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ABSTRACT
This paper reports work on automatic analysis of laughter
and human body movements in a video corpus of human-
human dialogues. We use the Nordic First Encounters video
corpus where participants meet each other for the first time.
This corpus has manual annotations of participants’ head,
hand and body movements as well as laughter occurrences.
We employ machine learning methods to analyse the corpus
using two types of features: visual features that describe
bounding boxes around participants’ heads and bodies, au-
tomatically detecting body movements in the video, and au-
dio speech features based on the participants’ spoken con-
tributions. We then correlate the speech and video features
and apply neural network techniques to predict if a person
is laughing or not given a sequence of video features. The
hypothesis is that laughter occurrences and body movement
are synchronized, or at least there is a significant relation
between laughter activities and occurrences of body move-
ments. Our results confirm the hypothesis of the synchrony
of body movements with laughter, but we also emphasise
the complexity of the problem and the need for further in-
vestigations on the feature sets and the algorithm used.

CCS Concepts
�Computing methodologies→Computer vision; Dis-
course, dialogue and pragmatics;
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1. INTRODUCTION
Human non-verbal behaviour, gesturing and body pos-

ture, is related to the person’s internal activation and spoken
activity, and is important in enabling smooth communica-
tion [13]. Speakers complement their utterances and control
and coordinate interaction by gesturing, and by observing
gesturing behaviour it is possible to make inferences about
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the partner’s activity level, intentions, and emotions, and
to predict the success of interaction. Interesting research on
co-speech gesturing has been conducted in a neuro-cognitive
framework [7], while numerous communication studies have
focussed on modelling human engagement, entrainment, and
mutual synchrony ([5, 15, 24], to mention a few).

Here we report work on automatic analysis of laughter
and human body movements in a video corpus of human-
human dialogues. The Nordic First Encounters video cor-
pus [16] is a collection of dialogues where the participants
make acquaintance with each other for the first time. We
use the Estonian part of this corpus, which consists of 23
dialogues collected in the Multimodal Interaction (MINT)
project [11]. This corpus has manual annotations of the
participants’ head, hand and body movements as well as of
laughter occurrences.

Two questions addressed in this paper are (1) how well
can simple video processing techniques be applied to con-
versational data, and (2) can the participants’ movements
be detected so as to enable studies on the co-occurrence and
correlation between laughing and body movements in com-
municative behaviour. The first question aims to explore
the robustness of the new technology in human behaviour
studies. We use OpenCV video processing to automatically
detect head and body movements, and then use deep learn-
ing techniques to predict if the person is laughing given a
sequence of video features. A simple bounding box tech-
nique was used to detect each person’s movements, but we
are also experimenting with Optical Flow techniques which
have been successfully applied to action recognition. The
second question aims to exemplify the application of the
technology to a current interaction task. The hypothesis is
that there is significant correlation between movement oc-
currences and laugh activities, i.e. it is possible to predict
whether a person is laughing or not given video features for
a sequence of her/his movements.

The paper is structured as follows. Section 2 describes au-
tomatic annotation of body movements. Section 3 discusses
research on laughter in dialogues. Section 4 presents our
initial analysis and Section 5 describes improvements intro-
duced by adding context information. Section 6 presents the
results and finally, Section 7 draws conclusions and discusses
future work.

2. BODY MOVEMENTS
We identify head and body coordinates using a variant of

the algorithm described in [24]. This uses well-known tech-
niques in video processing to extract the so called bounding



box around the participant’s contour, and then heuristically
devides it into three sub-contours that represent the par-
ticipant’s head, body and legs. As the participants are off-
camera at the start of each video, we use the first frame to
give background edges for background subtraction. For the
remaining frames of the video we subtract the background
edges to leave only the person edges. After reducing noise
by morphological dilation and erosion we find the current
frame’s contours [18]. As the background edges have been
subtracted, the two largest remaining contours are the two
persons who have entered the scene.

For each person, we divide the person contour vertically
into three regions for head, body and legs. This exploits the
fact that in these videos the persons are always standing. As
the top region of the contour contains the head, we can find
a very precise subcontour of the head within that region.
The middle region contains the upper body, and we can find
a horizontally accurate subcontour for the body, arms and
hands within that region. The lower region contains the legs,
but this subcontour is relatively unreliable (see below). We
draw labelled bounding boxes around the head, body and
legs contours, and add a time stamp, as shown in Figure 1.

