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I. Abstract 

The Bloomberg Carbon Clock is a web-based graphic that estimates in real time the global 

monthly average atmospheric concentration of carbon dioxide. This paper describes the 

statistical tools used to determine the Clock’s values, which are extrapolated from a rolling 

monthly average of National Oceanic and Atmospheric Administration weekly data. We use 

two independent techniques: Singular Spectrum Analysis (SSA), which identifies subtle 

trends in data and provides missing values, and a “wavelet” function that combines the trend, 

seasonality, and annual variability. 

II. A Different Way to Tell Time 

Carbon dioxide (CO2) is the main driver of global warming, making up more than 75 

percent of climate pollution annually. Human activity is “extremely likely to have been the 

dominant cause of the observed warming since the mid-20th century,” the 

Intergovernmental Panel on Climate Change concluded in its most recent assessment.
i
 

The Bloomberg Carbon Clock is a graphic display that estimates in real time the global 

monthly average atmospheric concentration of carbon dioxide. It can be found at the 

website http://www.bloomberg.com/carbonclock. The real time display of the changing 

CO2 is the “different way to tell time”. Here is one view of the Clock taken on 9/6/16; it is 

described in detail in the paper: 

 

 

http://www.bloomberg.com/carbonclock
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A little bit of CO2, just 0.04 percent, goes a long way when it comes to trapping the sun’s 

heat. If you divide a volume of air from the atmosphere into a million parts, you can expect 

about 400 parts to be CO2. That’s the unit scientists use to measure its concentration—parts 

per million, or ppm. 

Before industrialization, the level stood at approximately 280 ppm, near the upper bound 

for at least 800,000 years. The first Mauna Loa weekly average stood at 316 ppm on March 

29, 1958. It is now beyond the 400 ppm threshold
1
. The upward trend has driven scientific 

and policy debates about climate change and what to do about it for a half century 

Month-on-month changes in the CO2 data are relatively insignificant compared with the 

long-term trend over years. The threshold “400 ppm” itself is largely symbolic. To detect 

significant differences in the climate response to CO2, scientists and policymakers study 

scenarios that may differ by 50 ppm, 100 ppm, or more. For example, the real danger zone, 

according to peer-reviewed research, is beyond approximately 450ppm, with the likelier 

safe zone below 350ppm, an average level passed around 1988.
ii
  

It’s difficult to say with desirable precision exactly how much warming a given CO2 level 

may bring. The concentration is already more than 40 percent higher than the preindustrial 

average. Scientists know that even more is even worse, and provide a range of estimates of 

how destructive climate change may become. Research summarized by the IPCC projects 

that a doubling of the pre-industrial CO2 level may bring between 1.5C and 4.5C of warming. 

The year 2015 is likely to be the first with global average temperature a full degree Celsius 

above the preindustrial level. The atmosphere is expected to smash the annual global heat 

record in 2016 for the third consecutive year. 

 

Scientists have watched the CO2 level rise since late 1950s, when Charles David Keeling, a 

Scripps Institution geochemist, initiated monitoring at the Mauna Loa Observatory, in 

Hawaii, and elsewhere. Over six decades, the plotted CO2 data—Keeling Curve—have 

become iconic in Earth science 

Like Scripps, the National Oceanic and Atmospheric Administration measures CO2 at the 

Mauna Loa Observatory. It also collects data from a global network of observing stations, 

towers, flights, and flasks.  

The procedure described in this paper relies on a rolling monthly average based on NOAA 

weekly data.  

CO2 emitted from a power plant or other source joins the atmosphere relatively quickly, its 

plume dissolving within a day or so, depending on winds and weather. On a larger scale, 

CO2 pollution from the Northern Hemisphere, where most of it is produced, takes longer to 

                                                           
1
 Measurements in the Southern Hemisphere also (consistently) show CO2 concentration over 400 ppm. 
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diffuse into the Southern Hemisphere. Averaging the data over time helps to eliminate local 

weather or observational biases and provides a closer estimate of the underlying 

background trend. Here is a graph of the Mauna Loa data as of August 29, 2016: 

 

This graph from the Scripps Institution of Oceanography website
2
 shows how CO2 

averages fluctuate depending on the observational averaging time frame. Daily and weekly 

averages contain “noise” that make the trend look less clear. The picture comes into sharper 

focus when looking at monthly and annual data.  

The Bloomberg Carbon Clock is projected from the average of the four most recent NOAA 

weekly estimates, and therefore may be slightly lower or higher than other measures at any 

given moment.  

III. Bloomberg Carbon Clock: How It Works 

1. Two Techniques – SSA and the Wavelet 
Scientists rely on statistical tools that ensure the data they study are as valid and complete 

as possible. When a time-series has gaps, or ends prematurely, geophysicists and others 

typically apply any of several mathematical techniques that can interpolate the gaps and 

extrapolate past the end of data.  

                                                           
2
 See https://scripps.ucsd.edu/programs/keelingcurve/ 

 

https://scripps.ucsd.edu/programs/keelingcurve/
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We use two independent techniques to project CO2 levels for the Clock.
3 

Singular Spectrum Analysis
iii

 (SSA) is a statistical technique that identifies subtle trends in 

data and estimates any missing values. Scientists use SSA and similar tools to project a 

trend past the end of a time series (a “cliff”) or interpolate data missing from the time series 

(a “hole”).
4
 Holes exist because some data are not reported between two existing data 

points. A “cliff” exists either because no data are reported past a given date in the past up to 

now, or because we want to forecast the data into the future. Our procedure
5
 is consistent 

with the global SSA analysis of historical CO2 data performed by Dettinger and Ghil in 

1998,
iv

 although that study did not forecast CO2.  

