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Abstract. In this paper, we present an emotion recognition methodology that 

utilizes information extracted from body motion analysis to assess affective 

state during gameplay scenarios. A set of kinematic and geometrical features 

are extracted from joint-oriented skeleton tracking and are fed to a deep learn-

ing network classifier. In order to evaluate the performance of our methodolo-

gy, we created a dataset with Microsoft Kinect recordings of body motions ex-

pressing the five basic emotions (anger, happiness, fear, sadness and surprise) 

which are likely to appear in a gameplay scenario. In this five emotions recog-

nition problem, our methodology outperformed all other classifiers, achieving 

an overall recognition rate of 93%.  Furthermore, we conducted a second series 

of experiments to perform a qualitative analysis of the features and assess the 

descriptive power of different groups of features. 
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1 Introduction 

One crucial component of games design and development is the accurate meas-

urement of user’s experience and undoubtedly, the most important aspect of user’s 

experience is their affective state. Particularly  in  serious games, the inference of play-

er’s  affect ive state could provide not only valuab le informat ion for player’s engage-

ment and entertainment  level, but also indicat ions of whether or not the desirab le 

educational objectives are reached. The majority of state of the art emotion recogn i-

tion frameworks capitalize main ly on facial expression or voice analysis; however, 

research in the field of experimental and developmental psychology has shown that 

body movements, body postures, or the quantity or quality of movement behavior in 

general, can also help us differentiate between emotions [1,2].  
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In particular, specific qualities and characteristics of body movements, such as v e-

locity, direction, turning away/forwards, body expansion/contraction has been exam-

ined in the inference of d ifferent emotions and combinations of these qualities are 

suggestive of specific emotions [3,4]. For example, expressions of joy are character-

ized by fast, upward directed movements with the arms raised. Similarly, movements 

indicative of grief tend to be slow, light, downward d irected, with the arms closed 

around the body. Body turning away and body contraction, as an attempt to appear as 

small as possible is shown to be a strong indicator of fear, while body turning towards 

is typical of happiness and anger.  

As more and more game companies and research centers move towards low cost 

RGB-depth sensors, a growing interest emerges considering the role of body move-

ment in games, not only in terms of natural user interaction, but of emotion recogn i-

tion during gameplay as well. Bodily expression provides a means for emotion recog-

nition from a distance [5], and therefore motion analysis is crucial in generating mul-

ti-modal data in gameplay environments where players’ facial analysis data are either 

too remote or partially obstructed (e.g. child ren wearing g lasses, hats  or other head-

wear). Additionally , the inclusion of bodily expression as an additional channel for 

affect communicat ion can help  resolve ambigu ity observed in the identification of 

certain basic mental states, such as anger and fear [6]. 

Over the last years, different approaches have been proposed for emotion recogni-

tion based on body movements, gestures and postures [7,8,9,10,11]. These studies 

obtained quite interesting results , highlighting the importance and feasibility of using 

body expressions for affect recognition. Specifically regarding affect recognition in 

games, Piana et al [12] presented a method that uses features derived from 3D skele-

ton data and a multi-class SVM classifier for the recognition of six emot ions, which 

was integrated in  a p latform of serious games for ch ild ren with Autis m Spectrum 

Condition. This method achieved a 61.3% recognition rate when evaluated at a da-

taset of recorded body movements of actors who were asked to express freely the six 

basic emotions. Savva et al [13] proposed an automatic recognition method of affec-

tive body movement in the context o f a Nintendo Wii tennis game which  feeds d y-

namic movement features to a Recurrent Neural Network (RNN) algorithm. This 

method was tested at a dataset of non-acted movements captured with Animazoo IGS-

190 during gameplay and reached a recognition rate of 57.46%, comparable with the 

61.49% accuracy of human observers’ recognition. 

Our focus at this paper is to present a method for emotion recognition based on 

body motion analysis  that will be incorporated in serious games that aim at helping 

children aged 7-10 acquire prosocial skills. Using a set of 3D features, we decided to 

test the recognition performance of deep learning architectures, such as neural net-

works (NNs) and Restricted Boltzmann Machines (RBMs), in an emot ion recognition 

task, as well as the descriptive power of different groups of features . This study led to 

the design of a deep learning network classifier with stacked RBMs. In the following 

sections, we will briefly  analyze  the groups of features used (Section 2);  then, we will 

present the proposed classifier (Sect ion 3); finally, we will evaluate and compare the 

recognition accuracy of different classifiers and different groups of features, using a 



dataset of acted movements associated with five emotions (Sect ion 4) and will co n-

clude with a discussion about results and future work (Section 5).  

