinetis K53 MCU and
in Freescale CodeWarrior 6.3 for MCF51MM256 and MC9S08MM128 MCUs. Each one of these compilers loads the
program into the MCU in a different manner. This part of the document will explain how to load the program on each type of
compiler.

5.2.1 Loading IAR project on K53
The following steps will guide the user to load the IAR project on K53.

1. Connect the USB cable to the TWR-K53N512 board. The device must be recognized as an Open Source BDM–Debug
Port. Install the Open Source BDM drivers in the IAR folder.

2. Choose Menu > Project > Options to open the project and verify the debugger in the project options panel. Select the
category Debugger and check that PE micro is selected (Figure 19).

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 21

Figure 19. Debugger selection
3. Load the project into the MCU by clicking the DEBUG button (Figure 20). The project will compile automatically and

load into the MCU. After that, disconnect the USB cable from the TWR-K53N512 board.

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

22 Freescale Semiconductor, Inc.

Figure 20. Debug button

5.2.2 Loading CodeWarrior project on MM devices
The following steps guide the user to load the CodeWarrior project on MM devices.

1. Connect a USB cable to the TWR-SER board in order to turn on the board. Connect a USB cable to the TWR-MM
Controller module. The device must be recognized as an Open Source BDM–Debug Port. Install the Open Source
BDM drivers on the CodeWarrior folder.

2. Open the CodeWarrior project for the MM module to be used and verify that the option Open Source BDM is selected
for debugging (Figure 21). Then, press the Debug button to automatically compile the program and load it into the
MCU.

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 23

Figure 21. CodeWarrior window
3. Once the program has been loaded into the MCU, disconnect the USB cable from both TWR-SER and MM controller

boards.

5.3 Running demo
Once the Tower System has been configured and the project loaded into the MCU (Tower system configuration & Loading
application), demo can be used. The following steps must be completed in order to run the demo successfully.

1. Connect the USB cable to the TWR-SER board as shown in Figure 22.

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

24 Freescale Semiconductor, Inc.

Figure 22. Connecting TWR-SER USB cable
2. The device must be recognized as a Virtual Com Port. Install the driver for Virtual Com Port included in the project

folder.
3. Once the driver has been installed and device recognized, open the Graphic User Interface (GUI). A window will

appear asking for the COM PORT number assigned to the device. Select the appropriate COM PORT number and click
OK (Figure 23). The GUI interface will appear on screen. (Figure 24).

Figure 23. Port chooser

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 25

Figure 24. GUI main screen
4. Verify that Caps Lock is not activated on keyboard and then press Shift + D in order to start GUI in doctor mode

(Figure 25).

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

26 Freescale Semiconductor, Inc.

Figure 25. Doctor mode
5. Place the cuff on the left arm with the plastic hose pointing to the brachial artery, and adjust the cuff to the arm size as

shown in Figure 26.

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 27

Figure 26. Cuff placement
6. Click the BPM area on the GUI. Measurements will start and after a while, the measurements will appear on screen

(Figure 27).

Running blood pressure monitor demo

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

28 Freescale Semiconductor, Inc.

Figure 27. GUI running

6 References
Following is a list of online resources related to this application note, available on the Freescale website.

• More information about Freescale Medical portfolio can be found on freescale.com/Medical.
• More Tower System information can be found on freescale.com/tower.
• Software for MM devices was developed using CodeWarrior V6.3 and can be found on freescale.com/CodeWarrior.
• Software for Kinetis was developed and tested on IAR v6.1 for ARM. Download 30-day evaluation software from IAR

Webpage in the section Dowloads. (iar.com/Downloads)
• Follow us at facebook.com/freescale, twitter.com/freescale, and youtube.com/freescale.

7 Conclusions
Freescale Medical portfolio offers a wide range of solutions for medical developments. Kinetis K50 family and Flexis MM
are examples of high-performance, ultra low-power MCUs embedding analog peripherals, ideal for biosignals treatment and
great processing capabilities for digital signal treatment.

References

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 29

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=APLMEDICAL&tid=vanMEDICAL
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=TOWER_HOME
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=CW_HOME
http://www.iar.com/Service-Center/Downloads/
http://www.facebook.com/freescale
http://www.twitter.com/freescale
http://www.youtube.com/freescale

The Blood Pressure Monitor is an example of the capabilities of the Freescale Medical MCU portfolio, allowing the
development of medical applications using the MCU and a few external components.