The second statistical technique is a formula derived from the Mauna Loa data itself. We 

call this function a “wavelet” for its superficial resemblance to a wave, and functions 

known elsewhere in mathematics. The wavelet is made up of three terms:  

● Trend line: A “LOESS” quadratic function in time captures the slope of the CO2 trend 

month by month, which has risen on average every year since monitoring began in 1958.  

● Seasonal change: The second term is a sine wave, which mimics the seasonal ups and 

downs of data. 

● Variability: The third term, a modulating function, multiplies the sine wave. It 

modulates the amplitude and positions of CO2’s seasonal peaks and dips. 

 

2. Short-Term CO2 Forecasting: Pedagogical Example  
This section describes how we forecast the CO2 level and apply an algorithm that reduces 

noise, or randomness, that comes mostly from observational sampling effects.
6
 

CO2 is measured continuously. Its daily, weekly, monthly, and annual averages tend not to 

match because of short-term variation—noise—that masks the observational CO2 signal. 

Weather conditions around the Mauna Loa Observatory push the short-term averages 

randomly above or below the longer term average values.  

                                                           
3
 Acknowledgments: We thank Gavin Schmidt for helpful suggestions motivating our choice of “wavelet” 

phenomenological functions and for suggesting the long-term forecast simulation test. We also thank Michael Ghil 

for helpful conversations.  

4
 SSA and its multivariate extension MSSA is being used at Bloomberg LP to improve data quality by filling holes 

for missing data and removing erroneous data spikes in time series. SSA/MSSA is a common geophysics technique 

(see refs.) 

 
5
 Some other standard forecast methods (ARIMA, Prony analysis, wavelets without SSA) were also examined.  

Tests indicate that the SSA-wavelet procedure makes more reliable projections.    

 
6
 An introduction to SSA is in Appendix IV. 
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NOAA’s Earth System Research Laboratory publishes CO2 data weekly.
7
 We average the 

four most recent weekly updates to arrive at single monthly updates. Hence, one forecast 

month in the model may not correspond to a calendar month. 

3. How The Model Works8  
1. Training the model: The SSA forecast starts with a fitting procedure. Suppose that we 

are generating the projections for January.
9
 The four weekly data points in December are 

averaged to a monthly data point, which is assigned to Dec. 15. Three years of previous 

monthly data are used for obtaining the wavelet function by a standard least-squares fitting 

routine. The data are approximated using the smoothing function 
   fit

f t  —the quadratic 

trend term plus the sine wave term. We then apply a modulating Gaussian, or bell-shaped, 

function  Gf t  , determined separately for each half year cycle, so that the tops and 

bottoms of the seasonal curves better resemble the last three years of data. That produces
   modulated

f t , the modulated wavelet function.   

 

2. Using the Model: The three years of monthly data described in (1) are interpolated into 

daily estimates of the modulated wavelet function, with one change. The forecast wavelet is 

obtained by extrapolating the last historical wavelet without modulation. This tentative 

forecast is successively modified by the SSA algorithm until successive steps of the SSA 

algorithm become smaller than a convergence tolerance specified in advance. The SSA 

algorithm, which is described in detail in appendix IV, generates the forecast for January. 

Linear interpolation from the forecast provides the second-by-second readings displayed on 

the Clock. 

 

3. The date moves to Feb. 1 and the steps above are repeated. The algorithm updates 

monthly. On Feb. 1, the original forecast is redone, using the January average. The new 

data point also allows us to refine or update the January prediction. The differences 

between the forecast and updates (measured historically) allows us to provide a statistical 

measure of uncertainty for a given forecast in advance.  

                                                           
7
 See http://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html 

 
8
 In practice, we update the Clock weekly, not monthly, as in this example. For the Clock’s accompanying graphic 

display, we produce an annual update. 

 
9
 The numerical results in this paper approximate the monthly average CO2 for a month with the average of the four 

most recent weekly data points.  

 

http://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html
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4. Formulas for the Wavelet 

The above description defines
   modulated

f t , the final function for describing the data using 

our smoothing procedure, where t is the time. We call this the “wavelet”. We use daily 

interpolation of these functions. Here are the formulas for the components of the wavelet:  

● Quadratic, or trend line function:   2

Qf t A Bt Ct     

● Sine wave, or seasonal variation function:    sin 2Sf t M t         

● Modulating Gaussian function, which compensates for variability in annual peaks and 

troughs in the data:    
 

2
(Max data)

1/2
2

2
2 exp

2
G G

G

t t
f t 




 
  
 
 

   

The monthly fit 
   fit

f t  and modulated function 
   modulated

f t  are defined as
10

  

       fit

Q Sf t f t f t       (1.1) 

         modulated

Q S Gf t f t f t f t      (1.2) 

We can refine the model with a second sine wave (the “leaf term”) added to the seasonal 

variation function  Sf t . The leaf term accounts for an extra observed increase of CO2 in 

autumn
11

. Defining  2 t      , the new definition of   Sf t  is
12

,  

 

     1 2sin sin 2Sf t M M        (1.3) 

  

                                                           
10

 The normalization is determined by matching the maximum (or minimum) data value and position in time using 

the two parameters in the Gaussian function. 

 
11

 We think it is physically reasonable that this “leaf” term corresponds to leaves falling off trees and the decay of 

flora in the Northern Hemisphere in autumn. The results we obtain do not depend on this interpretation. 