2 Body Motion Analysis 

In this section, we will present a set of movement features which we utilize in our 

method and which are proven crucial in the process of emotion recognition [14]. The 

3D body movement features are extracted from joint-oriented skeleton tracking using 

the depth information provided by Kinect sensor [15]. We div ide the set of features 

into the following groups: kinemat ic related, spatial extent related, smoothness relat-

ed, symmetry related, leaning related and distances related.  

2.1 Kinematic Related Features (G1) 

Velocity and Acceleration. 

The velocity and acceleration features per frame are calcu lated as the mean veloci-

ty and acceleration of all frame joints. The velocity and acceleration can be approxi-

mated in our case by considering finite differences of position divided by the sam-

pling time interval ΔΤ [16]. 

Kinetic energy.  

Kinetic energy provides an estimate of the overall energy spent by the user during 

movement. The amount of movement activity has been shown to be relevantly i m-

portant for differentiat ing emotions [17]. The kinetic energy is proportional to the 

square of velocity. We ignore the mass term in kinetic energy as it is not relevant 

[16]. So the proportional amount of the kinetic energy of each joint Ki is calculated 

as: 

𝐾𝑖 =
1

2
𝑣𝑖

2   (1) 

Then, the kinetic energy of the entire body is calculated as the sum of all joints’ ki-

netic energies. 

2.2 Spatial Extent Related Features (G2) 

The following features provide an  estimate of how the body occupies the 3D space 

surrounding it. According to research in experimental psychology, the contraction 

index can be used to infer specific emot ional states; people are considered to usually 

spread out when they are happy, angry or surprised, and similarly reduce their size 

when in fear [3]. 

 

Bounding box volume.  



A bounding box is the minimum cuboid containing the body. Given the 3D posi-

tions of the user’s limbs’ end effectors , we can approximate this volume as the mini-

mum parallelepiped surrounding the user’s body. 

 

Contraction index.  

Contraction index in 3D is defined as the normalized bounding volume containing 

the user’s body and is related to the definition o f ones’ “personal space” [14]. The 3D 

contraction index is then calculated by comparing this bounding volume and an a p-

proximat ion of the volume of the density (DI) of the 3D coordinates calculated as 

follows:  

𝐷𝐼 =  
3

4
𝜋 ∙ 𝐷𝐼𝑥 ∙ 𝐷𝐼𝑦 ∙ 𝐷𝐼𝑧   (2) 

where 𝐷𝐼𝑥, 𝐷𝐼𝑦, 𝐷𝐼𝑧 are the approximated density indices calculated respectively on 

x, y and z axes as described in the following Equations: 

𝐷𝐼𝑥 = 
1

𝑛
∑ 𝑑𝑥 𝑖

𝑛
𝑖=1   (3) ,  𝐷𝐼𝑦 =  

1

𝑛
∑ 𝑑𝑦𝑖

𝑛
𝑖=1  (4), 𝐷𝐼𝑧 =  

1

𝑛
∑ 𝑑𝑧𝑖

𝑛
𝑖=1   (5) 

in which  𝑑𝑥𝑖, 𝑑𝑦𝑖  and 𝑑𝑧𝑖 are the distances between the center of mass and the 𝑖 th
 

joint. The 3D Contraction Index is then calculated as the normalized ratio between DI 

and the Bounding Volume.  

Density.  

A different measurement of body spatial extent is represented by the density index. 

Given the center of mass of the user’s tracked skeleton C, the density index is calcu-

lated as the average sum of Euclidean distances of all tracked joints from C: 

𝐷𝐸𝐼 =  
1

𝑛
∑ 𝑑𝐶𝑖

𝑛

𝑖=1

 (6) 

2.3 Smoothness Related Features (G3) 

Curvature (k) measures the rate at which a tangent vector turns as a trajectory 

bends and provides an indication of joints’ trajectories’ smoothness . According to 

Wallbott [2], “a s mooth movement seems to be large in terms of space and exhib it a 

high but even velocity”, so it will have low curvature value; by contrast, a sharp tra-

jectory movement will have a high curvature.  