Appendix A Software timer
Software timer functions handle an array of subroutines with predefined elapse times. The software timer is constantly
checking the elapse times, and when one or more of these times are reached, the respective subroutine is called.

The software timer allows better management of time dependent subroutines because only one MCU timer is needed. The
timer must be configured to generate 1 ms interruptions and a variable must be increased by one on every interrupt execution
indicating the quantity of milliseconds elapsed.

A.1 Initializing software timer

An MCU timer must be initialized to generate an interrupt every 1 ms. On the interrupt routine a global variable must be
increased by one on every interrupt execution. This variable must be specified on the file SwTimer.h and the initialization
function must be called on the function SwTimer_Init in the file SwTimer.c.

At the beginning of the application, function SwTimer_Init must be called. This function cleans the objects array, releasing
all the software timers and leaving them available for application. The MCU timer initialization must be called in this
function.

A.2 Creating a software timer

After the Software Timer has been initialized, a Timer can be created by using the function SwTimer_CreateTimer(pFunc_t
callBackFunc). The input parameter is the name of the function to be called. When this function is executed, it returns a
timerId value that is necessary to start or stop the created timer. If a 0xFF is returned as timerId, this means that the
maximum number of timers has been reached and the timer could not be initialized. The maximum number of timers is
defined as MAX_TIMER_OBJECTS and can be found on file SwTimer.h.

Example: My_Timer_Id = SwTimer_CreateTimer(Function_To_Be_Called);

Function SwTimer_StartTimer(UINT8 timerId, UINT16 tickPeriod_ms) starts the SwTimer, the input parameter timerId is
the timerId number returned by the Create Timer function when the timer was created. tickPeriod_ms is the period of time in
milliseconds that has to elapse to execute the function. The following example starts the previous created timer to execute
Function_To_Be_Called every 10 ms.

Example: SwTimer_StartTimer(My_Timer_Id, 10);

When the time defined has elapsed, the function Function_To_Be_Called is executed and the timer is deactivated. A new
Start Timer statement must be written to activate the timer again, when the programmed time has elapsed. Function
SwTimer_StopTimer(UINT8 timerId) stops the selected timer.

A.3 Functional description

When the function SwTimer_CreateTimer is called, a new object in the Timer Object Array is created. Function
SwTimer_PeriodicTask is constantly called on the Main Application Routine and checks all the timer objects on the Timer
Object Array. When the MCU timer, configured to interrupt every 1 ms, generates an interrupt, a variable increases its count
by one indicating that 1 ms has elapsed. The SwTimer_PeriodicTask function checks this variable. If it is different than zero,

Initializing software timer

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

30 Freescale Semiconductor, Inc.

the value of this variable is taken away from the Timer Object programmed Time. If the programmed time of a Timer Object
reaches zero, the subroutine declared for that timer on the function SwTimer_CreateTimer is called and the created times is
set to INACTIVE until a new SwTimer_StartTimer is called.

The following block diagram shows the SwTimer_PeriodicTask subroutine.

Functional description

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 31

Figure A-1. Block diagram

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

32 Freescale Semiconductor, Inc.

Appendix B Communication protocol
The application communicates with the Graphic User Interface (GUI) in the PC using the Freescale USB Stack with PHDC
with the device acting as a CDC (Communication Device Class). The device communicates via a serial interface similar to
the RS232 communications standard, but emulating a virtual COM port.

After the device has been connected and a proper driver has been installed, the PC recognizes it as a Virtual COM Port and it
is accessible, for example using HyperTerminal. Communication is established using the following parameters.

• Bits per second—115,200
• Data bits—8
• Parity—None
• Stop Bits—1
• Flow Control — None

Communication starts when the host (PC) sends a request packet indicating to the device the action to perform. The device
then responds with a confirmation packet indicating to host that the command has been received. At this point, the host must
be prepared to receive data packets from the device and show the data received on the GUI. Communication finishes when
the host sends a request packet indicating the device to stop. The following block diagram describes the data flow.

Figure B-1. Communication protocol data flow

Packets sent between host and device have a specific structure. The Packet is divided in four main parts:
• Packet Type
• Command Opcode

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 33

• Data length
• Data

The image below shows the packet structure.

Figure B-2. Packet structure

B.1 Packet type
The Packet Type byte defines the kind of packet to be sent. There are three kinds of packets that can be sent between host and
device.