 
12

 At the end of the paper, we give some numerical results using this refined model with the leaf term. 
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IV. Numerical Results and Figures 

1. A decade of data 
Figure 1 shows weekly NOAA CO2 data in ppm from Mauna Loa for 2005-2015.   

  

Figure 1: Weekly NOAA CO2 data in ppm from Mauna Loa 

 

The CO2 concentration has risen by roughly 85 ppm, or 27 percent, since 1958. In the last 

10 years, it has risen from about 376 ppm past 400 ppm. We average the most recent four 

weekly data points to generate a monthly average, a standard practice in research that 

reduces noise.  
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2. Forecast trend, extrapolated from last three years 
The model “learns” the CO2 trend by looking at three years of data. The one-month 

projection in Figure 2 is shown in red (at the far right end).  

 

Figure 2: One SSA forecast and one function fit—the input to SSA—using previous 3 

years of data. Note that this is one fit and not a concatenation of monthly updates. The 

forecast (Red line at right end) was made on Oct. 1, 2013 for the October period Oct. 1-

31. The Yellow oscillating line shows the function fit up to Oct. 1. The relatively straight 

Green line shows the quadratic fit, or trend line, up to Oct. 31. 

 

3. A one-month forecast 
Figure 3 below shows the one-month forecast (red line at the far right of the oscillating 

curve), including the updating in the procedure as described above: 
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Figure 3: SSA five-year update and one-month forecast. The short Red line far to the right 

in the graph shows SSA one-month forecast (statistically this is “out of sample”). The Blue 

line is the SSA update with new information included. The Green line is the quadratic 

function trend from the fit, updated monthly. Open circles are monthly CO2 data. 
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4. Checking the forecast with a back test 
The data serve as the ultimate check on the Clock’s forecast. Each month’s forecast can 

also be updated with a new SSA fit once that month’s data are in
13

. This provides a 

backtest of the forecast. The results are shown in Figure 4.  . 

 

Figure 4: SSA five-year forecast and back test result. Red line: SSA forecast (statistically 

“out of sample”). Blue Line: SSA update with new information. Green line: quadratic fit 

to trend. Open circles are monthly data, each obtained by averaging weekly data. 

 

Every time a new data point comes in, we re-run the SSA algorithm. That’s the blue line, 

an update that checks the original forecast. The green line in Figure 3 is the main trend, the 

quadratic function, with fluctuations that reflect monthly variability
14

.   

                                                           
13

 The forecast takes place in a “cliff” period that contains no data. The updated information has a new data point at 

the end of the cliff, turning the cliff into a “hole”. An SSA updated fit is done with this extra information, and the 

result is compared with the SSA forecast over the same (cliff/hole) time period. 
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Figure 4 shows that the forecasts are quite robust. When the SSA algorithm is re-run, or 

backtested, with each new data point, the update closely matches the original forecast. The 

red line shows the original forecast, made on the first day of every month. The newest 

forecast is visible in the top-right of the graph, beyond the last data point.  

5. Comparison of the updated SSA and wavelet curves 
In Figure 5 we show the wavelet with modulation, compared to the final SSA updated 

curve.  Each month we run the two methods, including the last data point (there is no 

forecasting here). Both methods produce daily interpolation. The results are similar. This is 

a robustness result since we get similar results with either method.  

 

 

Figure 5: SSA 5-year update and function fit. Pink line: wavelet function fit. BLUE line: 

SSA update. Green line: quadratic fit to trend. Open circles are monthly data. 

 

                                                                                                                                                                                           
14

 Note for quadratic fit components: A given fit has 36 points. However for a given month, the graph only shows 

the quadratic component that is obtained on the date just after the new data point is received after this given month. 

That is, previously updated quadratic fit components are not re-updated. 
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6. Forecast Procedure Illustration 
 

 

Figure 6: Illustration of the forecast procedure. The SSA forecast is made on Jan. 1, 2015, 

when the December monthly data point became available, for the period Jan. 1-31. 
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7. The trickiest time of the year 
The CO2 curve bends down in the spring and up in the fall. That’s when projections may be 

most likely to diverge from the data. The curve below shows summer yielding to fall, and, 

consequently, extra CO2 returning to the atmosphere. The figure below gives an example. 

Note that the scale is magnified relative to the other graphs.  

By the end of the month, the forecast lags the updated reading by about 0.1 or 0.2 parts per 

million.  

 

Figure 7: The forecast and update hit a turning point. The forecast (red dots) was made on 

Oct. 1, 2013 for the October period Oct. 1-31. The last monthly data point before the 

forecast was on Sept. 28. The forecast was subsequently updated when a new data point 

became available, resulting in the blue line. 
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8. 30-Year Description and the Cycle Standard Deviation 

Figure 8 is an application of the model for over 30 years. The results show that the model 

operates in a stable fashion over rather long time periods.  

 

 

Figure 8: Blue Line: SSA monthly updates with new information, closely following the 

open circles (monthly data). Green line: the model fitted quadratic trend over 1981-2015, 

updated monthly.   

 

Difference between the forecast and updates for 30-year simulation 

The difference between the forecast and updates in the Blue Line in Figure 8 for the 30-year 

simulation can be characterized by the “cycle standard deviation” (Cycle) ; it has the value  

(Cycle) 0.69ppm        (1.4) 

The cycle standard deviation is used to measure the uncertainty in the forecast cycle, and is used 

for this purpose in the Bloomberg Carbon Clock. 
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Trend behavior over 30 years 

Since the quadratic fitted trend is adjusted every month with new data, the trend reveals more 

than CO2 level’s long-term upward behavior. It also shows occasional flat or even locally 

downward behaviors over short time periods. 

 

9. Two Definitions of Trend and Uncertainty Quantification 
One of the most important features of the CO2 data is the generally upward trend. Our 

methodology allows a sophisticated treatment for three reasons: 1. We can isolate the trend from 

the seasonal oscillations, 2. We have two ways to measure the trend, and 3. Our methodology has 

updating that gives a time-dependence to the trend, providing a rich structure. 

