

Overview

- What is a the purpose of Welding Procedure and Welder Qualification
- Explanation of Terminology
- What are the different Codes and Standards
- How do I use these documents to compile and qualify my procedures
- How Lloyd's Register can help

Weld Procedures

Question

What is the main reason for carrying out a Welding Procedure Qualification Test?

<u>Answer</u>

To show that following a given set of parameters will produce a welded joint that has the properties that satisfy the design requirements

Welder Qualification

Question

What is the main reason for carrying out a Welder Qualification Test?

<u>Answer</u>

To test the ability of a welder to follow verbal or written instructions and verification that the weld produced meets the required standard

Why We Need Weld Procedure Testing

Terminology

- WPS Weld Procedure Specification:
 - Qualified instructions on how to complete the weld
- PQR Procedure Qualification Record (ASME) & WPAR Weld Procedure Approval Record:
 - Record of the welding parameters and test results
- Welders Qualification Test Certificate & Welders Performance Qualification (ASME)
 - Record of Welder test results and ranges of approval

Terminology

- Essential Variable:
 - A parameter that when changed outside its permitted range requires requalification
- Non Essential Variable
 - A parameter that when changed does not require requalification
- Supplementary Essential Variable
 - Is an essential variable only when impact testing is required

Ranges in approval

Weld Procedures

• Range of approval is limited to materials with similar chemical composition and mechanical properties to that used in the PQR. Welding is within a strict range of parameters for the essential variables recorded during the PQR test.

Welder Qualifications

• Range of approval is not as restrictive as Procedure testing with fewer essential variables. One welder performance qualification can cover many WPS's.

Components of a welding procedure

Parent material

- Type (Grouping)
- Thickness
- Diameter (Pipes)
- Surface condition)

Welding process

- Type of process (MMA, MAG, TIG, SAW etc)
- Equipment parameters
- Amps, Volts, Travel speed

Welding Consumables

- Type of consumable/diameter of consumable
- Brand/classification
- Heat treatments/ storage

Components of a welding procedure

Joint design

- Edge preparation
- Root gap, root face
- Jigging and tacking
- Type of baking

Welding Position

- Location, shop or site
- Welding position e.g. 1G,2G, 3G etc
- Any weather precaution

Thermal heat treatments

- Preheat, temps
- Post weld heat treatments e.g. stress relieving

Testing

Non Destructive Exam

Visual- DPI- MPI- RT- UT

Mechanical Properties

The amount of deformation which metal can withstand under different modes of force application

Testing

Tests for required properties

- Tensile tests (Transverse Welded Joint, All Weld Metal)
- Toughness testing (Charpy, Izod)
- Hardness tests (Brinell, Rockwell, Vickers)
- Bend testing
- CTOD (Crack Tip Opening Displacement)
- Corrosion tests, HIC & SOHIC Tests

Tests for weld quality

- Macro testing
- Fillet weld fracture testing
- Butt weld nick-break testing
- NDE (VT,PT,MT,RT,UT)

Codes & Standards

APPLICATION	APPLICATION CODE	WELD	WELDER	
		PROCEDURE	APPROVAL	
		APPROVAL		
Pressure	PD 5500	BS EN ISO 15614	BS EN 287	
Vessels	BS EN 13445 series	1	BS EN ISO	
			9606	
	ASME B&PV Section III-	ASME B&PV	ASME	
	NB (Nuclear)	Section IX	B&PV	
	ASME B&PV Section VIII		Section IX	
Process	BS 2633	BS EN ISO 15614	BS EN 287	
Pipework	BS 4677	BS EN ISO 15614	BS EN ISO	
	BS 2971	BS EN ISO 15614-1	9606	
		(if required)		
	ANSI/ASME B31.1	ASME IX	ASME	
	ANSI/ASME B31.3	ASME IX	B&PV	
		BS EN ISO 15614-1	Section IX	
		(if required)		
Structural	AWS D1.1	AWS D1.1	AWS D1.1	
Fabrication	AWS D1.2	AWS D1.2	AWS D1.2	
	AWS D1.6	AWS D1.6	AWS D1.6	
	BS EN 1011	BS EN ISO 15614-1		
	BS 8118	BS EN ISO 15614-2		
		1	9606	
			BS 4872	
Storage Tanks	BS EN 14015	BS EN ISO 15614-	BS EN 287	
	BS EN 12285	1, -2	BS EN ISO	
		BS EN ISO 15614-	9606-2	
		1, -2	BS 4872	
	API 620/650	ASME IX	ASME IX	

