Blue Pelican

Geometry Theorem Proofs

Copyright © 2013
by Charles E. Cook; Refugio, Tx
(All rights reserved)

Table of contents - Geometry Theorem Proofs

The theorems listed here are but a few of the total in this curriculum. The vast majority are presented in the lessons themselves.

TP A: Prove that vertical angles are equal.
TP B: Prove that when a transversal cuts two parallel lines, alternate interior and exterior angles are congruent.

TP C: Prove that the sum of the interior angles of a triangle is 180°.
TP D: Prove that the base angles of an isosceles triangle are congruent.
TP E: Prove that the line segment joining the midpoints of two sides of a triangle is parallel to the third side and that its length is half that of the third side.

TP F: Prove that opposite angles of a parallelogram are congruent.
TP G: Prove that opposite sides of a parallelogram are congruent.
TP H: Prove that the diagonals of a parallelogram bisect each other
TP I: Prove that a line parallel to one side of a triangle divides the other two sides proportionally.

TP J: Prove the Pythagorean Theorem.
TP K: Prove that all circles are similar.

Theorem Proof A

If two angles are vertical angles, then the angles are congruent.

Proof:

Statement

1. $\angle 1$ and $\angle 2$ are supplementary
$\angle 2$ and $\angle 3$ are supplementary
2. $m \angle 1+m \angle 2=180^{\circ}$ $m \angle 2+m \angle 3=180^{\circ}$
3. $m \angle 1+m \angle 2=m \angle 2+m \angle 3$
4. $m \angle 1=m \angle 3$
5. $\angle 1 \cong \angle 3$
\therefore Vertical angles are congruent.

Reason

Linear Pair Postulate

Definition of supplementary

Substitution
Subtraction Property of Equality ($\mathrm{m} \angle 2$ cancels from each side)

Definition of congruence

Theorem Proof B

If two parallel lines are crossed by a transversal, then the alternate interior and alternate exterior angles are congruent.

Proof:

Statement

1. $l \| m$
2. $\angle 1 \cong \angle 2$
$\angle 5 \cong \angle 6$
3. $\angle 2 \cong \angle 4$
$\angle 6 \cong \angle 3$
4. $\angle 1 \cong \angle 4$
$\angle 5 \cong \angle 3$
\therefore Alternate interior angles and alternate exterior angles are congruent.

Reason

Given
Corresponding Angles Postulate

Vertical Angle Theorem
(Theorem Proof A)
Substitution

Theorem Proof C

If a polygon is a triangle, then the sum of its interior angles is 180°.

Proof:

Statement

1. $l \| m$
2. $\angle 1 \cong \angle 3$
3. $\angle 2 \cong \angle 5$
4. $m \angle 3+m \angle 4+m \angle 5=180^{\circ}$
5. $m \angle 1+m \angle 4+m \angle 2=180^{\circ}$
\therefore The sum of the interior angles of a triangle is 180°.

Reason

Given
Alternate Interior Angle Theorem (Theorem Proof B)

Alternate Interior Angle Theorem (Theorem Proof B)

Definition of straight angle
Substitution

Theorem Proof D

If a triangle is an isosceles triangle, then its base angles are congruent.

Proof:

Statement

1. $A B \cong A C$
$A D$ is the angle bisector of $\angle B A C$
2. $\angle B A D \cong \angle D A C$
3. $\mathrm{DA} \cong \mathrm{DA}$
4. $\triangle B A D \cong \triangle C A D$
5. $\angle B \cong \angle C$
\therefore The base angles of an isosceles triangle are congruent.

Reason

Given

Definition of angle bisector
Reflexive Property
SAS Postulate

CPCTC

Theorem Proof E

If a segment of a triangle connects the midpoints of two sides, the segment is parallel to the third side and its length is half that of the third side.

Proof:

Statement

1. $A D \cong D B$
$A E \cong E C$
$A B=2(A D)$
$A C=2(A E)$
2. $\frac{\mathrm{AB}}{\mathrm{AD}}=2 \quad \frac{\mathrm{AC}}{\mathrm{AE}}=2$
3. $\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
4. $\angle A \cong \angle A$
5. $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
6. $\angle A D E \cong \angle B$
7. $D E \| B C$
8. $\frac{B C}{D E}=2$

Reason

Given

Division Property of Equality

Substitution

Reflexive Property

SAS Similarity
Definition of Similarity
Converse of Corresponding Angles Postulate

Definition of Similarity
9. $\frac{B C}{2}=D E$

Multiplication Property of Equality
\therefore The midsegment of a triangle is parallel to the third side and half that of the third side.

Theorem Proof F

If a polygon is a parallelogram, then its opposite angles are
 congruent.

Proof:

Statement

1. $A B \| D C$
$A D \| B C$
2. $\angle A B D \cong \angle B D C$
3. $\angle A D B \cong \angle D B C$
4. $\mathrm{DB} \cong \mathrm{DB}$
5. $\triangle \mathrm{ADB} \cong \triangle C B D$
6. $\angle A \cong \angle C$
\therefore The opposite angles of a parallelogram are congruent.