B.1.1 REQ packet
This is a request packet, this kind of packet is used by the host to request to the device to perform some action like a start or
stop measurement. A REQ packet is usually composed of 2 bytes, Packet Type and Command Opcode. Data Length and Data
Packet bytes are not required.

B.1.2 CFM packet
This is a confirmation packet; this kind of packet is used by the device to confirm to the host that a command has been
received, and sends a response indicating if the command is accepted, or if the device is busy.

B.1.3 IND packet
This is an indication packet. This kind of packet is used to indicate to the host that an event has occurred in the device and
data needs to be sent. For example, this is used when the device has a new data to be sent to the GUI.

The following table shows the HEX codes for every Packet Type.

Table B-1. HEX codes

Packet type Hex codes

REQ 0x52

CFM 0x43

IND 0x69

Packet type

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

34 Freescale Semiconductor, Inc.

B.2 Command opcode
The Command Opcode byte indicates the action performed for a REQ packet, and the kind of confirmation or indication, in
case of CFM and IND packet types. There are different Opcodes for every Packet Type. The following table shows the
different Opcodes. See Note1

Table B-2. Opcodes

Opcode REQ CFM IND Opcodes
(Hex)

Glucose meter

GLU_START_MEASUREMENT X X 0x00

GLU_ABORT_MEASUREMENT X X 0x01

GLU_START_CALIBRATION X X 0x02

GLU_BLOOD_DETECTED X 0x03

GLU_MEASUREMENT_COMPLETE_OK X 0x04

GLU_CALIBRATION_COMPLETE_OK X 0x05

Blood Pressure Meter

BPM_START_MEASUREMENT X X 0x06

BPM_ABORT_MEASUREMENT X X 0x07

BPM_MEASUREMENT_COMPLETE_OK X 0x08

BPM_MEASUREMENT_ERROR X 0x09

BPM_START_LEAK_TEST X X 0x0A

BPM_ABORT_LEAK_TEST X X 0x0B

BPM_LEAK_TEST_COMPLETE X 0x0C

BPM_SEND_PRESSURE_VALUE_TO_PC X 0x28

Electro Cardiograph Opcode

ECG_HEART_RATE_START_MEASUREMENT X X 0x0D

ECG_HEART_RATE_ABORT_MEASUREMENT X X 0x0E

ECG_HEART_RATE_MEASUREMENT_COMPLETE_OK X 0x0F

ECG_HEART_RATE_MEASUREMENT_ERROR X 0x10

ECG_DIAGNOSTIC_MODE_START_MEASUREMENT X X 0x12

ECG_DIAGNOSTIC_MODE_STOP_MEASUREMENT X X 0x13

ECG_DIAGNOSTIC_MODE_NEW_DATA_READY X 0x14

Thermometer

TMP_READ_TEMEPRATURE X X 0x15

Height scale

HGT_READ_HEIGHT X X 0x16

Weight scale

WGT_READ_WEIGHT X X 0x17

Spirometer

SPR_DIAGNOSTIC_MODE_START_MEASURMENT X X 0x0C

Table continues on the next page...

1. Software related with this application note does not respond to all of these commands.

Command opcode

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 35

Table B-2. Opcodes (continued)

Opcode REQ CFM IND Opcodes
(Hex)

SPR_DIAGNOSTIC_MODE_STOP_MEASURMENT X X 0x0D

SPR_DIAGNOSTIC_MODE_NEW_DATA_READY X 0x0E

Pulse oximetry

SPO2_START_MEASURMENT X X 0x21

SPO2_ABORT_MEASURMENT X X 0x22

SPO2_MEASURMENT_COMPLETE_OK X 0x23

SPO2_MEASURMENT_ERROR X 0x24

SPO2_DIAGNOSTIC_MODE_START_MEASURMENT X X 0x25

SPO2_DIAGNOSTIC_MODE _STOP_MEASURMENT X X 0x26

SPO2_DIAGNOSTIC_MODE_NEW_DATA_READY X 0x27

0x21

System commands

SYS_CHECK_DEVICE_CONNECTION X X 0x29

SYS_RESTART_SYSTEM X 0x2A

B.3 Data length and data string
The data length and data string bytes are the data quantity count and the data itself. The data length byte represents the
number of bytes contained into the data string. The data string is the information sent, just the data, therefore the Data Length
byte must not count the Packet Type byte, the Command Opcode byte or itself.