BS EN1011

Organisation, Content and Structure of Section IX of the ASME B & PV Code

- Section IX is structured into 2 Parts: Welding (QW) and Brazing (QB)
- Each part is subdivided into four articles, namely;
 - General requirements
 - Procedure qualifications
 - Performance qualifications
 - Welding resp. brazing data
- Additionally
 - QW contains one article relating to "Standard Welding Procedure Specifications" (SWPS's)
 - Appendices detail all the mandatory and non-mandatory requirements

Article IV - Welding Data

QW-400 to QW-416 Variables

- This Section covers all aspects concerning of welding processes
 - Joints, base and filler metal, positions, preheat, post weld heat treatment, gas, electrical characteristics and technique

However, do <u>NOT</u> read individual paragraphs on their own but in conjunction with procedure or personnel qualification requirements only

2010 SECTION IX

QW-253
WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)
Shielded Metal-Arc Welding (SMAW)

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessentia
QW-402 Joints	.1	ϕ Groove design			Х
	.4	- Backing			Х
	.10	ϕ Root spacing			Х
	.11	± Retainers			Х
QW-403 Base Metals	.5	φ Group Number		Х	
	.6	/ Limits impact		Х	
	.8	φ 7 Qualified	X		
	.9	t Pass > ½ in. (13 mm)	X		
	.11	ϕ P-No. qualified	X		
QW-404 Filler	.4	φ F-Number	Х		
	.5	φ A-Number	X		
	.6	φ Diameter			Х
	.7	ϕ Diameter > $\frac{1}{4}$ in. (6 mm)		Х	

QW-403.8

A change in base metal thickness beyond the range qualified in QW-451, except as otherwise permitted by QW-202.4(b).

Article IV - Welding Data

QW-420 to QW 424 Material groupings

- Base metals are assigned P-Numbers in table QW / QB 422
 - P-Number: Ferrous / Nonferrous material according to base metal spec
- In order to reduce the number of procedure qualifications, each individual P- Number potentially covers a wide variety of materials

QW-430 to QW-433 F – Numbers

- Grouping of electrodes and other welding consumables
- Usability characteristics
- Principal based on grouping similar to P numbers
- Table QW-432 shows F, ASME (SFA....) and AWS (E....)

Article II - Welding Procedure Specifications - WPS

- A WPS is a written (qualified) welding procedure prepared to provide direction for the making of production welds
- The completed WPS shall describe all of the essential, nonessential, and, when required, supplementary essential variables
- Variables are defined for each process in QW-250 through QW-280
 - Each variable shall be addressed with facts, e.g. yes, no, none or any other meaningful definition not applicable is not acceptable
- Changes to WPS's are allowed, however:
 - Changes in essential and supplementary essential variables require requalification and (therefore) a new WPS
 - Changes in nonessential variables can be made without requalification, but do need to be documented and the WPS must be revised

Article II - Procedure Qualification Record - PQR

- A PQR is a record of welding data used to weld a test coupon
- It is a record of actual variables recorded during the welding of the test coupons
- PQR shall document all essential and, when required, all supplementary essential variables for each welding process
- Nonessential variables may be recorded (optional)
- All variables are actual values used during welding of the test coupon
- Changes to a PQR are not permitted as it is a record of what happened during a particular welding test, except for editorial corrections and addenda
- All changes except editorial and those invoked by an Addenda, require re-qualification and recertification of the PQR

Article III - Welding Performance Qualification

- Article lists the welding processes with the essential variables that apply to welder and welding operator performance qualifications
- Welder qualification is limited by essential variables given for each process
- Variables are listed in QW-350 / QW-360 and defined in Article IV
- Welder may be qualified by mechanical tests or by radiography of a test coupon or of his initial production welding
- Manufacturer is responsible for conducting tests to qualify the performance of a welder in accordance with a qualified WPS.