Figure 1: Video frame with bounding boxes for the
head, body, and legs for the left and right partici-
pant.

In Figure 1, blue bounding boxes enclose the full persons,
and green bounding boxes enclose the heads, bodies and legs.
The green boxes are labelled LH (left person head), LB (left
person body), LL (left person legs) and similarly RH, RB,
RL for the right person head, body and legs.

Figure 2 shows a video frame with a set of bounding boxes
for the head, body and legs during the participants’ laugh. It
shows how the participants lean towards each other and their
head is also pushed foward. It also reveals that the vertical
division of the body and legs regions is only approximate:
the hand of the person on the right crosses the boundary
between the body region and the legs region. The current
algorithm does not include specific hand-tracking which is
proposed in [17].

Of the three separate bounding boxes (the head, body
and legs) for each participant, we use only the head and
body bounding boxes for detecting laugh segments. As men-
tioned, the bounding box for legs is noisy and unstable,
and if excluded, the main patterns in the signal remain un-
changed. Moreover, feet and leg movements seem a rather
distinct activity from laughing. The unstable legs bound-

Figure 2: Video frame with the bounding boxes dur-
ing laughter.

ing box also influences the the full person contour, so the
bounding box for the whole body is also omitted from our
studies.

3. LAUGHTER
Laughter has been much studied in speech research with

the focus on its acoustic properties, in particular to catego-
rize various forms of laughter for emotion recognition [1, 21,
22]. In recent studies on social signals and their correlation
with the interactional context it is shown that the timing of
laughter is correlated with the interaction flow and it con-
veys information about the underlying discourse structure
[4, 3]. Higher amounts of laughter occur in topic transi-
tion moments than in topic continuation moments and when
the temporal distance from the topic boundary increases,
laughter becomes more likely to occur. [9] studied laugh-
ter and engagement and noted that a significant change in
the amount of laughter occurs at fifteen seconds around the
topic changes.

Laughter occurrences have been classified into different
types, such as mirthful and embarrassed, while the main
division is usually between free laughter (voiced rhythmic
laughing) or speech-laugh (laughing is simultaneous with
speaking). [10] found significant overlap with speech and
laugh in the corpus of student and student-teacher conver-
sations, and that although there was no difference in the
length of free laughter compared with that of speech-laugh,
the duration of embarrassed laughs was significantly longer
than that of all other types of laughter (mirthful, breathy,
polite). [19] used a four-way classification, with the most
common distinction between the spontaneous mirthful laugh
and polite laugh, which together account for 80% of laughs.

Few studies, however, concern the correlation of laughter
and other multimodal communication signals. In this pa-
per we are interested in the correlation of body movements
with laughter, hypothesising that laughter occurrences and
body movement are synchronized, i.e. there is a significant
co-occurrence relation between laughter and occurrences of
body movements.

4. INITIAL FRAME ANALYSIS
Preprocessing of the data requires alignment of laughter

annotations and video frames. Video frames are provided at
fixed points in time (frequency 20 frames per second), but



laughter segments are annotated for particular time dura-
tions, e.g. a laughter from time stamp 9.02 to 9.93 means
the participant laughed for 0.91 seconds. In order to align
laughter annotations with the frames, we copied the laugh-
ter labels onto all video frames from the start of the laughter
till the end of the laughter, e.g. in the above example from
9.02 till 9.93. As a result, each video frame is labelled either
0 for not-laugh or 1 for laughter.

We selected three videos for the experiments, and for
the construction of training and test sets, we collected all
the frames from the videos (the length of the videos varies
from 5 minutes to 6 minutes 40 seconds, so each video has
about 7000 frames given the sampling frequency of 20), then
aligned the frames with the laugh/non-laugh marking, and
finally collected all the frames together in one big dataset.
This dataset contains about 21,000 samples, and after shuf-
fling, about 2/3 is used for training and 1/3 for testing.