Reason
Given (ABCD is a parallelogram)

Alternate Interior Angle Theorem (Theorem Proof B)

Alternate Interior Angle Theorem (Theorem Proof B)

Reflexive Property
ASA Postulate
CPCTC

Theorem Proof G

If a polygon is a parallelogram, then its opposite sides are congruent.

Proof:

Statement

1. $A B \| D C$
$A D \| B C$
2. $\angle A B D \cong \angle B D C$
3. $\angle A D B \cong \angle D B C$
4. $\mathrm{DB} \cong \mathrm{DB}$
5. $\triangle \mathrm{ADB} \cong \triangle C B D$
6. $\mathrm{DC} \cong \mathrm{AB}$
$D A \cong C B$
\therefore The opposite sides of a parallelogram are congruent.

Reason

Given

Alternate Interior Angle Theorem (Theorem Proof B)

Alternate Interior Angle Theorem (Theorem Proof B)

Reflexive Property
ASA Postulate

CPCTC

Theorem Proof H

If a polygon is a parallelogram, then its diagonals bisect each other.

Proof:

Statement

1. $A B \| D C$ $A D \| B C$
2. $\angle D A C \cong \angle A C B$
3. $\angle A D B \cong \angle D B C$
4. $A D \cong B C$
5. $\triangle \mathrm{ADE} \cong \triangle \mathrm{CBE}$
6. $A E \cong E C$
$D E \cong E B$
\therefore The diagonals of a parallelogram bisect each other.

Reason

Given

Alternate Interior Angle Theorem (Theorem Proof B)

Vertical Angle Theorem
(Theorem Proof A)
Opposite sides of a parallelogram are congruent (Theorem Proof G)

ASA Postulate
CPCTC

Theorem Proof I

If a triangle contains a line parallel to one side, then that line divides the other two sides proportionally.

Proof:

Statement

1. $D E \| B C$
2. $\angle A D E \cong \angle A B C$
3. $\angle A E D \cong \angle A C B$
4. $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
5. $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$
\therefore A line in a triangle parallel to one side divides the other two sides proportionally.

Reason

Given
Corresponding Angles Postulate
Corresponding Angles Postulate
AA Similarity
Definition of Similarity

Theorem Proof J

If a triangle is a right triangle, then the sum of the legs squared equals the square of the hypotenuse.

Proof:

Statement

1. $A_{\text {square }}=(a+b)^{2}$
2. $\mathrm{A}_{\text {square }}=4\left(\frac{1}{2} \mathrm{ab}\right)+\mathrm{c}^{2}$
3. $(a+b)^{2}=4\left(\frac{1}{2} a b\right)+c^{2}$
4. $a^{2}+2 a b+b^{2}=2 a b+c^{2}$
5. $a^{2}+b^{2}=c^{2}$
\therefore The square of the hypotenuse of a right triangle is equal to the sum of the squares of its legs.

Reason
Square formula: s^{2}
Alternate square formula - summation of the interior areas

Substitution
Simplification
Subtraction Property of Equality

See the next page for an alternate proof using similarity.

If a triangle is a right triangle, then the sum of the legs squared equals the square of the hypotenuse.

Proof:

Statement

1. $\triangle B A C$ is a right triangle $A D$ is an altitude of $\triangle B A C$
2. $B D+C D=B C$
3. $\angle B D A$ and $\angle A D C$ are right angles
4. $\angle B D A \cong \angle A D C \cong \angle B A C$
5. $\angle B \cong \angle B$

$$
\angle C \cong \angle C
$$

6. $\triangle \mathrm{BDA} \sim \triangle \mathrm{BAC}$
$\triangle B A C \sim \triangle A D C$
7. $\triangle \mathrm{BDA} \sim \triangle \mathrm{BAC} \sim \triangle \mathrm{ADC}$
8. $\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{BD}}{\mathrm{AB}} \quad \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{CD}}{\mathrm{AC}}$
9. $(\mathrm{AB})^{2}=\mathrm{BC} * \mathrm{BD},(\mathrm{AC})^{2}=\mathrm{BC} * \mathrm{CD}$

Reason
Given

Segment Addition Postulate

Definition of an altitude

Definition of congruence
Reflexive Property

AA Similarity

Substitution

Definition of Similarity

Cross-multiplication
10. $(\mathrm{AB})^{2}+(\mathrm{AC})^{2}=\mathrm{BC} * \mathrm{BD}+\mathrm{BC} * \mathrm{CD}$
11. $(\mathrm{AB})^{2}+(\mathrm{AC})^{2}=\mathrm{BC}(\mathrm{CD}+\mathrm{BD})$
12. $(\mathrm{AB})^{2}+(\mathrm{AC})^{2}=(\mathrm{BC})^{2}$
\therefore The square of the hypotenuse of a right triangle is equal to the sum of the squares of its legs.

Addition Property of Equality
Factoring
Substitution

Theorem Proof K

If two shapes are circles, then the shapes are similar.

Proof:

By definition, a circle is the set of all points at a given distance (the radius) from a given point.

The radius can be increased or decreased by any scale factor; therefore, the radii of any two circles are proportional.

Therefore, since the radii of any two circles are proportional, the two circles are similar and it follows that all circles are similar.