Consider the first SSA reconstruction component denoted as  kR t  with 1k   (see Appendix 

IV). This  1R t  constitutes the SSA-specified trend.   

Hence we have two different reasonable candidates for the CO2 trend: (1) the successive monthly 

wavelet quadratic forecasts  Monthly Adjusted

Qf t , and (2) the monthly-adjusted first SSA 

reconstruction component  Monthly Adjusted

1R t . We can combine these by taking the average. The 

absolute difference      Monthly Adjusted Long Term Average

1QD t f t R t   gives a measure of the 

uncertainty in the trends.  Figure 9 has the results: 
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Figure 9: The average (blue line) of (1) the monthly-updated wavelet quadratic fitted 

trends and (2) the SSA monthly-updated first reconstruction component trends. The error 

bars illustrated by the I  symbols are the absolute differences between the trends. 

 

Forecast Trend Uncertainty 

The forecast trend uncertainty is defined in the same way using the absolute difference between 

(1) the successive monthly wavelet quadratic forecasts  Monthly Adjusted

Qf t , and (2) the monthly-

adjusted first SSA reconstruction component  Monthly Adjusted

1R t  starting at the forecast beginning 

time point. This forecast trend uncertainty is in the final Bloomberg Carbon Clock. 
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10. Comparison of monthly updated trends  
Next we consider the trends both with monthly adjustments, viz  Monthly Adjusted

Qf t  and 

 Monthly Adjusted

1R t . These two monthly adjusted trends are close, as shown in Figure 10. 

 

Figure 10: The model fitted monthly-adjusted trends, over 30 years (1985-2015).  Green 

line: monthly-adjusted quadratic fit to trend. Open circles are monthly data. Blue dotted 

line: Monthly-adjusted trend derived from SSA first reconstruction component. 
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11. The differences of monthly quadratic and SSA trends 
Next we consider the trend differences both with monthly adjustments, viz 

   Monthly Adjusted Monthly Adjusted

1Qf t R t . Figure 13 is the histogram of two monthly adjusted trend 

differences and the graph of a normal distribution (0.07,0.35)ppmN . Again this means that the 

monthly-updated wavelet-defined trend and the monthly-updated SSA-defined trend are 

statistically indistinguishable, and so produce essentially equivalent local-trend definitions. Note 

that the difference with updates has a smaller standard deviation than the difference without 

monthly adjustments in Figure 11. 

 

Figure 11: The distribution of the difference of monthly trends: monthly-adjusted quadratic 

fitted trends minus the monthly-updated first reconstruction component of SSA (not the 

long-term average). This difference is pure noise as shown by the good fit of the Gaussian 

(0.07,0.35)ppmN  to the histogram. 
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12. The long-term trend from SSA 

We next compute  Long Term Average

1R t  for a long term (30 years) average, and compare it to 

the wavelet monthly adjusted trend  Monthly Adjusted

Qf t .  The monthly-adjusted wavelet trends 

 Monthly Adjusted

Qf t  fluctuate around the long term average trend  Long Term Average

1R t . The 

results matching the ascent of the overall trend up to these fluctuations, showing stability of 

the results.  

   

Figure 12: The Model fitted trend for 30 years (1985-2015).  Blue Line: long-term average 

trend derived from the SSA first reconstruction component (or EOF – see Appendix IV). 

Green line: Monthly adjusted quadratic fit to trend. Open circles are monthly data. 
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13. Difference between trends: long-term SSA and wavelet 

quadratic  

Figure 13 is the histogram of the differences    Monthly Adjusted Long Term Average

1Qf t R t  between the 

two trends. It shows how frequently, and by what margin, the SSA trend deviates from the 

quadratic wavelet trend.  The results closely follow a normal distribution N(0.08, 0.69) with 

mean = 0.08 ppm and standard deviation = 0.69 ppm. This is similar to the pattern of random 

noise, again showing that the two methods are (up to noise) reasonably equivalent. 

 

Figure 13: The distribution of the difference of the long-term SSA trend and the quadratic 

wavelet trend. The histogram is the monthly adjusted quadratic fitted trends minus the 

long-term average (not adjusted monthly) from the first reconstruction component of SSA. 

This difference is close to pure noise as shown by the reasonable fit of the Gaussian 

(0.08,0.69)ppmN to the histogram. 
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V. The Model Refined with a “Leaf Term”  

Here we consider the extra “leaf term” in the wavelet described in Section II above. There is a 

slight extra increase of CO2 in the autumn months when leaves fall in the northern hemisphere. 

This term accounts for this CO2 miniburst. (Note the southern hemisphere has less land and the 

trees in the Amazon rainforest are green year-round).  

For comparison, Figure 14 has the results without the leaf term. 

 

Figure 14: Wavelet (blue) and SSA (green) fit to historical data (black), without the extra “leaf 

term”. Note that the result is a bit low during fall and high during winter, each year. The forecast 

is in red. 
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Figure 15 has the results with the leaf term. The description is more accurate with the leaf term. 

 

Figure 15: Wavelet with the extra “leaf term” (blue), SSA (green) fit to data (black). The 

forecast is in red. The fit is better during fall and winter each year than without the leaf term. 
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VI. Final Result – The Bloomberg Carbon Clock  

Figure 16 shows the final model result for the forecast (red) including the forecast uncertainties 

given by the cycle standard deviation (Section IV.8). The figure shows SSA fit using the wavelet 

with the leaf term included (green), the historical trend (pink), and the forecast trend (blue) 

terms. The monthly data with rolling dates are also shown (circles). 

 

 

Figure 16: The final result for the one-year SSA forecast in red, historical trend (pink), the 

forecast trend (blue), and monthly data (circles). 