Our initial experiments used straightforward frame-based
models to correlate data points with laughter values. We
first tried models using raw bounding boxes as features (auto-
correlation), but this did not work. We then characterised
the movement by focussing on the differences between the
bounding boxes in two separate frames. Following gesture
studies (e.g.[17]), we calculated speed and acceleration for
the movement. The timestamp differences t-9 and t-25 in-
dicate the best heuristic values found via experimental trials
to select the consecutive frames when calculating the values
from a simpler system to a more complicated one. The fol-
lowing feature sets were tried:

• speed of change: difference between bounding boxes at
time t-1 and t

• acceleration of change: difference of the difference be-
tween bounding boxes at time t-1 and t

• cumulative differences, and cumulative differences of
differences from time t-25 to t

• cumulative differences, and cumulative differences of
differences from time t-9 to t

However, these features did not work well except for the
last feature set, which seemed to work for some videos. Fig-
ures 3 and 4 show the analysis of head and body movement
features for two of the videos. The red lines are the frames
which are labelled as laugh activities. The features in the
figures are as follows:

• d1 is the cumulative differences. This is the speed with
which the bounding box is changing over time.

• d2 is the differences of the differences. This is the
acceleration of the speed.

• Person d1 and Person d2 are combinations of mov-
ing signals of Head and Body related to d1 and d2.

The movement peaks represent high-activity regions, and
mostly appear at the beginning when the two people shake
hands. The activity decreases towards the end of the inter-
action. A few larger movement patterns can be observed
in the middle of the videos, indicating that standing par-
ticipants are not completely still during the interaction but
move their body and hands. However, these movements
need not be related to laughter, but may indicate pointing

Figure 3: Head and body movements in Video 1,
with laughter frames marked with red lines.

Figure 4: Head and body movements in Video 2,
with laughter frames marked with red lines.

or waving gestures. We conclude that although these plots
do not clearly visualise individual laughing events, they do
show the overall joint patterns of the participants’ movement
activity.

5. ADDING CONTEXT
It is understandable that the simple frame-based approach

does not work for recognizing laughter and gesture correla-
tion: individual frames are only short stretches of laugh-
ter, and obviously larger contextual information is needed.
From the dialogue point of view, a good indicative feature
of the context would be the topic of the conversation since
more laughter occurs at topic changes [2]. On the other
hand, [6] distinguished different phases in laughing which are
connected with breathing and phonetic properties of laugh-
ter. Furthermore, it is also clear that if there is correla-
tion between laughing and body movements, the context of
these movements in which the laughing co-occurs is impor-
tant. [13] analyses hand gestures as consisting of prepara-
tory, stroke, and post-stroke (retraction) phases, so it is rea-
sonable to assume that laughter-related movements would
follow this kind of structure as well, although, of course, the
actual timing of gesturing and laughing is complicated, and
would require more systematic studies.

The present approach is based on a bottom-up video signal



analysis, so we use the frames as the context to capture the
pre- and post-laugh events. The relevant new information
includes the context where a laughter signal can be observed
for a couple of frames before the actual laughter, or where
there occurs post-laugh signals after the laughing. Hence,
we group frames into a sequence of frames which we call a
super-frame, and do the preprocessing as before (d1 + d2)
for all the super-frames. After some experimentation, the
group size of 10 was found as an optimal size.

Figure 5 shows the results of taking the context informa-
tion into account. The circles highlight the signal fluctuation
when one of the participants laughed.

Figure 5: Head and body movements in Videos 1
and 2 when the contextual information is added.

We continued with a statistical analysis using these fea-
tures. Five different unsupervised clustering algorithms were
applied, each of which using a different principle for cluster-
ing the dataset. Principal Component Analysis [12] searches
for the dimensions that maximize the variances within the
data points, preserving as much information as possible in
the reduced dimensions. t-distributed Stochastic Neighbor
Embedding [23] concentrates on similarities between data
points and constructs a low-dimensional embedding that
minimizes the Kullback-Leibler divergence to the joint prob-
abilities of original distribution. Isomap Embedding [20]
and Spectral Embedding are non-linear dimensionality re-
duction methods. The first one estimates the intrinsic geom-
etry of data based on a rough estimate of each data point’s
neighbours, while Spectral embedding constructs a similar-
ity matrix of data points and forms new dimensions from the
eigenvalues of this matrix. Multidimensional scaling [14] is a
popular technique for visualizing the similarity of individual
cases. The algorithm tries to preserve the distances between

Figure 6: Visualizations of 6 clustering algorithms.
From left to right upper row: Principal Component
Analysis, t-distributed Stochastic Neighbor Embed-
ding, Linear Discriminant Analysis. Lower row:
Isomap Embedding, Multidimensional scaling, Spec-
tral Embedding.

objects in N-dimensional space as well as possible.
We also used one supervised classification algorithm, Lin-

ear Discriminant Analysis (LDA) [2]. LDA optimizes its
subspace by maximizing the differences between classes, and
by minimizing the differences within classes.