The smoothness index for three dimensional curvatures is computed as follows: 

𝑘𝑖 =  
√(𝑥 𝑖 ∙̇ 𝑦�̈� − 𝑦�̇� ∙ 𝑥 𝑖̈ )

2 +  (𝑧�̇� ∙ 𝑥 𝑖̈ −  𝑥 𝑖 ∙̇ 𝑧�̈�)
2 + (𝑦𝑖 ∙̇ 𝑧�̈� − 𝑧𝑖 ∙̇ 𝑦�̈�)

2

(𝑥 𝑖
2̇ +  𝑦𝑖

2̇ +  𝑧𝑖
2̇ )

3
2

  (7) 

In our features set, we include right and left wrist curvature, head curvature and 

torso curvature. 



2.4 Symmetry Related Features (G4) 

It has been shown that asymmetry of movements can be related to emotion expres-

sion [18]. Each  symmetry  (𝑆𝐼𝑥, 𝑆𝐼𝑦, 𝑆𝐼𝑧) is computed from the position of the bary-

center and the left and right joints (e.g., wrists, shoulders, feet, knees) as described 

below: 

𝑆𝐼𝑋𝑖 =  
(𝑥𝐵 −  𝑥𝐿𝑖

) − (𝑥𝐵 −  𝑥𝑅𝑖)

𝑥𝑅𝑖 −  𝑥𝐿𝑖

  (8) 

where 𝑥𝐵 is the coordinate of the center of mass, 𝑥𝐿𝑖 is the coordinate of a left  jo int 

𝑖 (e.g., left hand, left shoulder, left foot, etc.) and, 𝑥𝑅𝑖 is the coordinate of a right jo int. 

In the same way, we compute 𝑆𝐼𝑦, 𝑆𝐼𝑧. The three partial indices are then combined in 

a normalized index that expresses the overall estimated symmetry: 

𝑆𝐼 =  
𝑆𝐼𝑋𝑖 + 𝑆𝐼𝑌𝑖 +  𝑆𝐼𝑍𝑖

3
   (9) 

In our features set, we include wrists, elbows, knees and feet symmetry. 

2.5 Leaning Related Features (G5) 

Head and body movement and positions are relied  on as an important feature for 

distinguishing between various emotional expressions [13]. The amount of forward 

and backward leaning of a torso and head joint is measured by the velocity of the 

joint's displacement along its z component (depth) respective to the body position and 

orientation, while the amount of right and left leaning is measured by the velocity of 

joint's displacement along its x component. 

2.6 Distance Related Features (G6) 

The distances between hands can be indicative of expansion or contraction of ges-

tures, while the distance between hand and head as well as hand and torso could pro-

vide estimation for the existence of specific move ments (e.g. touching head with one 

hand in case of grief). 

 

The aforementioned features are extracted per frame and then, their mean value is 

calculated for the sequence of frames. The total of the mean values for all features 

constructs the feature vector used as a movement descriptor. Distances and coordi-

nates used in calculations are normalized with respect to height.  

3 Deep Learning Network Classifier 

In this section, we propose a deep learning network classifier consisting of stacked 

RBMs, which proved to outperform other classic classifiers at the emot ion recogni-

tion task, as we will see in Section 4. 



A Restricted Boltzmann Machine [19] is a parameterized generative model repre-

senting a probability distribution. Given some observations, the training data, learning 

a Boltzmann Machine (BM) means adjusting the BM parameters such that the proba-

bility distribution represented by the BM fits the training data as well as possible. 

Boltzmann machines consist of two types of units, so called visible and hidden neu-

rons, which can be thought of as being arranged in two layers. The visible units co n-

stitute the first layer and correspond to the components of an observation. The hidden 

units model dependencies between the components of observations. 

 

Fig. 1. The undirected graph of an RBM with n hidden and m visible variables 

For our emotion recognition task, aiming at  a network architecture that will handle 

independently each group of features, we designed the architecture depicted at figure 

2. 