 

Figure 17a below shows a similar view of the Bloomberg Carbon Clock on the website
15

 taken 

on 9/6/16, at http://www.bloomberg.com/carbonclock .  

                                                           
15

 The leaf term refinement is planned but is not yet deployed on the website as of September 2016. 
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Figure 17a: The Bloomberg Carbon Clock showing the 1-year projected SSA model forecast 

including uncertainties, along with the historical and projected trends (yellow). The red dots are 

events (e.g. the last red dot is at the Paris UNFCCC Climate Conference, 2015).  The white line 

segments are drawn between the historical monthly-averaged data at fixed times
16

. The Carbon 

Clock URL is http://www.bloomberg.com/carbonclock 

 

The alternative view, including the uncertainties on the trend described in Section IV.9, is shown 

in Figure 17b: 

                                                           
16

 In Figures 17a, 17b, for convenience in plotting, the monthly data dates are fixed in advanced, and straight lines 

are drawn between neighboring monthly averaged data at these fixed times. The last segment stops at the last data 

point. Therefore there is a visual gap in Figures 17a, 17b between the last monthly fixed-time data point and the start 

of the model forecast. This gap is not material for the model. The model uses rolling monthly dates for averaging as 

described in the text, and the model forecast is continuous with the model historical result, without any gap. See 

Figure 16. 

http://www.bloomberg.com/carbonclock
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Figure 17b: The Bloomberg Carbon Clock showing the 1-year projected SSA model forecast, 

along with the historical and projected trends (yellow), with trend uncertainties. The red dots are 

events (e.g. the last red dot is at the Paris UNFCCC Climate Conference, 2015).  The white line 

segments are drawn between the historical monthly-averaged data at fixed times. The Carbon 

Clock URL is http://www.bloomberg.com/carbonclock 
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Appendix I.  Yearly forecasts 

The procedure for yearly forecasting is the same as for monthly forecasting, except that the 

SSA-based extrapolation to future time is projected for one year.  

Figure A1 has the yearly forecast past the last data point, joined to the previous monthly 

simulation using data: 

 

Figure A1: Red Curve: One-year forecast SSA forecast, at far right. Light Blue Line: One 

year forecast trend, at far right.  Blue Curve: SSA monthly forecasts from simulation 

(statistically “out of sample”).  Black Curve: SSA monthly updates with new information. 

Green line: monthly forecast quadratic trend. Open circles are monthly data. 
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Figure A2 shows the yearly forecast past the last data point, joined onto a yearly simulation 

(not monthly) using data: 

 

Figure A2: Red Curve: SSA one year forecast, at far right. Light Blue Line: One year 

forecast trend, at far right. Blue Curve: SSA yearly forecast (statistically “out of sample”). 

Black Curve: yearly update with new information. Green line: yearly forecast quadratic 

trend. Open circles are monthly data. 
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Figure A3 is the histogram of yearly differences in trends (forecast – update) from the yearly 

simulation. 

 

Figure A3: Histogram of yearly trend differences (forecast minus update). The red curve is a 

Gaussian fit (mean = -0.04 and standard deviation = 0.69). This fit shows that the difference 

is statistically indistinguishable from noise, so the forecasts are reliable. 
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Figure A4 is a pedagogical illustration of the procedure using the wavelets as input to the 

SSA algorithm using yearly timescales. There are 3 years of wavelets with modulation in the 

region where data exist, so that the amplitudes and positions of the peaks and valleys are 

known. There is one year of forecasting using the unmodulated wavelet, because without 

data the modulation cannot be predetermined.  

 

Figure A4: Pedagogical illustration for modulation. Black Curve: modulated wavelet fit 

for 3-year historical data. Red Curve: SSA one-year forecast. The SSA forecast takes the 

historical modulations into account. Blue Curve: unmodulated wavelet forecast, which is 

not as accurate as the SSA forecast.   
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Appendix II. Using only SSA (no wavelet)  

As an exercise, we also compare with SSA run for the complete analysis, without the wavelet. 

We find comparable results. We actually prefer using the wavelet, since physical meaning can be 

assigned to its various terms.   

It is possible to extract the trend and the components of the wavelet from various SSA 

eigenvectors. Figures A5–A8 have the results: 

 

Figure A5: One year SSA forecast trend using first eigenvector. 

  

2015.8 2016 2016.2 2016.4 2016.6 2016.8 2017 2017.2
401.5

402

402.5

403

403.5

404
Eigen vector 1

C
O

2 
in

 p
p

m
 



34 
 

 

Figure A6: One year SSA forecast wavelet component is reproduced using eigenvectors 2 and 3. 
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Figure A7: The wavelet leaf refinement is reproduced using SSA eigenvectors 4 and 5. 
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Figure A8: One year SSA forecast using eigenvectors 2, 3, 4 and 5. 

 

Comparing the Models: Back-testing Error Analysis 
Figure A9 shows the standard deviation between the forecast (made without the data in the 

forecast period) and the data later obtained during the forecast period, in a backtesting 

simulation. The errors are reduced with the leaf term in the wavelet. For comparison we also 

show the results without using any wavelet at all – just SSA. The errors are comparable with 

those of the wavelet including the leaf term. This shows the robustness of the model.  
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Figure A9: Forecast error comparison, wavelet without leaf term, wavelet with leaf term and 

SSA fit without the wavelet. The forecast error’s standard deviations for the wavelet without the 

leaf term are bigger during fall and winter. The forecast error’s standard deviations for wavelet 

with the leaf term and SSA without the wavelet are flat across seasons, consistent with each 

other, and smaller than using the wavelet without the leaf term. “Month” is a label (1 is January). 