B.4 Functional description

Communication starts when the host sends a REQ packet indicating to the device to start a new measurement. The host must
send a REQ Packet Type to start transactions (Figure B-3).

Figure B-3. Start packet sent by host

The Start Opcode can be any Opcode related with start a measurement, for example, if we wanted to start the ECG in
diagnostic mode, the Data Packet will look like Figure B-4.

Data length and data string

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

36 Freescale Semiconductor, Inc.

Figure B-4. Starting ECG in diagnostic mode

0x52 is the HEX code for a request (REQ) Packet Type, 0x12 corresponds to
ECG_DIAGNOSTIC_MODE_START_MEASUREMENT. After sending the REQ packet, a CFM packet must be received
indicating the status of the device. The received packet must look like Figure B-5.

Figure B-5. Confirmation packet structure

The error byte indicates the device status. The table below shows possible error codes.

Table B-3. Error codes

Error HEX code

OK 0x00

BUSY 0x01

INVALID OPCODE 0x02

If the error byte received corresponds to OK, the device starts sending data as soon as a new data packet is ready. If BUSY
error is received, the host must try to communicate later. If the error received is INVALID OPCODE, data sent and
transmission lines must be checked.

If a CFM packet with an OK error has been received, the device starts sending Information related with the measurement
requested. This is performed using indication packets (IND). Indication packet structure is shown in Figure B-6.

Figure B-6. Indication packet structure

The first byte contains the HEX code for an Indication Packet type. The second byte contains the Opcode for the kind of
indication, for example if the device is sending an Indication Packet for
ECG_DIAGNOSTIC_MODE_NEW_DATA_READY, the HEX code read in this position is 0x14 because this is the
Indication Opcode for a new set of data from the ECG diagnostic mode. The next byte is the Length which indicates the
quantity of data sent.

The first couple of bytes after the Length byte are the Packet ID bytes. The Packet ID is a 16-bit data divided in 2 bytes to be
sent and contains the number of packets sent. The Packet ID number of a data packet is the Packet ID of the previous packet
+ 1. For example, if the Packet ID of the previous packet sent was 0x0009, the Packet ID of the next packet must be 0x000A.
This allows the GUI to determine if a packet is missing.

The following data bytes are the Data String and contain the information of the measurement requested. The Data quantity is
determined by the Data Length byte and data is interpreted depending on the kind of measurement. For example, for the
MED-EKG Demo from Data 2 to Data n-1 contains the data graphed. Every point in the graph is represented by a 16-bit
signed number, this means that every 2 data bytes in the packet, means it is one point in the graph. The first byte is the most
significant part of the long (16-bits) and the second byte is the less significant part. The long is signed using 16-bit
complement. The last byte contains the Heart Rate measurement. This byte must be taken as it is, an unsigned char data that
contains the number of beats per minute. Figure B-7 shows a typical MED-EKG demo indication packet.

Functional description

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

Freescale Semiconductor, Inc. 37

Figure B-7. MED-EKG IND packet

When a Stop request is sent by the host, the device stops sending data and waits for a new Start request command. Figure B-8
shows the Stop Command structure.

Figure B-8. Stop command structure

Immediately after this, the device must acknowledge with a CFM packet shown in Figure B-9.

Figure B-9. Stop CFM packet

The CFM packet for stop does not require an error code, it just must be received. If this packet has not been received, the
request has been rejected or not taken and must be sent again to stop the measurements.

Blood Pressure Monitor Fundamentals and Design, Rev. 2, 12/2012

38 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4328
Rev. 2, 12/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	Blood pressure fundamentals
	Arterial pressure
	Blood pressure monitor operating principle

	Blood pressure monitor implementation
	MED-BPM analog front end
	Medical connector
	Arm cuff pressure control
	External elements connector
	Pressure sensor
	Signal filtering and amplification

	Functional description

	Software model
	Initialization
	Communication with PC
	Command reception
	Command execution
	Sending packets

	Measurement execution
	State measuring

	Running blood pressure monitor demo
	Tower system configuration
	Jumper configuration
	System assembly

	Loading application
	Loading IAR project on K53
	Loading CodeWarrior project on MM devices

	Running demo

	References
	Conclusions
	Appendix A: Software timer
	Initializing software timer
	Creating a software timer
	Functional description

	Appendix B: Communication protocol
	Packet type
	REQ packet
	CFM packet
	IND packet

	Command opcode
	Data length and data string
	Functional description