 

Fig. 2. Deep learning network classifier with 7 stacked RBMs 

At our two-layer network, we stacked seven RBMs, six at the first layer and one at 

the second layer, and train them layerwise, starting at the base layer and move up to 



the second, with no feedback from the higher layer to the lower layer. Each RBM of 

the first layer receives as input the features of a different group of features and it  is 

trained in  an unsupervised (since unsupervised pre-training guides the learn ing to-

wards basins of attraction of minima that support better generalizat ion  from the train-

ing data set [20]) and afterwards in a supervised way. Then, the output probabilit ies of 

the first layer are fed as input to the second layer and the seventh RBM is trained. The 

output probabilities of the second layer constitute the classification result. 

4 Experimental Results 

4.1 Dataset 

In order to evaluate the performance of our methodology, we created a dataset with 

Kinect recordings of body movements expressing the 5 basic emotions (anger, happi-

ness, fear, sadness and surprise) which are likely to appear in a gameplay scenario. 

The predefined set of movements (Figure 3) associated with these emotions was se-

lected based on social psychology research that identified body movements and pos-

tures which, to some degree, are specific for certain emot ions [1,2], [8]. Each emotion 

was represented with two different types of movements and each recording had dura-

tion of 4 seconds. 14 subjects (5 women and 9 men) part icipated in  the recording 

session. They were shown a short video with the aforementioned movements and 

afterwards, they were asked to perform each movement, accord ing to their personal 

style, 5 times, in front of a Kinect sensor. 

 

Fig. 3. Dataset Movements expressing five emotions 



4.2 Classification Results  

The purpose of the experiments conducted was to evaluate the recognition rate of 

deep learning network classifiers at the problem of emotion recognition from body 

motion analysis. For this purpose, we compared  the recognition rates of classic class i-

fiers (Naïve Bayes, Linear Mult iClass SVM, Non Linear SVM) with the recognition 

rates of deep learning network classifiers (mult ilayer perceptron MLP, RBM, our 

proposed architecture with stacked classifiers) at  a Leave-One-Subject-Out cross vali-

dation (LOSO cv) training the classifiers over 13 subjects and testing them with the 

data of the 14
th

 left out subject. The results of these experiments are shown at Table 1. 

As we can see, the three DL network classifiers achieved higher classification accura-

cy than classic classifiers, with the proposed classifier outperforming all others with  a 

recognition rate of 93%. 

 

Algorithm  Method Recognition Rate 

Naïve Bayes  77.21% 

Linear MultiClass SVM 

Crammer and Singer (CS) 77.78% 

Weston and Watkins (WW) 78.35% 

one-versus-all (OVA) 79.78% 

Non Linear SVM Crammer and Singer (CS) 84.5% 

Weston and Watkins (WW) 84.71% 

one-versus-all (OVA) 84.78% 

MLP  85.53% 

RBM  88.9% 

Stacked RBMs Classifier  93% 

Table 1. Classification results 

 

Fig. 4. Recognition rates with different groups of features 



4.3 Comparative Analysis of different groups of features  

Furthermore, we conducted a second experiment to perform a qualitative analysis 

of the features and assess the descriptive power of the different groups of features. 

Our purpose was to examine the contribution of each  group of features to the classifi-

cation process. For the experiments, we trained six d ifferent RBMs, each with a d if-

ferent group of features. As it is shown at Figure 4, only the distances related features, 

although being quite simplistic, can provide a decent recognition accuracy of 75.7%, 

constituting the only group that could be practically used in a recognition task. This 

means that all groups of features have a significant contribution and are necessary in 

order to achieve high classification accuracy. 

5 Conclusions and future work 

In this work, we have presented a complete method for affect recognition from 

body movements that are likely to appear at a  gameplay scenario. We have confirmed 

that a set of geometric and kinetic features can act as adequate descriptors for move-

ments related to emotions and that deep learning classifiers can provide better reco g-

nition rates than classic classifiers at this recognition task. Addit ionally, we have pro-

posed a classifier with stacked RBMs that outperformed all other classifiers in recog-

nition accuracy. Our next  goal is to test our method at non-acted emotion expressions 

recordings during gameplay of prosocial game Path of Trust [21] and as a following 

step; the affective informat ion derived from body expression analysis will be fused 

with facial and audio analysis information, in order to further increase the robustness 

of the algorithm. The final recognition module will be incorporated in Path of Trust 

game and other serious games for children. 
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