We prefer using the wavelet since the wavelet terms capture information about the physical 

world. While we have just shown that the same terms are contained in the SSA eigenvectors 

without the wavelet, these terms are extracted after the SSA fit. 
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Appendix III. Long-Term Forecast Simulation 

For completeness, we have conducted long-term five-year forecasts using an historical 

simulation
17, v

. The simulation is first "trained" by applying SSA to five years of CO2 data. 

We then take the five-year SSA fit and break it up into five one-year segments
18

. We append 

each such one-year segment to the last point in the five-year training period. That gives five 

one-year forecast paths, each equal to a one-year SSA segment, fanning out from the last 

point of the training period. 

We then use the same five one-year SSA segments from the original five-year SSA fit as 

subsequent one-year forecasts for the second forecast year. Each of these one-year segments 

is appended to the ends of all five first year forecasts. That gives 25 forecast paths in the 

second year of the simulation.  We continue for three more years obtaining 125 forecast paths 

for the third year, 625 forecast paths for the fourth year, and 3,125 forecast paths for the fifth 

year. 

Finally we plot the monthly data for the five years in the forecast simulation period (which 

were not used in the procedure) and compare the data with the forecast paths to see how the 

simulation stacks up with the actual data. 

 

The dates for the two five-year simulations are in Table 1: 
 

Time period Simulation No. 1 Simulation No. 2 

Training period May 15, 1999 to Dec. 11, 2004 May 1, 2004 to Dec. 12, 2009 

Forecast 

simulation period 

Dec. 12, 2004 to Dec. 10, 2009 Dec. 13, 2009 to Dec. 11, 2014 

 

Table A1: Dates defining the two five-year simulations 

                                                           
17

 The method used here has some common elements with a partly historical simulation using SSA for the “Macro” 

component of a “real-world” model for Potential Future Exposure in counterparty Risk. See Dash and Bondioli, ref.  

 
18

 The training and forecast periods are not exactly 5 years long. 
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Figure A10: Five year forecast simulation No. 1 for Dec. 12, 2004 to Dec. 10, 2009   

 

 

  

38 40 42 44 46 48 50 52

365

370

375

380

385

390

395

Training period: 15-May-1999 ~ 11-Dec-2004

Forecast out of samples: 12-Dec-2004 ~ 10-Dec-2009

 

 

SSA update

Quadratic fit

Monthly data

Forecast simulation:

12/12/2004 - 12/10/2009

Training period:

5/15/1999 - 12/11/2004

C
O

2 
in

 p
p

m
 

               1998         2000          2002          2004        2006          2008         2010 



40 
 

 

Figure A11: Long term forecast simulation No. 2 for Dec. 13, 2009 to Dec. 11, 2014   
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Analysis of Five-Year Simulation Results 
 Simulation No. 1 reasonably reproduces the data for the forecast period 2004-2009 using 

the training period during 1999–2004. The 2004-2009 data fall within the ensemble of the 

forecast simulation paths, though are biased slightly higher than the path average. 

 Simulation No. 2 also reasonably reproduces the data for the forecast period 2009-2014 

using the training period during 2004–2009. The 2009-2014 data are systematically 

above the average of the forecast simulation paths. This implies the data of the 5-year 

period 2009-2014 have increased faster than the data of the 5-year period 2004-2009. 

Figure A12 shows 5-year CO2 trends defined as the quadratic terms from the wavelets, as 

described above. The trends have increased with time. This verifies the results of Simulation No. 

1 and Simulation No. 2.  

 

Figure A12: The CO2 trends in ppm for 5-year periods, normalized to zero at the start. 
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We also verify the simulations by tracing the historical scenarios in the simulated paths: 

1. Rank the five special paths generated each year in the historical (training) period.  

2. Rank the quadratic fit slopes for each year in the historical period 

3. Rank the shift (to the forecast time) plus the scenario minimum value for each year in the 

historical period 

4. Rank the shift (to the forecast time) plus the scenario maximum value for each year in the 

historical period 

5. Rank the shift (to the forecast time) plus the scenario average value for each year in the 

historical period 

6. Check all the ranks in 2 through 5 to see if they match the simulation path ranking in 1.  

This scenario tracing verification procedure is performed for both simulation No. 1 and 

simulation  No. 2.   

The table and figure below show the verification details for simulation No. 2. We find that the 

shift plus scenario maximum value rank, the shift plus scenario minimum value rank and the 

shift plus scenario’s average value rank exactly match simulation path rankings. This result holds 

for both simulations. The quadratic fit slope rankings are very close to simulation path rankings.   

 

Hist 
Scenario 

Simulation 
Path Rank 

Quadratic 
Slope Rank 

Shift plus Min 
Rank 

Shift plus Max 
Rank 

Shift plus Average 
Rank 

Year 1 2 2 2 2 2 

Year 2 1 4 1 1 1 

Year 3 4 1 4 4 4 

Year 4 3 3 3 3 3 

Year 5 5 5 5 5 5 

 

Table A2: Scenario tracing for simulation No. 2 
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Figure A13: Scenario tracing for simulation No. 2 
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The future scenarios of long-term simulation are roughly normal distributed (See figures below) 

and their standard deviations grow at the rate of square root of time. For example in the 

simulation No. 2, the ratio of the future scenarios’ standard deviation at fifth year and the  future 

scenarios’ standard deviation at fourth year is 1.13 while 12.1
4

5
  . These graphs show that 

the widths increase as a random walk would behave, the square root of time, showing that there 

are no systemic errors.  

Figure A14 is the histogram of widths of the scenario at the end of the fourth year, along with the 

Gaussian normal distribution fit (in red). 

 

Figure A14: Future scenario error distribution at fourth year for simulation No. 2 
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Figure A15 is the histogram of widths of the scenario at the end of the fifth year, along with the 

fit of a Gaussian normal distribution (in red). 