European Standards

Unlike ASME Section IX, WPS qualification to BS EN ISO15607 in the EN series is not contained in a single document

- BS EN ISO 15614 Specification and qualification of welding procedures for metallic materials Welding Procedure test
- Part 1:Arc welding of Steels and nickel alloys
- Part 2: Arc welding of aluminium and its alloys
- Part 3: Fusion and pressure welding of non-alloyed and low-alloyed cast irons
- Part 4: Finishing welding of aluminium castings
- Part 5: Arc welding of titanium, zirconium and their alloys
- Part 6: Arc and gas welding of copper and its alloys
- Part 7: Overlay welding
- Part 8: Welding of tubes to tube-plate joints
- Part 9: Underwater hyperbaric wet welding
- Part 10: Hyperbaric dry welding
- Part 11: Electron and laser beam welding
- Part 12: Spot, seam and projection welding
- Part 13: Resistance butt and flash welding

European Standards cont.

- BS EN ISO 15612: 2004: Specification and qualification of welding procedures for metallic materials Qualification by adoption of a standard welding procedure
- BS EN ISO 15610: 2003 Specification and qualification of welding procedures for metallic materials Qualification based on tested welding consumables
- BS EN ISO 15611: 2003: Specification and qualification of welding procedures for metallic materials -Qualification based on previous welding experience

Again, unlike ASME Section IX, Welder qualification in the EN series is not contained in a single document

- BS EN 287-1:2011 Qualification test of welders fusion welding Part 1: steels
- BS EN ISO 9606-2: 2004: Qualification test of welders fusion welding.
- Part 2: Aluminium and Aluminium alloys
- Part 3:Copper and Copper alloys
- Part 4:Nickle and Nickel alloys
- Part 5: Titanium and Titanium alloys
- BS EN 1418: 1998 Welding personnel Approval testing of welding operators for fusion welding and resistance weld setters for fully mechanised and automatic welding of metallic materials

Material Grouping

As with ASME, materials are grouped together in ISO15608 to reduce the number of procedures required. Steel Groups are:

- Group 1 C-Mn Steels
- Group 2 Fine Grain/TMCP Steels
- Group 3 QT or PH (except stainless steels)
- Group 4 Low Vanadium Cr-Mo Steels
- Group 5 Vanadium Free Cr -Mo Steels
- Group 6 High Vanadium Cr-Mo Steels
- Group 7 Ferritic, Martensitic and PH Stainless
- Group 8 Austenitic Stainless
- Group 9 Ni Alloy Steel
- Group 10 Duplex Stainless
- Group 11 HSLA Steels

BS EN ISO 15614-1 Main ranges of qualification

Section 8 Range of Qualification:

- 8.1: General
- 8.2 Related to manufacturer
- 8.3: Related to Parent Material
- 8.4 Common to all Welding Procedures
- 8.5 Specific to Processes
- Validity is restricted to workshops and sites under the same technical and quality control.
- Parent Material: Tables 3 & 4.
- Thickness: Tables 5 & 6.
- Diameter: Table 7
- Position: All positions (except vertical down) when there are no hardness/ impact test requirements

BS EN 287-1 Qualification test of welders - fusion welding - Part 1: steels

Covers:

- Essential variables and range of qualification
- Test piece form and size
- Welding conditions
- NDE/mechanical tests
- Acceptance requirements
- Period of validity and prolongation requirements
- Retest requirements in case of failure

Any questions

How Lloyd's Register can help

- Qualified and experienced Professionals in the field
- Use of "Expert" programmes to ensure code compliance (TWI C-Spec)
- LR Weld Certification Service: Offers a fixed fee "one stop shop" from witnessing the welding, collecting the samples, NDE & mechanical testing, certification and certification management

For more information, please contact:

Bob Pennycook

Lloyd's Register EMEA Energy Hiramford Office Village, Siskin Drive, Coventry. CV3 4FJ

T +44 (0)7711 859531 E robert.pennycook@lr.org w www.lloydsregister.co.uk