Figure 6 shows visualisations of the statistical relations
of the data points with the laughter labels using the five
different clustering algorithms and the supervised LDA. The
red dots represent “laughing” data points, while the blue
ones are “non-laughing” data points.

6. RESULTS
If the data points are mixed together, it is difficult to

recognize specific groups (i.e. laugh vs. non-laugh). We can
see from Figure 6 that none of the five clustering algorithms
can distinguish the data points well, i.e. there are no obvious
differences between features representing“laughing” samples
and “non-laughing” samples.

By contrast, the Linear Discriminant Analysis found a
separating line between laughs and non-laughs but only if
the dataset was small (1200 data points); with larger data
(3000 samples), the two classes are significantly mixed. In
the first case the red dots (samples labelled as laughing) are



also spread all over the horizontal axis, which indicates a
heterogeneously distributed dataset and strong complexity
of the cases. Unlike the other applied algorithms, LDA is a
supervised algorithm which means the label of each sample
is already known. The highlighted plots in Figure 6 refer to
the LDA analysis.

We trained 14 different models on bounding boxes, but
all provide poor performance. As Figure 6 shows, the best
model uses LDA to transform the data to a more distinguish-
able space. Hence we created a pipeline: [transform data
using LDA] -> [train classifier to discriminate 2 classes].

This algorithm performs decently on the training set, but
LDA fails to capture the complexity of all the laughing sam-
ples (i.e it cannot transform the test data to a more separable
space). This is reasonable because: 1) LDA is a linear algo-
rithm, 2) there are significant differences within the samples
that are labelled as laughing, 3) there exist ambiguities be-
tween laughing and non-laughing frames (indicated by all
the unsupervised algorithms mixing them up).

7. CONCLUSIONS AND FUTURE WORK
In this paper we have studied correlation and co-occurrence

of laughter and body movement in first encounter interac-
tions, and tried to answer the questions of how well simple
video processing techniques can be applied to conversational
data, as well as whether the participants’ movements can be
detected in this way for further studies on communicative
behaviour. We can conclude that laughing bears a rela-
tion to head and body movement but that the details of
co-occurrence need more studies.

We used bounding boxes to provide a rough estimate of
the participants’ movement, and concluded that although
they give helpful information showing some correlation with
laughter activity, bounding boxes alone are not enough for
a laughter detection algorithm alone.

When building models for predicting laughter activity,
misclassification between normal activity and laughter may
occur because: 1) there exist significant differences among
laughter samples; for example laughter at the beginning of
(first-encounter) conversations is a formal way of greeting
each other, while it is also an expression of joy, or occurs
quietly without any other actions; 2) there are ambiguities
between laugh and non-laugh signals; for example people
have a wide variety of head and body movements within
any laughter activity.

To remedy the roughness of bounding boxes, we are also
investigating the use of dense optical flow [8] for laughter
recognition. Figure 8 shows the dense optical flow in the
same frame with laughter shown in Figure 7. We hope to
provide results from this approach in due course.

Future work concerns more detailed analysis of laughter
occurrences, taking into account various types of laughter
to see if body movements are related to particular types
of laughter. We wish to compare results in larger cultural
contexts and study differences in social signals, laughter and
multimodal communication using deep learning with visual
and speech features in intercultural communication.

We also plan to do further analysis on facial expressions,
since smiling is closely related to laughing, and can be one
of the pre- and post-laugh activities, besides having its own
functioning in human communication. The bounding boxes
can be very useful for extracting the pixels of heads and bod-
ies. However, since there are large amounts of facial datasets

Figure 7: A video frame where laughter occurs.

Figure 8: Dense optical flow at the same frame as
Figure 7.

available, we intend to leverage these data to enhance our
model by having more powerful facial features.
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