 

Figure A15: Future scenario error distribution at the fifth year for simulation No. 2 
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Appendix IV. SSA – Theory and Algorithm 

Singular Spectrum Analysis (SSA) Review 

The basic idea behind SSA
19

 is an expansion of a given time series  X t . The expansion 

has information at different points in time, and hence is able to extract time-series trends. 

The SSA expansion is in a sense “bootstrapped” from information about  X t  itself 

through its autocorrelations. SSA produces a “moving average” with cleverly chosen 

weights. No distribution assumption for the time series  X t  is made
20

. The details are 

rather complicated. Here we merely give the explicit reconstruction formula, the main tool 

we need.  

Given a time series   X t  for different times, SSA is an expansion with 

coefficients that are products of components   
1...k j M

E j


 of eigenvectors  
1...Mk k

E


 of 

the “lag covariance matrix” XC .  The eigenvectors are also called EOFs (Empirical 

Orthogonal Functions). The elements of XC  are autocorrelations of the time series, with 

autocorrelation time lags indexed by 1...j M . The reconstruction component  kR t  used 

as part of the approximation  (approx; )X t
 to  X t  at a particular time t  is obtained from 

the thk  SSA eigenvector kE  ( t  is an integer here indicating the time)
21

, and is 

       
, ' 1

1
X t j' j '

M

k k k

j j

R t E j E j
M 

       (2.1)  

Note that the data point  X t  is present on the right hand side of Eq. (2.1) from the term 

'j j . The approximation  (approx; )X t
 to  X t  including   reconstruction components 

from SSA is 

                                                           
19

 Multivariable SSA (MSSA) formalism is a straightforward extension to several time series. The correlations and 

lagged correlations between the various series enters. This is used when multiple time series are related (e.g. for a 

yield curve with different tenors). When there is only one time series, the algorithm for MSSA reduces to the 

algorithm for SSA. 

 
20

 Different notations: The top and bottom of the Wikipedia page (ref) contain different notations. The connection is: 

   Wiki Page End Wiki Page Top
, , , D ,M, N',TX L K N N  . 

 
21

 A “padded” version of SSA involves lower and upper limits on the sum that are t-dependent. We show the 

simplest “unpadded” version here. Actually this formula holds sufficiently far away from end points. See the 

discussion below. 

  



47 
 

   (approx; )

1

X t k

k

R t






      (2.2)  

 Using SSA first consists of deciding which time series
22

 to associate with  X t . Other 

parameters are the maximum lag M , the number of components   and the data time 

window over which SSA is applied. These choices are made from physical considerations, 

and are not given by the theory. 

In practice, the number of components   retained depends on the application. For 

price-based SSA, the number of components can be determined such that the eigenvalues 

are above a noise threshold, for example determined by random matrix theory (ref 
vi

 ). If all 

components are kept ( M  ), the series  X t  is exactly reproduced, i.e. 

   (approx)X t X t  at each time. This is because the eigenvectors  kE form a “complete 

set” in mathematical terminology. 

 

Weighted Moving Average Expression for SSA Approximation 
We can rewrite Eq. (2.2) for  (approx; )X t  as weighted moving average, which we believe is 

useful for intuition.  

We set 'i j j   and ' 'i j j  . The index i  is used for the time shift away from time t  

for the contribution of  X t i  in the moving average to  (approx; )X t
. We get

23
    

 

   
1

(approx; ) ( )

1

X t X t
M

i

i M

C i 


 

       (2.3) 

After some algebra, the weights 
( )

iC 
 turn out to be 

 

2

( )

'  is even (odd) 
1 i' 2 if  is even (odd)

1 ' '

2 2

M i

i k k
i

k i i

i i i i
C E E

M






  

    
    

   
    (2.4)  

                                                           
22

 SSA in principle can also be performed on a time-differenced time series, though we do not do this here. 

 
23

 Again this holds away from boundaries. Near boundaries the sum cuts off. 
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Note that 
( ) ( )

i iC C 

  .  

As an example  ( 6)

iC   is plotted in Figure A18 for the three different initial specifications 

described in the text. 

 

SSA Forecasting and Updating Algorithm 
There are two ways SSA is used in this paper.  

1. Forecasting one month ahead of the date that the last data point was received 

2. Updating the same monthly forecast at a later date when the next data point is received 

For either of the above cases, the same SSA algorithm is used (ref 
vii

) with the inputs as 

described in the text. The SSA algorithm iteratively produces estimates of time series 

points (either a month ahead for the forecast or the previous month for the update), which 

are then successively modified in the iteration until a convergence criterion is satisfied. An 

initial assumption must be used to start the procedure. These initial values do not affect the 

final results significantly, but do affect the convergence speed.  

The iterative procedure in the SSA algorithm has a double loop. In the inner loop, 

we use SSA reconstruction with a certain number of eigenvectors used, and where the 

maximum number of iterations is set as a parameter. The outer loop progressively increases 

the number of leading eigenvectors for the inner loop. This is done until convergence is 

obtained. The reconstructed time series in each inner loop generates estimates for the 

missing points in the original time series.  

Our algorithm is actually different from the original algorithm in one point. The 

original algorithm
viii

 uses a maximum number of leading eigenvectors in the outer loop, set 

as a parameter at setup. Our algorithm uses a convergence test in the outer loop to decide 

how many eigenvectors are used. This improves convergence speed without sacrificing 

accuracy. We have shown that our algorithm’s convergence speed is almost two times 

faster than the original in our tests.  

Use of SSA in practice and end-point considerations 
In practice, the algorithm is updated weekly with monthly forecasts. This has a technical 

benefit. The algorithm has end-point effects for  X t , because near the endpoint the 

reconstruction formula can only have previous observations. Away from the endpoint, the 

reconstruction formula can have both future and past observations. We avoid these end-
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point problems by including forecasting a month in advance, and then using weekly 

updating in practice. Thus, a given forecast is only used in time regions reasonably far 

away from the problematic end points. 

 In any case, the numerical results do not indicate significant end-point effects. 

The Parameters for SSA Forecasting / Updating Algorithm 
The algorithm is highly configurable and has several parameters. The following outlines the 

parameters definitions; the numerical values are in table A3: 

1. M : The lag window size for SSA. It determines the longest periodicity of time series 

captured by SSA.  

2. :  The initial number of eigenvalues to start the algorithm’s outer loop. The value of this 

parameter affects the algorithm’s convergence search path and speed. 

3. :s  The incremental step size for the algorithm’s outer loop. It also affects the algorithm’s 

convergence search path and speed.  

4. :  The maximum number of algorithm’s inner loop times for each outer loop. The 

algorithm uses this parameter to control inner loop times for each outer loop. If the inner 

loop times reaches the limit set up by   , the algorithm immediately stops the inner loop 

and jumps to the next outer loop (even if the convergence test is negative).  

5. :  The convergence test threshold. Choosing the value for this parameter is the matter of 

balancing the convergence accuracy and the convergence speed. A large threshold makes 

the convergence test easily passed, and thus makes the whole algorithm converge fast.  

 

 

   

Table A3: Parameter setup for CO2 forecast
24 

  

                                                           
24

 The Modulating Gaussian Function’s parameters (used by the algorithm) are automatically determined by 

monthly data fitting and are not listed here. 

Parameter Value 

M 366 

  1 

s 1 

  200 

  0.01 
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SSA Algorithm Flow Chart 
Figure A16 below illustrates the SSA algorithm as described above 

25
. 

 

  

                                                           
25

 All light green boxes are configurable by the algorithm’s parameters. The same diagram holds for the 

multivariable SSA (MSSA), as indicated. 
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Appendix V: Dependence of SSA Forecasts 

on initial future CO
2
 specifications 

The SSA forecast is an iterative procedure that adjusts future values via SSA until convergence 

occurs
26

. The initial specification for the future values is needed to start the iterative procedure. 

The choice of initial specification for the future values affects the SSA forecast accuracy and the 

algorithm’s convergence speed.   

We compare three choices for SSA initial future CO2 specifications. The first choice is to use the 

most recent 3-year historical CO2 monthly data to fit the wavelet function, and then extend the 

fitted wavelet function to the future time horizon as the initial future specification for the SSA 

forecast. The second choice is flat extrapolation of the last CO2 data point as the initial future 

specification. The third choice is zero future CO2 as the initial future specification; while this 

choice is unphysical, it serves as a no-prior-information benchmark.  

The results are that the “wavelet” initial future specification is somewhat more accurate and has 

faster convergence than the other two choices.
27

 

Figure A17 shows the 10-year backtest for the three methods for the CO2 initial future 

specification compared to the benchmark SSA update described in the text. The “wavelet” initial 

future specification result is very close to the “zero” initial future specification result, and both 

are somewhat better than the “flat extrapolation” initial future specification.  

                                                           
26

 Convergence is defined by successive iteration results differing less than a preassigned small number (the 

convergence test threshold). See appendix IV. 

 
27

 The “wavelet” initial method also improves SSA performance around/beyond the “current” time boundary for the 

forecast.   
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Figure A17: Back test for SSA forecast with three initial specification methods, compared with 

the SSA update (blue). SSA forecast with wavelet CO2 initial specification (yellow, visually 

indistinguishable) overlaps the SSA forecast with zero CO2 initial specification (red). Both are 

somewhat better than flat CO2 initial specification (green), which shows some deviation half 

way going up. 

 

Initial specifications and SSA algorithm convergence  
The “wavelet” initial specification convergence speed is faster than “zero” initial future-

specification convergence speed. This is because the zero initial value is very far from the correct 

value, and consequently the SSA forecast takes more time to converge. This section tests the 

approach to convergence and looks at the very first step using the initial eigenvectors from the 

different initial specifications and not iterating. 

Recall (see Appendix IV) that the SSA approximation away from boundaries is is 

   
1

(approx; ) ( )

1

X t X t
M

i

i M

C i 


 

  . Near boundaries the sum cuts off.  
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Figure A18 shows the SSA reconstruction component weighted-moving average coefficients 

 ( 6)

iC   for the three initial future specifications, using the initial eigenvectors from the different 

initial specifications and not iterating. The corresponding CO2 values resulting from these initial 

eigenvectors: = 400.8 ppm (wavelet CO2 initial specification blue), = 400.1 ppm (flat CO2 initial 

specification green), and = 63.5 ppm (zero CO2 initial specification red), far from the physical 

CO2 value of around 400 ppm. In this last case the non-zero values of  ( 6)

iC   are concentrated 

at one year. Physically, if there is no information initially, the best first-stage approximation for 

the roughly periodic CO2 value is the value one year away. Note 
( ) ( )

i iC C 

  . For the forecast, 

the values around - one year  are actually relevant. Note also that 366M   days. 

 

Figure A18: Plot of the total reconstruction coefficients  ( 6)

iC   in the moving average 

reconstruction approximation with 6   and 0i  , using the initial eigenvectors and not 

iterating. The “Day” axis (calendar days) is the index i .   ( 6)

iC   are similar for the wavelet 

(blue) and flat (green) initial CO2 specifications.  ( 6)

iC   for the zero (red) initial CO2 

specification are concentrated at one year .  
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